Science.gov

Sample records for plasma-atomic emission spectrometry

  1. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes.

  2. [Determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Liu, Dong-yan; Zhang, Yuan-li

    2002-02-01

    A direct method was reported for the determination of total sulfur in coal by inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution conditions of coal samples as well as interference conditions of hydrochloric acid and matrix were studied. The recommended method not only proved to be simple and rapid than traditional gravimetric method but show satisfying precision and accuracy as well. The results of samples are as same as gravimetry. The recoveries are more than 96%, and the relative standard deviation of six samples are less than 3%.

  3. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  4. [Determination of trace elements in shark cartilage by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Deng, B; Zhang, Z

    1998-10-01

    Semiquantitative estimation of all elements in shark cartilage was investigated by inductively coupled plasma mass spectrometry (ICP-MS). The determination of trace elements, namely Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr in shark cartilage, was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES). The matrix effects were overcome by using yttrium as an internal standard element. The recoveries are in the range of 81.6 to 100.7%. The determination limits of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr are 0.60, 0.55, 0.21, 0.39, 0.042, 0.27, 0.038 and 0.48 microg x g(-1), respectively. The results showed that the shark cartilage contains higher amount of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr than those in other fishes and in other animal bones.

  5. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  6. Determination of additives in PVC material by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hemmerlin, M.; Mermet, J. M.; Bertucci, M.; Zydowicz, P.

    1997-04-01

    UV laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) has been applied to the direct determination of additives in solid poly(vinyl chloride) materials. A Nd:YAG laser, operating at its fourth harmonic (266 nm), was used with a beam masking device, in the most reproducible conditions, to introduce solid particles into the plasma torch of a simultaneous ICP-AES system. Emphasis was placed on both precision and accuracy in the analysis of PVC materials by LA-ICP-AES. A series of six in-house PVC reference materials was prepared by incorporating several additives in increasing concentrations. Three alternative methods were evaluated to certify the amount of incorporated elements: ICP-AES with sample dissolution, NAA and XRF. Satisfactory results and good agreement were obtained for seven elements (Al, Ca, Cd, Mg, Sb, Sn and Ti) among the ten incorporated. Sample homogeneity appeared to be satisfactory, and calibration graphs obtained by LA-ICP-AES for several elements are presented. Finally, the performance of the technique in terms of repeatability (1.6-5%), reproducibility (2-5%), and limits of detection was investigated.

  7. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  8. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  9. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds as the total metal (e.g., total arsenic), using inductively coupled plasma-atomic emission spectrometry.

  10. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  11. Simultaneous multielemental analysis of some environmental and biological samples by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Hee, S.S.Q.; Boyle, J.R.

    1988-05-15

    The Parr bomb technique is found to be the preferred acid digestion method for multielemental analysis by simultaneous inductively coupled plasma atomic emission spectroscopy (ICP-AES) when compared with microwave and hot plate methods for many environmental and biological specimens, but especially for the latter. One digestion alone often did not produce quantitative results compared with a sequential digestion scheme. The digestions were then refined to be as similar as possible for the various substrates studied. The interference of carbon on As and Se had to be corrected at less than or equal to 3000 ..mu..g of C/mL in the analysis solution, and thus the C content had to be monitored to assess the efficiency of the digestions and to determine if interelemental correction for C presence was required. The C correction was adequate in the range 3000-10,000 ..mu..g of C/ml. The use of modified k values was demonstrated to provide accuracy and had to be used for ICP-AES spectrometers where background corrections were performed first for fixed channels. The results on Cincinnati soils and feces of Cincinnati children showed that Si and Ti were possible tracer elements for soil ingestion by the children.

  12. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  13. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  14. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  15. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  16. New method for removal of spectral interferences for beryllium assay using inductively coupled plasma atomic emission spectrometry.

    PubMed

    Maxwell, Sherrod L; Bernard, Maureen A; Nelson, Matthew R; Youmans, Linda D

    2008-07-15

    Beryllium (Be) has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S. Department of Energy (DOE) facilities is required to identify potential health risks and to protect U.S. DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES) that allows lower detection limits. The ion exchange separation removes uranium (U), plutonium (Pu), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin and TEVA Resin reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material (CRM) standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. This new method offers improvements over other separation methods that have been used by removing large amounts of all the significant spectral interferences with greater simplicity and effectiveness. The effective removal of spectral interferences allows lower method detection limits (MDL) using inductively coupled atomic emission spectrometry. A vacuum box system is employed to reduce analytical time and reduce labor costs.

  17. In situ determination of uranium in soil by laser ablation-inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Zamzow, D.S.; Baldwin, D.P.; Weeks, S.J.; Bajic, S.J.; D'Silva, A.P. )

    1994-02-01

    The concentration of uranium in soil has been determined for 80 sites in an area suspected to have uranium contamination by in situ laser ablation - inductively coupled plasma atomic emission spectrometry (LA-ICPAES), utilizing a field-deployable mobile analytical laboratory. For 15 of the 80 sites analyzed, soil samples are collected so that the field LA-ICPAES results could be compared to laboratory-determined values. Uranium concentrations determined in the field by LA-ICPAES for these 15 sites range from <20 parts per million (ppm) by weight to 285 ppm. The uncertainty in the values determined, however, is large relative to the uranium concentrations encountered at this site. The 95% confidence interval (CI) values are approximately 85 ppm. The uranium concentrations determined by laboratory LA-ICPAES analysis range from <20 to 102 ppm (95% CI of approximately 50 ppm); microwave dissolution and subsequent standard addition determination of uranium by solution nebulization ICPAES using an ultrasonic nebulizer yields 19-124 ppm uranium (95% CI of approximately 10 ppm). For 11 of the 15 samples, the field- and laboratory-determined uranium concentrations agree, within the uncertainty of the determined values. 19 refs., 5 figs., 3 tabs.

  18. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  19. Determination of nickel in biological materials after microwave dissolution using inductively coupled plasma atomic emission spectrometry with prior extraction into butan-1-ol.

    PubMed

    Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    1992-07-01

    A sensitive procedure has been developed for the determination of ultratrace amounts of nickel in biological materials by inductively coupled plasma atomic emission spectrometry after extraction of the nickel ion into butan-1-ol by using 1,5-bis(di-2-pyridylmethylene)thiocarbonohydrazide as the extracting reagent. Fast, efficient and complete sample digestion is achieved by an HNO3-HCl poly(tetrafluoroethylene) bomb dissolution technique using microwave heating. Results obtained for eleven certified reference materials agreed with the certified values.

  20. Determination of silver in nano-plastic food packaging by microwave digestion coupled with inductively coupled plasma atomic emission spectrometry or inductively coupled plasma mass spectrometry.

    PubMed

    Lin, Q-B; Li, B; Song, H; Wu, H-J

    2011-08-01

    The detection of silver in nano-plastic food packaging by microwave digestion coupled with either inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) was investigated. Microwave digestion was optimised by trialling different acid mixtures. Both ICP-AES and ICP-MS showed good reproducibility, repeatability and recovery. For ICP-AES the limit of detection of the method (LODm) was 25.0 µg g(-1), the limit of detection of the instrument (LODi) was 30.0 ng ml(-1), the linear range was 0.10-10.0 µg ml(-1). The average recoveries for blank samples spiked with silver at 100, 250 and 500 µg g(-1) ranged from 82.53% to 87.60%, and the relative standard deviations (RSDs) were from 1.79% to 8.30%. For ICP-MS analysis the LODm was 0.75 µg g(-1), the LODi was 0.04 ng ml(-1), the linear range was 0.20-500.0 ng ml(-1), the RSDs were 2.26-4.79%, and the recoveries were 78.09-92.72% (spiked concentrations of 2.5, 5.0 and 10.0 µg g(-1)). These results indicate that the proposed method could be employed to analyse silver in nano-plastic food packaging.

  1. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized.

  2. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  3. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights.

  4. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    PubMed

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  5. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  6. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    PubMed

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method.

  7. Use of gradient dilution to flag and overcome matrix interferences in axial-viewing inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Hieftje, Gary M.

    2014-10-01

    Despite the undisputed power of inductively coupled plasma-atomic emission spectrometry (ICP-AES), its users still face serious challenges in obtaining accurate analytical results. Matrix interference is perhaps the most important challenge. Dilution of a matrix-containing sample is a common practice to reduce matrix interference. However, determining the optimal dilution factor requires tedious and time-consuming offline sample preparation, since emission lines and the effect of matrix interferences are affected differently by the dilution. The current study exploits this difference by employing a high-performance liquid chromatography gradient pump prior to the nebulizer to perform on-line mixing of a sample solution and diluent. Linear gradient dilution is performed on both the calibration standard and the matrix-containing sample. By ratioing the signals from two emission lines (from the same or different elements) as a function of dilution factor, the analyst can not only identify the presence of a matrix interference, but also determine the optimal dilution factor needed to overcome the interference. A ratio that does not change with dilution signals the absence of a matrix interference, whereas a changing ratio indicates the presence of an interference. The point on the dilution profile where the ratio stabilizes indicates the optimal dilution factor to correct the interference. The current study was performed on axial-viewing ICP-AES with o-xylene as the solvent.

  8. Direct determination of trace elements in niobium, tantalum and their oxides by inductively coupled plasma atomic emission spectrometry after microwave dissolution

    NASA Astrophysics Data System (ADS)

    Grebneva, O. N.; Kubrakova, I. V.; Kudinova, T. F.; Kuz'min, N. M.

    1997-07-01

    Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g -1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g -1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g -1 is achieved. The schemes proposed are intended for rapid routine analysis.

  9. Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Seelig, M.; Broekaert, J. A. C.

    2001-09-01

    Plasma optical emission spectrometry with a capacitively coupled microwave plasma (CMP) operated with air has been investigated with respect to its possibilities for real-time environmental monitoring of combustion processes. The unique feature is the possibility to operate the CMP with air as working gas, as is usually the case in exhaust gases of combustion processes. The CMP also is shown to be stable in the presence of large amounts of water and CO 2, which makes this source ideally suitable for this purpose. The detection limits obtained for the environmentally relevant elements Cd, Co, Cr, Fe, Mg, Ni and Pb show the possibility to monitor directly heavy metals in air in an on-line mode and down to the 2-160-μg m -3 level. These detection limits are generally lower than the threshold limit values of the 'Federal Law for Immission Protection' in Germany in the gaseous effluents of industrial plants. In order to investigate the influence of the water loading (32-222 g m -3) on the detection limits a comparison of results obtained with three different nebulizers (Légère nebulizer, hydraulic high-pressure nebulizer and ultrasonic nebulizer) was made, with which aerosols with different water loading are entered into the plasma. For the hydraulic high-pressure nebulizer and the ultrasonic nebulizer no desolvation unit was found to be necessary. It was shown that especially for elements with lines having high excitation energy (Cd) or for which ion lines are used (Mg II) the increase in water loading deteriorates the detection limits. The rotational temperatures ( Trot) and excitation temperatures ( Texe) in the case of different amounts of water are of the order of 3700-4900 K and 4700-7100 K, respectively. The temperatures show that changes in the geometry and temperature distribution in the case of Trot but also the values of Texe themselves are responsible for this increase in detection limits. Furthermore, different amounts of CO 2 mixed to the working gas (3

  10. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  11. Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Borkowska-Burnecka, Jolanta; Jankowiak, Urszula; Zyrnicki, Wieslaw; Anna Wilk, Kazimiera

    2004-04-01

    The applicability of surfactants in sample preparation of plant materials followed by analysis by inductively coupled plasma atomic emission spectrometry has been examined. Reference materials (INCT-MPH-2-Mixed Polish Herbs, INCT-TL-1 black tea leaves and CTA-VTL-2 -Virginia tobacco leaves) and commercially available tea leaves were analyzed. Effects of addition surfactants (Triton X-100, didodecyldimethylammonium bromide and cetyltrimethylammonium bromide) on efficiency of ultrasonic leaching of elements from the plant samples and on plasma parameters were investigated. Low concentrations of the surfactants in solutions did not affect, in practice, analytical line intensities and the nebulization process. Quantitative recovery of some elements could be obtained by ultrasonic diluted acid leaching with the aid of surfactants. However, the element recovery depended on type of surfactant, as well as element and sample material. Plasma parameters, i.e. the excitation temperatures of Ar I, Fe II and Ca II as well as the electron number density and the Mg II/Mg I intensity ratio did not vary significantly due to the surfactants in solutions.

  12. Pressure dissolution and real sample matrix calibration for multielement analysis of raw agricultural crops by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Kuennen, R.W.; Woinik, K.A.; Fricke, F.L.; Caruso, J.A.

    1982-11-01

    A method utilizing a pressure dissolution technique to minimize sample pretreatment is described for multielement analysis of raw agricultural crops by inductively coupled argon plasma atomic emission spectrometry. The procedure employs a 30-min pressure dissolution of sample composite with 6 M HCI at 80/sup 8/C in 60-mL linear polyethylene bottles. A sample introduction system is also described which permits direct atomization of complex organic matrices. Combined with a real sample matrix callbration technique, this introduction system allows rapid and accurate multielement analysis of complex HCl sample matrix solutions. The procedure compares favorably to more time-consuming conventional wet ashing methods for the determination of major, minor, and trace elements occurring in lettuce, potatoes, peanuts, soybeans, spinach, sweet corn, and wheat. Recoveries for spiked samples, precision studies, and analyses of NBS reference materials demonstrate the reliability and accuracy of the procedure. Advantages and limitations of this technique relative to conventional wet ashing methods are discussed. 2 figures, 7 tables.

  13. Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale.

    PubMed

    Kreitals, Natasha M; Watling, R John

    2014-11-01

    Chemical signatures within the environment vary between regions as a result of climatological, geochemical and anthropogenic influences. These variations are incorporated into the region's geology, soils, water and vegetation; ultimately making their way through the food chain to higher level organisms. Because the variation in chemical signatures between areas is significant, a specific knowledge of differences in elemental distribution patterns between, and within populations, could prove beneficial for provenancing animals or animal related products when applied to indigenous and feral faunal populations. The domestic pig (Sus scrofa domestica) was used as an investigative model to determine the feasibility of using a chemical traceability method for the provenance determination of animal tissue. Samples of pig muscle, tongue, stomach, heart, liver and kidney were collected from known farming areas around Australia. Samples were digested in 1:3 H2O2:HNO3 and their elemental composition determined using solution based Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Pigs from different growing regions in Australia could be distinguished based on the chemical signature of each individual tissue type. Discrimination was possible at a region, state and population level. This investigation demonstrates the potential for multi-element analysis of low genetic variation native and feral species of forensic relevance.

  14. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  15. Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry.

    PubMed

    Mierzwa, J; Sun, Y C; Chung, Y T; Yang, M H

    1998-12-01

    The comparative determination of barium, copper, iron, lead and zinc in tea leaf samples by two atomic spectrometric techniques is reported. At first, slurry sampling electrothermal atomization atomic absorption spectrometry (ETAAS) was applied. The results of Ba and Pb determination were calculated using the method of standard additions, and results of Cu, Fe and Zn from the calibration graphs based on aqueous standards. These results were compared with the results obtained after microwave-assisted wet (nitric+hydrochloric+hydrofluoric acids) digestion in closed vessels followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination with the calibration by means of aqueous standards. The exception was lead determined after a wet digestion procedure by ETAAS. The accuracy of the studied methods was checked by the use of the certified reference material Tea GBW-07605. The recoveries of the analytes varied in the range from 91 to 99% for slurry sampling ETAAS, and from 92.5 to 102% for liquid sampling ICP-AES. The advantages of slurry sampling ETAAS method are simplicity of sample preparation and very good sensitivity. Slurry sampling ETAAS method is relatively fast but if several elements must be determined in one sample, the time of the whole microwave-assisted digestion procedure and ICP-AES determination will be shorter. However, worse detection limits of ICP-AES must also be taken into the consideration in a case of some analytes.

  16. Determination of rare earth elements in geological samples by inductively coupled plasma atomic emission spectrometry with flow injection liquid-liquid extraction.

    PubMed

    Xu, Zhifang; Liu, Congqiang; Zhang, Hongxiang; Ma, Yingjun; Lin, Soulin

    2003-12-01

    A direct sampling with organic solvent extracts for simultaneous multi-element determination implemented with inductively coupled plasma atomic emission spectrometry (ICP-AES) associated with a flow injection liquid-liquid extraction (FI-LLE) sample preconcentration method was studied. The "robustness" of the plasma discharge with tributyl phosphate (TBP) loading was diagnosed by using the Mg II 279.55 nm and Mg I 285.21 nm lines intensity ratio. A FI-LLE preconcentration system for rare earth elements (REEs)-nitrate-TBP was established by using a laboratory-designed phase separator. For these elements, an average sensitivity enhancement factor of 64 was obtained with respect to ICP-AES sampling with aqueous solutions. The precision of the method was characterized by a relative standard deviation (%RSD) of 1.8 - 5.2%. A throughput of 27 samples per hour can be achieved with an organic solvent consumption of less than 200 microl per determination. Good results were obtained for the analysis of standard reference materials.

  17. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  18. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Barnes, Ramon M.

    An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Si/ml and 10 ng Al/ml from aqueous and synthetic standards was 80-85% and 96-103%, respectively.

  19. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Zachariadis, G; Dimitrakoudi, E; Anthemidis, A; Stratis, J

    2006-02-28

    A novel microwave-assisted wet-acid decomposition method for the multi-element analysis of glass samples using inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed and optimized. The SRM 621 standard reference glass material was used for this purpose, because it has similar composition with either archaeological glass specimens or common modern glasses. For the main constituents of SRM 621 (Ca, Na, Al, Fe, Mg, Ba and Ti), quality control data are given for all the examined procedures. The chemical and instrumental parameters of the method were thoroughly optimized. Thirteen acid mixtures of hydrochloric, nitric, and hydrofluoric acids in relation to two different microwave programs were examined in order to establish the most efficient protocol for the determination of metals in glass matrix. For both microwave programs, an intermediate step was employed with addition of H(3)BO(3) in order to compensate the effect of HF, which was used in all protocols. The suitability of the investigated protocols was evaluated for major (Ca, Na, Al), and minor (Fe, Mg, Ba, Ti, Mn, Cu, Sb, Co, Pb) glass constituents. The analytes were determined using multi-element matrix matched standard solutions. The analytical data matrix was processed chemometrically in order to evaluate the examined protocols in terms of their accuracy, precision and sensitivity, and eventually select the most efficient method for ancient glass. ICP-AES parameters such as spectral line, RF power and sample flow rate were optimized using the proposed protocol. Finally, the optimum method was successfully applied to the analysis of a number of ancient glass fragments.

  20. Ultrasound bath-assisted enzymatic hydrolysis procedures as sample pretreatment for the multielement determination in mussels by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Peña-Farfal, Carlos; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar; Pinochet-Cancino, Hugo; de Gregori-Henríquez, Ida

    2004-07-01

    Ultrasound energy has been applied to speed up enzymatic hydrolysis processes of mussel tissue in order to determine trace and ultratrace elements (As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn). The element releases, by action of three proteases (pepsin, pancreatin, trypsin), lipase, and alpha-amylase, have been evaluated by inductively coupled plasma atomic emission spectrometry. Different variables such as pH, sonication temperature, ionic strength, hydrolysis time, ultrasound frequency, extracting volume, and enzyme mass were simultaneously studied by applying an experimental design approach (Plackett-Burman design and central composite design). Results showed that the hydrolysis time was statistically nonsignificant (confidence interval of 95%) for most of the elements and enzymes, meaning that the hydrolysis procedure can be finished within a 30-60-min range. These hydrolysis times are far shorter than those obtained when using thermostatic cameras, between 12 and 24 h. Statistically significant factors were the ultrasound frequency (the highest metals releasing at high-ultrasound frequency), pH, sonication temperature, and ionic strength. All metals can be extracted using the same operating conditions (pH of 1.0 and sodium chloride at 1.0% for pepsin; pH of 7.5, temperature at 37 degrees C, and 0.4 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for amylase; pH of 8.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for pancreatin; pH of 5.0 and 0.5 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for lipase; pH of 8.0 and 0.2 M potassium dihydrogen phosphate/potassium hydrogen phosphate buffer for trypsin). Analytical performances, such as limits of detection and quantification, repeatability of the overall procedure, and accuracy, by analyzing DORM-1, DORM-2, and TORT-1 certified reference materials, were finally assessed for each enzyme.

  1. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement.

  2. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    PubMed

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  3. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals. Annual performance report, February 1, 1989--January 31, 1992

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  4. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved aluminum and boron in water by inductively coupled plasma-atomic emission spectrometry

    USGS Publications Warehouse

    Struzeski, T.M.; DeGiacomo, W.J.; Zayhowski, E.J.

    1996-01-01

    Inductively coupled plasma-atomic emission spectrometry is a sensitive, rapid, and accurate method for determining the dissolved concentration of aluminum and boron in water samples. The method detection limits are 5 micrograms per liter for aluminum and 4 micrograms per liter for boron. For aluminum, low-level (about 30 micrograms per liter) short-term precision (single-operator, seven days) is about 5 percent relative standard deviation and the low-level long-term precision (single-operator, nine months) is about 8 percent relative standard deviation. For boron, the low-level short-term precision is about 4 percent relative standard deviation, and the low-level long-term precision is about 5 percent relative standard deviation. Spike recoveries for aluminum ranged from 86 to 100 percent, and recoveries for boron ranged from 92 to 109 percent.

  5. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  6. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  7. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Otruba, Vítězslav; Kanický, Viktor

    2006-05-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  8. Purge-and-trap isothermal multicapillary gas chromatographic sample introduction accessory for speciation of mercury by microwave-induced plasma atomic emission spectrometry.

    PubMed

    Rodriguez Pereiro, I; Wasik, A; Lobiński, R

    1998-10-01

    A compact device based on purge-and-trap multicapillary gas chromatography was developed for sensitive species-selective analysis of methylmercury and Hg2+ by atomic spectrometry. The operating mode includes in situ conversion of the analyte species to MeEtHg and HgEt2 and cryotrapping of the derivatives formed in a 0.53-mm-i.d. capillary, followed by their flash (< 30 s) isothermal low-temperature separation on a minimulticapillary (22 cm) column. The very low detection limits obtained (0.01 pg mL-1 of Hg for methylmercury) are due to the narrow injection band and reduced peak broadening in a bundle of 0.038-mm capillaries at high flow rates (> 60 mL min-1) compatible with an MIP AES detector (no dilution with a makeup gas is required). Developments regarding each of the steps of the analytical procedure and effects of operational variables (sample volume, purge flow, trap temperature, separation conditions) are discussed. The device allows speciation of MeHg+ and Hg2+ down to 5 pg g-1 in urine and, after a rapid microwave-assisted hydrolysis, down to 0.1 ng g-1 in solid biological samples with a throughput of 6 samples/h. The analytical protocols developed were validated by the analysis of DORM-1 (dogfish muscle), TORT-1 (lobster hepatopancreas), and Seronorm urine certified reference materials.

  9. On-line collection/concentration and determination of transition and rare-earth metals in water samples using Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Katarina, Rosi Ketrin; Oshima, Mitsuko; Motomizu, Shoji

    2009-05-15

    On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N'-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.

  10. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry.

    PubMed

    Rosende, María; Magalhães, Luis M; Segundo, Marcela A; Miró, Manuel

    2014-09-09

    A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400-800 mg), the extractant flow rate (0.5-1.5 mL min(-1)) and the extraction temperature (27-37°C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level between the summation of leached concentrations of TE in gastric juice plus the residual fraction and the total concentration of the overall assayed metals determined by microwave digestion. These results showed the reliability and lack of bias (trueness) of the automatic biomimetic extraction approach using digestive juices.

  11. Determination of trace impurities in high-purity zirconium dioxide by inductively coupled plasma atomic emission spectrometry using microwave-assisted digestion and wavelet transform-based correction procedure.

    PubMed

    Ma, Xiaoguo; Li, Yibing

    2006-10-02

    This paper describes a rapid, accurate and precise method for the determination of trace Fe, Hf, Mn, Na, Si and Ti in high-purity zirconium dioxide (ZrO2) powders by inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were dissolved by a microwave-assisted digestion system. Four different digestion programs with various reagents were tested. It was found that using a mixture of sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4), the total sample dissolution time was 30 min, much shorter than that required for conventional digestion in an opening system. The determination of almost all of the target analytes suffered from spectral interferences, since Zr shows a line-rich atomic emission spectrometry. The wavelet transform (WT), a recently developed mathematical technique was applied to the correction of spectral interference, and more accurate and precise results were obtained, compared with traditional off-peak background correction procedure. Experimental work revealed that a high Zr concentration would result in a significant decrease in peak height of the analyte lines, which was corrected by standard addition method. The performance of the developed method was evaluated by using synthetic samples. The recoveries were in the range of 87-112% and relative standard deviation was within 1.1-3.4%. The detection limits (3sigma) for Fe, Hf, Mn, Na, Si and Ti were found to be 1.2, 13.3, 1.0, 4.5, 5.8 and 2.0 microg g(-1), respectively. The results showed that with the microwave-assisted digestion and the WT correction, the detection limits have improved by a factor of about 5 for Fe, 4 for Mn and Ti, 3 for Si, and 2 for Hf and Na, respectively, in comparison with conventional open-system digestion and off-peak correction. The proposed technique was applied to the analysis of trace elements above-mentioned in three types of ZrO2 powders.

  12. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-01

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 μL, 1-10 μL and 10-100 μL) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 μL volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg (~ 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 μL volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for "taking part of the lab to the sample" applications, such as testing for Cu concentration-compliance with the lead-copper rule of the Environmental

  13. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  14. Inductively coupled plasma-atomic emission spectrometer warning diagnosis procedure using blank solution data

    NASA Astrophysics Data System (ADS)

    Sartoros, Christine; Salin, Eric D.

    1998-05-01

    Lines available while running a blank solution were used to monitor the analytical performance of an inductively coupled plasma atomic emission spectrometry (ICP-AES) system in real time. Using H and Ar lines and their signal-to-background ratios (SBRs), simple rules in the form of a prediction table were developed by inspection of the data. These rules could be used for predicting changes in radio-frequency power, carrier gas flow rates, and sample introduction rate. The performance of the prediction table was good but not excellent. Another set of rules in the form of a decision tree was developed in an automated fashion using the C4.5 induction engine. The performance of the decision tree was superior to that of the prediction table. It appears that blank spectral information can be used to predict with over 90% accuracy when an ICP-AES is breaking down. However this is not as definitive at identifying the exact fault as some more exhaustive approaches involving the use of standard solutions.

  15. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively.

  16. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  17. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  18. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  19. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  20. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch...

  1. Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate.

    PubMed

    Kagaya, Shigehiro; Mizuno, Toshiyuki; Tohda, Koji

    2009-07-15

    The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L(-1) nitric acid. The detection limits (three times the standard deviation of the blank values, n=10) ranged from 0.001 microg (Lu) to 0.11 microg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.

  2. Bringing part of the lab to the field: On-site chromium speciation in seawater by electrodeposition of Cr(III)/Cr(VI) on portable coiled-filament assemblies and measurement in the lab by electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Badiei, Hamid R.; McEnaney, Jennifer; Karanassios, Vassili

    2012-12-01

    A field-deployable electrochemical approach to preconcentration, matrix clean up and selective electrodeposition of Cr(III) and Cr(III) + Cr(VI) in seawater is described. Using portable, battery-operated electrochemical instrumentation, Cr species in seawater were electrodeposited in the field on portable coiled-filament assemblies made from Re. Assemblies with dried residues of Cr(III) or Cr(III) + Cr(VI) on them were transported to the lab for concentration determination by electrothermal, near-torch vaporization (NTV) sample introduction and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Electrodeposition offers selective species deposition, preconcentration and matrix clean up from seawater samples. For selective deposition, free Cr(VI) was electrodeposited at - 0.3 V and Cr(III) + Cr(VI) at - 1.6 V (both vs Ag/AgCl). Interestingly, at 0 V (vs Ag/AgCl) and in the absence of an electrodeposition potential only Cr(VI) was spontaneously and selectively adsorbed on the coil and reasons for this are given. Due to preconcentration afforded by electrodeposition, the detection limits obtained after a 60 s electrodeposition at the voltages stated above using buffered (pH = 4.7) artificial seawater spiked with either Cr(III) or Cr(VI) were 20 pg/mL for Cr(III) and 10 pg/mL for Cr(VI). For comparison, the detection limit for Cr obtained by pipetting directly on the coil 5 μL of diluted standard solution was 500 pg/mL, thus it was concluded that electrodeposition offered 40 to 60 fold improvements. Matrix clean up is required due to the high salt content of seawater and this was addressed by simply rinsing the coil with 18.2 MΩ water without any loss of Cr species. Reasons for this are provided. The method was validated in the lab using buffered artificial seawater and it was used in the field for the first time by sampling seawater, buffering it and immediately electrodepositing Cr species on portable assemblies on-site. Electrodeposition in the

  3. Inductively coupled plasma atomic emission spectroscopic determination of rare earth elements in geological samples after preconcentration by countercurrent chromatography—I

    NASA Astrophysics Data System (ADS)

    Pukhovskaya, V. M.; Maryutina, T. A.; Grebneva, O. N.; Kuz'min, N. M.; Spivakov, B. Ya.

    1993-09-01

    Countercurrent chromatography (CCC) was applied to group pre-separation of rare earth elements (REE) in rocks. A 0.5 mol/l solution of di-2-ethylhexylphosphoric acid (D2EHPA) in n-decane as stationary phase, and aqueous HC1 solution as mobile phase were used. Experimental conditions were found for quantitative separation of REE from the rock constituents that interfere with their inductively coupled plasma atomic emission spectrometry (ICP-AES) determination. The complete preseparation procedure takes 40 min at a mobile phase pumping rate of 2 ml/min. Interelement and off-peak background corrections were applied to compensate for the contributions of mutual spectral interferences to the analyte line and background intensities. Standard reference rock materials and samples of different composition with well known REE contents were analysed. The data obtained are in good agreement with certified and previously determined values, except for "heavy" REE such as Tm, Yb and Lu.

  4. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  5. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures.

    PubMed

    Tuncel, S G; Yenisoy-Karakas, S; Dogangün, A

    2004-05-28

    Three digestion procedures have been tested on lichen samples for application in the determination of major, minor and trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V and Zn) in lichen samples collected in Aegean Region of Turkey by inductively coupled plasma atomic emission spectrometer (ICP-AES). The acid mixture of concentrated HNO(3), H(2)O(2) and HF were used. The instrument was optimized using lichen matrix considering RF power, nebulizer pressure, auxiliary flow rate and pump rate. The accuracy of the overall analyses was first estimated by analysis of two certified reference materials. Good agreement between measured and reference values were found for almost all elements. As the second way of determining the accuracy, results obtained from independent analytical techniques (ICP-AES and instrumental neutron activation analysis (INAA)) were compared for all elements by analyzing real samples. Correlation coefficients of two techniques for the elements ranged between 0.70 (Mg) and 0.96 (Fe). Among the three digestion systems, namely microwave, open vessel and acid bomb, microwave digestion system gave the best recovery results. The method detection limit (MDL) was computed using reagent blanks of microwave digestion system since it provides cleaner sample preparation. Detection limit is adequate for all elements to determine the elements in lichen samples. The precision was assessed from the replicate analyses of reagent blanks of microwave digestion system and was found to be less than 1.5% relative standard deviation (R.S.D.).

  6. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  7. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  8. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  9. The use of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) in the determination of lithium in cleaning validation swabs.

    PubMed

    Lewen, Nancy; Nugent, Dennis

    2010-09-05

    The pharmaceutical industry is required to perform cleaning validation studies to verify that equipment used in the manufacture of pharmaceuticals is adequately cleaned from one product or process to the next. Typically, these cleaning validation studies require an analytical method that uses some form of chromatographic technique. In the case of products that may have an inorganic constituent, however, if can often be easier to verify the cleanliness of equipment by using a non-chromatographic technique. A method is described to certify the cleanliness of processing equipment by determining lithium in cleaning validation swabs using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  10. Chemical vapor generation for sample introduction into inductively coupled plasma atomic emission spectroscopy: vaporization of antimony(III) with bromide.

    PubMed

    Lopez-Molinero, A; Mendoza, O; Callizo, A; Chamorro, P; Castillo, J R

    2002-10-01

    A new method for antimony determination in soils is proposed. It is based on the chemical vapor generation of Sb(III) with bromide, after a reaction in sulfuric acid media and transport of the gaseous phase into an inductively coupled plasma for atomic emission spectrometry. The experimental variables influencing the method were delimited by experimental design and the most important were finally optimized by the modified Simplex method. In optimized conditions the method involves the reaction of 579 microl concentrated sulfuric acid with 120 microl 5% w/v KBr and 250 microl antimony solution. Measurement of antimony emission intensity at 217.581 nm provides a method with an absolute detection limit of 3.5 ng and a precision (RSD) of 5.8% for the injection of five replicates of 175 ng Sb(III) (250 microl of 0.7 microg ml(-1) solution). The interference of common anions and cations on the antimony signal was evaluated. A 21% Sb(III) volatilization efficiency was calculated from the mean of six experiments at optimum conditions. The accuracy of the methodology was checked by the analysis of one standard reference soil after acid decomposition heating in a microwave oven.

  11. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    USGS Publications Warehouse

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  12. The determination of samarium, europium, gadolinium and dysprosium in uranium products by direct-current plasma emission spectrometry.

    PubMed

    Flavelle, F; Westland, A D

    1986-05-01

    Samarium, europium, gadolinium and dysprosium were separated from uranium-containing materials by means of solvent extraction with Alamine 336, followed by cation-exchange. The elements were determined in the sub-ppm range by means of direct-current plasma atomic-emission spectrometry.

  13. Application of inductively coupled plasma atomic emission spectroscopy analysis with a polychromator/monochromator combination the byproducts of coal-fired power stations

    NASA Astrophysics Data System (ADS)

    Weers, C. A.

    The by-products of coal-fired power plants may be hazardous for the environment. Good analysis methods are therefore required in order to establish either a possible usage of the by-products or their possible storage. Preliminary experiments performed with inductively coupled plasma atomic emission spectroscopy have proven very successful. Moreover, the method is cost-effective. A short description is given of the optimized system for routine analysis. The system consists of a 2- and a 15-channel polychromator in combination with a monochromator. The opportunities is provides are also described. Use of the monochromator to analyze coal and run-off water from the flue-gases desulphurization, and of the polychromators to analyze coal fly-ash is described separately.

  14. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    PubMed

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events.

  15. Solid sampling in analysis of animal organs by two-jet plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Zaksas, Natalia P.; Nevinsky, Georgy A.

    2011-11-01

    A study of high-power two-jet plasma capabilities for the direct multi-elemental analysis of animal organs was undertaken. The experimental conditions chosen allow the direct analysis of different animal organs after drying and grinding to powder (particle size 20-200 μm). It was found that evaporation efficiency of the samples depends on the particle size and thermal stability of tissues and can be improved by reduction of a carrier gas flow. Calibration samples based on graphite powder and a tenfold dilution of powdered samples with buffer (graphite powder containing 15% NaCl) were used. 5-10 mg of the sample was quite enough to get the detection limits of elements at the level of 0.1-10 μg g - 1 . A prior carbonization procedure (not ashing) makes it possible to decrease the detection limits of elements by an order of magnitude. The validation of the techniques was confirmed by the analysis of certified reference materials NIST 8414, BCR 278R and NCS ZC 81001 as well as by using different sample preparation procedures.

  16. Determination of trace elements in heroin by inductively coupled plasma atomic emission spectrometry using ultrasonic nebulization

    NASA Astrophysics Data System (ADS)

    Budič, Bojan; Klemenc, Sonja

    2000-06-01

    A method for the determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Sr and Zn in heroin samples by ICP-AES using ultrasonic nebulization is described. The samples were microwave digested with HNO 3. To improve the detection limits and minimise the matrix interferences the experimental parameters were optimised by variation of the operating power, carrier gas flow rate and observation height above the load coil. Optimum operating conditions for most of the analytes were at operating power 1550 W, carrier gas flow rate between 0.8 and 1.0 l min -1 and observation height between 10 and 12 mm above load coil. The limits of detection were below 0.5 μg g -1 (dry mass) for most of the elements investigated. The analytical recoveries of spiked samples were in the range between 94 and 103% and precision was on average better than 6%. The analysis of heroin samples shows that the method is simple, rapid and capable of providing accurate results for all the analytes investigated with the exception of nickel which was below the limit of detection in the analyzed samples.

  17. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  18. Quantification of gadodiamide as Gd in serum, peritoneal dialysate and faeces by inductively coupled plasma atomic emission spectroscopy and comparative analysis by high-performance liquid chromatography.

    PubMed

    Normann PT-; Joffe, P; Martinsen, I; Thomsen, H S

    2000-07-01

    An inductively coupled plasma atomic emission spectroscopy (ICP-AES) method for determination of gadodiamide as Gd in serum, peritoneal dialysate and faeces was developed. The within-day and between-day precision for determination of Gd in serum and peritoneal dialysate were 0.60-2.9 and 1.8-4.4%, respectively, and the accuracy was 98.0-99.3%. The quantification limits in serum and peritoneal dialysate were 6.5 and 1.6 microM Gd, respectively. The within-day and between-day precision determination of gadolinium in faeces were 1.0-5.3 and 2.2-7.9%, respectively, and the accuracy was 104-116%. The quantification limit was 11 nmol Gd/g dry weight. For the high-performance liquid chromatography (HPLC) method, the within-day precision in determination of gadodiamide in peritoneal dialysate was 1.2% and the accuracy was 103%. The quantification limit was 0.9 microM Gd. Comparative analysis of gadodiamide in serum and peritoneal dialysate from severely impaired renal patients by ICP-AES and HPLC revealed no metabolism of chelator or transmetallation of gadolinium, even in samples obtained as long as 7 days after dosing. Furthermore, the ICP-AES determination of Gd in faeces allows for the determination of faeces content of Gd corresponding to less than 0.1% of a clinical dosage of a Gd-based contrast medium.

  19. Determination of verapamil in pharmaceutical formulations using atomic emission spectrometry.

    PubMed

    Khalil, Sabry; Kelzieh, Ahmed

    2002-01-01

    Ion-associate complexes of verapamil hydrochloride (VpCl) with (Cd(II), Co(II), Mn(II), and Zn(II)) thiocyanates, potassium ferricyanide, and ammonium reineckate are precipitated. The solubility of the solid complexes at the recommended optimum conditions of pH and ionic strength values have been studied. Saturated solutions of each ion associate at different temperatures under the optimum precipitation conditions were prepared and the metal ion contents in the supernatant were determined. The solubility products were thus calculated at different temperatures and the thermodynamic parameters DeltaH, DeltaG, and DeltaS were calculated. A new accurate and precise method based on direct coupled plasma atomic emission spectrometry for the determination of VpCl (1.96-62.86 microg ml(-1)) in pure solutions and pharmaceutical preparations is given.

  20. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    NASA Astrophysics Data System (ADS)

    Oh, Joosuck; Lim, H. B.

    2008-11-01

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube (~ 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m - 3 was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L - 1 were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m - 3 , depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 °C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L - 1 , respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  1. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry to the analysis of advanced ceramic materials].

    PubMed

    Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan

    2009-10-01

    Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.

  2. Determination of trace elements in uranium by inductively coupled plasma-atomic emission spectrometry using Kalman filtering

    SciTech Connect

    Veen, E.H. van; de Loos-Vollebregt, T.C. de; Wassink, A.P.; Kalter, H.

    1992-08-01

    Trace impurities in uranium hexafluoride were analyzed by ICP-AES. The data were reduced using a Kalman filtering technique. Normally, multiple extraction steps are required for this analysis using conventional ICP-AES.

  3. Determination of trace impurities in uranium, thorium and plutonium matrices by solvent extraction and inductively coupled plasma atomic emission spectrometry.

    PubMed

    Gopalkrishnan, M; Radhakrishnan, K; Dhami, P S; Kulkarni, V T; Joshi, M V; Patwardhan, A B; Ramanujam, A; Mathur, J N

    1997-02-01

    Studies on the determination of trace metallic impurities in nuclear materials such as uranium, thorium and plutonium are described. The bulk of the matrix is separated by batch extraction from their nitric acid solutions using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (KSM-17, equivalent to PC88-A). The final aqueous phase containing the metallic impurities is fed to a high-temperature source inductively coupled plasma and the analysis is carried out employing a computer-controlled multichannel direct-reading spectrometer. The studies also included the recovery of impurities at various acidities and spectral interferences of the above matrices over the analyte elements. Based on the above studies, methods were standardized for the determination of 19 elements, viz. Al, B, Be, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Si, Zn, Ce, Dy, Eu, Gd and Sm, in U/Th/Pu solutions. The relative standard deviation for various elements is in the range 1-5%.

  4. Development of transient data acquisition system for hyphenated techniques coupled with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoru; Zhuang, Zhixia; Yang, Chenglong; Yang, Pengyuan; Yan, Xiaomei; Lin, Jianming

    1996-12-01

    A transient data acquisition system for flow injection analysis (FIA), high performance liquid chromatography (HPLC), and electrothermal vaporization (ETV) combined with ICP-AES multi-element instrumentation was developed and successfully applied to the analysis of different types of samples, including human serum, human hair and tea, for simultaneous multi-element determinations. The accuracy of the method was verified with hair reference material. Good agreement between the experimental results and certified values, and also satisfactory recoveries from standard additions, were achleved.

  5. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  6. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  7. Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector

    NASA Astrophysics Data System (ADS)

    Quan, Xie; Chen, Shuo; Platzer, Bernhard; Chen, Jingwen; Gfrerer, Marion

    2002-01-01

    Water and sediment samples were screened simultaneously for the presence of polychlorinated organic compounds using gas chromatography (GC) coupled with an micro electron capture detector (μ-ECD) and a newly developed helium plasma based on a micro-atomic emission detector (μ-AED). The GC column effluent was split 15:85 between two detectors. In this way, two chromatograms, one obtained by μ-ECD and another by μ-AED, were recorded simultaneously. α-, β-hexachlorocyclohexane and p, p'-DDE were detected. RSDs of the monitoring results from the two detection methods were <20% for the three compounds. A detection limit of 8.5 pg and at least 3 orders of magnitude of linear range for μ-AED was observed.

  8. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  9. METHOD 200.5 - DETERMINATION OF TRACE ELEMENTS IN DRINKING WATER BY AXIALLY VIEWED INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY

    EPA Science Inventory

    2.0 SUMMARY OF METHOD
    2.1. A 50 mL aliquot of a well-mixed, non-filtered, acid preserved aqueous sample is accurately transferred to clean 50-mL plastic disposable digestion tube containing a mixture of nitric and hydrochloric acids. The aliquot is heated to 95 degrees C (+ o...

  10. The use of ion chromatography-D.C. plasma atomic emission spectrometry for the speciation of trace metals. Final performance technical report, February 1, 1995--January 31, 1998

    SciTech Connect

    Urasa, I.T.

    1998-06-12

    The chemistry of heavy metals in natural waters, industrial waste streams, and the environment is influenced by a number of factors including the prevailing matrix, their relative concentrations, and biologically or chemically induced transformations. Speciation, which entails the identification and quantification of all the forms of a metal or any other chemical entity present in a sample, is a necessary step in assessing the toxic and pollution effects and the overall impact of these entities on environmental systems. Analytical methods and protocols that can provide analytical data in the parts per billion concentration range and below are needed for these kinds of measurements. The thrust of this research was to develop metal speciation methods and techniques using direct current plasma (DCPAES) in combination with ion chromatography (IC), whereby the DCPAES serves as an element selective detector (ESD) for the metal species separated in the chromatographic column. While the metal speciation work carried out in this program has utilized the IC-DCPAES as the primary analytical measurement tool, other sample processing and preparation approaches have also been developed to enhance the effectiveness and capability of the chromatographic-element selective method of metal speciation. Post-column derivatization and solid phase extraction are two protocols which were incorporated with IC-ESD with significant improvements in the capability of the method.

  11. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  12. Effect of HF addition on the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Xu, Yan-Hua; Iwashita, Akira; Nakajima, Tsunenori; Yamashita, Hiroyuki; Takanashi, Hirokazu; Ohki, Akira

    2005-03-31

    The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO(3)+H(2)O(2) was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of 'HF-memory effect' was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.

  13. Secondary ion mass spectrometry: Polyatomic and molecular ion emission

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Ross, Mark M.; Kidwell, David A.

    1986-03-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances such as metals, semiconductors, inorganic compounds and organic compounds, including polymers and biomolecules. This paper discusses the formation and emission of polyatomic and molecular ions from surfaces of these materials. The mass, energy, and abundance distribution of cluster ions emitted from various solids — Van der Waals, molecular, metallic, ionic and covalent — are compared. Trends in their emission patterns are discussed in terms of a recombination or a direct emission mechanism. For example, the ion abundance of cluster ions sputtered from metals decreases monotonically with increasing cluster size due to a decreasing formation probability for large clusters. The emission from metal oxides, however, shows a broad distribution of M mO ±n cluster ions whose formation can be described by both recombination and direct emission mechanisms. Covalently bonded molecules tend to eject as intact species. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted and derivatization procedures used. For example, the emission of molecular ions from metal surfaces is strongly influenced by the nature of the adsorption site; and matrix-assisted and derivatization procedures enhance the ionization efficiency of the analyte.

  14. Speciation analysis of triethyl-lead and tributyl-tin compounds in human urine by liquid-liquid extraction and gas chromatography microwave-induced plasma atomic emission detection.

    PubMed

    Zachariadis, George A; Rosenberg, Erwin

    2012-05-01

    This work describes the development of a fast method for speciation analysis of triethyl-lead and tributyl-tin species in urine samples after in situ derivatization by tetraethyl- or tetrapropyl-borate reagents. The alkylation reaction is done in the aqueous and urine medium and the less-polar derivatives are extracted in hexane by liquid-liquid extraction. The species were extracted and the extract was efficiently collected from the aqueous phase after centrifugation. Finally, the organometallic species are separated by gas chromatography and determined from the emission signals of elemental lead and tin. Atomic lead and tin are formed from the organolead and organotin compounds during atomization of the column eluate in a microwave-induced helium plasma source. The simultaneous measurement of lead (Pb) at 405.780 nm and tin (Sn) at 303.419 nm was achieved by an atomic emission detector. Finally, the analytes were determined with satisfactory precision (<5%) and detection limits of 0.05 μg Pb/L and 0.48 μg Sn/L, respectively, when 10 mL of urine is extracted with 1 mL of hexane and 1 μL of extract is injected.

  15. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    SciTech Connect

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

  16. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  17. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  18. Resonance Ionization Laser Mass Spectrometry: New possibilities for on-line analysis of waste incinerator emissions

    SciTech Connect

    Zimmermann, Ralf; Rohwer, Egmont R.; Heger, Hans Joerg; Schlag, Edward W.; Kettrup, Antonius; Gilch, Gerhard; Lenoir, Dieter; Boesl, Ulrich

    1997-01-15

    A concept for the use of Resonance Ionization Laser Mass Spectrometry for on-line emission analysis of chlorinated aromatic compounds in waste incinerator flue gas is presented. New analytical results suggest that low chlorinated benzenes can be used as indicator parameter for dioxin emissions.

  19. High-capacity chitosan-based chelating resin for on-line collection of transition and rare-earth metals prior to inductively coupled plasma-atomic emission spectrometry measurement.

    PubMed

    Katarina, Rosi Ketrin; Oshima, Mitsuko; Motomizu, Shoji

    2009-10-15

    High-capacity chitosan-based chelating resin, N-(2-hydroxyethyl)glycine-type chitosan, was synthesized using chloromethyloxirane (CMO) as a cross-linker and a coupling arms and hydroxylethylamine and bromoacetic acid as a synthesizer for the N-(2-hydroxyethyl)glycine chelating moiety. The CMO could bind with both of hydroxyl and amino group of the chitosan resin, and then couple with the chelating moiety. Increasing the amounts of chelating moiety could increase the capacity of the resin toward metal ions. Most transition and rare-earth metals could adsorb quantitatively on the resin at wide pH ranges and could be separated from alkaline and alkaline-earth metals. The resin was packed in a mini-column (40 mm length x 2 mm i.d.) which was installed in a Multi-Auto-Pret system. The Multi-Auto-Pret system coupled with ICP-AES was successfully applied to the determination of transition and rare-earth metals in river water samples.

  20. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  1. Electron cyclotron emission spectrometry on the Tokamak a Configuration Variable

    SciTech Connect

    Klimanov, I.; Porte, L.; Alberti, S.; Blanchard, P.; Fasoli, A.; Goodman, T.P.

    2005-09-15

    Electron cyclotron emission (ECE) measurements are an important component of the diagnostic suite on the Tokamak a Configuration Variable (TCV) [F. Hoffman et al., Plasma Phys. Controlled Fusion 36, B277 (1994)]. A recently installed, 24-channel dual-conversion heterodyne radiometer covering the radio frequency range 65-100 GHz and viewing from the low-field side (LFS) of the tokamak greatly enhances the system and, in combination with an existing radiometer viewing from the high-field side (HFS), allows simultaneous measurements of emission from the HFS and LFS. In addition, the new radiometer has multiple lines of sight that can receive the emission perpendicular to the toroidal magnetic field as well as with a finite k{sub parallel} (wave vector parallel to magnetic field). Such flexibility allows the LFS radiometer to make standard measurements of thermal emission and nonstandard measurements of nonthermal, anisotropic emission. The toroidal line of sight allows access to overdense plasma via mode converted emission. The enhanced ECE diagnostic is described and examples of measurements made in various configurations are presented.

  2. Characterization of the General Electric CID-17 as a Detector for Plasma Emission Spectrometry.

    DTIC Science & Technology

    1985-11-25

    multiwavelength disreteetectors. All tnToes oF detectors ’or plasma emission snectroscopv must mntil there o eapresetutisemhas. been, byes ereounu ai!- numer...photomultiplier tubes. With almost 100,000 channels, true multiwavelength detection is obtained making a new wealth of information available to the analytical...of complex mixtures by optical emission spectrometry requires sensitive simultaneous multiwavelength detection. Until the present, this has been

  3. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  4. Apparatus and method for transient thermal infrared emission spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  5. The analysis of some evidential materials by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Carpenter, R C

    1985-03-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) is under evaluation at the Central Research Establishment for the analysis of evidential materials. The analysis of standard reference materials has demonstrated that quantitative multi-element data can be obtained from small samples of a variety of materials. The results of some determinations carried out in support of casework investigations are reported.

  6. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  7. Direct determination of Cu by liquid cathode glow discharge-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Quanfang; Yang, Shuxiu; Sun, Duixiong; Zheng, Jidong; Li, Yun; Yu, Jie; Su, Maogen

    2016-11-01

    In this study, a novel liquid cathode glow discharge-atomic emission spectrometry was developed for the direct determination of Cu in aqueous solutions, in which the glow discharge plasma was produced in the solution between the needle-like Pt cathode and the electrolyte around it. The effects of discharge voltage, solution pH, and the ionic surfactant cetyltrimethylammonium chloride (CTAC) on emission intensities were investigated. The limit of detection (LOD) of Cu was compared with those measured by closed-type electrolyte cathode discharge-atomic emission spectrometry (ELCAD-AES). The results showed that the optimal operation conditions are voltage of 135 V, a pH of 1, and addition of 0.15% CTAC. CTAC can enhance the emission intensity and lower the LOD of Cu I. The net intensity of atomic emission lines of Cu I at 324.8 nm with 0.15% CTAC improved by 1.5 fold, and the LODs of the Cu at 135 V with 0.15% CTAC and without CTAC are 0.019 and 0.234 mg L- 1, respectively. The analytical capability of Cu in this study is comparable to the closed-type ELCAD-AES, and it satisfied the recommended levels of Cu in the WHO standards for drinking-water quality. This technique can be effectively used for on-line monitoring of metal ions in aqueous samples.

  8. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  9. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, Akbar

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  10. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  11. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.

  12. [Determination of trace niobium and tantalum in rock sample by atomic emission spectrometry].

    PubMed

    Li, Hui-zhi; Zhou, Chang-li; Luo, Chuan-nan

    2002-10-01

    This paper describes the determination of trace Nb and Ta in sample using carbon powder and hafnium oxide as buffer by atomic emission spectrometry (AES). Hafnium has been selected as internal standard, since it has scinilar evaporation curve as those of Nb and Ta. Samples can be analyzed without chemical pretreatment. The sample was directly loaded onto the ordinary electrode. The method is simple, rapid and accurate. The range of determination for Nb and Ta are 0%-0.25% and 0%-0.125% respectively, and the detection limits are found to be 0.003% and 0.001%, respectively. Satisfactory results are obtained.

  13. An Environmental Focus Using Inductively Coupled Plasma Optical Emission Spectrometry and Ion Chromatography

    NASA Astrophysics Data System (ADS)

    Salido, Arthur; Atterholt, Cynthia; Bacon, J. Roger; Butcher, David J.

    2003-01-01

    The Western Carolina University chemistry faculty have developed an environmental focus to their curriculum. Inductively coupled plasma-optical emission spectrometry (ICP-OES) and ion chromatography (IC) have been shown to be useful tools for the determination of elements and ions, respectively. Several novel experiments have been developed monitoring these analytes in environmental samples, including water, pressure-treated wood, and nutritional supplements. In addition, ICP-OES and IC have been used to teach seniors the principles of analytical method development. Lastly, this equipment has been employed extensively in a vigorous research program.

  14. Effect of microstructure of graphite on the nonreductive thermal ion emission in thermal ionization mass spectrometry.

    PubMed

    Wei, H Z; Jiang, S Y; Xiao, Y K

    2010-02-25

    The emission behavior of polyatomic ions in the ionization source of thermal ionization mass spectrometry (TIMS) was investigated. The results suggest that the presence of a graphite promoter plays a key role for the formation and stable emission of polyatomic ions, such as M(2)X(+), M(2)BO(2)(+), Cs(2)NO(2)(+), and Cs(2)CNO(+). Our data further implied that the intensity of M(2)X(+) and M(2)BO(2)(+) increases and the emission temperature decreases with increasing cationic and anionic radius. During the boron isotopic measurement using the Cs(2)BO(2)(+)-graphite-PTIMS method, the isobaric interference ion Cs(2)CNO(+) cannot be transformed from nitrate or organic compounds containing an amide group but can be induced by the existence of trace amounts of boron because of its special electron-deficiency property (B(3+)). Characterization on the planar crystalline structure of various graphite samples with SEM, TEM, and Raman spectroscopy confirmed the relationship of the emission capacity of polyatomic ions and the crystal microstructure of graphite and provides direct evidence that graphite with a perfect parallel and equidistant layer orientation shows a beneficial effect on the emission of polyatomic ions in TIMS. The mechanism study on the formation of polyatomic ions opens the possibility to establish high precision methods for isotopic composition analysis of more nonmetal elements with the TIMS technique.

  15. Resonance ionization mass spectrometry and its application to trace analysis of emissions from combustion engines

    NASA Astrophysics Data System (ADS)

    Boesl, Ulrich; Nagel, Holger; Zimmermann, Ralf; Frey, Ruediger

    1997-05-01

    The principle of resonance-ionization mass spectrometry with lasers is the combination of two analytical tools, UV- spectroscopy in the gas phase and time-of-flight mass selection. The special features of this combination are: very high selectivity, high speed, multicomponent ability, and adaptability to many different problems. Examples for the latter are on-line trace analysis of emissions from combustion processes, such as from combustion engines as well as from municipal incinerators. But also monitoring of industrial procedures, e.g. food processing, are interesting applications of REMPI-MS. In this paper the principles will be shortly explained and results for the analysis of exhaust emissions from motorized vehicles presented.

  16. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  17. AN ACTIVE NITROGEN PLASMA ATOM RESERVOIR FOR LASER-INDUCED IONIZATION SPECTROMETRY

    DTIC Science & Technology

    1988-01-01

    An active nitrogen plasma was generat-J using a laboratory - constructed Beenakker type microwave cavity. 2 5 The microwave power oscillator (Micro...exhausting of ozone. Microarc Atomizer A laboratory -constructed microarc atomizer was positioned at the rear of the Beenakker cavity in direct line with the...the regions of interest, the laser- induced ionization signal was monitored. A laboratory -constructed etalon system of very low finesse was used to

  18. Evaluation of FTIR emission spectrometry for the determination of turbine exhaust composition in test beds

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg; Lister, Dave H.; Lindermeir, Erwin; Hilton, Moira; Bishop, Gary; Wiesen, Peter; Bernard, Marc

    1999-09-01

    The capability of taking non-intrusive species measurements in a jet plume of a modified mid-size low by-pass aero-engine running on a sea level test bed at several thrust levels was demonstrated. Also conventional intrusive measurements were performed with a spatially resolved method using a traversing single-point sampling probe which fulfills ICAO standards. The FTIR spectrometry measurements included both emission and absorption mode with a multi-path reflection compartment as well as the single emission mode. Due to the lack of a common/unique definition for the exhaust plume diameter it was found that the column density was the best measure to compare the different techniques. The FTIR engine measurement results for CO2, CO, and NO have been proven to be in agreement with the intrusive data within plus or minus 30%. Several error sources during the radiometric radiance calibration were identified which lead to uncertainties in the FTIR retrievals, namely (1) incomplete knowledge of the optical surface emissivities, (2) incomplete knowledge and inhomogeneities of the optical surface temperature, and (3) undefined instrumental drifts and non-linearities during the calibration.

  19. Development of a model for characterizing pneumatically generated primary aerosols for inductively coupled plasma emission spectrometry

    SciTech Connect

    Msimanga, N.D.G.

    1992-01-01

    The study of aerosols plays a key role in the development of analytical atomic spectroscopy. While work has been carried out with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to improve transport efficiency, analyte signal, limits of detection, and to reduce matrix interferences, little study has focused on sample introduction processes. This study has focused on the characterization and optimization of pneumatic nebulizers used for liquid sample introduction to the ICP. Pneumatic nebulization is the most common means of sample introduction in atomic spectrometry. The pneumatic nebulizers most commonly used today for ICP spectrometry are the cross-flow type or all-glass concentric nebulizers. Aerosols undergo certain processes after the primary formation process before reaching the atomizer, the secondary and tertiary stages. In this work all three stages were looked at, focusing on the primary aerosols. The primary aerosol is the first stage in the formation of the aerosols and takes place at the tip of the nebulizer, as the liquid stream is shattered by the gas flow. The drop size diameters of primary aerosols were measured using a Fraunhofer Laser Diffraction instrument. The Sauter mean diameter (D3.2), which describes the volume of the aerosol with a given surface area, was determined for nebulizers at spray chambers operated under a variety of conditions. The characterization and optimization of sample introduction involved a study of aerosol technology, a study of different instruments for measuring the mean drop size, a description of the instrument, and the influence of some parameters on the D3.2. An empirical model summarizing the characteristics of the primary aerosols is proposed. Modeling is carried out using nonlinear software. The data for modelling were acquired using water, n-butanol, and methanol as the liquid solvents. The model was tested on data obtained from nebulizers with different cross-sectional areas.

  20. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  1. Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (K[subscript sp]) of Potassium Hydrogen Phthalate

    ERIC Educational Resources Information Center

    Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John

    2007-01-01

    In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate (KHP) in the 0-65 [degree]C temperature range. From these data the solubility products (K[subscript sp]), the Gibbs free energies of solution ([Delta][subscript…

  2. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  3. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence.

    PubMed

    Tsolakidou, Alexandra; Kilikoglou, Vassilis

    2002-10-01

    The accurate measurement of the maximum possible number of elements in ancient ceramic samples is the main requirement in provenance studies. For this reason neutron activation analysis (NAA) and X-ray fluorescence (XRF) have been successfully used for most of the studies. In this work the analytical performance of inductively coupled plasma-optical-emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) has been compared with that of XRF and NAA for the chemical characterization of archaeological pottery. Correlation coefficients between ICP techniques and XRF or NAA data were generally better than 0.90. The reproducibility of data calculated on a sample prepared and analysed independently ten times was approximately 5% for most of the elements. Results from the ICP techniques were finally evaluated for their capacity to identify the same compositional pottery groups as results from XRF and NAA analysis, by use of multivariate statistics.

  4. Cost and Performance Report: Innovative Welding Technologies Using Silicon Additives to Control Hazardous Air Pollutant (HAP) Emissions

    DTIC Science & Technology

    2013-08-30

    AES inductively coupled plasma -atomic emission spectroscopy IDST insulated double shroud torch Ipm inches per minute KIGAM Korean Institute of...exposure limit PERC Particle Engineering Research Center PPE personal protective equipment PTFE polytetrafluoroethylene (teflon) PVC polyvinyl...Analysis of total metals (Fe, Cu, Cr, Ni, and Mn) was carried out with inductively coupled plasma -atomic emission spectroscopy (ICP-AES

  5. In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry.

    PubMed

    Santos, Luana N; Gonzalez, Mário H; Moura, Monise F; Donati, George L; Nóbrega, Joaquim A

    2012-08-15

    Tungsten coil atomic emission spectrometry (WCAES) is employed for the determination of calcium in juice, mineral and coconut water samples. A sample aliquot of 20 μL is placed directly on the coil and a constant-voltage power source is used to dry and atomize the sample, as well as to promote Ca atomic emission. Analytical signals are resolved and detected using a Czerny-Turner spectrometer and a charge coupled device detector. Some experimental parameters such as coil position related to the spectrometer entrance slit and integration time are critically evaluated. A heating program with relatively constant drying temperatures is used in all measurements. An in situ digestion procedure is used to partially decompose organic matrices and improve WCAES precision and accuracy. By adding an oxidizing mixture to the sample and including a digestion step in the heating cycle, no statistical difference was observed between WCAES and ICP OES results for Ca in juice and coconut water samples. Mineral water samples were simply diluted with 1% vv(-1) HNO(3) before analysis and no significant interference was observed for concomitants such as Na and K. Despite severe positive interference caused by Mg, good agreement was obtained between WCAES and ICP OES results for Ca in several mineral water samples. Limits of detection and quantification obtained were 0.02 and 0.07 mg L(-1), respectively. The method precision, calculated as the relative standard deviation for 10 consecutive measurements of a 2.5 mg L(-1) Ca solution, is 3.8%.

  6. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  7. Hyphenated techniques in speciation analysis of polyoxometalates: identification of individual [PMo12-xVxO40](-3-x) (x = 1-3) in the reaction mixtures by high performance liquid chromatography and atomic emission spectrometry with inductively coupled plasma.

    PubMed

    Shuvaeva, O V; Zhdanov, A A; Romanova, T E; Abramov, P A; Sokolov, M N

    2017-03-14

    Unambiguous identification of polyoxometalate (POM) species generated in self-assembly reactions in solution is rather problematic due to close similarity of their properties such as solubility and spectral characteristics. The situation is made more complex by protonation equilibria (which can change their analytical signals) and the lack of individual compounds to serve as standards for individual members of these mixtures. In the present work a new approach to the study of such POMs has been suggested, taking molybdovanadates [PMo12-xVxO40](-3-x) as a model. The key feature of this approach consists of generation of so-called "conditional model systems" that include most of the expected components of a mixture formed by self-assembly, tracked down by reliable detection techniques, e.g., (51)V NMR-spectroscopy in this particular case. Then the proposed composition of the mixture is verified and corrected by means of high-performance liquid chromatography coupled with inductively coupled plasma atomic emission spectrometry (HPLC-ICP-AES).

  8. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    PubMed

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample.

  9. The survival of gunshot residues in cremated bone: an inductively coupled plasma optical emission spectrometry study.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Poppa, Pasquale; Gibelli, Daniele; Cattaneo, Cristina

    2013-07-01

    Gunshot residue (GSR) has been sought and demonstrated on many types of material and with many techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) could be a useful method on difficult substrates, but a systematic study on burnt material has never been performed. Hence, this study aims at evaluating the usefulness and reliability of this method on burnt samples. Sixteen adult bovine ribs (eight with soft tissues, eight totally skeletonized) were shot using two kinds of projectile (both 9 mm full metal-jacketed or unjacketed). Then, every sample was led to complete calcination in an electric oven. The area of the gunshot entrance wound was swabbed and analyzed by ICP-OES; the results were also correlated with a previously published parallel study by scanning electron microscopy (SEM) equipped with an SEM-energy dispersive X-ray analyzer. ICP-OES proved to be very sensitive and reliable even on degraded material and can be an appropriate nondestructive method for detecting residues on difficult and delicate substrates such as burnt bone.

  10. Standard dilution analysis of beverages by microwave-induced plasma optical emission spectrometry.

    PubMed

    Goncalves, Daniel A; McSweeney, Tina; Santos, Mirian C; Jones, Bradley T; Donati, George L

    2016-02-25

    In this work, standard dilution analysis (SDA) is combined with microwave-induced plasma optical emission spectrometry (MIP OES) to determine seven elements in coffee, green tea, energy drink, beer, whiskey and cachaça (Brazilian hard liquor). No sample preparation other than simple dilution in HNO3 1% v v(-1) is required. Due to relatively low plasma temperatures, matrix effects may compromise accuracies in MIP OES analyzes of complex samples. The method of standard additions (SA) offers enhanced accuracies, but is time-consuming and labor intensive. SDA offers a simpler, faster approach, with improved accuracies for complex matrices. In this work, SDA's efficiency is evaluated by spike experiments, and the results are compared to the traditional methods of external calibration (EC), internal standard (IS), and standard additions (SA). SDA is comparable to the traditional calibration methods, and it provides superior accuracies for applications involving ethanol-containing beverage samples. The SDA-MIP OES procedure is effective. Using only two calibration solutions, it may be easily automated for accurate and high sample throughput routine applications.

  11. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  12. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  13. Spatially resolved measurements to improve analytical performance of solution-cathode glow discharge optical-emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew J.; Ray, Steven J.; Chan, George C.-Y.; Hieftje, Gary M.

    2016-11-01

    Past studies of the solution-cathode glow discharge (SCGD) revealed that elemental and molecular emission are not spatially homogenous throughout the source, but rather conform to specific zones within the discharge. Exploiting this inhomogeneity can lead to improved analytical performance if emission is collected only from regions of the discharge where analyte species emit strongly and background emission (from continuum, elemental and/or molecular sources) is lower. Effects of this form of spatial discrimination on the analytical performance of SCGD optical emission spectrometry (OES) have been investigated with an imaging spectrograph for fourteen atomic lines, with emphasis on detection limits and precision. Vertical profiles of the emission intensity, signal-to-background ratio, and signal-to-noise ratio were collected and used to determine the optimal region to view the SCGD on a per-element basis. With optimized spatial filtering, detection limits ranged from 0.09-360 ppb, a 1.4-13.6 fold improvement over those obtained when emission is collected from the full vertical profile (1.1-840 ppb), with a 4.2-fold average improvement. Precision was found to be unaffected by spatial filtering, ranging from 0.5-2.6% relative standard deviation (RSD) for all elements investigated, closely comparable to the 0.4-2.4% RSD observed when no spatial filtering is used. Spatial profiles also appear useful for identifying optimal line pairs for internal standardization and for flagging the presence of matrix interferences in SCGD-OES.

  14. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.

  15. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  16. Evidence of adipocere in a burial pit from the foot and mouth epidemic of 1967 using gas chromatography-mass spectrometry.

    PubMed

    Vane, Christopher H; Trick, Julian K

    2005-11-10

    Gas-chromatography-mass spectrometry was used to characterise the fatty acids from soils and associated tissues excavated from a 1967 Foot and Mouth burial pit. Subcutaneous fats were mainly comprised of 55-75% palmitic acid, 17-22% stearic acid and 3-16% oleic acid as well as 5-7% myristic acid. The distribution of fatty acids confirmed that the tissues were decayed to adipocere. The loss of oleic acid to <3% in two of the decayed fats suggested advanced stages of adipocere. However, adipocere formation was limited in a third tissue sample recovered from greater depth. Inductively coupled plasma atomic emission spectrometry of the pore waters revealed a decrease in Ca concentration and concurrent increase in Na concentrations this suggested that insoluble calcium salt had formed through displacement of sodium. The use of fatty acid profiles from soils and soil interstitial pore waters provide complementary evidence of adipocere formation in foot and mouth burial pits.

  17. Arsenic and antimony determination in non- and biodegradable materials by hydride generation capacitively coupled plasma microtorch optical emission spectrometry.

    PubMed

    Mihaltan, Alin I; Frentiu, Tiberiu; Ponta, Michaela; Petreus, Dorin; Frentiu, Maria; Darvasi, Eugen; Marutoiu, Constantin

    2013-05-15

    A sensitive method using a miniature analytical system with a capacitively coupled plasma microtorch (25 W, 13.56 MHz, 0.4 l min(-1) Ar) was developed and evaluated for the determination of As and Sb in recyclable plastics and biodegradable materials by hydride generation optical emission spectrometry. Given their toxicity, As and Sb should be subject to monitoring in such materials despite not being included within the scope of Restriction of Hazardous Substances Directive. The advantages of the proposed approach are better detection limits and lower analysis cost relative to conventional systems based on inductively coupled plasma optical emission and flame atomic absorption spectrometry with/without derivatization. Samples were subjected to acidic microwave-assisted digestion in a nitric-sulfuric acid mixture. Chemical hydride generation with 0.5% NaBH4 after the prereduction of As(V) and Sb(V) with 0.3% L-cysteine in 0.01 mol l(-1) HCl (10 min contact time at 90±5°C) was used. Under the optimal hydride generation conditions and analytical system operation the detection limits (mg kg(-1)) were 0.5 (As) and 0.1 (Sb), whereas the precision was 0.4-7.1% for 10.2-46.2 mg kg(-1) As and 0.4-3.2% for 7.1-156 mg kg(-1) Sb. Analysis of two polyethylene CRMs revealed recoveries of 101±2% As and 100±1% Sb.

  18. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    SciTech Connect

    Flores, O.; Castillo, F.; Martinez, H.; Villa, M.; Reyes, P. G.; Villalobos, S.

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  19. Sulfur Limits of Detection and Spectral Interference Corrections for DWPF Sludge Matrices by Inductively Coupled Plasma Emission Spectrometry

    SciTech Connect

    JURGENSEN, AR

    2004-04-20

    The Savannah River Technology Center (SRTC) has been requested to perform sulfur (S) analysis on digested radioactive sludge and supernatant samples by Inductively Coupled Plasma Emission Spectrometry (ICP-ES). The amount of sulfur is a concern because there are sulfur limits for the incoming feed, due to glass melter, process vessel, and off-gas line corrosion concerns and limited sulfur solubility in the glass wasteform. Recent changes in the washing strategy and stream additions change the amount of sulfur in the sludge. Increasing the sulfur concentration in the sludge challenges the current limits, so accurately determining the amount of sulfur present in a sludge batch is paramount. There are two important figures of merit that need to be evaluated for this analysis. The first is the detection limit (LOD), the smallest concentration of an element that can be detected with a defined certainty. This issue is important since the sulfur concentration in these process streams is l ow. Another critical analytical parameter is the effect on the S quantitation from potential spectral interferences. Spectral interferences are caused by background emission from plasma recombination events, scattered and stray light from the line emission of high concentration elements, or molecular band emission and from direct or tailing spectral line overlap from a matrix element. Any existing spectral overlaps could give false positives or increase the measured S concentrations in these matrices.

  20. [Characterization of arsenic emissions from a coal-fired power plant].

    PubMed

    Guo, Xin; Zheng, Chu-guang; Cheng, Dan

    2006-04-01

    An emissions study for arsenic was conducted at a 300 MW coal-fired plant equipped with an electrostatic precipitator. The input and output streams such as coal, slag, ESP ash, and flue gas containing the post-ESP particulates were collected. Gaseous arsenic was sampled using EPA method 29 and the arsenic concentrations in the samples were measured using inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). The mass balance recovery of arsenic estimated in this study was 87.2%. Arsenic concentration in stack gas was 2.5 microg/m3. Approximately 0.53% of the coal-derived arsenic was incorporated into slag, 84.6% of the arsenic was found on the fly ash collected by electrostatic precipitators, and 2.16% was found in the vapor phase. The relationship between arsenic concentration and ash particle size was also assessed, and arsenic is significantly concentrated in the small sized particles.

  1. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products.

  2. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  3. Characterizing Methane Emissions at Local Scales with a 20 Year Total Hydrocarbon Time Series, Imaging Spectrometry, and Web Facilitated Analysis

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza Swan

    Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.

  4. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  5. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  6. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  7. Study of the chemical composition of particulate matter from the Rio de Janeiro metropolitan region, Brazil, by inductively coupled plasma-mass spectrometry and optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Mateus, Vinícius Lionel; Monteiro, Isabela Luizi Gonçalves; Rocha, Rafael Christian Chávez; Saint'Pierre, Tatiana Dillenburg; Gioda, Adriana

    2013-08-01

    Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m- 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m- 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3-6 μg m- 3). The anions found in the highest average concentrations were SO42 - in PM2.5 (2-4 μg m- 3) and Cl- in TSP (2-6 μg m- 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.

  8. The effect of Zn2+ ion on the UV-VIS-NIR and upconversion emission spectroscopy of Er3+ in Yb:Er:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Jiao, Shanshan; Xu, Chao; Qian, Zhao; Li, Dayong; Lin, Jiaqi; Xu, Yuheng

    2014-03-01

    A series of Yb:Er:LiNbO3 crystals tridoped with x mol% Zn2+ ions (x = 1, 3, 5 and 8 mol%) was grown by Czochralski technique. The inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to measure the concentration of Er3+ in the crystal. The UV-VIS-NIR absorption spectra of Zn:Yb:Er:LiNbO3 crystals were measured, and Judd-Ofelt (J-O) theory was applied to predict the J-O intensity parameters (Ωt) and spectroscopic quality factor (X). With 980 nm excitation, duration lengthening of 1.54 μm emission and intensity enhancement of green upconversion emission were observed for Zn:Yb:Er:LiNbO3 crystal.

  9. Determination of impurities in titanium nitride by slurry introduction axial viewed inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Ni, Zheming; Qiu, Deren; Tao, Guangyi; Yang, Pengyuan

    2005-03-01

    A method of slurry nebulization for inductively coupled plasma optical emission spectrometry (ICP-OES) applied to the analysis of titanium niride(TiN) was reported. The TiN slurry sample was prepared with adding dispersant polyacrylate amine or polyethylene imine for the stabilization and homogenization of suspension, and the amount of additives was optimized. A Babington type cross-flow nebulizer with V-groove was used for nebulization of the slurry for avoidance of blockage from the particles. The stability of slurry was characterized via zeta potential measurement, scanning electron microscope observation, particle size distrbution measurement and signal stability testing. For nm size TiN, calibration curves could be established by aqueous standards and the analytical results were in good accordance with the alkaline fusion method. For μm size TiN, a negative deviation was observed for most of elements and this deviation can be corrected by using Ti intrinsic internal standard method.

  10. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  11. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  12. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  13. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  14. High resolution Fourier transform spectrometry in emission and absorption in the visible and UV ranges

    NASA Astrophysics Data System (ADS)

    Luc, Paul

    1995-07-01

    This paper gives the main results obtained at Laboratoire Aimé Cotton, using Fourier transform spectroscopy (FTS) in the visible and UV ranges. After a rapid historical survey, a description of the fourth generation interferometer, which is specially designed to record visible and UV light will be given. Typical results in emission and absorption spectroscopy, including the metrological applications, will follow.

  15. Measurement of Hydrogen Chloride in Coal-Fired Power Plant Emissions Using Tunable Diode Laser Spectrometry

    NASA Astrophysics Data System (ADS)

    Mackay, K. L.; Chanda, A.; Mackay, G.; Pisano, J. T.; Durbin, T. D.; Crabbe, K.; Smith, T.

    2016-09-01

    In this paper, we report on TDL HCl measurements obtained at a coal-fi red power plant which indicate that there is a significant perturbation of the HCl absorption feature. A methodology was also developed to remediate this effect and provide accurate measurement that will meet the EPA precision and detection limits currently being developed for HCl measurements of process gas emissions.

  16. Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry.

    PubMed

    Shaw, Stephanie L; Mitloehner, Frank M; Jackson, Wendi; Depeters, Edward J; Fadel, James G; Robinson, Peter H; Holzinger, Rupert; Goldstein, Allen H

    2007-02-15

    California dairies house approximately 1.8 million lactating and 1.5 million dry cows and heifers. State air regulatory agencies view these dairies as a major air pollutant source, but emissions data are sparse, particularly for volatile organic compounds (VOCs). The objective of this work was to determine VOC emissions from lactating and dry dairy cows and their waste using an environmental chamber. Carbon dioxide and methane were measured to provide context for the VOCs. VOCs were measured by proton-transfer-reaction mass spectrometry (PTR-MS). The compounds with highest fluxes when cows plus waste were present were methanol, acetone + propanal, dimethylsulfide, and m/z 109 (likely 4-methyl-phenol). The compounds with highest fluxes from fresh waste (urine and feces) were methanol, m/z 109, and m/z 60 (likely trimethylamine). Ethanol fluxes are reported qualitatively, and several VOCs that were likely emitted (formaldehyde, methylamine, dimethylamine) were not detectable by PTR-MS. The sum of reactive VOC fluxes measured when cows were present was a factor of 6-10 less than estimates historically used for regulatory purposes. In addition, ozone formation potentials of the dominant VOCs were -10% those of typical combustion or biogenic VOCs. Thus dairy cattle have a comparatively small impact on ozone formation per VOC mass emitted.

  17. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    PubMed

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  18. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  19. Spectroscopic characteristics of spiral flow ICP for axially viewing ICP optical emission spectrometry.

    PubMed

    Ohata, Masaki; Kurosawa, Satoru; Shinoduka, Isao; Takaku, Yuichi; Kishi, Yoko

    2015-01-01

    Spectroscopic characteristics of a spiral flow inductively coupled plasma (ICP), which could be sustained stably at 9 L min(-1) of Ar plasma gas flow rate with 1.5 kW RF forward power, were studied for axially viewing ICPOES. The emission intensity profile, excitation temperature and plasma robustness were evaluated, and were similar to those of the standard ICP. The background and emission intensities of elements as well as the excitation behavior for both atom and ion lines were also examined and compared to those of the standard ICP. Since the spectroscopic characteristics of the spiral flow ICP were similar to those of the standard ICP, it could be used as a new low gas flow ICP in axially viewing ICPOES.

  20. A mass quadrupole spectrometry investigation on proton emission by nanosecond laser ablation

    SciTech Connect

    Caridi, F.

    2015-02-15

    A nanosecond pulsed Nd:YAG laser operating at the fundamental wavelength of 1064 nm and at an intensity of about 10{sup 10} W/cm{sup 2} was employed to irradiate hydrogenated polymers in vacuum. The produced plasma was characterized in terms of thermal and Coulomb interactions evaluating the equivalent temperature and the acceleration voltage developed in the non-equilibrium plasma core. Particles emission along the normal to the target surface was investigated by measuring, with the Hiden EQP 300 mass quadrupole spectrometer, ion energy distributions and fitting experimental data with the “Coulomb-Boltzmann-shifted” function. Time-of-flight technique was employed in order to measure the proton energy and yield. A comparison between experimental results is presented and discussed, with a special regard to the protons emission.

  1. Potential of Solid Sampling Electrothermal Vaporization for solving spectral interference in Inductively Coupled Plasma Optical Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Wibetoe, Grethe

    2009-05-01

    Spectral interference is one of the main causes of erroneous results in Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This paper describes some cases of spectral interferences with conventional nebulization ICP-OES and the potential of solving them utilizing electrothermal vaporization for volatility-based separation. The cases studied were, the well-known spectral overlap between the As and Cd lines at 228.8 nm that are only 10 pm apart, and the interference of Fe on the main emission lines of As, Cd and Pb. The spectral interferences were studied by monitoring the typical signals of solutions that contain the analytes and the potential interferent, by studying the spectra and calculating Background Equivalent Concentration (BEC)-values. A three step temperature program was developed to be used for direct analysis of solid soil samples by Electrothermal Vaporization (ETV)-ICP-OES: step 1 (760 °C, 40 s), step 2 (1620 °C, 20 s) and a cleaning step (2250 °C, 10 s) where Cd vaporizes in step 1, As, Pb and part of Fe in step 2 and the major part of Fe in the cleaning step. Because As and Cd were time-separated using this program, their prominent lines at 228.8 nm, could be used for determination of each element by ETV-ICP-OES, in spite of the serious wavelength overlap. Selective vaporization was also shown to reduce or eliminate the Fe background emission on As, Cd and Pb lines. To confirm the applicability of the method, a solid soil certified reference materials was analyzed directly without any sample treatment. Good or reasonable accuracy was obtained for the three elements.

  2. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  3. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  4. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    SciTech Connect

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  5. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  6. Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry.

    PubMed

    Dancsak, Stacia E; Silva, Sidnei G; Nóbrega, Joaquim A; Jones, Bradley T; Donati, George L

    2014-01-02

    High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg(-1) for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg(-1) for Na and K, and between 0.22 and 0.43 mg kg(-1) for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are comparable to other traditional methods.

  7. In situ transmission electron microscopy observations of lithiation of spherical silicon nanopowder produced by induced plasma atomization

    NASA Astrophysics Data System (ADS)

    Leblanc, Dominic; Wang, Chongmin; He, Yang; Bélanger, Daniel; Zaghib, Karim

    2015-04-01

    Composite Li-ion anode can be fabricated using silicon nanopowders synthesized by induced plasma atomization. Properties of such nanopowder were characterized by physical and electrochemical methods. Primary particles were crystalline with spherical shape and the typical diameter ranging from 50 to 200 nm. The Si nanopowder showed a high gravimetric capacity (4900 mAh/g) at first discharge and around 12% irreversible loss of lithium. In addition, observations of a single silicon particle made by in situ TEM permitted to compare the volume change during lithiation with other silicon anode nanomaterials.

  8. Comparison of four analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs.

    PubMed

    Boutakhrit, K; Crisci, M; Bolle, F; Van Loco, J

    2011-02-01

    Different techniques for the determination of total tin in beverages and canned foods by atomic spectrometry were compared. The performance characteristics of inductively coupled plasma-mass spectrometry (ICP-MS), hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES), electrothermal atomisation-atomic absorption spectrometry (ETA-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were determined in terms of linearity, precision, recovery, limit of detection, decision limit (CCα) and detection capability (CCβ) (Decision 2002/657/EC). Calibration ranges were covered from ng l⁻¹ to mg l⁻¹ level. Limits of detection that ranged from 0.01, 0.05, 2.0 to 200 µg l⁻¹ were reached for ICP-MS; HG-ICP-AES; ETA-AAS and ICP-AES, respectively. Precision, calculated according to ISO 5725-2 for repeatability and within-laboratory reproducibility and expressed as relative standard deviation (RSD), ranged from 1.6% to 4.9%; and recovery, based on Decision 2002/657/EC, was found to be between 95% and 110%. Procedures for the mineralisation or extraction of total tin were compared. Wet digestion, sequentially, with nitric acid and hydrogen peroxide provided the best results. The influence of possible interferences present in canned food and beverage was studied, but no interference in the determination of tin was observed. Since maximum levels for tin established by European Union legislation vary from 50 mg kg⁻¹ in canned baby foods and infant foods up to 200 mg kg⁻¹ in canned food, ICP-AES was chosen as the preferred technique for routine analysis thanks to its good precision, reliability and ease of use. The accuracy of this routine method was confirmed by participation in six proficiency test schemes with z-scores ranging from -1.9 to 0.6. Several canned foodstuffs and beverage samples from a local market were analysed with this technique.

  9. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    PubMed

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

  10. Solid-Sampling Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry for Direct Determination of Total Oxygen in Coal.

    PubMed

    Vogt, Thomas; Bauer, Daniela; Nennstiel, David; Otto, Matthias

    2015-10-20

    A new analytical method for direct determination of total oxygen contents in eight coal samples of the Argonne Premium Coal (APC) series and in the NIST SRM 1632d is presented. The development of a suitable calibration procedure, optimization of measurement conditions, and the application of a tailored data processing for handling of plasma effects and high blanks enable the quantification of oxygen simultaneously with other trace, minor, or major elements in whole coal samples by means of electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES). For comparison, the oxygen contents were determined by a direct oxygen analyzer. The obtained oxygen values of the APC and the reference material NIST SRM 1632d were compared to data in the literature. The precision of the ETV-ICP OES was within ±3.5%, and the recovery better than 92%. With this good accuracy, the developed direct solid sampling method ETV-ICP OES is well suited for the fast determination of oxygen in coals, varying in rank from lignite to semianthracite, in a content range of about 100 ppm up to 27% using 1.5 mg sample weight. This direct analysis method represents an accurate, advantageous alternative to currently used methods for estimation of total oxygen contents in coals.

  11. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  12. Determination of metal impurities in advanced lead zirconate titanate ceramics by axial view mode inductively coupled plasma optical emission spectrometry.

    PubMed

    Villanueva Tagle, M E; Larrea Marín, M T; Martin Gavilán, O; Durruthy Rodríguez, M D; Calderón Piñar, F; Pomares Alfonso, M S

    2012-05-30

    An inductively coupled plasma optical emission spectrometry quantification method for the determination of Al, Ca, Cr Cu, Fe, Mn, Mg, Ni, Zn, Ba, K, In and Co in lead zirconate-titanate (PZT) ceramics, modified with strontium and chromium, was developed. Total digestion of ceramics was achieved with a HNO(3), H(2)O(2) and HF (ac) mixture by using a microwave furnace. The sensitivity of the net signal intensity respect to radiofrequency power (P) and nebulizer argon flow (F(N)) variations was strongly dependent of the total excitation energy of line (TEE). For lines with TEE near metastable atoms and ions of argon, an increment of the sensitivities to P and F(N) variation was observed. At robust plasma conditions the matrix effect was reduced for all matrices and analytes considered. The precision of analysis ranged from 3 to 13%, whereas the analytes recoveries in the spiked samples varied, mostly, from 90 to 110%. The detection limits of studied elements were from 0.004 to 10 mg kg(-1).

  13. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    PubMed

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  14. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  15. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  16. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  17. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  18. Atomic emission spectrometric determination of ephedrine, cinchonine, chlorpheniramine, atropine and diphenhydramine based on formation of ion associates with ammonium reineckate.

    PubMed

    Khalil, S

    1999-12-01

    Ion-associate complexes of ephedrine HCl (I), cinchonine HCl (II), chlorpheniramine maleate (III), atropine sulphate (IV) and diphenhydramine HCl (V) with ammonium reineckate were precipitated and their solubilities were studied as a function of pH, ionic strength and temperature. Saturated solutions of each ion-associate under the optimum precipitation conditions were prepared and the Cr ion content in the supernatant was determined. The solubility products were thus elucidated at different temperatures. A new accurate and precise method using direct current plasma-atomic emission spectrometry for the determination of the investigated drugs in pure solutions and in pharmaceutical preparations is described. The drugs can determined by the present method in the ranges 1.6-52,2.64-85.8,3.12-101.4,5.52-180.4 and 2.72-75.85 microg/ml solutions of I, II, III, IV and V, respectively.

  19. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  20. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  1. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry.

    PubMed

    Mahan, C A; Majidi, V; Holcombe, J A

    1989-03-15

    Three freshwater heat-killed, lyophilized blue-green algae strains have been characterized as to their ability to accumulate heavy metals with a focus on the utilization of these algae as an analytical preconcentration technique. This study examines the metal uptake in several multicomponent mixtures by using inductively coupled plasma optical emission spectrometry (ICP-OES). Six milligrams of a pure strain of algae was added to 20-mL aliquots of buffered (pH 5.5-6.5) multielement solutions containing 0.1, 0.5, 1.0, 2.0, and 4.0 mg/L of K, Mg, Ca, Fe, Sr, Co, Cu, Mn, Ni, V, Zn, As, Cd, Mo, Pb, and Se. All three algae strains exhibit relatively high adsorption affinities for Fe, Pb, and Cu, with uptake between 70 and 98% at the 4 ppm concentration level. Biosorption occurs for essentially every element with the relative affinities decreasing in the order Pb greater than Fe greater than Cu greater than Cd greater than Zn greater than Mn greater than Mo greater than Sr greater than Ni greater than V greater than Se greater than As greater than Co for Chlorella pyrenoidosa at the 4 mg/L concentration level. Although some minor differences were seen, the other algae strains (Stichococcus bacillaris and Chlamydomonas reinharti) displayed similar adsorption behavior over the concentration range studied, indicating similar cell wall binding sites. Langmuirian isotherms exhibited a minimum of two slopes over the concentration range of 0.1-4.0 mg/L, indicating the probable existence of at least two adsorption mechanisms.

  2. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry.

    PubMed

    Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T

    2016-07-01

    An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44.

  3. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    PubMed

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples.

  4. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  5. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%).

  6. A photon counting dynamic digital lock-in amplifier for background suppression in glow discharge atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Gökmen, Ali; Ulgen, Ahmet; Yalçin, Şerife

    1996-01-01

    A photon counting dynamic digital lock-in amplifier, (PC-DDLIA), has been developed for the suppression of Ar lines in glow discharge lamp atomic emission spectrometry, (GDL-AES). The experimental set-up consists of a Grimm-type GDL, a prism-type scanning monochromator, photon counting electronics, an Apple Ile computer with an interface card and a computer controllable high voltage power supply. The photon counting electronics are designed to convert the photon pulses to logic pulses. A discriminator is used to reject pulses below a threshold level. The high voltage power supply is modulated with a square waveform generated from DAC and photon pulses are counted synchronously by the timer/counter chip, versatile interface adaptor (VIA-6522) on the interface card of computer. The data are analyzed in two steps. In the "learn mode", the GDL is modulated with a square waveform between 370 and 670 V and two spectra consisting of only Ar lines are obtained in a spectral window between 287.1 and 290.0 nm. A new modulation waveform is computed from these spectra which yields two overlapped spectra when the PC-DDLIA is scanned over the same spectral window. In the "analysis mode" of data acquisition, a target material with the analyte element(s) in it is used and the spectrometer is scanned with a dynamically varying rectangular waveform over the same spectral window. The net spectrum consists of pure atomic lines free from any Ar lines. The detection limit for the determination of Si (288.2 nm) in the presence of interfering Ar lines (288.1 and 288.4 nm) is found to be 0.083%, whereas suppression of Ar lines over the same spectral window lowers the detection limit to 0.013%.

  7. Analysis of trimethylgallium with inductively coupled plasma spectrometry

    SciTech Connect

    Bertenyi, I.; Barnes, R.M.

    1986-07-01

    Two methods for the analysis of trimethylgallium (TMG) are described. Since TMG is pyrophoric and volatile and the nature of its impurity species is not known, separate methods were employed for volatile and nonvolatile impurities. The nonvolatile impurities (Al, Cu, Fe, Mg) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in an aqueous solution of decomposed TMG with conventional nebulization. The volatile impurity silicon in TMG also was determined by ICP-AES but with exponential dilution. A known quantity of TMG was placed in an exponential dilution flask, and argon swept the vapor out of the flask into the plasma. Limits of detection in 1 g of TMG were 2 ..mu..g of Al, 0.6 ..mu..g of Fe, 0.6 ..mu..g of Cu, and 0.08 ..mu..g of Mg. The Si detection limit was 0.6 ..mu..g. The analysis precision for practical samples was 10-20%.

  8. Water analysis via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  9. Determination of trace elements in high purity alumina powder by helium enhanced direct current glow discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jung, Sehoon; Kim, Sunhye; Hinrichs, Joachim

    2016-08-01

    Trace impurities in high purity alumina powder were determined by fast flow direct current glow discharge mass spectrometry (GD-MS). The non-conductive samples were prepared with high purity graphite powder and used as a sample binder and as a secondary cathode. To improve the sensitivity of the GD-MS analysis, helium was introduced as an additional glow discharge gas to argon plasma. The quantification results of the GD-MS measurement were calculated by external calibration with matrix matched certified reference materials. The GD-MS results for the determination of Na, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn and Ga in the alumina samples agreed well with the certified values of a reference material and the results of chemical analysis using wet sample digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The GD-MS analysis is a rapid analysis technique to determine trace elements in non-conductive alumina to below mg·kg- 1 levels.

  10. Detailed gas and diesel vehicle emissions: PTR-MS measurements of real-time VOC profiles and comprehensive characterization of primary emissions for IVOC, SVOC, and LVOC by gas chromatography with vacuum ultra-violet ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Frodin, B.; Zhao, Y.; Franklin, J. P.; Cross, E. S.; Saleh, R.; Saliba, G.; Lambe, A. T.; Sardar, S.; Maldonado, H.; Russell, L. M.; Kroll, J. H.; Robinson, A. L.; Goldstein, A. H.

    2015-12-01

    Over the past fifteen years US vehicle emissions standards have dramatically improved, with the goal of reducing urban air pollution. Recent studies demonstrate secondary organic aerosol (SOA) to be the dominant contributor to urban organic aerosol, but controversy remains regarding the contributions of different vehicle types to SOA. Increased potency for SOA formation from non methane hydrocarbons (NMHC) from newer vehicles that meet tighter emission standards has also been observed. Both speciation and temporal resolution of vehicular emissions are critical for predicting SOA formation. The relative importance of diesel and gasoline emissions to SOA formation depends critically on speciation. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to better understand SOA formation for low, ultra-low, super ultra-low and partial zero emission vehicles (LEV, ULEV, SULEV, PZEV). Exhaust was sampled on filters and adsorbent tubes to measure intermediate-, semi-, and low-volatility NMHC (IVOC, SVOC, LVOC). A proton-transfer-reaction mass spectrometer (PTR-MS) measured volatile organics (VOC) emissions with high time-resolution. Analysis of filters and adsorbent tubes using gas chromatography with vacuum-ultra-violet ionization mass spectrometry provided unprecedented characterization of emissions according to degree of branching, number of cyclic rings, aromaticity, and molecular weight. ULEV vehicles show the composition distributions of primary particulate emissions peak for compounds in the SVOC range. PZEV vehicle emissions peak in the IVOC range. Diesel vehicles have up to ten times higher emissions than gasoline vehicles; their distributions have significant IVOC levels and peak in the SVOC/LVOC range. Our measurements are used to predict potential SOA formation by vehicle standard class and the relative SOA formation for diesel and gasoline vehicles. PTR-MS measurement show VOC emissions after cold start occur almost entirely

  11. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  12. Emission mechanism of polyatomic ions Cs2Cl+ and Cs2BO2(+) in thermal ionization mass spectrometry with various carbon materials.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, Gary N; Yang, Jing-Hong; Xiao, Ying-Kai; Yang, Tao; Yan, Xiong; Yan, Yan

    2011-12-29

    The emission behavior of polyatomic ions Cs(2)Cl(+) and Cs(2)BO(2)(+) in the presence of various carbon materials (Graphite, Carbon, SWNTs, and Fullerenes) in the ionization source of thermal ionization mass spectrometry (TIMS) has been investigated. The emission capacity of various carbon materials are remarkably different as evidenced by the obvious discrepancy in signal intensity of polyatomic ions and accuracy/precision of boron and chlorine isotopic composition determined using Cs(2)Cl(+)-graphite-PTIMS/Cs(2)BO(2)(+)-graphite-PTIMS methods. Combined with morphology and microstructure properties of four selected carbon materials, it could be concluded that the emission behavior of the polyatomic ions strongly depends on the microstructure of the carbon materials used. A surface-induced collision mechanism for formation of such kinds of polyatomic ions in the ionization source of TIMS has been proposed based on the optimized configuration of Cs(2)BO(2)(+) and Cs(2)Cl(+) ions in the gas phase using a molecular dynamics method. The combination of the geometry of the selected carbon materials with the configuration of two polyatomic ions explains the structure effect of carbon materials on the emission behavior of polyatomic ions, where graphite samples with perfect parallels and equidistant layers ensure the capacity of emission to the maximum extent, and fullerenes worsen the emission of polyatomic ions by blocking their pathway.

  13. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site.

  14. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Hu, Bin

    2007-10-01

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg 2+ was complexed with I - to form HgI 42-, and the HgI 42- reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg +) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L - 1 HNO 3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg + by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg +. The MeHg + in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg + with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg +, respectively. The limits of detection (LODs) were 56.3 ng L - 1 for Hg(II) and 94.6 ng L - 1 for MeHg + (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg + ( C = 10 μg L -1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.

  15. Determination of trace elements in biodiesel and vegetable oil by inductively coupled plasma optical emission spectrometry following alcohol dilution

    NASA Astrophysics Data System (ADS)

    Chaves, Eduardo S.; de Loos-Vollebregt, Margaretha T. C.; Curtius, Adilson J.; Vanhaecke, Frank

    2011-09-01

    A method for the simultaneous determination of Ca, Cu, Fe, K, Mg, Na, P, S and Zn in biodiesels and vegetable oils by inductively coupled plasma optical emission spectrometry (ICP-OES) has been developed. The method - based on the use of an ICP-OES instrument outfitted with a spectrometer in Paschen-Runge mount, equipped with linear charge coupled device detectors monitoring the entire spectrum from 130 to 770 nm - offers a high sample throughput as sample preparation is limited to dilution with alcohol, while all elements of interest are determined simultaneously. Ethanol is only suitable in the context of biodiesel analysis, whereas dilution with 1-propanol also allows application of the method, without any additional modification, to analysis of vegetable oils. As a result, the dilution with 1-propanol is preferable. Sample introduction was carried out with pneumatic nebulization and spectral interferences from carbon-containing compounds were reduced by cooling the cyclonic spray chamber to - 5 °C. The remaining spectral interferences in the low-UV region were efficiently corrected for by the background correction system offered in the software of the ICP-OES instrument used. Calibration was carried out against inorganic standards diluted in ethanol or 1-propanol, while Y was used as an internal standard, correcting for non-spectral interference and sensitivity drift. The accuracy of the method was verified through the analysis of the NIST SRMs 2772 and 2773 biodiesel reference materials. Additionally, as for most of the target elements only indicative concentration values are available for these reference materials, recovery tests have been performed using inorganic and organic standards. The results obtained were in good agreement with the values found on the certificate for both ethanol and 1-propanol sample dilution, while the recoveries were between 87 and 116% for biodiesel and between 95 and 106% for vegetable oils. The measurement precision expressed

  16. On-line monitoring of pine needles combustion emissions in the presence of fire retardant using a "thermogravimetry (TG)-bridge/mass spectrometry method".

    PubMed

    Tzamtzis, N; Karma, S; Pappa, A; Statheropoulos, M

    2006-07-28

    In this work a new method called TG-bridge/mass spectrometry is presented, for the on-line monitoring of the pine needles combustion emissions in a common lab furnace. The TG-bridge (thermogravimetry-bridge) system has been developed in-house as a TG-MS (thermogravimetry-mass spectrometry) interface, for TG-MS analysis. In this work, TG-bridge was used for directly sampling of the combustion emissions from the inside of the furnace and transferring them into the mass spectrometer (MS), without disturbing the sub-pressure conditions inside the MS ion source. The effect of Fire-Trol 931 (a long-term fire retardant) on the emissions, produced during the combustion of pine needles, is tested in the lab for future application in the field. It was shown that in treated samples, increased evolution of ammonia and aromatic compounds took place, compared to untreated samples. Maximum concentrations of specific compounds, such as benzene and toluene, evolved during the combustion experiments in the furnace, were determined.

  17. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-06

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass

  18. Direct determination of sulfur species in coals from the Argonne premium sample program by solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry.

    PubMed

    Bauer, Daniela; Vogt, Thomas; Klinger, Mathias; Masset, Patrick Joseph; Otto, Matthias

    2014-10-21

    A new direct solid sampling method for speciation of sulfur in coals by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) is presented. On the basis of the controlled thermal decomposition of coal in an argon atmosphere, it is possible to determine the different sulfur species in addition to elemental sulfur in coals. For the assignment of the obtained peaks from the sulfur transient emission signal, several analytical techniques (reflected light microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction) were used. The developed direct solid sampling method enables a good accuracy (relative standard deviation ≤ 6%), precision and was applied to determine the sulfur forms in the Argonne premium coals, varying in rank. The generated method is time- and cost-effective and well suited for the fast characterization of sulfur species in coal. It can be automated to a large extent and is applicable for process-accompanying analyses.

  19. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  20. Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry.

    PubMed

    Iwashita, Akira; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira; Fujita, Yoshio; Yamashita, Toru

    2007-01-15

    Microwave-acid digestion (MW-AD) followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES), graphite furnace atomic absorption spectrometry (GFAAS), and hydride generation atomic absorption spectrometry (HGAAS) were examined for the determination of various elements in coal and coal fly ash (CFA). Eight certified reference materials (four coal samples and four CFA samples) were tested. The 10 elements (As, Be, Cd, Co, Cr, Mn, Ni, Pb, Sb, and Se), which are described in the Clean Air Act Amendments (CAAA), were especially considered. For coal, the HF-free MW-AD followed by ICP-AES was successful in the determination of various elements except for As, Be, Cd, Sb, and Se. These elements (except for Sb) were well-determined by use of GFAAS (Be and Cd) and HGAAS (As and Se). For CFA, the addition of HF in the digestion acid mixture was needed for the determination of elements, except for As, Sb, and Se, for which the HF-free MW-AD was applicable. The use of GFAAS (Be and Cd) or HGAAS (Sb and Se) resulted in the successful determination of the elements for which ICP-AES did not work well. The protocol for the determination of the 10 elements in coal and CFA by MW-AD followed by the joint-use of ICP-AES, GFAAS, and HGAAS was established.

  1. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice.

    PubMed

    Sadiq, Nausheen; Beauchemin, Diane

    2014-12-03

    Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6ngg(-1) in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5min per sample (2.5min for grinding, 0.5-1min for weighing a 4-mg aliquot and 87s for the ETV program), this approach shows great promise for fast screening of food samples.

  2. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions.

    PubMed

    Klein, Felix; Platt, Stephen M; Farren, Naomi J; Detournay, Anais; Bruns, Emily A; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Temime-Roussel, Brice; Marchand, Nicolas; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-02-02

    Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed.

  3. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential wood combustion emissions

    NASA Astrophysics Data System (ADS)

    Bruns, Emily A.; Slowik, Jay G.; El Haddad, Imad; Kilic, Dogushan; Klein, Felix; Dommen, Josef; Temime-Roussel, Brice; Marchand, Nicolas; Baltensperger, Urs; Prévôt, André S. H.

    2017-01-01

    Organic gases emitted during the flaming phase of residential wood combustion are characterized individually and by functionality using proton transfer reaction time-of-flight mass spectrometry. The evolution of the organic gases is monitored during photochemical aging. Primary gaseous emissions are dominated by oxygenated species (e.g., acetic acid, acetaldehyde, phenol and methanol), many of which have deleterious health effects and play an important role in atmospheric processes such as secondary organic aerosol formation and ozone production. Residential wood combustion emissions differ considerably from open biomass burning in both absolute magnitude and relative composition. Ratios of acetonitrile, a potential biomass burning marker, to CO are considerably lower ( ˜ 0.09 pptv ppbv-1) than those observed in air masses influenced by open burning ( ˜ 1-2 pptv ppbv-1), which may make differentiation from background levels difficult, even in regions heavily impacted by residential wood burning. A considerable amount of formic acid forms during aging ( ˜ 200-600 mg kg-1 at an OH exposure of (4.5-5.5) × 107 molec cm-3 h), indicating residential wood combustion can be an important local source for this acid, the quantities of which are currently underestimated in models. Phthalic anhydride, a naphthalene oxidation product, is also formed in considerable quantities with aging ( ˜ 55-75 mg kg-1 at an OH exposure of (4.5-5.5) × 107 molec cm-3 h). Although total NMOG emissions vary by up to a factor of ˜ 9 between burns, SOA formation potential does not scale with total NMOG emissions and is similar in all experiments. This study is the first thorough characterization of both primary and aged organic gases from residential wood combustion and provides a benchmark for comparison of emissions generated under different burn parameters.

  6. Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-07-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a Pitot tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, during predetermined driving routines. The advantages and disadvantages of increasing the acquisition frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. With the aim of testing and evaluating the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles of the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent automotive technology to reach the market dedicated to reduce emissions and therefore pressing the need of low detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here are similar to experiments performed in other locations with the same vehicle model. Some differences suggest that an inefficient combustion process and type of gasoline used in the MCMA may be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction of NO emission to very low values is observed after cold ignition, giving rise to

  7. A fast method for apatite selective leaching from granitic rocks followed through rare earth elements and phosphorus determination by inductively coupled plasma optical emission spectrometry.

    PubMed

    Gásquez, José A; DeLima, Edmilson; Olsina, Roberto A; Martinez, Luis D; de la Guardia, Miguel

    2005-10-15

    Rare earth elements (REE) and phosphorus (P) in apatite were determined using inductively coupled plasma optical emission spectrometry (ICP-OES) after partial dissolution of the granitic rocks and pure apatite. The dissolution was performed with nitric acid in an open system and the matrix elements were separated by a cation exchange procedure. Samples of pure apatite from granitic rocks were dissolved with, 0.14 mol L(-1) nitric acid. The results showed that the release of REE is due to apatite leaching because it could be assessed by comparing the chondrite-normalised pattern corresponding to the rocks and the pure apatite. Similar results were found for absolute REE abundance from the partial dissolution of the rocks and pure apatite. This simple and rapid method can be applied for the determination of REE in apatite as an indicator for mineral exploration, although its use in petrology could be possible.

  8. Energy-dispersive x-ray fluorescence spectroscopy and inductively coupled plasma emission spectrometry evaluated for multielement analysis in complex biological matrices.

    PubMed

    Irons, R D; Schenk, E A; Giauque, R D

    1976-12-01

    Energy-dispersive x-ray spectroscopy and inductively coupled plasma emission spectrometry were evaluated as methods for routine multielement analysis of biological material. Standard samples included Standard Reference Materials (National Bureau of Standards), compounded mixtures, and supplements that provided a wide range of elemental concentrations for analysis. Elements included in this study were Zn, Pb, Ni, Mn, Fe, Mg, Cu, Ca, As, Se, Br, Rb, and Sr. Standards were analyzed as unknowns by participating laboratories. The two methods were evaluated for sensitivity, precision, and accuracy, and the results compared to those obtained for atomic absorption spectrometric analysis of identical standard unknowns. Both methods compared favorably and both were determined to be highly reliable for such an application. Advantages and disadvantages of each method are compared and discussed.

  9. The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry.

    PubMed

    Carrilho, Elma Neide V M; Nóbrega, Joaquim A; Gilbert, Thomas R

    2003-08-29

    The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH<2 with diluted HCl. The enrichment factors for Cu(II), Fe(III), Al(III) and Co(II) were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel.

  10. Development and Characterization of a 9-mm Inductively Coupled Argon Plasma (ICP) Source for Atomic Emission Spectrometry.

    DTIC Science & Technology

    1980-09-30

    plus inter- fereni (S.,0:l ol; raio Pal :Ca). Rcati\\,e :;talcs X , 10" V. I0(’ V - ,. ’::ire tO. lffect of P0,, on Ca 11 (393.4 tin) emission profiles...mL- I of Ca while 10 curve B is from tile same solution but with phosphate added at a molar ratio of 50 to 1 (P0 4 : Ca). Profile X was obtained at...emission profiles with changing rf power levels klramne X , 500 W; Y, 750 W). Curve A represcnts amalytc (50 jig mLŕ Ca) signal and curve B awi ]ytc

  11. Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated with Online Aerosol Mass Spectrometry.

    PubMed

    Malmborg, V B; Eriksson, A C; Shen, M; Nilsson, P; Gallo, Y; Waldheim, B; Martinsson, J; Andersson, Ö; Pagels, J

    2017-02-07

    To design diesel engines with low environmental impact, it is important to link health and climate-relevant soot (black carbon) emission characteristics to specific combustion conditions. The in-cylinder evolution of soot properties over the combustion cycle and as a function of exhaust gas recirculation (EGR) was investigated in a modern heavy-duty diesel engine. A novel combination of a fast gas-sampling valve and a soot particle aerosol mass spectrometer (SP-AMS) enabled online measurements of the in-cylinder soot chemistry. The results show that EGR reduced the soot formation rate. However, the late cycle soot oxidation rate (soot removal) was reduced even more, and the net effect was increased soot emissions. EGR resulted in an accumulation of polycyclic aromatic hydrocarbons (PAHs) during combustion, and led to increased PAH emissions. We show that mass spectral and optical signatures of the in-cylinder soot and associated low volatility organics change dramatically from the soot formation dominated phase to the soot oxidation dominated phase. These signatures include a class of fullerene carbon clusters that we hypothesize represent less graphitized, C5-containing fullerenic (high tortuosity or curved) soot nanostructures arising from decreased combustion temperatures and increased premixing of air and fuel with EGR. Altered soot properties are of key importance when designing emission control strategies such as diesel particulate filters and when introducing novel biofuels.

  12. A Simple But Comprehensive Methodology To Determine Gas-Phase Emissions Of Motor Vehicles With Extractive FTIR Spectrometry

    NASA Astrophysics Data System (ADS)

    Reyes, F. M.; Jaczilevich, A.; Grutter, M. A.; Huerta, M. A.; Rincón, P.; Rincón, R.; González, R.

    2004-12-01

    In this contribution, a methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. With this innovative experimental set-up, it is possible to obtain real-time emissions of the combustion products without the need of dilution or sample collection. Key pollutants such as CO, CO2, H2CO, CH4, NO, N2O, NH3, SO2, CH3OH, acetylene, ethylene, ethane and total hydrocarbons, most of which are not regulated nor measured by current emissions control programs, can be accurately monitored with a single instrument. An FTIR spectrometer is used for the analysis of a constant flow of sample gas from the tail-pipe into a stainless-steel cylindrical cell of constant volume.(1) The cell is heated to 185 °C to avoid condensation, the pressure is kept constant and a multi-pass optical arrangement(2)is used to transmit the modulated infrared beam several times to improve the sensitivity. The total flow from the exhaust used for calculating the emission can be continuously determined from the differential pressure measurements from a "Pitot" tube calibrated against a hot-wire devise. This simple methodology is proposed for performing state-of-the-art evaluations on the emission behavior of new technologies, reformulated fuels and emission control devices. The results presented here were performed on a dynamometer running FTP-75 and driving cycles typical for Mexico City.(3,4) References 1. Grutter M. "Multi-Gas Analysis using FTIR Spectroscopy over Mexico City." Atmosfera 16, 1-16 (2003). 2. White J.U. "Long optical paths of large aperture. J. Opt. Soc. Am., 32, 285-288 (1942). 3. Santiago Cruz L. and P.I. Rincón. "Instrumentation of the Emission Control Laboratory at the Engineering School of the National Autonomous University of Mexico." Instrumentation and Development 4, 19-24, (2000). 4. González Oropeza R. and A. Galván Zacarías. "Desarrollo de ciclos de manejo característicos de la Ciudad de México." Memorias

  13. Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography-mass spectrometry with programmed temperature vaporization and large volume injection

    NASA Astrophysics Data System (ADS)

    Vieira de Souza, Carolina; Corrêa, Sergio Machado

    2015-02-01

    Diesel engines are significant sources of Polycyclic Aromatic Compounds (PAHs) in urban atmospheres. These compounds are widely known for their carcinogenic potential and mutagenic properties. In this study, a method was developed for the analysis of 16 priorities PAHs using gas chromatography-mass spectrometry (GC-MS) with programmable temperature vaporizer large volume injection (PTV-LVI), which allowed to be obtained detection limits below 2.0 ng mL-1. This method was evaluated in samples from stratified particulate matter and gas phase from the emissions of diesel vehicle employing diesel commercial S10 (sulfur 10 mg L-1) and B5 (biodiesel 5% v/v). A sampling system that does not employ exhaust products dilution was used to evaluate the PAHs gas-particle partition. Six PAHs were identified in extracts and gas-phase PAHs took percentage of 80% in the total PAHs emissions. The sampling system without dilution not caused a strong nucleation/condensation of the most volatile PAHs. PAHs size-particle distribution was found in higher levels in the accumulation mode.

  14. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic

  15. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04...

  16. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  17. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04...

  18. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  19. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before...

  20. Determination of dissolved boron in fresh, estuarine, and geothermal waters by d.c. argon-plasma emission spectrometry

    USGS Publications Warehouse

    Ball, J.W.; Thompson, J.M.; Jenne, E.A.

    1978-01-01

    A d.c. argon-plasma emission spectrometer is used to determine dissolved boron in natural (fresh and estuarine) water samples. Concentrations ranged from 0.02 to 250 mg l-1. The emission-concentration function is linear from 0.02 to 1000 mg l-1. Achievement of a relative standard deviation of ??? 3% requires frequent restandardization to offset sensitivity changes. Dilution may be necessary to overcome high and variable electron density caused by differences in alkali-metal content and to avoid quenching of the plasma by high solute concentrations of sodium and other easily ionized elements. The proposed method was tested against a reference method and found to be more sensitive, equally or more precise and accurate, less subject to interferences, with a wider linear analytical range than the carmine method. Analyses of standard reference samples yielded results in all cases within one standard deviation of the means. ?? 1978.

  1. Surface modification of hexatriacontane by CF_4 plasmas studied by optical emission and threshold ionization mass spectrometries

    NASA Astrophysics Data System (ADS)

    Poncin-Epaillard, F.; Wang, W.; Ausserré, D.; Scharzenbach, W.; Derouard, J.; Sadeghi, N.

    1998-11-01

    The behavior of tetrafluoromethane microwave plasma (2% argon included) has been studied by emission spectroscopy during the treatment of hexatriacontane, a model for high density polyethylene. The evolution of the densities of F* atoms, and CF, CF^*2, radicals has been followed by using the actinometric technique with 2% argon added to the gas. The surface properties, such as surface energy and surface roughness were correlated to the emission intensity of reactives species in the plasma gas phase. We found that the evolution of the fluorinated species emissions in the plasma gas phase can be a direct indication of the surface modifications by the plasma. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions. Threshold ionization mass spectroscopy is applied to detect the fluorine atoms and CFx radicals. Time resolved measurements in pulsed plasma, give access to the decay rate of F atoms concentration in the afterglow, and to their sticking coefficient on different surfaces. The influences of the discharge parameters and of the surfaces (metal, silicon or hexatriacontane) in contact with the plasma are investigated. The results show that the plasma generated ions and/or UV radiations highly enhance the reactivity of the F atoms on polymer surface.

  2. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry.

    PubMed

    García-Salgado, S; Quijano, M A; Bonilla, M M

    2012-02-10

    Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g(-1). Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g(-1), whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g(-1)). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g(-1)) and generally high arsenate (As(V)) concentrations (up to 77 μg g(-1)) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  3. Straightforward way to enhance robustness in ultrasonic nebulization-axial view inductively coupled plasma optical emission spectrometry via an additional N2 gas stream

    NASA Astrophysics Data System (ADS)

    Scheffler, Guilherme Luiz; Pozebon, Dirce

    2015-11-01

    In the present study a low flow of N2 is mixed with the aerosol produced by ultrasonic nebulization (USN) prior analysis using inductively coupled plasma optical emission spectrometry (ICP OES). The foreign gas is added for improving plasma characteristics in axially-viewed ICP. By computing the Mg ionic to atomic ratio (plasma robustness) it was concluded that N2 dissociates closer to the load coil when USN is used as sample introduction system. The maximum emission intensity of Mg(II) for pneumatic nebulization (PN) was observed at 11 mm from the load coil while it was 8 mm for USN, indicating earlier aerosol desolvation, atomization and excitation processes in the ICP. Emission profiles of Ar(I) 415.861 nm, Ba(II) 486.601 nm and Ba(II) 233.527 nm indicated that metastable Ar species are overpopulated in the ICP under the N2 flow. Copper and manganese ionic lines with energy close to 16 eV (Ar ionization) were monitored to evaluate spatially dependent charge-transfer reaction along the ICP axis in the presence and absence of the N2 flow. The Cu(II) signal profiles indicated abundance of Ar+ species at low distances from the load coil when N2 was added. On the other hand, differences were not observed at longer distances from the load coil for both plasmas (mixed-gas and pure Ar-ICP). The calculated limits of detection (LODs) for both plasmas had the same order of magnitude. Analysis of certified reference samples demonstrated that the accuracy was preserved by adding the low flow of N2. It was concluded that adding a low flow of N2 to the aerosol produced by USN is a simple way to increase plasma robustness, which is usually lower than that achieved using conventional PN.

  4. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Luan, Shen

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  5. Signal enhancement in solution-cathode glow discharge — optical emission spectrometry via low molecular weight organic compounds

    NASA Astrophysics Data System (ADS)

    Doroski, Todd A.; Webb, Michael R.

    2013-10-01

    HCOOH, CH3COOH, and CH3CH2OH were used as chemical modifiers in a solution-cathode glow discharge. Emission was measured directly from the discharge, without a gas-liquid separator or a secondary excitation source. Emission from Ag, Se, Pb, and Hg was strongly enhanced, and the detection limits (DL) for these elements were improved by up to an order of magnitude using a combination of HCOOH and HNO3 compared to using HNO3 alone. The DL was measured for Mg (1 μg/L), Fe (10 μg/L), Ni (6 μg/L), Cu (6 μg/L), Pb (1 μg/L), Ag (0.1 μg/L), Se (300 μg/L), and Hg (2 μg/L). Coefficients of determination (R2) were between 0.9986 and 0.9999. A voltage of 1 kV was used, which produced a current of approximately 70 mA.

  6. Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction.

    PubMed

    Otero-Romaní, Jacobo; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; Martin-Esteban, Antonio

    2009-08-15

    The capabilities of a synthesized ionic imprinted polymer (IIP), originally prepared for Ni recognition/pre-concentration from seawater, have been evaluated for other trace elements pre-concentration. The polymer has been synthesized by the precipitation polymerization technique using a ternary pre-polymerization complex formed by the template (Ni), the monomer (2-(diethylamino) ethyl methacrylate, DEM) and a non-vinylated chelating agent (8-hydroxyquinoline, 8-HQ). Since the complexing agent (8-HQ) is trapped into the polymeric matrix, but is not linked to the polymer chains, specific interactions between the functional groups (present in the monomer and the complexing agent) and other trace elements rather than Ni may occur. Results have shown that the IIP offers imprinting properties for the template (Ni(II)) and also for Cu(II), Pb(II), Zn(II), As(V) and Cd(II), with analytical recoveries close to 100% for all elements except for As(V) and Cd(II) (around 70%), whereas the non-imprinted polymer (NIP) did not show affinity for any trace element. In addition, the polymer does not interact with alkaline or alkaline-earth metals, so Na, K, Mg and Ca from the seawater salt matrix could be effectively removed. Variables affecting the IIP-solid phase extraction (SPE) process (pH, load flow rate and concentration and volume of the eluting solution) were completely studied. Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have been used as multi-element detectors. Acidified seawater samples must only be treated to fix an alkaline pH (8.5+/-0.5) and passed through IIP-SPE cartridges. After seawater sample loading (250 mL), analytes were eluted with 2.5 mL of 2.0M nitric acid, offering a pre-concentration factor of 100. Therefore, the limits of detection (LODs) of the method were 0.14, 0.15, 0.18 and 0.03 microg L(-1), for Ni, Cu, Pb and Zn, respectively, when using ICP-OES detection and 0.0022, 0

  7. A Comparative Analysis of Caries Inhibitory Effect of Remineralizing Agents on Human Enamel Treated With Er:YAG Laser: An In-vitro Atomic Emission Spectrometry Analysis

    PubMed Central

    Nair, Aswin Saseendran; Kumar, R Krishna; Ahameed, Syed Shaheed; Punnathara, Sairaj; Peter, Joby

    2016-01-01

    Introduction The tug of war to maintain tooth integrity is dependent on a ratio between demineralization and remineralization. Hence, demineralization should be retarded and remineralization should be enhanced to maintain a natural equilibrium in the oral cavity. Aim To compare in-vitro acid resistance of human enamel when using Casein Phosphopeptides Amorphous Calcium Phosphate (CPP-ACP) [GC Tooth mousse] cream, Casein Phosphopeptide Amorphous Calcium Fluoride Phosphate (CPP-ACFP) [GC Tooth mousse plus] cream, Er:YAG laser alone, combination of CPP-ACP with Er:YAG laser, CPP-ACFP with Er:YAG laser. Materials and Methods An in-vitro study was done on 100 specimens which were prepared from 50 human premolars to investigate the caries inhibitory effect of remineralizing agents and laser on enamel using an atomic emission spectrometry analysis. The enamel specimens were randomly allocated into 6 groups: Untreated (control); CPP-ACP (GC Tooth mousse); CPP-ACFP (GC Tooth mousse plus); Er:YAG laser treatment alone; CPP-ACP with Er:YAG laser; CPP-ACFP with Er: YAG laser. Then specimens were immersed individually in 5ml of acetate buffer solution (0.1mol/L, pH 4.5) and incubated at 37°C for 24 hours, to determine the acid resistance by analyzing the calcium release using atomic emission spectrometry. An ANOVA model was constructed (p-value 0.05), followed by post-hoc Tukey’s test for multiple pair wise comparisons of mean values. Results There was a significant difference among the various groups with respect to amount of calcium released (p<0.001). The lowest mean score of calcium release was observed for CPP-ACFP with Er:YAG laser followed by CPP-ACFP but the differences between these groups were statistically not significant (p>0.05). Similarly the differences between CPP-ACP with Er:YAG laser and CPP-ACP also were not significant (p>0.05). The highest mean score of calcium release was for Er:YAG laser and no significant statistical difference was noticed in

  8. Identification and differentiation of the red ink entries of seals on document by laser desorption ionization mass spectrometry.

    PubMed

    Wang, Xiang-Feng; Zhang, Yun; Wu, Yao; Yu, Jing; Xie, Meng-Xia

    2014-03-01

    The establishment of approaches for the differentiation of the ink entries of seals on paper can provide evidence to authenticate the related documents and can play a key role in judicial expertise. The identification and discrimination method for 38 red ink entries of seals on paper has been investigated using laser desorption ionization mass spectrometry (LDI-MS). Six dye components for the ink pastes of seals, Scarlet powder (SP), Bronze Red C (BR), Fast Red R (FR), Basic Violet 3 (BV3), Pigment Red 22 (PR22) and Pigment Red 112 (PR112), have been identified by their LDI-MS spectra, and the results have been confirmed by electrospray ionization quadruple-time of flight mass spectrometry (QTOF-ESI-MS/MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The 38 ink entries were classified into six groups based on the presence or the absence of the pigments in their positive and negative LDI-MS spectra, and the discrimination power (DP) was calculated to be about 82%. The ink entries within each group were further differentiated from the relative peak areas (RPA) of the fragments for the pigments and the profile of their LDI-MS spectra, and thus the DP was increased to 98%. All the 38 ink entries could be discriminated (the DP was 100%), if including the contribution of unknown peaks. Compared with the results obtained by the FTIR and Raman methods, the established LDI-MS approach could provide more information of the dye components in the ink entries. The results showed that the developed LDI-MS method is powerful, sensitive and rapid and can directly differentiate the red ink entries of seals from paper substrates, thus offering a novel approach to judge the authenticity of documents.

  9. Determination of metal-cofactors in enzyme complexes by total-reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wittershagen, A.; Rostam-Khani, P.; Klimmek, O.; Groß, R.; Zickermann, V.; Zickermann, I.; Gemeinhardt, S.; Kröger, A.; Ludwig, B.; Kolbesen, B. O.

    1997-07-01

    The determination of metal-cofactors and their molar concentrations is an important requirement for the characterisation of metalloproteins and a challenge regarding the capabilities of trace analytical methods. In this respect, total-reflection X-ray fluorescence spectrometry offers many advantages for the determination of trace elements in enzymes, as compared to other well known analytical techniques such as flame atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry (ICP-AES), because of the significantly smaller amounts of sample required. Without any decomposition, elements like P, S, Fe, Ni, Cu, Zn, Mn and Mo could be determined with high accuracy, in spite of the large bio-organic matrix. The enzymes (polysulphide reductase and hydrogenase of the rumen bacterium Wolinella succinogenes, and the cytochrome c oxidase and quinol oxidase of the soil bacterium Paracoccus denitrificans) were transferred from their usual salt-buffer into a solution of 100 mmol l -1 tris(hydroxymethyl)aminomethane (tris)-acetate containing an appropriate detergent. By this procedure, an improved signal-to-noise ratio is obtained. The polysulphide reductase was found to contain copper as a hitherto existing unknown cofactor. The enzyme contains a stretch of amino acids that are typical of copper proteins and thus confirm the presence of this element. Furthermore, the data concerning cytochrome c oxidase from Paracoccus denitrificans are in good agreement with published values obtained by ICP-AES. Also, results from measurements with the quinol oxidase from the same bacterium agree with the expected values. The investigations lead to the conclusion that the method is well suited to the quantitative determination of metals in enzymes, in particular their molar fractions, and requires only small amounts of the biological sample without any extensive pretreatment.

  10. Determination of total fluorine in five coal reference materials by proton-induced gamma-ray emission spectrometry.

    PubMed

    Roelandts, I; Robaye, G; Delbrouck-Habaru, J M; Weber, G

    1996-03-01

    The direct non-destructive proton-induced gamma-ray emission (PIGE) technique with a germanium detector was applied to the determination of total fluorine concentration in five coal reference materials (BCR 40, NIST 1632b, NIST 1635, SARM 20 and USGS CLB-1). Duplicate analyses were made from five randomly selected bottles of each coal. Individual data are presented and some problems (calibration, proton stopping power, effects of sample heating by the proton beam, background estimation) which were encountered during this study are discussed. Sensitivity and reproducibility of the determinations, and homogeneity of the coal samples with respect to fluorine contents by analysis of variance were investigated. The present data are also compared with the few published values for these reference samples, including other PIGE data. The use of synthetic standards and spiked samples in the present study suggested that the PIGE method was more accurate than other techniques.

  11. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    PubMed

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  12. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  13. Comparison of parallel flow and concentric micronebulizers for elemental determination in lubricant oil, residual fuel oil and biodiesel by Inductively Coupled Plasma Optical Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    de Souza, Jefferson R.; dos Santos, Eider Fernando; Duyck, Christiane B.; Saint'Pierre, Tatiana D.

    2011-05-01

    Two micronebulizers, PFA-100 and Miramist, were evaluated using a method for elemental determination by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) in lubricant and residual fuel oils diluted in xylene. The facility and speed of direct sample dilution in organic solvents, without additional pretreatment, combined with the multielemental capacity and robustness of ICP OES are advantageous. The operational conditions were optimized through factorial design. Improvement in the signal-to-background ratio was observed for Ag, Al, B, Ba, Ca, Cr, Cu, Fe, Mn, Si, Ti and V. Higher sensitivity was obtained with the PFA-100 micronebulizer, although the limits of detection (LOD) obtained for both micronebulizers were similar, between 0.3 μg kg -1 (Mg) and 18 μg kg -1 (Ni). The certified reference materials NIST 1634c and NIST 1085b were used for method validation and good recoveries were obtained with values between 93% (Pb) and 102% (P) for PFA-100 and 90% (Pb) and 103% (P) for Miramist. The method was also validated for analysis of biodiesel samples by recovery tests, with results from 89% to 103%. The proposed method was employed for the analysis of crude oil, lubricant oil and biodiesel from different raw materials.

  14. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  15. Hybrid Sargassum-sand sorbent: a novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry.

    PubMed

    Vijayaraghavan, K; Joshi, U M

    2013-01-01

    Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.

  16. Beryllium Limits of Detection and Spectral Interferences in 2 Per Cent Nitric Acid, Digested Air Filter Paper, and GHOSTWIPETM Matrices by Inductively Coupled Plasma Emission Spectrometry

    SciTech Connect

    Jurgensen, A.R.

    2004-02-13

    The Analytical Development Section (ADS) of the Savannah River Technology Center (SRTC) has been requested to perform beryllium (Be) analysis on digested Air Filter Paper and GHOSTWIPE (Trade Mark) samples by Inductively Coupled Plasma Emission Spectrometry (ICP-ES). One of the important figures of merit for this analysis is the detection limit (LOD), the smallest concentration of an element that can be detected with a defined certainty. To meet the site Industrial Hygiene (IH) requirements, an instrument LOD of 0.03 mg per Air Filter Paper (1 hr sample) and 0.2 mg per GHOSTWIPE (Trade Mark) must be demonstrated. Another important analytical parameter is the effect on the Be quantization from potential spectral interfering matrix elements. Any existing spectral overlaps could give false positives or increase the measured Be concentrations in these matrices. The purpose of this study was to document the Analytical Development Sections' s contained ICP-ES performance in these two areas. In addition, other Quality Control recommendations will be discussed.

  17. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Kum, Kee-Yeon; Zhu, Qiang; Safavi, Kamran; Gu, Yu; Bae, Kwang-Shik; Chang, Seok Woo

    2013-12-01

    Ortho mineral trioxide aggregate (MTA) is a mineral aggregate newly developed for perforation repair, root end filling and pulp capping. The aim of this study was to investigate the levels of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn) in Ortho MTA and ProRoot MTA. A total of 0.2 g of each MTA was digested using a mixture of hydrochloric and nitric acids and filtered. Six heavy metals in the resulting filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (n = 5). The results were statistically analyzed using the Mann-Whitney U-test. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Ortho MTA were 0.10, 7.73, 49.51, 2.58, 0.82 and 10.09 p.p.m., respectively. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in ProRoot MTA were 0.16, 9.38, 1438.11, 74.51, 18.98 and 4.05 p.p.m., respectively. In conclusion, Ortho MTA had lower levels of Cd, Cu, Fe, Mn and Ni than ProRoot MTA.

  18. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    PubMed

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310).

  19. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    NASA Astrophysics Data System (ADS)

    dos Santos, Éder José; Herrmann, Amanda Beatriz; de Caires, Suzete Kulik; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2009-06-01

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH 4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 µg L - 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL - 1 was 0.10 µg g - 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  20. Imaging of elements in leaves of tobacco by solid sampling-electrothermal vaporization-inductively coupled plasma-optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Masson, Pierre

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling-electrothermal vaporization-inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  1. Speciation of inorganic selenium in environmental water samples by inductively coupled plasma optical emission spectrometry after preconcentration by using a mesoporous zirconia coating on coal cinder.

    PubMed

    Wei, Xiao-Shu; Wu, Yi-Wei; Han, Li-Juan; Guo, Jing; Sun, Hong-Li

    2014-08-01

    A simple, novel, and selective flow-injection solid-phase extraction with inductively coupled plasma optical emission spectrometry method was developed for the speciation of inorganic selenium in environmental water samples. A mesoporous zirconia film was simply introduced to coat coal cinder by means of the sol-gel technique, and the adsorptive performance of the coated material for Se(IV)/Se(VI) was investigated in different media. Both Se(IV) and Se(VI) can be retained quantitatively by the material in HCl/NaOH (pH 1.0-9.0) media, while only Se(IV) was adsorbed quantitatively in sodium acetate buffer (pH 3.5-6.0). Thus, the assay of Se(VI) is based on subtracting Se(IV) from total selenium by controlling different adsorptive media without employing any redox procedure. Under the optimum conditions, the detection limit of Se(IV) is 9.0 ng/L with an enrichment factor of 100, and the relative standard deviation is 3.6% (n = 9, C = 5.0 ng/mL). The developed method was successfully applied to the speciation of inorganic selenium in environmental water samples with satisfactory results. In order to further verify the accuracy of the developed method, it was applied to analysis of total selenium in GSBZ 50031-94 certified reference environmental water, and the determined values coincided with the certified values very well.

  2. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    PubMed

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  3. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry.

    PubMed

    Ilander, Aki; Väisänen, Ari

    2007-10-29

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min(-1), auxiliary gas flow of 0.2 L min(-1) and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min).

  4. The determination of trace element concentrations in fly ash samples using ultrasound-assisted digestion followed with inductively coupled plasma optical emission spectrometry.

    PubMed

    Ilander, Aki; Väisänen, Ari

    2009-08-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element (chromium, copper, lead, nickel, vanadium and zinc) concentrations in fly ash samples was developed. All the measurements were performed in robust plasma conditions. Ultrasound-assisted digestion procedures using digestion solutions of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 80% for all the analyte elements. Ultrasound-assisted two-step digestion with digestion solutions of 6mL of HNO(3) (Step 1) and 3mL of HNO(3)+3mL of HF (Step 2) resulted in recovery rates of over 92% for all the analyte elements with one exception, chromium, which had a recovery of about 85%. The analysis of SRM 1633b showed that the two-step ultrasound-assisted digestion method developed resulted in chromium, copper, nickel and zinc concentrations higher than the microwave digestion method standardized by the United States Environmental Protection Agency (USEPA method 3052). This is the very first time when a digestion method using ultrasound resulted in higher efficiency than microwave (USEPA method 3052) for chromium and nickel in very hard to dissolve samples. The major advantages of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (about 30 samples simultaneously with a sonication time of 18min) and the possibility to use new sample vessels without a significant increase in costs.

  5. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  6. [Characterization of dinosaur fossils and their surrounding rocks by atomic emission spectrometry and X-ray powder diffractometry].

    PubMed

    Yang, Qun; Wang, Yi-lin; Li, Chao-zhen; Yuan, Bo

    2005-02-01

    More dinosaur fossils have been found in the Laochangqing valley, Lufeng county than anywhere else in the world, and the dinosaur fossils found here cover the longest time span (including the early and middle Jurassic ages). This excavation offers an ideal experimental base for prehistoric biology studies. This paper presents an elementary analysis of the components and structure of the dinosaur fossils in three different geologic-layers and their surrounding rocks in the above mentioned area. Atomic emission spectrum shows that the fossils are rich in the contents of calcium (>5%) and phosphor, but low in the content of silicon (3%-8%), while the surrounding rocks are high in the content of silicon (>10%). Furthermore, XRD results show that the major compound of the fossils is CaCO3 (66%), followed by SiO2 (17%); while that of the surrounding rocks is SiO2 (>80%), followed by CaCO3 (<12%). The most important difference between the fossils and the surrounding rocks is, according to the experiment, that phosphate has been identified in the former but not in the latter. This is a characteristic that can be used to distinguish the dinosaur fossils from other rocks. This paper provides valuable data for further zoological studies on the living conditions and evolution of the dinosaurs in the Laochangqing valley, Lufeng county.

  7. Environmental Indicators of Metal Pollution and Emission: An Experiment for the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Bowden, John A.; Nocito, Brian A.; Lowers, Russell H.; Guillette, Louis J., Jr.; Williams, Kathryn R.; Young, Vaneica Y.

    2012-01-01

    This experiment enlightens students on the use of environmental indicators and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and demonstrates the ability of these monitoring tools to measure metal deposition in environmental samples (both as a result of lab-simulated and real events). In this two-part study, the initial…

  8. Multielemental analysis of purpleback flying squad using high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS).

    PubMed

    Ichihashi, H; Kohno, H; Kannan, K; Tsumura, A; Yamasaki, S I

    2001-08-01

    Forty-four elements were analyzed in 21 tissues of purpleback flying squid, Sthenoteuthis oualaniensis, by high resolution inductively coupled plasma-mass spectrometry (HR ICP-MS) and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Greater concentrations of V, Fe, Co, Ni, Cu, Ag, Cd, Pb, and Bi were found in liver, pancreas, and ink sac than in other tissues. Ink sac concentrated remarkable levels of Ca and Sr in addition to the above-mentioned elements. Several alkalis, alkaline earth, and rare earth elements preferentially accumulated in muscle. Among the hard tissues, accumulation of V and U in beak, Ni, Zn, and Cd in gladius and Cr in skin was prominent. K, Rb, Cs, Pb, Bi and some transition elements (V, Co, Cu, Zn, Ag, Cd) were significantly (p < 0.05) higher in the livers of adult than in juvenile squids. Sodium, alkaline earth, and rare earth elements were higher in the livers of juveniles than in adult squids.

  9. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  10. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    PubMed

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  11. Evaluation and application of argon and helium microstrip plasma for the determination of mercury by the cold vapor technique and optical emission spectrometry.

    PubMed

    Jiménez Zapata, Israel; Pohl, Pawel; Bings, Nicolas H; Broekaert, José A C

    2007-08-01

    The suitability of a 2.45-GHz atmospheric pressure, low-power microwave microstrip plasma (MSP) operated with Ar and He for the determination of Hg by continuous-flow cold vapor (CV) generation, using SnCl2/HCl as the reducing agent, and optical emission spectrometry (OES) using a small CCD spectrometer was studied. The areas of stability for a discharge in the Ar and in the He MSP enclosed in a cylindrical channel in a quartz wafer were investigated. The excitation temperatures as measured for discharge gas atoms (Ar I, He I), and the electron number densities at 35-40 W and 15-400 mL min(-1) were found to be at the order of 3,200-5,500 K and 0.8x10(14)-1.6x10(14) cm(-3), respectively. The relative intensity of the Hg I 253.6-nm line and the signal-to-background ratio as a function of the forward power (35-40 W) as well as of the flow rate of the working gas (15-400 mL min(-1)) were evaluated and discussed. For the selected measurement conditions, the Ar MSP was established to have the lower detection limit for Hg (0.6 ng mL(-1)) compared with the He MSP. The linearity range is up to 300 ng mL(-1) and the precision is on the order of 1-3%. With the optimized CV Ar MSP-OES method a determination of Hg in spiked domestic and natural waters at concentration levels of 20-100 microg L(-1) and an accuracy of 1-4% could be performed. In an NIST domestic sludge standard reference material, Hg (3.64 microg g(-1)) could be determined with a relative standard deviation of 4% and an agreement better than 4%.

  12. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Froes, Roberta Eliane Santos; Neto, Waldomiro Borges; Silva, Nilton Oliveira Couto e.; Naveira, Rita Lopes Pereira; Nascentes, Clésia Cristina; da Silva, José Bento Borba

    2009-06-01

    A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2 3 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO 3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L - 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min - 1 , 1.3 kW, and 1.25 mL min - 1 ) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L - 1 . The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.

  13. A method for Ca, Fe, Ga, Na, Si and Zn determination in alumina by inductively coupled plasma optical emission spectrometry after aluminum precipitation

    NASA Astrophysics Data System (ADS)

    Souza, Alexandre L.; Lemos, Sherlan G.; Oliveira, Pedro V.

    2011-05-01

    In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al 2O 3) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mL H 2SO 4 + 1.5 mL H 2O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH) 3 with NH 3 (by bubbling NH 3 into the solution up to a pH ~ 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037% w w -1 CaO, 0.013% w w -1 Fe 2O 3, 0.012% w w -1 Ga 2O 3, 0.49% w w -1 Na 2O, 0.014% w w -1 SiO 2 and 0.013% w w -1 ZnO) presented no statistical differences compared to the certified values at a 95% confidence level.

  14. Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Faraji, Mohammad; Yamini, Yadollah; Shariati, Shahab

    2009-07-30

    Copper, as a heavy metal, is toxic for many biological systems. Thus, the determination of trace amounts of copper in environmental samples is of great importance. In the present work, a new method was developed for the determination of trace amounts of copper in water samples. The method is based on the formation of ternary Cu(II)-CAS-CTAB ion-pair and adsorption of it into a mini-column packed with cotton prior applying inductively coupled plasma optical emission spectrometry (ICP-OES). The experimental parameters that affected the extraction efficiency of the method such as pH, flow rate and volume of the sample solution, concentration of chromazurol S (CAS) and cethyltrimethylammonium bromide (CTAB) as well as type and concentration of eluent were investigated and optimized. The ion-pair (Cu(II)-CAS-CTAB) was quantitatively retained on the cotton under the optimum conditions, then eluted completely using a solution of 25% (v/v) 1-propanol in 0.5 mol L(-1) HNO(3) and directly introduced into the nebulizer of the ICP-OES. The detection limit (DL) of the method for copper was 40 ng L(-1) (V(sample)=100mL) and the relative standard deviation (R.S.D.) for the determination of copper at 10 microg L(-1) level was found to be 1.3%. The method was successfully applied to determine the trace amounts of copper in tap water, deep well water, seawater and two different mineral waters, and suitable recoveries were obtained (92-106%).

  15. Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry.

    PubMed

    Silva, Francisco L F; Duarte, Thalita A O; Melo, Luciana S; Ribeiro, Livia P D; Gouveia, Sandro T; Lopes, Gisele S; Matos, Wladiana O

    2016-01-01

    Paints, a complex matrix, have a variable composition that is dependent on the application. In this work, a new wet digestion procedure for the determination of Al, As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sn, Sr, Ti and Zn in paint samples using inductively coupled plasma optical emission spectrometry (ICP OES) has been developed. An experimental design approach was employed to determine the optimal conditions for achieving complete solubilization and/or decomposition in the sample preparation method. An efficient sample preparation was developed that consisted of a pre-digestion step at 40°C for 20 min using 1 mL of HNO3 to eliminate organic solvents followed by digestion at 120°C for 3h using 5 mL of HCl and 1 mL of HF in a block digestion. The proposed procedure promotes the complete solubilization of different bases of paints at low temperature and atmospheric pressure. The accuracy was determined by addition/recovery tests and comparing the results with those obtained using the ASTM D335-85a standard sample preparation method. The limits of quantification were 1.78, 0.11, 0.006, 0.006, 0.01, 0.04, 0.006, 0.006, 0.02, 0.07, 0.30, 1.30 and 0.30 mg kg(-1) for Al, As, Ba, Cd, Cr, Cu,Mn, Ni, Pb, Sn, Sr, Ti and Zn, respectively. The proposed method was applied for the analysis of inorganics via the ICP OES of paints with different colors and bases used to cover wall surfaces.

  16. Comparative analysis of urban atmospheric aerosol by particle-induced X-ray emission (PIXE), proton elastic scattering analysis (PESA), and aerosol mass spectrometry (AMS).

    PubMed

    Johnson, K S; Laskin, A; Jimenez, J L; Shutthanandan, V; Molina, L T; Salcedo, D; Dzepina, K; Molina, M J

    2008-09-01

    A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein, we report quantitative intercomparisons of particle-induced X-ray emission (PIXE) and proton elastic scattering analysis (PESA), performed of fline under a vacuum, with analysis by aerosol mass spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO4(2-)) and AMS-measured sulfate during most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions, assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under a vacuum. However approximately 25% of the organics does remain under a vacuum, which is only possible with low-vapor-pressure compounds, and which supports the presence of high-molecular-weight or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS and, to our knowledge, also the first report of PESA hydrogen measurements for urban organic aerosols.

  17. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection.

    PubMed

    Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra

    2011-09-01

    Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.

  18. Determination of phosphorus and potassium in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry: single-laboratory validation.

    PubMed

    Bartos, James M; Boggs, Barton L; Falls, J Harold; Siegel, Sanford A

    2014-01-01

    A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP-OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P205 (1.7 to 22.7% P) and 3 to 62% K20 (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate-disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.

  19. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.

    2009-06-01

    In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.

  20. Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair.

    PubMed

    Wu, Shaowei; Hu, Chengguo; He, Man; Chen, Beibei; Hu, Bin

    2013-10-15

    In this work, a congo red modified single wall carbon nanotubes (CR-SWCNTs) coated fused-silica capillary was prepared and used for capillary microextraction (CME) of trace amounts of lanthanum (La), europium (Eu), dysprosium (Dy) and yttrium (Y) in human hair followed by fluorinating assisted electrothermal vaporization-inductively coupled plasma-optical emission spectrometry (FETV-ICP-OES) determination. The adsorption properties and stability of the prepared CR-SWCNTs coated capillary along with the various factors affecting the separation/preconcentration of La, Eu, Dy and Y by CME were investigated in detail. Under the optimized conditions, with a consumption of 2 mL sample solution, a theoretical enrichment factor of 50 and a detection limit (3σ) of 0.12 ng mL(-1) for La, 0.03 ng mL(-1) for Eu, 0.11 ng mL(-1) for Dy and 0.03 ng mL(-1) for Y were obtained, respectively. The preparation reproducibility of the CR-SWCNTs coated capillary was investigated and the relative standard deviations (RSDs) were ranging from 4.1% (Eu) to 4.4% (La) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=7) in one batch, and from 5.7% (Eu) to 6.1% (Y) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=5) among different batches. The proposed method was applied to the analysis of real-world human hair sample and the recoveries for the spiked sample were in the range of 93-105%. The method was also applied to the determination of La, Eu, Dy and Y in Certified Reference Material of GBW07601 human hair, and the determined values were in good agreement with the certified values.

  1. On-line dynamic extraction system hyphenated to inductively coupled plasma optical emission spectrometry for automatic determination of oral bioaccessible trace metal fractions in airborne particulate matter.

    PubMed

    Mohr, Victoria; Miró, Manuel; Limbeck, Andreas

    2017-04-01

    For a realistic evaluation of the potential hazard emanating from airborne particulate matter (APM), the determination of the total inhaled metal amounts associated with APM is insufficient in risk assessment. Additional information about metal fractions that can be mobilized by the human body is necessary, because only those soluble (also called bioaccessible) fractions can be absorbed by the human body, and thus potentially cause adverse health effects. In the present study, a dynamic flow-through approach as a front end to inductively coupled plasma optical emission spectrometry (ICP-OES) exploiting advanced flow analysis is employed for on-line handling of multiple APM samples and determination of bioaccessible trace metals under worst case extraction scenarios. The method is based on on-line continuous extraction of filter samples with synthetic gastric fluid followed by on-line ICP-OES measurement of the dissolved fraction of trace metals. The assembly permits an automated successive measurement of three sample replicates in less than 19 min. The on-line extraction procedure offers increased sample throughput and reduced risk of sample contamination and overcomes metal re-adsorption processes compared to the traditional batch-wise counterparts. Furthermore, it provides deeper information on the kinetics of the leaching process. The developed procedure was applied to the determination of bioaccessible metal fractions (Al, Ba, Cu, Fe and Mn as model analytes) in PM10 samples from Palma de Mallorca (Spain) and Vienna (Austria). Graphical Abstract On-line gastric bioaccessibility of elements in airborne particulate matter.

  2. Determination of volatile halogenated organic compounds in soils by purge-and-trap capillary gas chromatography with atomic emission detection.

    PubMed

    Campillo, Natalia; Viñas, Pilar; López-García, Ignacio; Aguinaga, Nerea; Hernández-Córdoba, Manuel

    2004-10-20

    Nine volatile halogenated organic compounds (VHOCs), including four trihalomethanes (THMs), were determined in soils by capillary gas chromatography with microwave induced-plasma atomic emission spectrometry (GC-AED), using a purge-and-trap system (PT) for sample preconcentration. Analytes were previously extracted from the soil sample in methanol and the extract was preconcentrated before being chromatographed. Element-specific detection and quantification were carried out monitoring two wavelength emission lines, corresponding to chlorine (479nm) and bromine (478nm). Each chromatographic run took 21min, including the purge step. The method showed a precision of 1.1-7.2% (R.S.D.) depending on the compound. Detection limits ranged from 0.05 to 0.55ngml(-1), for chloroform and dichloromethane, respectively, corresponding to 3.3 and 36.0ngg(-1) in the soil samples. The chromatographic profiles obtained showed no interference from co-extracted compounds. Low levels of dichloromethane and chloroform ranging from 0.04 to 1.13mugg(-1) were found in samples obtained from small gardens irrigated with tap water. The method is reliable and can be used for routine monitoring in soil samples.

  3. Selective Iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    PubMed Central

    2012-01-01

    Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218

  4. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry.

    PubMed

    Taddia, Marco; Cerroni, Maria Grazia; Morelli, Elio; Musiani, Andrea

    2002-01-01

    Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).

  5. Inductively coupled plasma atomic emission spectroscopic determination of rare earth elements in geological samples after preconcentration by countercurrent chromatography—Part II

    NASA Astrophysics Data System (ADS)

    Pukhovskaya, V. M.; Grebneva, O. N.; Maryutina, T. A.; Kuz'min, N. M.; Spivakov, B. Ya.

    1995-01-01

    This paper directly links up with Part I [ Spectrochim. Acta48B, 1365 (1993)] which treats the first application of countercurrent chromatography (CCC) for pre-separation of rare earth elements (REE) in rocks. The rapid and reliable separation and pre-concentration of "light" REE and Y can be achieved using a system of 0.5 mol/l di-2-ethylhexylphosphoric acid (D2EHPA) in n-decane-hydrochloric acid of different concentrations and a planetary centrifuge as a CCC device. However, Tm, Yb and Lu are partially retained in the stationary phase. Comparative data is presented on three other two-phase liquid systems containing trioctylphosphine oxide (TOPO); D2EHPA and TOPO mixtures and diphenyl(dibutylcarbamoylmethylphosphine)oxide (Ph 2-Bu 2) as extractants in terms of their ability for whole REE group complete isolation from the rock constituents. The partial losses of "light" REE (La and Ce) occurred in the system of 0.1 mol/l solution of TOPO in isobutylmethylketone (IBMK) (stationary phase)-1 mol/l NH 4NO 3-6 mol/l HCl aqueous solutions (mobile phase). Complete isolution of the entire REE group can be reached in two systems: 0.3 mol/l D2EHPA + 0.02 ml/l TOPO in the solvents mixture (3:1) of n-decane + IBMK, respectively (stationary phase)-1 mol/l NH 4NO 3-6 mol/l HCl aqueous solution (mobile phase), and 1.0 mol/l Ph 2-Bu 2 solution in chloroform (stationary phase)-3 mol/l HNO 3 aqueous solution (mobile phase). The D2EHPA + TOPO mixture is recommended as more economic and accessible.

  6. A novel method for simultaneous determination of selected elements in dolomite and magnesia by Inductively Coupled Plasma Atomic Emission Spectroscopy with slurry sample introduction

    NASA Astrophysics Data System (ADS)

    Bok-Badura, Joanna; Jakóbik-Kolon, Agata; Turek, Marian; Szczerba, Jacek; Lemanowicz, Marcin; Karoń, Krzysztof

    2015-11-01

    The slurry nebulization ICP-AES method for simultaneous determination of selected elements in dolomite and magnesia was proposed. Based on the investigation results the optimal conditions for this analysis were as follows: particle size < 40 μm, the nitric acid concentration 10%, the RF power 1.0 kW, aqueous solutions (no dispersing agents) and mixing on magnetic stirrer, during the sample introduction into plasma, as homogenization method. The certified reference materials Dolomite CRM 782-1 and High Purity Magnesia BCS-CRM 389/1 were analyzed. Student's t-test proved that there were no statistically significant differences between determined values and the certified ones. This proves that the slurry sample introduction into plasma in ICP-AES technique can be applied for simultaneous determination of elements in dolomite and magnesia.

  7. A combined accelerator mass spectrometry-positron emission tomography human microdose study with 14C- and 11C-labelled verapamil

    PubMed Central

    Wagner, Claudia C; Simpson, Marie; Zeitlinger, Markus; Bauer, Martin; Karch, Rudolf; Abrahim, Aiman; Feurstein, Thomas; Schütz, Matthias; Kletter, Kurt; Müller, Markus; Lappin, Graham; Langer, Oliver

    2013-01-01

    Background and Objective In microdose studies, the pharmacokinetic (PK) profile of a drug in blood after administration of a dose up to 100 μg is measured with sensitive analytical techniques, such as accelerator mass spectrometry (AMS). As most drugs exert their effect in tissue rather than blood, methodology is needed for extending PK analysis to different tissue compartments. In the present study, we combined, for the first time, AMS analysis with positron emission tomography (PET) in order to determine the PK profile of the model drug verapamil in plasma and brain of humans. In order to assess PK dose-linearity of verapamil, data were acquired and compared after administration of an intravenous (iv) microdose and an iv microdose dosed concomitantly with an oral therapeutic dose. Methods Six healthy male volunteers received an iv microdose (0.05 mg) (period 1) and an iv microdose dosed concomitantly with an oral therapeutic dose (80 mg) of verapamil (period 2) in a randomized, cross-over, two-period study design. The iv dose was a mixture of (R/S)-[14C]verapamil and (R)-[11C]verapamil and the oral dose was unlabelled racemic verapamil. Brain distribution of radioactivity was measured with PET whereas plasma PK of (R)- and (S)-verapamil was determined with AMS. PET data were analyzed by kinetic modeling to estimate the rate constants for transfer of radioactivity across the blood-brain barrier. Results Most PK parameters of (R)- and (S)-verapamil as well as parameters describing exchange of radioactivity between plasma and brain (K1=0.030±0.003 and 0.031±0.005 mL·mL−1·min−1 and k2=0.099±0.006 and 0.095±0.008 min−1 for period 1 and 2, respectively) were not statistically different between the two periods although there was a trend for non-linear kinetics for the (R)-enantiomer. On the other hand, all PK parameters (except for t1/2) differed significantly between the (R)- and (S)-enantiomers for both periods. Cmax, AUC(0-24) and AUC(0-inf) were higher

  8. Certification of beryllium mass fraction in SRM 1877 Beryllium Oxide Powder using high-performance inductively coupled plasma optical emission spectrometry with exact matching.

    PubMed

    Winchester, Michael R; Turk, Gregory C; Butler, Therese A; Oatts, Thomas J; Coleman, Charles; Nadratowski, Donald; Sud, Ritu; Hoover, Mark D; Stefaniak, Aleksandr B

    2009-03-15

    High-performance inductively coupled plasma optical emission spectrometry (HP-ICP-OES) was used to certify the Be mass fraction in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1877 Beryllium Oxide Powder. The certified value and expanded uncertainty expressed at a 95% confidence level is (0.3576 +/- 0.0024) g/g. To obtain best results, the Be mass fractions, Mn (internal standard) mass fractions, and matrix compositions of the calibration solutions were carefully matched to those of the sample solutions for each individual HP-ICP-OES analysis. This "exact matching" approach was used because experience at NIST has shown that it often affords improved accuracy and precision in HP-ICP-OES analysis. NIST has never published these observations. Due to the toxicity of BeO and the difficulty of containing the very fine powder material, sets of solutions for HP-ICP-OES analysis were prepared by laboratories collaborating with NIST who have the experience and equipment needed to work with the material safely. Each laboratory utilized a unique digestion protocol(s). After preparing the sets of solutions, the collaborating laboratories shipped them to NIST for HP-ICP-OES analysis. NIST provided the collaborating laboratories with solution preparation kits and spreadsheets to help establish traceability of the HP-ICP-OES results to the International System of Units (SI) and to allow exact matching to be accomplished. The agreement observed among the four individual Be mass fraction values determined from the sets of solutions prepared by the collaborating laboratories was 0.074% relative (1s of mean). The excellent agreement provides a measure of confidence in the robustness of each of the digestion procedures, as well as in the certified Be mass fraction value. The analytical benefits of using exact matching for this particular certification were investigated. Results show that exactly matching the matrix compositions of the

  9. A methodology for quantifying trace elements in the exoskeletons of Florida stone crab (Menippe mercenaria) larvae using inductively coupled plasma optical emission spectrometry (ICP–OES)

    USGS Publications Warehouse

    Gravinese, Philip M.; Flannery, Jennifer A.; Toth, Lauren T.

    2016-11-23

    The larvae of the Florida stone crab, Menippe mercenaria, migrate through a variety of habitats as they develop and, therefore, experience a broad range of environmental conditions through ontogeny. Environmental variability experienced by the larvae may result in distinct elemental signatures within the exoskeletons, which could provide a tool for tracking the environmental history of larval stone crab populations. A method was developed to examine trace-element ratios, specifically magnesium-to-calcium (Mg/Ca) and strontium-to-calcium (Sr/Ca) ratios, in the exoskeletons of M. mercenaria larvae. Two developmental stages of stone crab larvae were analyzed—stage III and stage V. Specimens were reared in a laboratory environment under stable conditions to quantify the average ratios of Mg/Ca and Sr/Ca of larval stone crab exoskeletons and to determine if the ratios differed through ontogeny. The elemental compositions (Ca, Mg, and Sr) in samples of stage III larvae (n = 50 per sample) from 11 different broods (mean Sr/Ca = 5.916 ± 0.161 millimole per mole [mmol mol−1]; mean Mg/Ca = 218.275 ± 59.957 mmol mol−1) and stage V larvae (n = 10 per sample) from 12 different broods (mean Sr/Ca = 6.110 ± 0.300 mmol mol−1; mean Mg/Ca = 267.081 ± 67.211 mmol mol–1) were measured using inductively coupled plasma optical emission spectrometry (ICP–OES). The ratio of Sr/Ca significantly increased from stage III to stage V larvae, suggesting an ontogenic shift in Sr/Ca ratios between larval stages. The ratio of Mg/Ca did not change significantly between larval stages, but variability among broods was high. The method used to examine the trace-element ratios provided robust, highly reproducible estimates of Sr/Ca and Mg/Ca ratios in the larvae of M. mercenaria, demonstrating that ICP–OES can be used to determine the trace-element composition of chitinous organisms like the Florida stone crab.

  10. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    PubMed

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  11. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Jeon, Heeyoung; Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon; Jeon, Hyeongtag

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  12. Odor and odorous chemical emissions from dairy and swine facilities: Part 5-Simultaneous chemical and sensory analysis with Gas Chromatography - Mass Spectrometry - Olfactometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...

  13. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  14. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  15. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B...

  16. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

  17. Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-11-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a textit{Pitot} tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of both criteria and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO and some NMHC, during predetermined driving cycles. The advantages and disadvantages of increasing the measurement frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. To test and evaluate the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent marketed automotive technology dedicated to reduced emissions, increasing the need for sensitive detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here were compared to experiments performed in other locations with the same model vehicle. The proposed technique provides a tool for future studies comparing in detail the emissions of vehicles using alternative fuels and emission control systems.

  18. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    SciTech Connect

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  19. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  20. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  1. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples.

  2. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  3. Comparision of results of diferent instrumental methodics (MP-AES, UV-Vis spectrometry) for determination of available forms of soil phosphorus.

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu

    2016-04-01

    The content of easily extractable forms of phosphorus (P) in soils is important as on the environmental viewpoint and also from agronomical side. For determination of plant available P there is several extraction methods developed. Due to big variations in soil properties, it is very complicated to find the best method for P extractions from soil. For determination of P content in extracts during the years Vis-spectroscopy was used as simple and economic method. During the last decade the role of atomic emission spectroscopic (AES) methods started to grow rapidly. The advantage of this method is accuracy and shorter time of analysis. For the plant growth it is important that the content of P is in phosphate form. This can be determined by phosphate-molybdate method Vis spectrometrically. AES method measured total content of P, including P in organic compound and therefore give a overestimated results of plant available P. The aim of our work was to investigate the possibility of the use of MP-AES spectrometry for determination of plant avalable P in soil. In work more than 100 soil samples with very diferent properties were used. For extraction Mehlich 3, acetate-lactate (AL), double lactate (DL) and calcium lactate (CAL) extragents were used. The content of extracted P was determined by molybdatemethod using Vis spectrometer and microplate reader and also the MP-AES (microwave plasma atomic emission spectrometer). The detection limits and limits of quantification for P is calculated. Comparision of analysed by Vis spectroscopy and MP AES P content is provided. Also the influence of soil pH and organic matter content to the results of analysis was reported.

  4. Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study

    PubMed Central

    Orecchio, Santino; Fiore, Michele; Barreca, Salvatore; Vara, Gabriele

    2017-01-01

    The objective of present study was to identify volatile organic compounds (VOCs) emitted from several sources (fuels, traffic, landfills, coffee roasting, a street-food laboratory, building work, indoor use of incense and candles, a dental laboratory, etc.) located in Palermo (Italy) by using canister autosamplers and gas chromatography-mass spectrometry (GC-MS) technique. In this study, 181 VOCs were monitored. In the atmosphere of Palermo city, propane, butane, isopentane, methyl pentane, hexane, benzene, toluene, meta- and para-xylene, 1,2,4 trimethyl benzene, 1,3,5 trimethyl benzene, ethylbenzene, 4 ethyl toluene and heptane were identified and quantified in all sampling sites. PMID:28212294

  5. Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study.

    PubMed

    Orecchio, Santino; Fiore, Michele; Barreca, Salvatore; Vara, Gabriele

    2017-02-15

    The objective of present study was to identify volatile organic compounds (VOCs) emitted from several sources (fuels, traffic, landfills, coffee roasting, a street-food laboratory, building work, indoor use of incense and candles, a dental laboratory, etc.) located in Palermo (Italy) by using canister autosamplers and gas chromatography-mass spectrometry (GC-MS) technique. In this study, 181 VOCs were monitored. In the atmosphere of Palermo city, propane, butane, isopentane, methyl pentane, hexane, benzene, toluene, meta- and para-xylene, 1,2,4 trimethyl benzene, 1,3,5 trimethyl benzene, ethylbenzene, 4 ethyl toluene and heptane were identified and quantified in all sampling sites.

  6. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  7. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2015-01-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass-burning emissions from peat, crop residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standard calibrations and composition sensitive, mass-dependent calibration curves was applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign the best identities to most major "exact masses", including many high molecular mass species. Using these methods, approximately 80-96% of the total NMOC mass detected by the PTR-TOF-MS and Fourier transform infrared (FTIR) spectroscopy was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of these are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open three-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types, that together accounted for 0.1-8.7% of the fuel nitrogen, and some may play a role in new particle formation.

  8. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  9. THE DETERMINATION OF MERCURY SPECIES AND MULTIPLE METALS IN COAL COMBUSTION EMISSIONS USING IODINE-BASED IMPINGERS AND DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...

  10. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  11. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect

    Montaser, A.

    1994-09-01

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  12. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

  13. Size-fractionated sampling and chemical analysis by total-reflection X-ray fluorescence spectrometry of PMx in ambient air and emissions

    NASA Astrophysics Data System (ADS)

    John, A. C.; Kuhlbusch, T. A. J.; Fissan, H.; Schmidt, K.-G.

    2001-11-01

    PM 10 and PM 2.5 (PMx) have been recently introduced as new air quality standards in the EU (Council Directive 1999/30/EC) for particulate matter. Different estimates and measurements showed that the limit values for PM 10 will be exceeded at different locations in Europe, and thus measures will have to be taken to reduce PMx mass concentrations. Source apportionment has to be carried out, demanding comparable methods for ambient air and emission sampling and chemical analysis. Therefore, a special ambient-air sampler and a specially designed emission sampler have been developed. Total-reflection X-ray fluorescence analysis (TXRF) was used for multi-element analyses as a fast method with low detection limits. For ambient air measurements, a sampling unit was built, impacting particle size classes 10-2.5 μm and 2.5-1.0 μm directly onto TXRF sample carriers. An electrostatic precipitator (ESP) was used as back-up filter to also collect particles <1 μm directly onto the TXRF sample carriers. Air quality is affected by natural and anthropogenic sources, and the emissions of particles <10 μm and <2.5 μm, respectively, have to be determined to quantify their contributions to the so-called coarse (10-2.5 μm) and fine (<2.5 μm) particle modes in ambient air. For this, an in-stack particle sampling system was developed, according to the new ambient air quality standards and in view of subsequent analysis by TXRF. These newly developed samplers, in combination with TXRF analyses, were employed in field campaigns to prove the feasibility and capabilities of the approach. Ambient air data show the quantification of a wide spectrum of elements. From those concentrations, PMx ratios were calculated as an indicator for different sources of elements. Results useful for source apportionment are also the elemental day/night ratios calculated to determine local contributions to PMx mass concentrations. With regard to the emission measurements, results of mass and elemental

  14. Chandra X-Ray Grating Spectrometry of η Carinae near X-Ray Minimum. I. Variability of the Sulfur and Silicon Emission Lines

    NASA Astrophysics Data System (ADS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-06-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star η Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of η Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best-resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The Script R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is >1.6 stellar radii from the companion star. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry.

  15. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    NASA Technical Reports Server (NTRS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  16. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry.

    PubMed

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    To understand the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system, the intermediate products produced in the reaction of lead(II) and NaBH4 in the presence of K3Fe(CN)6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH4; (2) the black Pb is oxidized by K3Fe(CN)6 to form Pb2[Fe(CN)6], which further reacts with NaBH4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K3Fe(CN)6 to form more Pb2[Fe(CN)6] complex, which would produce more plumbane. In short, the black Pb and Pb2[Fe(CN)6] complex are the key intermediate products for the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L(-1). The linearity range of lead was found between 0.3 and 50,000 μg L(-1) with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n=5) for adding 10 μg L(-1) lead into the milk sample.

  17. Determination of rare-earth elements, yttrium and scandium in manganese nodules by inductively-coupled argon-plastma emission spectrometry

    USGS Publications Warehouse

    Fries, T.; Lamothe, P.J.; Pesek, J.J.

    1984-01-01

    A sequential-scanning, inductively-coupled argon plasma emission spectrometer is used for the determination of the rare-earth elements, plus yttrium and scandium, in manganese nodules. Wavelength selection is optimized to minimize spectral interferences from manganese nodule components. Samples are decomposed with mixed acids in a sealed polycarbonate vessel, and elements are quantified without further treatment. Results for U.S. Geological Survey manganese nodule standards A-1 and P-1 had average relative standard deviations of 6.8% and 8.1%, respectively, and results were in good agreement with those obtained by other methods. ?? 1984.

  18. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite.

    PubMed

    Tyson, J F; Palmer, C D

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3s) for selenium was 10microgL(-1), and for sulfide was 70microgL(-1) (200-microL injection volume). The calibration was linear for selenium up to 2mgL(-1) and to 10mgL(-1) for sulfide. The throughput was 180h(-1). The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  19. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  20. Analysis of Plant Leaves Using Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry: Use of Carbon to Compensate for Matrix Effects.

    PubMed

    Chirinos, José; Oropeza, Dayana; González, Jhanis; Zorba, Vassilia; Russo, Richard E

    2017-04-01

    Direct solid sampling by laser ablation into an inductively coupled plasma synchronous vertical dual view optical emission spectroscope (LA-SVDV-ICP-OES) was used for the elemental analysis of nutrient elements Ca, B, Mn, Mg, K, and Zn and essential (non-metallic) elements P and S in plant materials. The samples were mixed with paraffin as a binder, an approach that provides better cohesion of the particles in the pellets in addition to supplying carbon to serve as an internal standard (atomic line C I 193.027 nm) as a way to compensate for matrix effects, and/or variations in the ablation process. Precision was in the range of 1-8% relative standard deviation (RSD) with limit of detection in the range of 0.4-1 mg/kg(-1) and 25-640 mg/kg(-1) for metallic and non-metallic elements, respectively.

  1. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  2. Kinetics and isotope patterns of ethanol and acetaldehyde emissions from yeast fermentations of glucose and glucose-6,6-d2 using selected ion flow tube mass spectrometry: a case study.

    PubMed

    Smith, David; Wang, Tianshu; Spanel, Patrik

    2002-01-01

    As a prelude to investigations of the emission of metabolites from human cell lines in vitro, we have conducted a study using selected ion flow tube mass spectrometry (SIFT-MS) of the acetaldehyde and ethanol that appear in the headspace above a fermenting yeast/glucose/water mixture in sealed glass bottles at a temperature of 30 degrees C. A fixed quantity of yeast (10 mg) and varying amounts (2, 4, 8 and 16 mg) of both non-deuterated glucose and glucose-6,6-d2 in 5 mL of water were used and the emission of the acetaldehyde and the ethanol were observed as a function of time. The ethanol and acetaldehyde concentrations in the headspace were obtained from the magnitudes of their characteristic ions on the accumulated SIFT mass spectra and, when the deuterated glucose was used, characteristic singly and doubly deuterated ions were obvious. This study indicates, as expected, that ethanol is the major species generated and that acetaldehyde is a relatively minor component of the headspace and a very minor component of the liquid phase. We estimate that about 10(8) ethanol molecules are produced per minute per cell in this yeast fermentation process. The distribution of the non-deuterated and partially deuterated ethanol under these fermentation conditions is observed to be C2H5OH (66 +/- 4)%, C2H4DOH(6 +/- 1)%, C2H3D2OH(28 +/- 4)%, and the analogous distribution for the acetaldehyde is the same, within error. These results indicate that the D atoms in the glucose-6,6-d2 are mostly retained by the 6-C atom, but the appearance of the singly deuterated ethanol and acetaldehyde indicates that some D/H mixing must be occurring in the enzymatic reactions. The results of this study illustrate the potential and power of on-line SIFT-MS analysis in this area of research.

  3. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  4. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  5. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water

    NASA Astrophysics Data System (ADS)

    de Souza, Roseli M.; Mathias, Bárbara M.; da Silveira, Carmem Lúcia P.; Aucélio, Ricardo Q.

    2005-06-01

    The quantitative evaluation of trace elements in foodstuffs is of considerable interest due to the potential toxicity of many elements, and because the presence of some metallic species might affect the overall quality (flavor and stability) of these products. In the present work, an inductively coupled plasma optical emission spectrometric method has been developed for the determination of six elements (Cd, Co, Cr, Cu, Ni and Mn) in olive oil, soy oil, margarine and butter. Organic samples (oils and fats) were stabilized using propan-1-ol and water, which enabled long-time sample dispersion in the solution. This simple sample preparation procedure, together with an efficient sample introduction strategy (using a Meinhard K3 nebulizer and a twister cyclonic spray chamber), facilitated the overall analytical procedure, allowing quantification using calibration curves prepared with inorganic standards. Internal standardization (Sc) was used for correction of matrix effects and signal fluctuations. Good sensitivities with limits of detection in the ng g -1 range were achieved for all six elements. These sensitivities were appropriate for the intended application. The method was tested through the analysis of laboratory-fortified samples with good recoveries (between 91.3% and 105.5%).

  6. Critical evaluation of strategies for single and simultaneous determinations of As, Bi, Sb and Se by hydride generation inductively coupled plasma optical emission spectrometry.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna; Pohl, Pawel

    2017-05-15

    A systematic study of hydride generation (HG) of As, Bi, Sb and Se from solutions containing As(III), As(V), Bi(III), Sb(III), Sb(V), Se(IV) and Se(VI) was presented. Hydrides were generated in a gas-liquid phase separation system using a continuous flow vapor generation accessory (VGA) by mixing acidified aqueous sample, HCl and sodium borohydride reductant (NaBH4) solutions on-line. For detection, a simultaneous axially viewed inductively coupled plasma optical emission spectrometer (ICP-OES) was applied. Effects of the HCl concentration (related to sample and additional acid solutions) and type of the pre-reducing agents used for reduction of As(V), Sb(V) and Se(VI) into As(III), Sb(III) and Se(IV) on the analytical responses of As, Bi, Sb and Se were studied and discussed. Two compromised HG reaction conditions for simultaneous measurements of As+Bi+Sb (CC1) or As+Sb+Se (CC2) were established. It was found that choice of the pre-reductant prior to formation of the hydrides is critical in obtaining the dependable results of the analysis. Accordingly, for a As(III)+As(V)+Bi(III)+Sb(III)+Sb(V) mixture and using CC1, thiourea/thiourea-ascorbic acid interfered in Bi determination and hence, total As+Sb could be measured. If L-cysteine/L-cysteine-ascorbic acid were used, measurements of total Bi+Sb was possible in these HG reaction conditions. For a As(III)+As(V)+Sb(III)+Sb(V)+Se(IV)+Se(VI) mixture and using CC2, thiourea/thiourea-ascorbic acid and L-cysteine/L-cysteine-ascorbic acid influenced HG of Se but ensured total As+Sb determination. In contrast, heating a sample solution with HCl, although did not pre-reduce As(V) and Sb(V), assured quantitative reduction of Se(VI) to Se(IV). Finally, considering all favorable pre-reducing and HG conditions, methodologies for reliable determination of total As, Bi, Sb and Se by HG-ICP-OES were proposed. Strategies for single-, two- and three-element measurements were evaluated and validated, obtaining the detection limits

  7. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  8. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  9. Solid Phase Extraction of Trace Elements in Waterand Tissue Samples on a Mini Column with Diphenylcarbazone Impregnated Nano-TiO2 and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry

    PubMed Central

    Baytak, Sıtkı; Arslan, Zikri

    2015-01-01

    This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403

  10. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  11. Midwave Infrared Imaging Fourier Transform Spectrometry of Combustion Plumes

    DTIC Science & Technology

    2009-09-01

    resolution at a range of 600 meters featured strong emission from NO, CO, CO2, SO2, and HCl in the spectral region 1800-3000 cm−1. A simplified radiative...4 2.1 Remote Spectrometry of Engine Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2...image scene following background-subtraction to remove instrument self- emission

  12. Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model: in vivo magnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Gao, Meng; Yao, Nan; Huang, Dejian; Jiang, Cuihua; Feng, Yuanbo; Li, Yue; Lou, Bin; Peng, Fei; Sun, Ziping; Ni, Yicheng; Zhang, Jian

    2015-06-01

    The aim of the present study is to verify the trapping effect of combretastatin A-4-phosphate (CA4P) on small molecular drugs in rodent tumors. Mice with H22 hepatocarcinoma were randomized into groups A and B. Magnetic resonance imaging (MRI) of T1WI, T2WI, and DWI was performed as baseline. Mice in group A were injected with Gd-DTPA and PBS. Mice in group B were injected with Gd-DTPA and CA4P. All mice undergo CE-T1WI at 0 h, 3 h, 6 h, 12 h, and 24 h. Enhancing efficacy of the two groups on CE-T1WI was compared with the signal-to-noise ratio (SNR) calculated. Concentrations of gadolinium measured by ICP-AES in the tumor were compared between groups. On the early CE-T1WI, tumors were equally enhanced in both groups. On the delayed CE-T1WI, the enhancing effect of group A was weaker than that of group B. The SNR and the concentration of gadolinium within the tumor of group A were lower than that of group B at 6 h, 12 h, and 24 h after administration. This study indicates that CA4P could improve the retention of Gd-DTPA in the tumor and MRI allowed dynamically monitoring trapping effects of CA4P on local retention of Gd-DTPA as a small molecular drug.

  13. Measurement of Iron in Egg Yolk: An Instrumental Analysis Experiment Using Biochemical Principles

    ERIC Educational Resources Information Center

    Maloney, Kevin M.; Quiazon, Emmanuel M.; Indralingam, Ramee

    2008-01-01

    The generally accepted method to determine iron content in food is by acid digestion or dry ashing and subsequent flame atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry. We have developed an experiment that chemically extracts the iron from an egg yolk and quantifies it using UV-vis absorption…

  14. The evaluation of the x-ray fluorescence (XRF) technique for process monitoring of vitreous slag from thermal waste treatment systems: A comparative study of the analysis of Plasma Hearth slag for Ce, Fe and Cr by XRF and inductively coupled plasma spectrometries

    SciTech Connect

    Sutton, M.A.H.; Crane, P.J.; Cummings, D.G.; Carney, K.P.

    1995-05-01

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. Vitreous slag samples were ground to a fine powder in an impact ball mill and analyzed directly using laboratory prepared standards. The fluorescent intensities of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The samples were analyzed for Cr, Ni, Fe and Ce using a wavelength dispersive XRF polychromator. Split samples were dissolved and analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01% by weight. The linear dynamic range for the technique was evaluated over two orders of magnitude. Typical calibration standards ranged from 0.01% Ce to 1% Ce. The Ce determinations performed directly on ground slag material by the XRF techniques were similar to ICP-AES analyses. Various chemical dissolution and sample preparation techniques were evaluated for the analysis of Ce in slag samples. A fusion procedure utilizing LiBO{sub 2} was found to provide reliable analyses for the actinide surrogate in a variety of slag matrices. The use of the XRF technique reduced the time of analysis for Ce and Cr from three days to one day for five samples. No additional waste streams were created from the analyses by the XRF technique, while the ICP technique generated several liters of liquid waste.

  15. Characteristics of WN{sub x}C{sub y} films deposited using remote plasma atomic layer deposition with ({sup Me}Cp)W(CO){sub 2}(NO) for Cu diffusion barrier

    SciTech Connect

    Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung; Jang, Woochool; Jeon, Hyeongtag; Yuh, Junhan

    2015-09-15

    Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and different crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.

  16. Research in Dense Plasma Atomic Physics.

    DTIC Science & Technology

    1984-04-19

    attention on * the solution to the time-independent Schrodinger equation with a self- consistent charge density. For calculations of atomic properties the...interaction potential. Incorporating this potential, the bound and free electron distributions are found from the Schrodinger equation . Thus, given an...spherically symmetric. In Eq. (1), .b is the local density of bound electrons found from solving * the Schrodinger equation where the interaction

  17. Granulometry and geochemistry of aeolian dust during emission from Owens (dry) Lake, California

    NASA Astrophysics Data System (ADS)

    Rojo, A.; Gill, T. E.; Gillette, D. A.; Emmert, S. P.; Barnes, M. A.

    2005-12-01

    We utilize a variety of methods to correlate particle size distributions (PSD) with the geochemistry of aeolian dusts being generated at Owens (dry) Lake, California. Elemental analysis of dust samples was performed via proton-induced X-ray emission (PIXE) and inductively coupled plasma - atomic emission spectrometry (ICP-AES). PSD (submicron through coarse sand) of dust (in air and water, dispersed and undispersed) were determined via laser diffraction to evaluate dust grain sizes (percent volume) as a function of time, height above the playa surface, and distance downwind of the initiation point of dust emission, as well as the effect of precipitation and soluble salts on overall dust loading. Aeolian sediments were collected at up to six heights up to 1m above the playa surface at up to seven sites along a 1.5 km long upwind-downwind transect during the Lake Owens Dust Experiment (LODE) I in March 1993. The initial dust event on March 11, 1993 was characterized by the wind erosion of an efflorescent playa surface rich in sodium sulfates and other evaporites deposited by saline groundwater discharge during late winter and early spring. Dust from this event was rich in clays as well as evaporites. The proportion of the finest (respirable) and coarsest (saltating) airborne particles decreased with distance downwind, while the proportion of mid-sized grains (silt) increased downwind. The proportion of clay and silt sized particles consistently increased with height and sand (saltating particle) content decreased with height above the playa at each site during LODE I. Percent volume of sand peaked in the fine sand (100-250 micrometers) range. The proportion of particles in any given size fraction had no clear pattern from one dust storm to another. PIXE analyses revealed the presence of at least 20 elements; several additional trace elements were detected at ppm levels by ICP-AES. Na, Si, and Ca were present at the highest concentrations (tens of weight percent

  18. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  19. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  20. Volatile Organic Compound emissions from soil: using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Behrendt, T.; Klapthor, A.; Meixner, F. X.; Williams, J.

    2014-08-01

    In this study we report on the emissions of volatile organic compounds (VOC) and nitric oxide (NO) from two contrasting soils (equatorial rainforest and arid cotton field) analyzed in a laboratory based dynamic chamber system. The effect of soil moisture and soil temperature on VOC and NO emission was examined in laboratory incubation experiments by measuring as a pre-saturated soil dried out. Our results suggest that real time monitoring of VOC emissions from soil using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) instrument can be used to improve our understanding of the release mechanisms of trace gases (e.g. NO, N2O) that are involved in the nitrogen cycle. Moreover, we report on the release rate of various VOC species, many of which exhibit a temperature dependent response indicative of biological production, namely a temperature amplification factor (Q10) ∼ 2-3. Contrary to the conventional modeling of NO emissions from soils, that the release of NO from the overall community across the range of soil water content can be modeled as an optimum function, we suggest that VOC measurements indicate there exist multiple distinct contributing microbial guilds releasing NO. These microbial guilds could likely be individually identified with the observed VOC profiles. Using a cotton field soil sample from a Sache oasis (Taklimakan desert, Xinijang, P. R. China), we identify five VOC emission groups with varying degrees of NO co-emission. An equatorial rainforest soil (Suriname) was shown to emit a variety of VOC including acetaldehyde, acetone, DMS, formaldehyde, and isoprene that vary strongly and individually as a function of temperature and soil moisture content. PTR-TOF-MS with high time resolution, sensitivity, and molecular specificity is an ideal tool for the real time analysis of VOC and NO emitting processes in soil systems. These experiments can be used as a template for future experiments to more completely and specifically

  1. Emissions Inventory

    EPA Pesticide Factsheets

    This page describes the role of emission inventories in the air quality management process, a description of how emission inventories are developed, and where U.S. emission inventory information can be found.

  2. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  3. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  4. Etalon Array Reconstructive Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2017-01-01

    Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed.

  5. Etalon Array Reconstructive Spectrometry

    PubMed Central

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2017-01-01

    Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed. PMID:28074883

  6. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust.

  7. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  8. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  9. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  10. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  11. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  12. Questa baseline and pre-mining ground water investigation; 11, Geochemistry of composited material from alteration scars and mine-waste piles

    USGS Publications Warehouse

    Briggs, P.H.; Sutley, S.J.; Livo, Keith Eric

    2003-01-01

    Composited, surficial material was collected from alteration scars, a less intensely altered site, and mine-waste piles. All samples were analyzed for forty elements by inductively coupled plasma-atomic emission spectrometry, total sulfur and quantitative X-ray diffraction. This work was performed in cooperation with the New Mexico Environment Department.

  13. Wavelength Dependence on the Forensic Analysis of Glass by Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2009-10-29

    spectroscopy [2,4], atomic absorption spectroscopy (AAS) [3], x - ray fluorescence ( XRF ) [3,4], neutron activation analysis (NAA) [5...micro X - ray fluorescence spectroscopy , and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part...refractive index, energy dispersive X - ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization

  14. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  15. Determination of As, Cr, Mo, Sb, Se and V in agricultural soil samples by inductively coupled plasma optical emission spectrometry after simple and rapid solvent extraction using choline chloride-oxalic acid deep eutectic solvent.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2017-01-01

    A rapid, simple and green ultrasound-assisted extraction method using deep eutectic solvents (DES) for extraction of As, Cr, Mo, Sb, Se and V in soil samples, has been developed. Choline chloride-oxalic acid based DES was used as a solvent. The target analytes were subsequently quantified using inductively coupled plasma optical emission spectrometer (ICP OES). The parameters that affect the extraction of the target analytes was optimized using standard reference material of San Joaquin soil (SRM 2709a). In the optimization step, a two-level full factorial experimental design was used. The factors under investigation include extraction time, sample mass and acid concentration. Under optimized conditions, limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.009 to 0.1 and 0.03-0.3µgg(-1), respectively. The repeatability (n=20) estimated in terms of relative standard deviation (%RSD) ranged from 0.9% to 3.7%. The accuracy of the proposed method was carried out using SRM 2709a. The obtained and certified/ indicative values were statistically in good agreement at 95% confidence level. The proposed method applied for quantification of As, Cr, Mo, Sb, Se and V in real soil samples. For comparison, the analytes of interest were also determined using a conventional acid digestion method. According to the paired t-test, the analytical results were not significant differences at 95% confidence level. The method was found to be accurate, precise and environmentally friendly.

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; use of a modified ultrasonic nebulizer for the analysis of low ionic-strength water by inductively coupled optical emission spectrometry

    USGS Publications Warehouse

    Harris, Carl M.; Litteral, Charles J.; Damrau, Donna L.

    1997-01-01

    The U.S. Geological Survey National Water Quality Laboratory has developed a method for the determination of dissolved calcium, iron, magnesium, manganese, silica, and sodium using a modified ultrasonic nebulizer sample-introduction system to an inductively coupled plasma-optical emission spectrometer. The nebulizer's spray chamber has been modified to avoid carryover and memory effects common in some conventional ultrasonic designs. The modified ultrasonic nebulizer is equipped with a high-speed rinse cycle to remove previously analyzed samples from the spray chamber without excessive flush times. This new rinse cycle decreases sample washout times by reducing carryover and memory effects from salt or analytes in previously analyzed samples by as much as 45 percent. Plasma instability has been reduced by repositioning the argon carrier gas inlet on the spray chamber and by directly pumping waste from the chamber, instead of from open drain traps, thereby maintaining constant pressure to the plasma. The ultrasonic nebulizer improves signal intensities, which are 8 to 16 times greater than for a conventional cross-flow pneumatic nebulizer, without being sensitive to clogging from salt buildup as in cross-flow nebulizers. Detection limits for the ultrasonic nebulizer are 4 to 18 times less than detection limits achievable using a cross-flow pneumatic nebulizer, with equivalent sample analysis time.

  17. Multielement plant tissue analysis using ICP spectrometry.

    PubMed

    Hansen, T H; de Bang, T C; Laursen, K H; Pedas, P; Husted, S; Schjoerring, J K

    2013-01-01

    Plant tissue analysis is a valuable tool for evaluating the nutritional status and quality of crops and is widely used for scientific and commercial purposes. The majority of plant analyzes are now performed by techniques based on ICP spectrometry such as inductively coupled plasma-optical emission spectroscopy (ICP-OES) or ICP-mass spectrometry (ICP-MS). These techniques enable fast and accurate measurements of multielement profiles when combined with appropriate methods for sample preparation and digestion. This chapter presents state-of-the-art methods for digestion of plant tissues and subsequent analysis of their multielement composition by ICP spectrometry. Details on upcoming techniques, expected to gain importance within the field of multielement plant tissue analysis over the coming years, are also provided. Finally, attention is given to laser ablation ICP-MS (LA-ICP-MS) for multielement bioimaging of plant tissues. The presentation of the methods covers instructions on all steps from sampling and sample preparation to data interpretation.

  18. Mapping surface mineralogy using imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2012-01-01

    Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or "HSI", extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.

  19. Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions

    NASA Astrophysics Data System (ADS)

    Sidhu, Sukh; Gullett, Brian; Striebich, Richard; Klosterman, Joy; Contreras, Jesse; DeVito, Michael

    Emissions of endocrine disrupting chemicals (EDCs) from combustion sources are poorly characterized due to the large number of compounds present in the emissions, the complexity of the analytical separations required, and the uncertainty regarding identification of chemicals with endocrine effects. In this work, multidimensional gas chromatographic-mass spectrometry (MDGC-MS) was used to characterize emissions from both controlled (diesel engine) and uncontrolled (open burning of domestic waste) combustion sources. The results of this study suggest that, by using MDGC-MS, one can resolve a much greater percentage of the chromatogram and identify about 84% of these resolved compounds. This increase in resolution helped to identify and quantify various classes of polycyclic aromatic hydrocarbons (PAHs) in the combustion emissions that had not been identified previously. Significant emissions (when compared to industrial sources) of known EDCs, dioctyl phthalate (over ˜2,500,000 kg year -1) and bisphenol A (over ˜75,000 kg year -1) were estimated from uncontrolled domestic waste burning. Emissions of several suspected EDCs (oxygenated PAHs) were observed in both diesel soot and the uncontrolled domestic waste burn samples. The emission rates of known and suspected EDCs estimated in this study suggest that combustion emissions need to be characterized for EDCs to further assess its importance as a source of EDC exposure.

  20. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  1. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  2. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  3. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  4. Hybrid instruments for mass spectrometry/mass spectrometry

    SciTech Connect

    Glish, G.L.; McLuckey, S.A.

    1986-01-01

    In order to refine further the technique of mass spectrometry/mass spectrometry efforts are being made to combine the desirable features of sector based tandem instruments with those of triple quadrupole mass spectrometers. This has resulted in the construction of tandem mass spectrometers which incorporate both sector type analyzers and quadrupole mass filters. These so-called hybrid instruments, designed specifically for mass spectrometry/mass spectrometry applications, are appearing in a variety of geometries each with unique features. This review describes the hybrid instruments reported to data and discusses general considerations for evaluating hybrid instruments with regard to application. 100 references.

  5. Combustion diagnostics by laser spectrometry

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kuniyuki; Morita, Shigeaki; Kodama, Kenji; Matsumoto, Kozo

    2009-03-01

    We have developed three different types of visualization methods for energy conversion systems by means of laser spectrometry. (1) Laser-induced fluorescence (LIF) spectroscopy and (2) laser ionization mass spectrometry (LIMS) have been applied to visualization of chemical species in combustion fields of flames. (3) Near-infrared laser absorption spectroscopy has been used for visualization of water in a polymer electrolyte fuel cell (PEFC). Complex physicochemical processes in the energy conversion systems have been revealed by laser spectrometry.

  6. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  7. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  8. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  9. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  10. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

  11. Mass spectrometry in environmental toxicology.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2014-01-01

    In environmental toxicology, mass spectrometry can be applied to evaluate both exposure to chemicals as well as their effects in organisms. Various ultra-trace techniques are employed today to measure pollutants in different environmental compartments. Increasingly, effect-directed analysis is being applied to focus chemical monitoring on sites of ecotoxicological concern. Mass spectrometry is also very instrumental for studying the interactions of chemicals with organisms on the molecular and cellular level, providing new insights into mechanisms of toxicity. In the future, diverse mass spectrometry-based techniques are expected to become even more widely used in this field, contributing to the refinement of currently used environmental risk assessment strategies.

  12. Methods for Neutron Spectrometry

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  13. Gridless Overtone Mobility Spectrometry

    PubMed Central

    Zucker, Steven M.; Ewing, Michael A.; Clemmer, David E.

    2013-01-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions towards the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  14. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  15. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  16. Emissions Overview

    NASA Technical Reports Server (NTRS)

    Rohde, John

    2001-01-01

    The Emissions Reduction Project is working in close partnership with the U.S. aircraft engine manufacturers and academia to develop technologies to reduce NO, emissions by 70 percent over the LTO cycle from 1996 ICAO standards with no increase in other emission constituents (carbon monoxide, smoke, and unburned hydrocarbons) and with comparable NO, reduction during cruise operations. These technologies cannot impact the overall combustor and fuel delivery system operability, affordability or maintainability. These new combustion concepts and technologies will include lean burning combustors with higher operating gas temperatures and pressures, fuel staging, ceramic matrix composite material liners with reduced cooling air and possibly advanced controls. Improved physics-based analysis tool will be developed and validated and some longer term technologies that are more revolutionary will be assessed. These improved computational codes will provide improved design tools to increase design confidence and cut the development time to achieve major reductions in NO, emissions. Longer term, revolutionary technologies like active combustion controls, combustion from a large array of micro-injectors, electrostatic fuel injectors, fuel additives and others will be investigated and assessed through proof-of-concept testing.

  17. Spectrometry: Report of panel

    NASA Technical Reports Server (NTRS)

    Farmer, C. Barney; Murcray, David G.; Abreu, Vincent; Gille, John C.; Hanel, Rudolph A.; Hoell, James M., Jr.; Jamieson, John A.; Zwick, Harold

    1987-01-01

    Spectroscopic measurements are required to define the spectral background and provide the detailed spectral information that is essential for the design of species-specific systems and the analysis of data obtained from them. This function of spectroscopic measurements is expected to be an important part of any tropospheric remote-sensing program, and both emission and absorption spectroscopy are relevant in this context. The data from such observations are of value to tropospheric science in their own right, during the initial phases while species-specific techniques and instruments are under development. In addition, there are a number of unresolved problems in tropospheric radiative transfer and spectroscopy which presently limit the accuracy and reliability of all remote sensing methods. Only through a supporting program of spectroscopic measurements can progress be made in improving the understanding of these aspects of radiative transfer and ultimately reaching the desired confidence in the accuracy to species-specific monitoring techniques.

  18. Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves

    NASA Astrophysics Data System (ADS)

    Bellido-Milla, Dolores; Moreno-Perez, Juana M.; Hernández-Artiga, María. P.

    2000-07-01

    The characterization of beer samples has a lot of interest because their composition can affect the taste and stability of beer and consumer health. Flame atomic absorption spectrometry was used to determine Fe, Mn, Zn, Cu, Mg, Ca and Al. Sodium and K were determined by flame atomic emission spectrometry. A sample preparation method was developed, based on treatment with HNO 3 and H 2O 2 in a microwave oven. This has many advantages over the methods found in the literature. The combination of the results of atomic spectrometry and the spectrum obtained by molecular absorption spectrometry provides information on the inorganic and organic components of the samples. The application of chemometric techniques to chemical composition data could be extremely useful for food quality control. The metal concentrations, the molecular absorption spectrum, the pH and conductivity of each sample were subject to analysis of variance and linear discriminant analysis. Twenty-five different beer samples were used to differentiate and classify different types of beers.

  19. Mössbauer spectrometry of LC 200N steel

    NASA Astrophysics Data System (ADS)

    Lančok, Adriana; Kmječ, Tomáš; Štefánik, Milan; Bezdička, Petr; Klementová, Mariana; Miglierini, Marcel

    2016-10-01

    The long-term reliability of construction materials operating in nuclear facilities under harsh conditions such as intense irradiation, high temperature, and in the presence of corrosion agents is a serious technologic, economic, and environmental demand. In this work, we elucidate the structural features of advanced corrosion-resistant LC 200N steel. High Cr and N contents provide high hardness and wear resistance of this perspective material which can be considered for possible applications in nuclear installations. Structural arrangement was checked by scanning electron microscopy and transmission electron microscopy. Chemical composition was inspected by X-ray fluorescence technique, spark optical emission spectroscopy, and neutron activation analysis. Mössbauer spectrometry was chosen as the principal method of investigation. Conversion Electron Mössbauer Spectrometry and transmission techniques were applied.

  20. Biogenic emissions from Citrus species in California

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Gentner, Drew R.; Park, Jeong-Hoo; Ormeno, Elena; Karlik, John; Goldstein, Allen H.

    2011-09-01

    Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW) -1 h -1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW) -1 h -1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene

  1. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  2. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  3. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  4. Mass spectrometry guided structural biology.

    PubMed

    Liko, Idlir; Allison, Timothy M; Hopper, Jonathan Ts; Robinson, Carol V

    2016-10-01

    With the convergence of breakthroughs in structural biology, specifically breaking the resolution barriers in cryo-electron microscopy and with continuing developments in crystallography, novel interfaces with other biophysical methods are emerging. Here we consider how mass spectrometry can inform these techniques by providing unambiguous definition of subunit stoichiometry. Moreover recent developments that increase mass spectral resolution enable molecular details to be ascribed to unassigned density within high-resolution maps of membrane and soluble protein complexes. Importantly we also show how developments in mass spectrometry can define optimal solution conditions to guide downstream structure determination, particularly of challenging biomolecules that refuse to crystallise.

  5. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    PubMed

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  6. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  7. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  8. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  9. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  10. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the definitive data that environmental scientists rely upon for identifying the molecular compositions (and ultimately the structures) of chemicals. This is not to ignore the complementary, critical roles played by the adjunct practices of sample enrichment (via any of various means of selective extraction) and analyte separation (via the myriad forms of chromatography and electrophoresis).While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic (and largely invisible) role in establishing or undergirdidng our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is ususally the relevance of ssignificance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the knowledge was acquired. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in

  11. Molecular secondary ion mass spectrometry: New dimensions in chemical characterization

    NASA Astrophysics Data System (ADS)

    Colton, Richard J.; Campana, Joseph E.; Kidwell, David A.; Ross, Mark M.; Wyatt, Jeffrey R.

    1985-04-01

    Secondary ion mass spectrometry (SIMS) has become a diverse tool for the study of many substances other than metals and semiconductors. This paper discusses the emission of polyatomic and molecular ions from surfaces that contain various inorganic and organic compounds including polymers and biomolecules. The mass and abundance distribution of cluster ions emitted from various solids — Van der Waals, metallic, ionic and covalent — are compared. Trends in the emission patterns are discussed in terms of a recombination or direct emission mechanism. The emission of molecular ions is also discussed with respect to the method of ionization and the various sample preparation and matrix-assisted procedures used. The matrices include various solid-state and liquid matrices such as ammonium chloride, charcoal, glycerol and gallium. Various chemical derivatization procedures have been developed to enhance the sensitivity of molecular SIMS and to detect selectively components in mixtures. The procedures are demonstrated for the low-level detection of airborne contaminants from paints, for the analysis of drugs in biological fluids, and for the sequencing of biomolecules such as peptides and sugars. The emission of characteristic fragment ions from the surfaces of polymers is also described for thick, insulating films.

  12. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  13. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers reply upon for identifying molecular compositions (and ultimately structures) of chemicals. While the power of MS has long been visible to the practicing environmental chemist, it borders on obscurity to the lay public and many scientists. While MS has played a long, historic (and largely invisible) role in establishing our knowledge of environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually the relevance or significance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the data were acquired. Methods (736/800): Mass Spectrometry and the

  14. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  15. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  16. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  17. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  18. X-Ray fluorescence analysis of trace elements in fruit juice

    NASA Astrophysics Data System (ADS)

    Bao, Sheng-Xiang; Wang, Zhi-Hong; Liu, Jing-Song

    1999-12-01

    X-Ray fluorescence spectrometry is applied to the determination of trace elements in fruit juice characterized by a high content of sugar and other soluble solid substances. Samples are prepared by evaporation, carbonization and pressing into discs. The synthesis of standards is described in detail. All element concentrations are directly estimated from linear calibration curves obtained without any matrix correction. The results of the analysis are in good agreement with those given by inductively coupled plasma-atomic emission spectrometry and atomic absorption spectrometry techniques.

  19. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

  20. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  1. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  2. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  3. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  4. High Technology Mass Spectrometry Laboratory

    DTIC Science & Technology

    2010-08-01

    GSH, hemoglobin beta-Cys93 ( Hb -C93-AN) were monitored. The second order rate constants in M-ls-1 were: disappe 0.0806; appearance of GS-AN in whole...blood, 0.0776, appearance of Hb -C9 appearance of AbC34-AN in plasma, 0.224. The data indicate that the mos blood is Cys34 of albumin. This site...than Hb -C93 15. SUBJECT TERMS acrylonitrile, adduct, mass spectrometry, biomarker, toxic industrial chemicals 16. SECURITY CLASSIFICATION OF: a

  5. Glycosaminoglycan Glycomics Using Mass Spectrometry*

    PubMed Central

    Zaia, Joseph

    2013-01-01

    The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing. PMID:23325770

  6. Glass frit nebulizer for atomic spectrometry

    USGS Publications Warehouse

    Layman, L.R.

    1982-01-01

    The nebuilizatlon of sample solutions Is a critical step In most flame or plasma atomic spectrometrlc methods. A novel nebulzatlon technique, based on a porous glass frit, has been Investigated. Basic operating parameters and characteristics have been studied to determine how thte new nebulizer may be applied to atomic spectrometrlc methods. The results of preliminary comparisons with pneumatic nebulizers Indicate several notable differences. The frit nebulizer produces a smaller droplet size distribution and has a higher sample transport efficiency. The mean droplet size te approximately 0.1 ??m, and up to 94% of the sample te converted to usable aerosol. The most significant limitations In the performance of the frit nebulizer are the stow sample equMbratton time and the requirement for wash cycles between samples. Loss of solute by surface adsorption and contamination of samples by leaching from the glass were both found to be limitations only In unusual cases. This nebulizer shows great promise where sample volume te limited or where measurements require long nebullzatlon times.

  7. VOC Emissions From Decomposing Leaf Litter

    NASA Astrophysics Data System (ADS)

    Brown, E. M.; Wilkinson, M. J.; Fierer, N.; Monson, R. K.

    2007-12-01

    The emission of VOCs from the biosphere has a profound effect on the oxidative capacity of the troposphere. Most studies of the flux of reactive carbon from the biosphere have focused on BVOC emissions at leaf and canopy scales with relatively few studies investigating BVOC emissions from soils. Here we present results describing the emissions of a suite of BVOCs from different litter types under different levels of nitrogen availability. To investigate these effects, three biochemically distinct litter types (Deschampsia sp., Acomostylis sp., and Rhododendron sp.) were coarsely ground and incubated in the dark for two months under different nitrogen regimes at optimal conditions for microbial activity. We used proton transfer reaction mass spectrometry and an infrared gas analyzer (IRGA) to monitor BVOC emissions and CO2 production rates throughout the course of the investigation. When different leaf litter types decomposed, they released distinctly different types and quantities of VOCs. However, varying nitrogen availability caused the VOC signature from some litters to change dramatically. We suggest that decomposition of leaf litter could provide a substantive source of reactive carbon to the atmosphere at local and regional scales and hypothesize that nitrogen deposition may play a role in attenuating the release of some reactive species.

  8. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. Mass spectrometry in combinatorial chemistry.

    PubMed

    Enjalbal, C; Martinez, J; Aubagnac, J L

    2000-01-01

    In the fast expanding field of combinatorial chemistry, profiling libraries has always been a matter of concern--as illustrated by the buoyant literature over the past seven years. Spectroscopic methods, including especially mass spectrometry and to a lesser extent IR and NMR, have been applied at different levels of combinatorial library synthesis: in the rehearsal phase to optimize the chemistry prior to library generation, to confirm library composition, and to characterize after screening each structure that exhibits positive response. Most of the efforts have been concentrated on library composition assessment. The difficulties of such analyses have evolved from the infancy of the combinatorial concept, where large mixtures were prepared, to the recent parallel syntheses of collections of discrete compounds. Whereas the complexity of the analyses has diminished, an increased degree of automation was simultaneously required to achieve efficient library component identification and quantification. In this respect, mass spectrometry has been found to be the method of choice, providing rapid, sensitive, and informative analyses, especially when coupled to chromatographic separation. Fully automated workstations able to cope with several hundreds of compounds per day have been designed. After a brief introduction to describe the combinatorial approach, library characterization will be discussed in detail, considering first the solution-based methodologies and secondly the support-bound material analyses.

  10. Mass Spectrometry Applications for Toxicology

    PubMed Central

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  11. Mass Spectrometry Applications for Toxicology.

    PubMed

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS(n)) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  12. Negative ion mass spectrometry and the detection of carbonyls and HCN from clover

    NASA Astrophysics Data System (ADS)

    Custer, Thomas G.; Kato, Shuji; Fall, Ray; Bierbaum, Veronica M.

    2000-12-01

    We have demonstrated that negative ion-chemical ionization mass spectrometry (NI-CIMS) can be used to distinguish several isomeric volatile organic compounds (VOCs) that are emitted from wounded plants. Reaction chemistry with HO-, hydrogen/deuterium exchange patterns, and collision-induced dissociation spectra allow identification of the isomers. Laboratory studies of emissions from wounded clover using NI-CIMS show several previously detected VOCs, but also clearly demonstrate the emission of HCN. This compound is presumably formed by the decomposition of cyanogenic glycosides which also form aldehyde and ketone byproducts. These results suggest that NI-CIMS may be a valuable tool for investigating VOCs and HCN release from vegetation.

  13. Range-invariant anomaly detection applied to imaging Fourier transform spectrometry data

    NASA Astrophysics Data System (ADS)

    Borel, Christoph; Rosario, Dalton; Romano, Joao

    2012-09-01

    This paper describes the end-to-end processing of image Fourier transform spectrometry data taken of surrogate tank targets at Picatinny Arsenal in New Jersey with the long-wave hyper-spectral camera HyperCam from Telops. The first part of the paper discusses the processing from raw data to calibrated radiance and emissivity data. The second part discusses the application of a range-invariant anomaly detection approach to calibrated radiance, emissivity and brightness temperature data for different spatial resolutions and compares it to the Reed-Xiaoli detector.

  14. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  15. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation.

    PubMed

    Fagerstone, Kelly D; Quinn, Jason C; Bradley, Thomas H; De Long, Susan K; Marchese, Anthony J

    2011-11-01

    Although numerous lifecycle assessments (LCA) of microalgae-based biofuels have suggested net reductions of greenhouse gas emissions, limited experimental data exist on direct emissions from microalgae cultivation systems. For example, nitrous oxide (N(2)O) is a potent greenhouse gas that has been detected from microalgae cultivation. However, little quantitative experimental data exist on direct N(2)O emissions from microalgae cultivation, which has inhibited LCA performed to date. In this study, microalgae species Nannochloropsis salina was cultivated with diurnal light-dark cycling using a nitrate nitrogen source. Gaseous N(2)O emissions were quantitatively measured using Fourier transform infrared spectrometry. Under a nitrogen headspace (photobioreactor simulation), the reactors exhibited elevated N(2)O emissions during dark periods, and reduced N(2)O emissions during light periods. Under air headspace conditions (open pond simulation), N(2)O emissions were negligible during both light and dark periods. Results show that N(2)O production was induced by anoxic conditions when nitrate was present, suggesting that N(2)O was produced by denitrifying bacteria within the culture. The presence of denitrifying bacteria was verified through PCR-based detection of norB genes and antibiotic treatments, the latter of which substantially reduced N(2)O emissions. Application of these results to LCA and strategies for growth management to reduce N(2)O emissions are discussed.

  16. Oxygenated VOC and monoterpene emissions from a boreal coniferous forest

    NASA Astrophysics Data System (ADS)

    Taipale, R.; Rantala, P.; Kajos, M. K.; Patokoski, J.; Ruuskanen, T. M.; Aalto, J.; Kolari, P.; Bäck, J.; Hari, P.; Kulmala, M.; Rinne, J.

    2012-04-01

    Compared with terpenoids, emissions of oxygenated volatile organic compounds (VOCs) from boreal ecosystems have been poorly characterized. We measured ecosystem scale emissions of three oxygenated compounds (methanol, acetaldehyde, and acetone) and monoterpenes from a Scots pine dominated forest in southern Finland during the summers 2006-2008. The measurements were conducted using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The contribution of the three oxygenated compounds to the measured total emissions was 40-60 %. The highest oxygenated VOC emissions were those of methanol, comprising 20-30 % of the total, followed by acetone with a share of 10-20 %. The acetaldehyde emissions were 5-10 % of the total. This emission composition will be compared with that obtained from shoot enclosure measurements. Methanol showed deposition during some periods although its overall flux was towards the atmosphere. The monoterpene emissions had a light dependent component, suggesting that part of the emissions originated directly from monoterpene biosynthesis. Diurnal, seasonal, and inter-annual variations in the emissions, along with temperature and light dependencies, will be discussed.

  17. Characterization of an Airborne Laser-Spark Ion Source for Ambient Mass Spectrometry.

    PubMed

    Bierstedt, Andreas; Kersten, Hendrik; Glaus, Reto; Gornushkin, Igor; Panne, Ulrich; Riedel, Jens

    2017-03-07

    An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time-resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique.

  18. Environmental controls over methanol emission from leaves

    NASA Astrophysics Data System (ADS)

    Harley, P.; Greenberg, J.; Niinemets, É.; Guenther, A.

    2007-12-01

    Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.2 to 38 μg g (dry mass)-1 h-1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.3 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can

  19. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  20. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  1. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  2. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  3. Neuroscience and accelerator mass spectrometry.

    PubMed

    Palmblad, Magnus; Buchholz, Bruce A; Hillegonds, Darren J; Vogel, John S

    2005-02-01

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had a great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as 3H, 14C, 26Al, 36Cl and 41Ca, with zepto- or attomole sensitivity and high precision and throughput, allowing safe human pharmacokinetic studies involving microgram doses, agents having low bioavailability or toxicology studies where administered doses must be kept low (<1 microg kg(-1)). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the time-scale of decades. We review here how AMS is applied in neurotoxicology and neuroscience.

  4. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  5. Study of surfaces using near infrared optical fiber spectrometry

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Arendale, W. A.; Hughes, C.

    1995-01-01

    The measurement and control of cleanliness for critical surfaces during manufacturing and in service provides a unique challenge for fulfillment of environmentally benign operations. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This presentation will provide an introduction to the use of optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. Correlation of the Near Infrared (NIR) spectroscopic results with Optical Stimulated Electron Emission (OSEE) and ellipsometry will also be presented.

  6. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  7. Rapid discrimination of bacteria by paper spray mass spectrometry.

    PubMed

    Hamid, Ahmed M; Jarmusch, Alan K; Pirro, Valentina; Pincus, David H; Clay, Bradford G; Gervasi, Gaspard; Cooks, R Graham

    2014-08-05

    Paper spray mass spectrometry ambient ionization is utilized for rapid discrimination of bacteria without sample preparation. Bacterial colonies were smeared onto filter paper precut to a sharp point, then wetted with solvent and held at a high potential. Charged droplets released by field emission were sucked into the mass spectrometer inlet and mass spectra were recorded. Sixteen different species representing eight different genera from Gram-positive and Gram-negative bacteria were investigated. Phospholipids were the predominant species observed in the mass spectra in both the negative and positive ion modes. Multivariate data analysis based on principal component analysis, followed by linear discriminant analysis, allowed bacterial discrimination. The lipid information in the negative ion mass spectra proved useful for species level differentiation of the investigated Gram-positive bacteria. Gram-negative bacteria were differentiated at the species level by using a numerical data fusion strategy of positive and negative ion mass spectra.

  8. Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes

    NASA Astrophysics Data System (ADS)

    Mao, Xianglei; Bol'shakov, Alexander A.; Choi, Inhee; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman; Russo, Richard E.

    2011-11-01

    The experimental details are reported of Laser Ablation Molecular Isotopic Spectrometry (LAMIS) and its application for performing optical isotopic analysis of solid strontium-containing samples in ambient atmospheric air at normal pressure. The LAMIS detection method is described for strontium isotopes from samples of various chemical and isotopic compositions. The results demonstrate spectrally resolved measurements of the three individual 86Sr, 87Sr, and 88Sr isotopes that are quantified using multivariate calibration of spectra. The observed isotopic shifts are consistent with those calculated theoretically. The measured spectra of diatomic oxide and halides of strontium generated in laser ablation plasmas demonstrate the isotopic resolution and capability of LAMIS. In particular, emission spectra of SrO and SrF molecular radicals provided clean and well resolved spectral signatures for the naturally occurring strontium isotopes. A possibility is discussed of using LAMIS of strontium isotopes for radiogenic age determination.

  9. Ultratrace Analysis of Uranium and Plutonium By Mass Spectrometry

    SciTech Connect

    Wacker, John F.; Wogman, Ned A.; Olsen, Khris B.; Petersen, Steven L.; Farmer, O T.; Kelley, James M.; Eiden, Greg C.; Maiti, Tapas C.

    2003-01-01

    At the Pacific Northwest National Laboratory (PNNL), we have developed highly sensitive methods to analyze uranium and plutonium in environmental samples. The development of an ultratrace analysis capability for measuring uranium and plutonium has arisen from a need to detect and characterize environmental samples for signatures associated with nuclear industry processes. Our most sensitive well-developed methodologies employ thermal ionization mass spectrometry (TIMS), however, recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have shown considerable promise for use in detecting uranium and plutonium at ultratrace levels. The work at PNNL has included the development of both chemical separation and purification techniques, as well as the development of mass spectrometric instrumentation and techniques. At the heart of our methodology for TIMS analysis is a procedure that utilizes 100-microliter-volumes of analyte for chemical processing to purify, separate, and load actinide elements into resin beads for subsequent mass spectrometric analysis. The resin bead technique has been combined with a thorough knowledge of the physicochemistry of thermal ion emission to achieve femtogram detection limits for the TIMS analysis of plutonium in environmental samples.

  10. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  11. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  12. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    NASA Astrophysics Data System (ADS)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  13. Wireless Data Acquisition of Transient Signals for Mobile Spectrometry Applications.

    PubMed

    Trzcinski, Peter; Weagant, Scott; Karanassios, Vassili

    2016-05-01

    Wireless data acquisition using smartphones or handhelds offers increased mobility, it provides reduced size and weight, it has low electrical power requirements, and (in some cases) it has an ability to access the internet. Thus, it is well suited for mobile spectrometry applications using miniaturized, field-portable spectrometers, or detectors for chemical analysis in the field (i.e., on-site). There are four main wireless communications standards that can be used for wireless data acquisition, namely ZigBee, Bluetooth, Wi-Fi, and UWB (ultra-wide band). These are briefly reviewed and are evaluated for applicability to data acquisition of transient signals (i.e., time-domain) in the field (i.e., on-site) from a miniaturized, field-portable photomultiplier tube detector and from a photodiode array detector installed in a miniaturized, field-portable fiber optic spectrometer. These are two of the most widely used detectors for optical measurements in the ultraviolet-visible range of the spectrum. A miniaturized, 3D-printed, battery-operated microplasma-on-a-chip was used for generation of transient optical emission signals. Elemental analysis from liquid microsamples, a microplasma, and a handheld or a smartphone will be used as examples. Development and potential applicability of wireless data acquisition of transient optical emission signals for taking part of the lab to the sample types of mobile, field-portable spectrometry applications will be discussed. The examples presented are drawn from past and ongoing work in the authors' laboratory. A handheld or a smartphone were used as the mobile computing devices of choice.

  14. Biodiesel Emissions Analysis Program

    EPA Pesticide Factsheets

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  15. NARSTO EMISSION INVENTORY ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  16. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  17. What Is Emissions Trading?

    EPA Pesticide Factsheets

    Learn the basics about how emissions trading uses a market-based policy tool used to control large amounts of pollution emissions from a group of sources in order to protect human health and the environment.

  18. Emissions & Measurements - Black Carbon

    EPA Science Inventory

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near sour...

  19. Emissions Trading Resources

    EPA Pesticide Factsheets

    Learn about emissions trading programs, also known as cap and trade programs, which are market-based policy tools for protecting human health and the environment by controlling emissions from a group of sources.

  20. Emission scenarios: Explaining differences

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul; Edmonds, James

    2017-01-01

    Carbon dioxide emission scenarios rely on a number of assumptions about how societies will develop in the future, creating uncertainty in projections. Now, research reveals the sensitivity of emission estimates to some of these assumptions.

  1. Characterization of microbial siderophores by mass spectrometry.

    PubMed

    Pluháček, Tomáš; Lemr, Karel; Ghosh, Dipankar; Milde, David; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.

  2. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  3. Aircraft emission measurements by remote sensing methodologies at airports

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Jahn, Carsten; Sturm, Peter; Lechner, Bernhard; Bacher, Michael

    The emission indices of aircraft engine exhausts from measurements taken under operating conditions, to calculate precisely the emission inventories of airports, are not available up to now. To determine these data, measurement campaigns were performed on idling aircraft at major European airports using non-intrusive spectroscopic methods like Fourier transform infrared spectrometry and differential optical absorption spectroscopy. Emission indices for CO and NO x were calculated and compared to the values given in the International Civil Aviation Organisation (ICAO) database. The emission index for CO for 36 different aircraft engine types and for NO x (24 different engine types) were determined. It was shown that for idling aircraft, CO emissions are underestimated using the ICAO database. The emission indices for NO x determined in this work are lower than given in the ICAO database. In addition, a high variance of emission indices in each aircraft family and from engine to engine of the same engine type was found. During the same measurement campaigns, the emission indices for CO and NO of eight different types of auxilliary power units were investigated.

  4. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications.

    PubMed

    Schneider, Bradley B; Nazarov, Erkinjon G; Londry, Frank; Vouros, Paul; Covey, Thomas R

    2016-10-01

    This review of differential mobility spectrometry focuses primarily on mass spectrometry coupling, starting with the history of the development of this technique in the Soviet Union. Fundamental principles of the separation process are covered, in addition to efforts related to design optimization and advancements in computer simulations. The flexibility of differential mobility spectrometry design features is explored in detail, particularly with regards to separation capability, speed, and ion transmission. 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:687-737, 2016.

  5. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  6. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  7. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  8. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  9. Quantitative mass spectrometry: an overview

    PubMed Central

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  10. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  11. Application of mass spectrometry in proteomics.

    PubMed

    Guerrera, Ida Chiara; Kleiner, Oliver

    2005-01-01

    Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.

  12. Emissions from cooking microwave popcorn.

    PubMed

    Rosati, Jacky A; Krebs, Kenneth A; Liu, Xiaoyu

    2007-01-01

    This study characterized chemicals released into a chamber in the process of cooking microwave popcorn. Seventeen types of microwave popcorn from eight different brands were studied. The work proceeded in two phases: phase one investigated chemicals emitted during popping and opening, phase two investigated chemicals emitted at discrete intervals from 0-40 minutes post-pop opening. The research was performed using a microwave oven enclosed in a chamber with ports for air sampling of particulate matter (PM) and volatile organic compounds (VOCs). VOCs in the air samples were identified and quantified using gas chromatography/mass spectrometry (GC/MS). PM was characterized using both an aerodynamic particle sizer (APS) and a scanning mobility particle sizer (SMPS) to cover a full range of emitted sizes. The compounds measured during popping and opening included butter flavoring components such as diacetyl, butyric acid, acetoin, propylene glycol, 2-nonanone, and triacetin and bag components such as p-xylene and perfluorinated alcohol 8:2 telomer. The greatest chemical quantity is emitted when the bag is opened post-popping; more than 80% of the total chemical emissions occur at this time.

  13. Air Emissions Factors and Quantification

    EPA Pesticide Factsheets

    Emissions factors are used in developing air emissions inventories for air quality management decisions and in developing emissions control strategies. This area provides technical information on and support for the use of emissions factors.

  14. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature

  15. Volatile organic compound emission profiles of four common arctic plants

    NASA Astrophysics Data System (ADS)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine; Rinnan, Riikka

    2015-11-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions and the MT and SQT emissions standardized to 30 °C were highest in the first measurement in early July, while the other species had the highest emissions in the last measurement in early August. As climate change is expected to increase plant biomass and change vegetation composition in the Arctic, the BVOC emissions from arctic ecosystems will also change. Our results suggest that if the abundance of deciduous shrubs like Betula and Salix spp. increases at the expense of slower growing evergreens like E. hermaphroditum, there is the potential for increased emissions of isoprene, MTs and non-isoprenoid BVOCs in the Arctic.

  16. Warming increases isoprene emissions from an arctic fen.

    PubMed

    Lindwall, Frida; Svendsen, Sophie Sylvest; Nielsen, Cecilie Skov; Michelsen, Anders; Rinnan, Riikka

    2016-05-15

    Emissions of biogenic volatile organic compounds (BVOCs) from dry ecosystems at high latitudes respond strongly to small increases in temperature, and warm canopy surface temperatures drive emissions to higher levels than expected. However, it is not known whether emissions from wetlands, cooled by through-flowing water and higher evapotranspiration show similar response to warming as in drier ecosystems. Climate change will cause parts of the Arctic to experience increased snow fall, which delays the start of the growing season, insulates soil from low temperatures in winter, and increases soil moisture and possibly nutrient availability. Currently the effects of increasing snow depth on BVOC emissions are unknown. BVOC emissions were measured in situ across the growing season in a climate experiment, which used open top chambers to increase temperature and snow fences to increase winter snow depth. The treatments were arranged in a full factorial design. Measurements took place during two growing seasons in a fen ecosystem in west Greenland. BVOC samples collected by an enclosure technique in adsorbent cartridges were analysed using gas chromatography-mass spectrometry. Gross ecosystem production (GEP) was measured with a closed chamber technique, to reveal any immediate effect of treatments on photosynthesis, which could further influence BVOC emissions. Isoprene made up 84-92% of the emitted BVOCs. Isoprene emission increased 240 and 340% due to an increase in temperature of 1.3 and 1.6°C in 2014 and 2015, respectively. Isoprene emissions were 25 times higher in 2015 than in 2014 most likely due to a 2.4°C higher canopy air temperature during sampling in 2015. Snow addition had no significant effect on isoprene emissions even though GEP was increased by 24%. Arctic BVOC emissions respond strongly to rising temperatures in wet ecosystems, suggesting a large increase in arctic emissions in a future warmer climate.

  17. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion.

    PubMed

    Liu, J; Falcoz, Q; Gauthier, D; Flamant, G; Zheng, C Z

    2010-06-01

    The accumulation of toxic metals generated by coal-fired power stations presents a serious threat to the environment. The volatilization behavior of two representative metals (Cd and Zn), and the influence of temperature were investigated during coal combustion. An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed to continuously measure the heavy metal concentrations quantitatively in flue gas under combustion conditions in order to track the metal release process. This continuous heavy metal analysis system was implemented by coupling it to two types of high temperature reactors: a bubbling fluidized bed reactor and a fixed bed reactor with diameter of 0.1 m and 0.08 m respectively. For the two metals considered in this study (Cd and Zn), the experimental setup was successfully used to continuously monitor the metal vaporization process during coal combustion independent of reactor design, and at different temperatures. Cd is more easily vaporized than Zn during coal combustion. Temperature significantly influences the metal vaporization process. In general, the higher the temperature, the higher the metal vaporization, although the vaporization is not proportional to temperature. In addition to the experimental study, a thermodynamic calculation was carried out to simulate the heavy metal speciation during coal combustion process. The theoretical volatilization tendency is consistent with the experiment. The thermodynamic calculation identified the formation of binary oxides retarding heavy metal vaporization.

  18. Temporal and modal characterization of DoD source air toxic emission factors: final report

    EPA Science Inventory

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...

  19. Properties, performance and emissions of biofuels in blends with gasoline

    NASA Astrophysics Data System (ADS)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  20. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  1. REAL-TIME EMISSION CHARACTERIZATION OF ORGANIC AIR TOXIC POLLUTANTS DURING STEADY STATE AND TRANSIENT OPERATION OF A MEDIUM DUTY DIESEL ENGINE

    EPA Science Inventory

    An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...

  2. Global Seabird Ammonia Emissions

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  3. Modeling of Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    coagulation oxidation.... carbonization 14 Modeling Particulate Emissions Soot Formation Kinetics 2 1016 1 ]HC[kdt dS = Inception: Dimerization of...simulated with peak size for surface growth Sectional Conservation Equation 16 Modeling Particulate Emissions Soot Kinetics Based on OH, O2 and...and empirical tuning to NOx, CO emissionsFuel-spray shear layer Recirculation zones Quench zones Burn-out zones Full set of reaction kinetics and

  4. Toluene emissions from plants

    NASA Astrophysics Data System (ADS)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  5. Planetary foreshock radio emissions

    NASA Astrophysics Data System (ADS)

    Kuncic, Zdenka; Cairns, Iver H.

    2005-07-01

    The electron foreshock regions upstream of Earth's bow shock and upstream of traveling interplanetary shocks are known to be propitious sites for a variety of energetic particle and plasma wave phenomena, including radio emissions. A quantitative theoretical model has been developed for radio emissions associated with the terrestrial foreshock and for type II radio bursts associated with interplanetary shocks. Here, we generalize this model and apply it to other planetary foreshocks. We present predictions for the levels of planetary foreshock radio emissions and compare these with observations by past and present space missions. One key result is that Mercury can be a strong source of foreshock radio emissions, and this prediction may be testable with the anticipated BepiColombo space mission. Although the terrestrial foreshock radio emissions are the most detectable with existing instruments, our results predict that they are the second strongest in absolute terms, following the Jovian foreshock emissions. Indeed, we predict that the radio instrument on board Ulysses should have detected Jovian foreshock radio emissions, and we suggest that there is some evidence in the data to support this. We also suggest that Cassini was potentially capable of detecting foreshock emissions from Venus during its gravity-assist flybys and may possibly be capable of detecting foreshock emissions from Saturn under favorable solar wind conditions.

  6. Field emission chemical sensor

    DOEpatents

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  7. Managing Refrigerant Emissions

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  8. Characterization and temperature dependence of PAH emissions from a simulated rubber combustion operation.

    PubMed

    Jacobs, B W; Billings, C E

    1985-10-01

    The operation investigated uses two induction furnaces for removal of rubber from tracked-vehicle treads. A laboratory-scale simulation of the field operation was employed to generate emissions at 399 degrees C (750 degrees F) and 677 degrees C (1250 degrees F), and emission samples were collected using glass fiber filters and Tenax as the sampling media. Sampling and analytical methods were developed and evaluated with 10 representative polynuclear aromatic hydrocarbons (PAH). High-pressure liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS) were used to characterize emissions. The PAH were profiled as subsets and graphically displayed as micrograms (micrograms) of emissions per kilogram of rubber and as percentages of total emissions. In each subset, relative amounts of PAH were found to be related to combustion temperatures. Identical coal tar pitch volatiles (CTPV) exposures to emissions generated at the two temperatures studied would result in a 178-fold difference in exposure to carcinogenic PAH.

  9. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  10. Emergence and consequences of lateral sample heterogeneity in glow discharge spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Ray, Steven J.; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M.

    2016-12-01

    Conventional glow discharge emission or mass spectrometry requires the assumption that the surface of the sample is homogeneous. However, recent developments in glow discharge imaging appear to offer an opportunity to obtain three-dimensional concentration maps, in which this assumption is no longer necessary. Here, experiments, models, and a summary of earlier work are combined to examine the sputtering behavior of elemental and morphological heterogeneities in a sample. The theoretical model reveals gaps in current knowledge of glow discharge sputtering of heterogeneous samples, particularly indicating that heterogeneity in the sample leads to roughened crater bottoms and how additional morphology can evolve. Additionally, a three-dimensional profiling microscope is used to characterize the effects of surface inclusions on the sputtering process in a DC glow discharge in a reduced-pressure argon environment. Findings have important implications for bulk analysis, depth-profiling, and elemental surface mapping with glow discharge spectrometry.

  11. Outsourcing CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  12. Mass spectrometry: a revolution in clinical microbiology?

    PubMed

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  13. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  14. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  15. Mass Spectrometry: A Technique of Many Faces

    PubMed Central

    Olshina, Maya A.; Sharon, Michal

    2016-01-01

    Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928

  16. Soft-landing preparative mass spectrometry.

    PubMed

    Verbeck, Guido; Hoffmann, William; Walton, Barbara

    2012-10-07

    Preparative mass spectrometry has become a diverse field that covers the spectrum of kinetic energy deposition. Of these methods, soft-landing mass spectrometry has many fundamental properties, which make it an advantageous technique for ion isolation and deposition. Its definition implies the preservation of ionic structural integrity after landing, which ensures the structure-function relationship of a molecule remains intact. Here the focus is on the instruments and applications of studying ion-surface landing in the hyperthermal and thermal kinetic energy regimes. Soft-landing preparative mass spectrometry covers the breadth of mass spectrometric ionization sources, instrumental configurations, and molecular families. Due to the diverse nature of soft landing, and to maximize readability, this review has been organized according to instrumental considerations and molecular families, with a discussion of theoretical work at the end.

  17. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  18. Emission properties of explosive field emission cathodes

    SciTech Connect

    Roy, Amitava; Patel, Ankur; Menon, Rakhee; Sharma, Archana; Chakravarthy, D. P.; Patil, D. S.

    2011-10-15

    The research results of the explosive field emission cathode plasma expansion velocity and the initial emission area in the planar diode configuration with cathodes made of graphite, stainless steel, polymer velvet, carbon coated, and carbon fiber (needle type) cathodes are presented. The experiments have been performed at the electron accelerator LIA-200 (200 kV, 100 ns, and 4 kA). The diode voltage has been varied from 28-225 kV, whereas the current density has been varied from 86-928 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam diode perveance has been compared with the 1 dimensional Child-Langmuir- law. It was found that initially only a part of the cathode take part in the emission process. The plasma expands at 1.7-5.2 cm/{mu}s for 4 mm anode-cathode gap for various cathode materials. It was found that the plasma expansion velocity increases with the decrease in the cathode diameter. At the beginning of the accelerating pulse, the entire cathode area participates in the electron emission process only for the multiple needle type carbon fiber cathode.

  19. Database of emission lines

    NASA Astrophysics Data System (ADS)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  20. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  1. Diesel Emissions Quantifier (DEQ)

    EPA Pesticide Factsheets

    .The Diesel Emissions Quantifier (Quantifier) is an interactive tool to estimate emission reductions and cost effectiveness. Publications EPA-420-F-13-008a (420f13008a), EPA-420-B-10-035 (420b10023), EPA-420-B-10-034 (420b10034)

  2. Mass spectrometry in the home and garden.

    PubMed

    Pulliam, Christopher J; Bain, Ryan M; Wiley, Joshua S; Ouyang, Zheng; Cooks, R Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  3. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  4. Third International Workshop on Ion Mobility Spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H. (Editor)

    1995-01-01

    Basic research in ion mobility spectrometry has given rise to rapid advancement in hardware development and applications. The Third International Workshop on Ion Mobility Spectrometry (IMS) was held October 16-19, 1994, at Johnson Space Center to provide a forum for investigators to present the most recent results of both basic and applied IMS research. Presenters included manufacturers and various users, including military research organizations and drug enforcement agencies. Thirty papers were given in the following five sessions: Fundamental IMS Studies, Instrument Development, Hyphenated IMS Techniques, Applications, and Data Reduction and Signal Processing. Advances in hardware development, software development, and user applications are described.

  5. Mass Spectrometry in the Home and Garden

    NASA Astrophysics Data System (ADS)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  6. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  7. Graphene field emission devices

    SciTech Connect

    Kumar, S. Raghavan, S.; Duesberg, G. S.; Pratap, R.

    2014-09-08

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm{sup −1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  8. Emissions of oxygenated volatile organic compounds from open crop burning in Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Kudo, S.; Pan, X.; Inomata, S.; Saito, S.; Kanaya, Y.; Wang, Z.

    2013-12-01

    Measurements of volatile organic compounds (VOCs) were made by gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS) at Rudong, a rural area of Central East China in June 2010. During the campaign we identified several plumes originated from open biomass burning by the simultaneous enhancements of carbon monoxide and acetonitrile. Based on positive matrix factorization (PMF) analysis, the contribution of biomass burning was in the range from 60 to 80% for the plumes. We found that oxygenated VOCs were predominant for these events. The emission ratios of OVOCs to CO for open crop burnings derived in this work were found to be high. Combined with the updated CO emissions of 12.7 Tg per year from crop burning, we estimated OVOC emissions from crop burning can be about 1.2 Tg per year, accounting for substantial amount of VOCs emitted from crop burning.

  9. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  10. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  11. Linking Mass Spectrometry with Toxicology for Emerging Water Contaminants

    EPA Science Inventory

    This overview presentation will discuss the benefits of combining mass spectrometry with toxicology. These benefits will be described for 3 main areas: (1) Toxicity assays used to test new environmental contaminants previously identified using mass spectrometry, such that furth...

  12. Physical and chemical characterization of residential oil boiler emissions.

    PubMed

    Hays, Michael D; Beck, Lee; Barfield, Pamela; Lavrich, Richard J; Dong, Yuanji; Vander Wal, Randy L

    2008-04-01

    The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.

  13. Studying the evaporation behavior of heavy metals by thermo-desorption spectrometry.

    PubMed

    Ludwig, C; Lutz, H; Wochele, J; Stucki, S

    2001-12-01

    "Thermal desorption experiments" were carried out during which heavy metal evaporation was studied by on-line monitoring. This could be achieved by the use of a tubular furnace connected to a heavy metal detector, i.e. an ICP-OES (inductively coupled plasma optical emission spectrometer), by a specially designed and patented interface. The spectrograms typically had a time resolution of four different elements per minute using a conventional (sequentially operating) ICP-OES. This study shows how thermo-desorption spectrometry (TDS) can be applied to study the evaporation of high boiling substances, such as heavy metal and alkali metal compounds. The future scope of the method is discussed.

  14. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  15. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications.

    PubMed

    Belykh, S F; Palitsin, V V; Veryovkin, I V; Kovarsky, A P; Chang, R J H; Adriaens, A; Dowsett, M G; Adams, F

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  16. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  17. Laser-induced breakdown spectrometry in jewellery industry. Part II: quantitative characterisation of goldfilled interface.

    PubMed

    Jurado-López, A; Luque de Castro, M D

    2003-02-06

    A new application of laser-induced breakdown spectrometry (LIBS) and multivariate data analysis, namely partial least-squares regression (PLS) in the jewellery industry is reported. The method was designed for the quantitative characterisation of the interface of goldfilled, a material widely used in costume jewellery fabrication, by monitoring the emission lines of the elements present in the sample, while subjecting the piece to a number of laser pulses. The method also provides quantitative information about the composition of a given layer of the material of a special interest at the interface in order to know the existence of diffusion phenomena.

  18. Mass spectrometry and the environmental sciences

    NASA Astrophysics Data System (ADS)

    Hites, Ronald A.

    1992-09-01

    Research in environmental mass spectrometry focuses on two broad areas: development of new methods for a wide range of pollutants; and using existing methods to understand the fate of pollutants in nature. This paper will present examples of both types of research. In some environmental settings it is important to have rapid analytical turnaround, which suggests that samples should be analyzed in the field rather than in a remote laboratory. Thus, there has been considerable interest in "fieldable" mass spectrometers. Volatile and water soluble analytes can be introduced into a mass spectrometer by passing the water sample over a semi-permeable membrane. The analytes of interest pass through the membrane, but the water does not. This method may be useful in situations that require a continuous readout of concentration. Like mass spectrometrists everywhere, environmental scientists have explored the many facets of liquid chromatographic mass spectrometry. Work in our laboratory has centered on continuous flow fast atom bombardment (CF-FAB) as the LCMS interface. In addition, flow injection analysis is possible using CF-FAB. By avoiding chromatographic separation, the throughput of the analytical system is increased. Frequently, tandem mass spectrometry is necessary to unscramble the chemical signals produced by this technique. Electron capture negative ionization mass spectrometry can achieve sensitivities of a few attomoles for selected compounds; furthermore, the technique can be remarkably specific. These features make it ideal for the analysis of highly chlorinated environmental contaminants such as chlorinated dioxins. Such an application will be presented in detail.

  19. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  20. Nanostructure-initiator mass spectrometry biometrics

    DOEpatents

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  1. Laser desorption mass spectrometry for molecular diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence

    1996-04-01

    Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.

  2. Vehicle and Fuel Emissions Testing

    EPA Pesticide Factsheets

    EPA's National Vehicle and Fuel Emissions Laboratory's primary responsibilities include: evaluating emission control technology; testing vehicles, engines and fuels; and determining compliance with federal emissions and fuel economy standards.

  3. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  4. Biogenic Emission Inventory System (BEIS)

    EPA Pesticide Factsheets

    Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system

  5. Locating the Vehicle Emissions Label

    EPA Pesticide Factsheets

    The EPA vehicle emissions label is entitled Vehicle Emission Control Information and contains the name and trademark of the manufacturer and an unconditional statement of compliance with EPA emission regulations.

  6. Emission Abatement System

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  7. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  8. [Study on optical emission spectroscopy of pulse corona methane plasma].

    PubMed

    Li, Jin-Ping; Dai, Bin; Fan, Ting

    2009-07-01

    From experiments of methane pulse corona plasma and plasma emission spectrometry, the emission spectra of methane ranging from 370 to 1 100 nm were recorded and marked with CCD (Charge Coupled Device) grating spectrometry. The ionization products of H, C+, CH, C, C2, C3, C4, C5 and hydrocarbon were confirmed through high purity methane (purity 99.99%) ionized by pulse high voltage of 100 kV and 100 Hz under normal temperature and normal pressure. Through analyzing the experimental emission spectrum of methane plasma, the ionization mechanism, i.e. methane gas was ionized into corona plasma by pulse high voltage, was analyzed and the ionization of free radical CHn (n = 3, 2, 1), carbon and hydrocarbons was given as well. Research results show that the dehydrogenation achieved a high level when methane molecules collide inelastically with high energy electrons, and the hydrogen atoms, hydrogen ions and methane free radicals were synthesized into alkenes, alkynes, alkanes and high polymer of carbon with further inelastic collision of high energy electrons. This experimental spectrum and mechanism analysis can be applied to the research on methane conversion.

  9. ROANOKE WOODSTOVE EMISSION TESTS

    EPA Science Inventory

    The report discusses a project, part of the Integrated Air Cancer Project Roanoke study, that characterizes and quantifies emissions generated by burning authentic Roanoke cordwood. The burning occurred in a controlled laboratory setting using two woodstoves, each operated at two...

  10. Fugitive emissions monitoring trends

    SciTech Connect

    Brown, K.H.

    1997-02-01

    New Clean Air Act requirements are pushing facilities to reevaluate their monitoring programs. A description of the fugitive emission guidelines is included in this article, along with ideas about monitoring.

  11. Photon enhanced thermionic emission

    SciTech Connect

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  12. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  13. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis.

    PubMed

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-12-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved.

  14. IR Plasma Emissions

    DTIC Science & Technology

    1990-04-01

    a current mailing list. Do not return copies of this report unless contractural obligations or notices on a specific document requires that it be...of the relatively cold 0? gas surrounding the fireball (i.e. 02(cold) + hv --> 20*) and the broad emission arises from shock heating of the emission...experimental data and calculations 14 and 0 data from other work35 ,36. Experimental spectra were acquired by Assous 33 in an inductively- heated

  15. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  16. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  17. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  18. Emission Characterization and Emission Inventories for the 21st Century

    EPA Science Inventory

    Emission inventories are the foundation of cost-effective air quality management strategies. A goal of the emissions community is to develop the ultimate emission inventory which would include all significant emissions from all sources, time periods and areas, with quantified un...

  19. 47 CFR 78.103 - Emissions and emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.103 Emissions and emission limitations. (a) A... television signals. (b) Any emission appearing on a frequency outside of the channel authorized for a...: At least 25 decibels below the mean power of the emission; (ii) On any frequency above the...

  20. 47 CFR 78.103 - Emissions and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Emissions and emission limitations. 78.103 Section 78.103 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.103 Emissions and emission limitations. (a)...