Science.gov

Sample records for plasma-induced mast cell

  1. Mast cells and inflammation

    PubMed Central

    Theoharides, Theoharis C.; Alysandratos, Konstantinos-Dionysios; Angelidou, Asimenia; Delivanis, Danae-Anastasia; Sismanopoulos, Nikolaos; Zhang, Bodi; Asadi, Shahrzad; Vasiadi, Magdalini; Weng, Zuyi; Miniati, Alexandra; Kalogeromitros, Dimitrios

    2012-01-01

    Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. PMID:21185371

  2. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  3. Mast cells and mastocytosis

    PubMed Central

    2008-01-01

    Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors. PMID:18684881

  4. Mast Cells and Neuroinflammation

    PubMed Central

    Dong, Hongquan; Zhang, Xiang; Qian, Yanning

    2014-01-01

    It has been determined that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. There is an emerging realization that glia and microglia, in particular, (which are the brain’s resident macrophages), are an important source of inflammatory mediators and may have fundamental roles in CNS disorders. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin, such as mast cells. Mast cells reside in the CNS and are capable of migrating across the blood-brain barrier (BBB) in situations where the barrier is compromised as a result of CNS pathology. Mast cells are both sensors and effectors in communication among nervous, vascular, and immune systems. In the brain, they reside on the brain side of the BBB, and interact with astrocytes, microglia, and blood vessels via their neuroactive stored and newly synthesized chemicals. They are first responders, acting as catalysts and recruiters to initiate, amplify, and prolong other immune and nervous responses upon activation. Mast cells both promote deleterious outcomes in brain function and contribute to normative behavioral functioning, particularly cognition and emotion. Mast cells may play a key role in treating systemic inflammation or blockade of signaling pathways from the periphery to the brain. PMID:25529562

  5. Mast cells and company.

    PubMed

    Jönsson, Friederike; Daëron, Marc

    2012-01-01

    Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  6. Mast Cell and Autoimmune Diseases

    PubMed Central

    Xu, Yunzhi; Chen, Guangjie

    2015-01-01

    Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases. PMID:25944979

  7. Mast cell and autoimmune diseases.

    PubMed

    Xu, Yunzhi; Chen, Guangjie

    2015-01-01

    Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases. PMID:25944979

  8. Mast cell sarcoma: clinical management.

    PubMed

    Weiler, Catherine R; Butterfield, Joseph

    2014-05-01

    Mast cell sarcoma is a disorder that results in abnormal mast cells as identified by morphology, special stains, and in some publications, c-kit mutation analysis. It affects animal species such as canines more commonly than humans. In humans it is a very rare condition, with variable clinical presentation. There is no standard therapy for the disorder. It can affect any age group. It is occasionally associated with systemic mastocytosis and/or urticaria pigmentosa. The prognosis of mast cell sarcoma in published literature is very poor in humans.

  9. Progesterone inhibits mast cell secretion.

    PubMed

    Vasiadi, M; Kempuraj, D; Boucher, W; Kalogeromitros, D; Theoharides, T C

    2006-01-01

    Mast cells are involved in allergic reactions, where they secrete numerous vasoactive, inflammatory and nociceptive mediators in response to immunoglobulin E (IgE) and antigen. However, they have also been implicated in inflammatory conditions, such as painful bladder syndrome/interstitial cystitis (PBS/IC), irritable bowel syndrome (IBS) and migraines, all of which occur more often in women and are exacerbated during ovulation, but are suppressed during pregnancy. Mast cells express high affinity estrogen receptors and estradiol augments their secretion, while tamoxifen inhibits it. Here we report that progesterone (100 nM), but not the structurally related cholesterol, inhibits histamine secretion from purified rat peritoneal mast cells stimulated immunologically or by substance P (SP), an effect also documented by electron microscopy. These results suggest that mast cell secretion may be regulated by progesterone and may explain the reduced symptoms of certain inflammatory conditions during pregnancy.

  10. Cytoskeleton in Mast Cell Signaling

    PubMed Central

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  11. Lipid Rafts in Mast Cell Biology

    PubMed Central

    Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance

    2011-01-01

    Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812

  12. The human lung mast cell.

    PubMed Central

    Wasserman, S I

    1984-01-01

    Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By virtue of their location and their possession of specific receptors for IgE and complement fragments, these cells are sentinel cells in host defense. The preformed granular mediators and newly generated lipid mediators liberated upon activation of mast cells by a variety of secretagogues supply potent vasoactive-spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment. These factors acting together induce an immediate response manifest as edema, smooth muscle constriction, mucus production, and cough. Later these mediators and those provided from plasma and leukocytes generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses. Acute and prolonged responses may be homeostatic and provide for defense of the host, but if excessive in degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma and pulmonary fibrosis may ensue. PMID:6428878

  13. Mast Cells in Allergic Diseases and Mastocytosis

    PubMed Central

    Marquardt, Diana L.; Wasserman, Stephen I.

    1982-01-01

    Mast cells with their stores of vasoactive and chemotactic mediators are central to the pathogenesis of allergic diseases. The cross-linking of receptorbound IgE molecules on the surface of mast cells initiates a complex chain of events, including calcium ion influx, phospholipid methylation and turnover and cyclic nucleotide metabolism, ultimately resulting in the release of mediators of immediate hypersensitivity. These mast cell mediators are important in smooth muscle reactivity, in the recruitment of eosinophilic and neutrophilic leukocytes and in the generation of secondary chemical mediators. Histologic evidence of mast cell degranulation, biochemical evidence of mast cell mediators in blood and tissues and clinical evidence of signs and symptoms reproducible by these mediators have strongly supported the crucial role of mast cells in asthma, urticaria, anaphylaxis, rhinitis and mastocytosis. Because of their unique location at host environment interfaces, mast cells may both participate in allergic diseases and promote homeostasis. ImagesFigure 1.Figure 2.Figure 3. PMID:6293204

  14. Role of mast cells in tumor growth.

    PubMed

    Conti, Pio; Castellani, Maria L; Kempuraj, Durasamy; Salini, Vincenzo; Vecchiet, Jacopo; Tetè, Stefano; Mastrangelo, Filiberto; Perrella, Alessandro; De Lutiis, Maria Anna; Tagen, Michael; Theoharides, Theoharis C

    2007-01-01

    The growth of malignant tumors is determined in large part by the proliferative capacity of the tumor cells. Clinical observations and animal experiments have established that tumor cells elicit immune responses. Histopathologic studies show that many tumors are surrounded by mononuclear cell and mast cell infiltrates. Mast cells are ubiquitous in the body and are critical for allergic reactions. Increasing evidence indicates that mast cells secrete proinflammatory cytokines and are involved in neuro-inflammatory processes and cancer. Mast cells accumulate in the stroma surrounding certain tumors, especially mammary adenocarcinoma, and the molecules they secrete can benefit the tumor. However, mast cells can also increase at the site of tumor growth and participate in tumor rejection. Mast cells may be recruited by tumor-derived chemoattractants and selectively secrete molecules such as growth factors, histamine, heparin, VEGF, and IL-8, as well as proteases that permit the formation of new blood vessels and metastases. Tumor mast cell intersections play regulatory and modulatory roles affecting various aspects of tumor growth. Discovery of these new roles of mast cells further complicates the understanding of tumor growth. This review focuses on the strategic importance of mast cells to the progression of tumors, and proposes a revised immune effector mechanism of mast cell involvement in tumor growth. PMID:18000287

  15. Genitourinary mast cells and survival.

    PubMed

    Theoharides, Theoharis C; Stewart, Julia M

    2015-10-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to "smell danger", but to promote survival and procreation. PMID:26813805

  16. Genitourinary mast cells and survival

    PubMed Central

    Stewart, Julia M.

    2015-01-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation. PMID:26813805

  17. The role of mast cells in cancers

    PubMed Central

    Maciel, Thiago T.; Moura, Ivan C.

    2015-01-01

    Mast cells are immune cells that accumulate in the tumors and their microenvironment during disease progression. Mast cells are armed with a wide array of receptors that sense environment modifications and, upon stimulation, they are able to secrete several biologically active factors involved in the modulation of tumor growth. For example, mast cells are able to secrete pro-angiogenic and growth factors but also pro- and anti-inflammatory mediators. Recent studies have allowed substantial progress in understanding the role of mast cells in tumorigenesis/disease progression but further studies are necessary to completely elucidate their impact in the pathophysiology of cancer. Here we review observations suggesting that mast cells could modulate tumor growth in humans. We also discuss the drawbacks related to observations from mast cell-deficient mouse models, which could have consequences in the determination of a potential causative relationship between mast cells and cancer. We believe that the understanding of the precise role of mast cells in tumor development and progression will be of critical importance for the development of new targeted therapies in human cancers. PMID:25705392

  18. Chondroitin sulphate inhibits connective tissue mast cells

    PubMed Central

    Theoharides, T C; Patra, P; Boucher, W; Letourneau, R; Kempuraj, D; Chiang, G; Jeudy, S; Hesse, Leah; Athanasiou, A

    2000-01-01

    Mast cells derive from the bone marrow and are responsible for the development of allergic and possibly inflammatory reactions. Mast cells are stimulated by immunoglobulin E (IgE) and specific antigen, but also by a number of neuropeptides such as neurotensin (NT), somatostatin or substance P (SP), to secrete numerous pro-inflammatory molecules that include histamine, cytokines and proteolytic enzymes.Chondroitin sulphate, a major constituent of connective tissues and of mast cell secretory granules, had a dose-dependent inhibitory effect on rat peritoneal mast cell release of histamine induced by the mast cell secretagogue compound 48/80 (48/80). This inhibition was stronger than that of the clinically available mast cell ‘stabilizer' disodium cromoglycate (cromolyn). Inhibition by chondroitin sulphate increased with the length of preincubation and persisted after the drug was washed off, while the effect of cromolyn was limited by rapid tachyphylaxis.Immunologic stimulation of histamine secretion from rat connective tissue mast cells (CTMC) was also inhibited, but this effect was weaker in umbilical cord-derived human mast cells and was absent in rat basophilic leukemia (RBL) cells which are considered homologous to mucosal mast cells (MMC). Oligo- and monosaccharides were not as effective as the polysaccharides.Inhibition, documented by light and electron microscopy, involved a decrease of intracellular calcium ion levels shown by confocal microscopy and image analysis. Autoradiography at the ultrastructural level showed that chondroitin sulphate was mostly associated with plasma and perigranular membranes.Chondroitin sulphate appears to be a potent mast cell inhibitor of allergic and nonimmune stimulation with potential clinical implications. PMID:11082109

  19. Mast cells, angiogenesis and cancer.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2011-01-01

    Mast cells (MCs) were first described by Paul Ehrlich 1 in his doctoral thesis. MCs have long been implicated in the pathogenesis of allergic reactions and certain protective responses to parasites. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, the question as to the possible contribution of MCs to tumor development has progressively been emerging. In this chapter, the specific involvement of MCs in tumor biology and tumor fate will be considered, with particular emphasis on the capacity of these cells to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Data from experimental carcinogenesis and from different tumor settings in human pathology will be summarized. Information to be presented will suggest that MCs may serve as a novel therapeutic target for cancer treatment. PMID:21713661

  20. Benign mast cell hyperplasia and atypical mast cell infiltrates in penile lichen planus in adult men.

    PubMed

    Regauer, Sigrid; Beham-Schmid, Christine

    2014-08-01

    Introduction. Lichen planus (LP) is a chronic cytokine-mediated disease of possible auto-immune etiology. 25% of men have anogenital manifestations. Erosive penile LP causes a scarring phimosis of the foreskin in uncircumcised men. Mast cells as potent immune modulators have been implicated in a number of autoimmune and chronic inflammatory diseases, but have not been investigated in LP. Material and Methods. Formalin-fixed tissues of 117 circumcision specimens of adult men affected by LP were evaluated for the extent of mast cell and lymphocyte infiltrates, characterized immunohistochemically with antibodies to CD 3, 4, 8, 20, 21, 25, 30, 117c and human mast cell tryptase. Specimens with dense mast cell infiltrates were analyzed for point mutations of the c-kit gene (D816V). Results. Unaffected skin and modified mucosa of foreskins contained ⟨5 mast cells/mm². The inflammatory infiltrate of LP-lesions displayed ⟨15 mast cells/mm² in 33/117 foreskins, 16-40 mast cells/mm² in 22/117 and ⟩40 mast cells/mm² (average 70, range 40-100) in 62/117 foreskins. Lesional mast cells of 29/117 (24%) foreskins showed aberrant CD25-expression and/or spindled morphology, with 11/29 men having erosive LP, 13/29 a lymphocytic vasculitis and 1/28 a systemic mastocytosis. Neither CD30-expression nor c-kit mutations were identified. Atypical mast cell infiltrates in LP correlated with high disease activity, erosive LP and presence of lymphocytic vasculitis Conclusions. Increased mast cells in penile LP, mostly representing a benign hyperplasia/activation syndrome, suggests them as targets for innovative therapy options for symptomatic LP-patients not responding to corticosteroid therapy. Presently, the biological implications of atypical mast cell infiltrates in penile LP are unknown. PMID:24402730

  1. Mast Cell: A Multi-Functional Master Cell

    PubMed Central

    Krystel-Whittemore, Melissa; Dileepan, Kottarappat N.; Wood, John G.

    2016-01-01

    Mast cells are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of mast cells significantly modulates many aspects of physiological and pathological conditions in various settings. With respect to normal physiological functions, mast cells are known to regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification. On the other hand, mast cells have also been implicated in the pathophysiology of many diseases, including allergy, asthma, anaphylaxis, gastrointestinal disorders, many types of malignancies, and cardiovascular diseases. This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions. PMID:26779180

  2. Involvement of mast cells in systemic sclerosis.

    PubMed

    Yukawa, Sonosuke; Yamaoka, Kunihiro; Sawamukai, Norifumi; Shimajiri, Shohei; Saito, Kazuyoshi; Tanaka, Yoshiya

    2010-01-01

    Systemic sclerosis is characterized by tissue fibrosis, obliterative microangiopathy and immune abnormalities. The etiology of SSc is largely unknown and is known to be resistant to existing corticosteroid and immunosuppressive drugs. Therefore, establishment of a treatment strategy especially for SSc patients with organ involvement is strongly desired. Mast cells are widely recognized as effector cells in allergic disorders and other IgE-mediated immune responses. However, recently, mast cells have become known to play a role in bridging innate immunity and adaptive immunity. Additionally, there is growing evidence of mast cell to be involved in pathogenesis of rheumatoid arthritis, and is expected as a novel therapeutic target. We describe here the role of mast cell in SSc pathology and suggest as a novel therapeutic target.

  3. Mast cell proteases as pharmacological targets.

    PubMed

    Caughey, George H

    2016-05-01

    Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well as outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such as inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the

  4. The mast cell: a multifunctional effector cell.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico; Mallardi, Franco; Beltrami, Carlo Alberto

    2003-01-01

    Mast cells (MC) are recognized key cells of type I hypersensitivity reactions. Several lines of evidence, however, indicate that MC not only express critical effector functions in classic IgE-associated allergic disorders, but also play important roles in host defence against parasites, bacteria and perhaps even viruses. Indeed, it is now clear that MC can contribute to host defence in the context of either acquired or innate immune responses through the release of a myriad of pro-inflammatory and immunoregulatory molecules and the expression of a wide spectrum of surface receptors for cytokines and chemokines. Moreover, there is growing evidence that MC exert distinct nonimmunological functions, playing a relevant role in tissue homeostasis, remodeling and fibrosis as well as in the processes of tissue angiogenesis. In this review, we provide a small insight into the biology of mast cells and their potential implications in human pathology.

  5. Immunomodulation of mast cells by nutrients.

    PubMed

    Hagenlocher, Yvonne; Lorentz, Axel

    2015-01-01

    In the past decades an increasing prevalence of allergic disorders was observed in industrialized countries. Thus, it is necessary to develop adequate therapeutic and preventive strategies. Many of the conservative strategies possess diverse harmful side effects. Therefore agents with fewer side effects and a better compliance among afflicted patients would be of interest. Especially substances with natural origin acting immunomodulatory on mast cells - the key effector cells of allergic diseases - could be used. Among them there are components of the daily diet such as distinct fatty acids and amino acids as well as a range of secondary plant substances such as carotenoids, flavonoids and spices. These nutritional substances could be applied as nutraceuticals in the therapy of mast cell associated diseases. Many of these substances show inhibitory influences on the release of prestored mast cell mediators such as histamine or de novo expression of mast cell mediators such as cytokines and eicosanoids which are involved in the pathogenesis of mast cell associated inflammatory conditions like allergic reactions.

  6. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  7. Characterization of Mast Cell Secretory Granules and Their Cell Biology

    PubMed Central

    Azouz, Nurit Pereg; Hammel, Ilan

    2014-01-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition. PMID:24988214

  8. Lung mast cells in plexogenic pulmonary arteriopathy.

    PubMed Central

    Heath, D; Yacoub, M

    1991-01-01

    The numbers of mast cells/mm2 of lung parenchyma were counted in four controls, 15 cases of primary plexogenic pulmonary arteriopathy (PPA), and 17 cases in which the arteriopathy was secondary to congenital heart disease, to determine if increased numbers occur in PPA and with what stage of disease they might be associated. Considerable accumulations of lung mast cells may occur in this disease, but these are not closely related to any particular histological stage in the development of the arteriopathy. It is postulated that while mast cells could conceivably exert a vasodilatory effect on constricted small pulmonary arteries, it seems more likely that they are part of the parenchymal changes that commonly develop in this disease. Images PMID:1791199

  9. Responses of dermal mast cells to injury.

    PubMed Central

    el Sayed, S O; Dyson, M

    1993-01-01

    The effect on dermal mast cell numbers and degranulation of making a partial thickness skin wound on the right flank of Wistar rats was studied immediately after operation and 0.5, 1, 2, 4, 8, 16, 24 and 72 h postoperatively. An equivalent area of intact dermis on the left flank was used as a control. In the injured dermis the mean number of detectable mast cells in the experimental group immediately after making the partial thickness wound was not significantly different from the control side (P > 0.25) but it later decreased, reaching its lowest value after 2 h and increasing from 16 h to 72 h postoperatively when the final assessment was made. The possibility that the reduction in mast cell number per unit area might be an artefact resulting from increased tissue volume due to oedema was investigated and disproved. The total number of dermal mast cells in equivalent areas of the intact left flank remained unchanged throughout this period. The percentage of degranulating mast cells started rising 0.5 h postoperatively, increased gradually to reach its highest value after 2 h, remained high up to 8 h postoperatively and then decreased to reach its lowest value after 72 h. The percentage of degranulating mast cells of the intact dermis of the left flank did not alter during this period. The lack of a significant change in the control groups shows either the absence of any systemic effect or that the technique used was not sensitive enough to detect it. Images Fig. 1 Fig. 2 Fig. 3 PMID:8226292

  10. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  11. Pavlovian Conditioning of Rat Mucosal Mast Cells to Secrete Rat Mast Cell Protease II

    NASA Astrophysics Data System (ADS)

    MacQueen, Glenda; Marshall, Jean; Perdue, Mary; Siegel, Shepard; Bienenstock, John

    1989-01-01

    Antigen (egg albumin) injections, which stimulate mucosal mast cells to secrete mediators, were paired with an audiovisual cue. After reexposure to the audiovisual cue, a mediator (rat mast cell protease II) was measured with a sensitive and specific assay. Animals reexposed to only the audiovisual cue released a quantity of protease not significantly different from animals reexposed to both the cue and the antigen; these groups released significantly more protease than animals that had received the cue and antigen in a noncontingent manner. The results support a role for the central nervous system as a functional effector of mast cell function in the allergic state.

  12. Perivascular mast cells regulate vein graft neointimal formation and remodeling

    PubMed Central

    Grassia, Gianluca; Cambrook, Helen; Ialenti, Armando; MacRitchie, Neil; Carberry, Jaclyn; Lawrence, Catherine

    2015-01-01

    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling. PMID:26312183

  13. Mast cell function: a new vision of an old cell.

    PubMed

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia; Oliver, Constance

    2014-10-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.

  14. A protective role of mast cells in intestinal tumorigenesis.

    PubMed

    Sinnamon, Mark J; Carter, Kathy J; Sims, Lauren P; Lafleur, Bonnie; Fingleton, Barbara; Matrisian, Lynn M

    2008-04-01

    Mast cells have been observed in numerous types of tumors; however, their role in carcinogenesis remains poorly understood. The majority of epidemiological evidence suggests a negative association between the presence of mast cells and tumor progression in breast, lung and colonic neoplasms. Intestinal adenomas in the multiple intestinal neoplasia (Min, APC(Min/+)) mouse displayed increased numbers of mast cells and increased abundance of mast cell-associated proteinases as determined by transcriptional profiling with the Hu/Mu ProtIn microarray. To examine the role of mast cells in intestinal tumorigenesis, a mutant mouse line deficient in mast cells, Sash mice (c-kit(W-sh/W-sh)), was crossed with the Min mouse, a genetic model of intestinal neoplasia. The resulting mast cell-deficient Min-Sash mice developed 50% more adenomas than littermate controls and the tumors were 33% larger in Min-Sash mice. Mast cell deficiency did not affect tumor cell proliferation; however, apoptosis was significantly inhibited in mast cell-deficient mice. Mast cells have been shown to act as critical upstream regulators of numerous inflammatory cells. Neutrophil, macrophage and T cell populations were similar between Min and Min-Sash mice; however, eosinophils were significantly less abundant in tumors obtained from Min-Sash animals. These results indicate a protective, antitumor role of mast cells in a genetic model of early-stage intestinal tumorigenesis. PMID:18258601

  15. Spatial distribution of mast cells in chronic venous leg ulcers.

    PubMed

    Abd-El-Aleem, S A; Morgan, C; Ferguson, M W J; McCollum, C N; Ireland, G W

    2005-01-01

    Chronic venous leg ulcers (CVUs) show chronic inflammation but different pathological changes occur in different parts of the ulcer. There is a lack of re-epithelialisation and defective matrix deposition in the ulcer base but epidermal hyperproliferation and increased matrix deposition in the surrounding skin. The role of mast cells in wound healing, inflammation, fibrosis and epidermal hyperproliferation has been extensively studied but less is known about their role in CVUs. In the present study, we investigated the distribution of mast cells in CVUs with specific consideration of the differences between the ulcer base and the skin surrounding the ulcer. Both histochemical and immunohistological methods were used to detect the mast cell marker tryptase in frozen sections of CVU biopsies. Mast cells were counted in the dermis of normal skin, in the ulcer base and in the skin surrounding the ulcer. Double immunofluorescence staining was used to study the location of mast cells in relation to blood vessels. In normal skin few mast cells were seen in the dermis but none in the epidermis. However in CVUs there was a significant increase in intact and degranulated mast cells in the surrounding skin and ulcer edge (184 per field, p<0.003) of CVUs and a significant reduction in the ulcer base (20.5 per field p<0.05) in comparison to normal skin (61 per field). In CVUs mast cells showed a characteristic location near the epithelial basement membrane whilst mast cell granules and phantom cells (mast cells devoid of granules) were predominantly seen in the epidermis. In the dermis, mast cells were seen associated with blood vessels. The marked increase in mast cells in the surrounding skin of CVUs and depletion of mast cells in the ulcer base could implicate mast cell mediators in the pathological changes in CVUs particularly in the epidermal and vascular changes occurring in the surrounding skin.

  16. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    PubMed

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.

  17. Mast cells: multitalented facilitators of protection against bacterial pathogens

    PubMed Central

    Trivedi, Nikita H; Guentzel, M Neal; Rodriguez, Annette R; Yu, Jieh-Juen; Forsthuber, Thomas G; Arulanandam, Bernard P

    2014-01-01

    Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host–environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease. PMID:23390944

  18. The SNARE Machinery in Mast Cell Secretion.

    PubMed

    Lorentz, Axel; Baumann, Anja; Vitte, Joana; Blank, Ulrich

    2012-01-01

    Mast cells are known as inflammatory cells which exert their functions in allergic and anaphylactic reactions by secretion of numerous inflammatory mediators. During an allergic response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE and antigen resulting in immediate release of pre-synthesized mediators - stored in granules - as well as in de novo synthesis of various mediators like cytokines and chemokines. Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNARE) proteins were found to play a central role in regulating membrane fusion events during exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases, secretory carrier membrane proteins, complexins, or synaptotagmins were found to be involved in membrane fusion. In this review we summarize our current knowledge about the SNARE machinery and its mechanism of action in mast cell secretion.

  19. The SNARE Machinery in Mast Cell Secretion

    PubMed Central

    Lorentz, Axel; Baumann, Anja; Vitte, Joana; Blank, Ulrich

    2012-01-01

    Mast cells are known as inflammatory cells which exert their functions in allergic and anaphylactic reactions by secretion of numerous inflammatory mediators. During an allergic response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE and antigen resulting in immediate release of pre-synthesized mediators – stored in granules – as well as in de novo synthesis of various mediators like cytokines and chemokines. Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNARE) proteins were found to play a central role in regulating membrane fusion events during exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases, secretory carrier membrane proteins, complexins, or synaptotagmins were found to be involved in membrane fusion. In this review we summarize our current knowledge about the SNARE machinery and its mechanism of action in mast cell secretion. PMID:22679448

  20. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions. PMID:26714690

  1. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions.

  2. Twenty-first century mast cell stabilizers

    PubMed Central

    Finn, D F; Walsh, J J

    2013-01-01

    Mast cell stabilizing drugs inhibit the release of allergic mediators from mast cells and are used clinically to prevent allergic reactions to common allergens. Despite the relative success of the most commonly prescribed mast cell stabilizer, disodium cromoglycate, in use for the preventative treatment of bronchial asthma, allergic conjunctivitis and vernal keratoconjunctivitis, there still remains an urgent need to design new substances that are less expensive and require less frequent dosing schedules. In this regard, recent developments towards the discovery of the next generation of mast cell stabilizing drugs has included studies on substances isolated from natural sources, biological, newly synthesized compounds and drugs licensed for other indications. The diversity of natural products evaluated range from simple phenols, alkaloids, terpenes to simple amino acids. While in some cases their precise mode of action remains unknown it has nevertheless sparked interest in the development of synthetic derivatives with improved pharmacological properties. Within the purely synthetic class of inhibitors, particular attention has been devoted to the inhibition of important signalling molecules including spleen TK and JAK3. The statin class of cholesterol-lowering drugs as well as nilotinib, a TK inhibitor, are just some examples of clinically used drugs that have been evaluated for their anti-allergic properties. Here, we examine each approach under investigation, summarize the test data generated and offer suggestions for further preclinical evaluation before their therapeutic potential can be realized. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23441583

  3. The effects of aspartame on mast cells and basophils.

    PubMed

    Szucs, E F; Barrett, K E; Metcalfe, D D

    1986-02-01

    The artificial sweetener aspartame was studied to determine whether it had any direct effects on mast cells and basophils. Aspartame was not shown to be a direct mast cell or basophil secretagogue in vitro, or in vivo as assessed by skin testing. During an acute incubation, aspartame did not affect IgE-mediated histamine release from mast cells. However, mast cells cultured in aspartame for periods of up to 9 days showed enhanced rates of proliferation and decreased responsiveness to releasing stimuli. The effect of aspartame on proliferation of cells in culture could be ascribed to a non-specific enhancing effect of its constituent amino acids.

  4. Commensal bacteria promote migration of mast cells into the intestine.

    PubMed

    Kunii, Junichi; Takahashi, Kyoko; Kasakura, Kazumi; Tsuda, Masato; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-06-01

    Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.

  5. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer

    PubMed Central

    Ma, Ying; Hwang, Rosa F.; Logsdon, Craig D.; Ullrich, Stephen E.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts (also known as pancreatic stellate cells, PSCs) and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived IL-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy. PMID:23633481

  6. Mast cells, angiogenesis, and tumour growth.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2012-01-01

    Accumulation of mast cells (MCs) in tumours was described by Ehrlich in his doctoral thesis. Since this early account, ample evidence has been provided highlighting participation of MCs to the inflammatory reaction that occurs in many clinical and experimental tumour settings. MCs are bone marrow-derived tissue-homing leukocytes that are endowed with a panoply of releasable mediators and surface receptors. These cells actively take part to innate and acquired immune reactions as well as to a series of fundamental functions such as angiogenesis, tissue repair, and tissue remodelling. The involvement of MCs in tumour development is debated. Although some evidence suggests that MCs can promote tumourigenesis and tumour progression, there are some clinical sets as well as experimental tumour models in which MCs seem to have functions that favour the host. One of the major issues linking MCs to cancer is the ability of these cells to release potent pro-angiogenic factors. This review will focus on the most recent acquisitions about this intriguing field of research. This article is part of a Special Issue entitled: Mast cells in inflammation.

  7. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis

    PubMed Central

    Dahdah, Albert; Gautier, Gregory; Attout, Tarik; Fiore, Frédéric; Lebourdais, Emeline; Msallam, Rasha; Daëron, Marc; Monteiro, Renato C.; Benhamou, Marc; Charles, Nicolas; Davoust, Jean; Blank, Ulrich; Malissen, Bernard; Launay, Pierre

    2014-01-01

    Controlling the overwhelming inflammatory reaction associated with polymicrobial sepsis remains a prevalent clinical challenge with few treatment options. In septic peritonitis, blood neutrophils and monocytes are rapidly recruited into the peritoneal cavity to control infection, but the role of resident sentinel cells during the early phase of infection is less clear. In particular, the influence of mast cells on other tissue-resident cells remains poorly understood. Here, we developed a mouse model that allows both visualization and conditional ablation of mast cells and basophils to investigate the role of mast cells in severe septic peritonitis. Specific depletion of mast cells led to increased survival rates in mice with acute sepsis. Furthermore, we determined that mast cells impair the phagocytic action of resident macrophages, thereby allowing local and systemic bacterial proliferation. Mast cells did not influence local recruitment of neutrophils and monocytes or the release of inflammatory cytokines. Phagocytosis inhibition by mast cells involved their ability to release prestored IL-4 within 15 minutes after bacterial encounter, and treatment with an IL-4–neutralizing antibody prevented this inhibitory effect and improved survival of septic mice. Our study uncovers a local crosstalk between mast cells and macrophages during the early phase of sepsis development that aggravates the outcome of severe bacterial infection. PMID:25180604

  8. Involvement of mast cells in adipose tissue fibrosis.

    PubMed

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  9. Roles and relevance of mast cells in infection and vaccination

    PubMed Central

    Fang, Yu; Xiang, Zou

    2016-01-01

    Abstract In addition to their well-established role in allergy mast cells have been described as contributing to functional regulation of both innate and adaptive immune responses in host defense. Mast cells are of hematopoietic origin but typically complete their differentiation in tissues where they express immune regulatory functions by releasing diverse mediators and cytokines. Mast cells are abundant at mucosal tissues which are portals of entry for common infectious agents in addition to allergens. Here, we review the current understanding of the participation of mast cells in defense against infection. We also discuss possibilities of exploiting mast cell activation to provide adequate adjuvant activity that is needed in high-quality vaccination against infectious diseases. PMID:26565602

  10. [Quantitative analysis for mast cells in obstructive sialadenitis].

    PubMed

    Diao, G X

    1993-03-01

    Quantitative analysis for mast cells in 27 cases of obstructive sialadenitis, 12 cases of approximate normal salivary gland tissues and 5 cases of lymphoepithelial lesion of salivary glands shows that the number of mast cells is slightly increased with the increase of gravity-grade of obstructive sialadenitis and this is closely related to fibrosis of salivary glands and infiltration grade of inflammation cells (dominated by lymphocyte cells), whereas not closely relating to the age change of patients. For the cases of benign lymphoepithelial lesion of salivary glands with malignant changes despite of malignant lymphoma or squamous cell carcinoma the numbers of mast cells are obviously decreased.

  11. Quantification and Localization of Mast Cells in Periapical Lesions

    PubMed Central

    Mahita, VN; Manjunatha, BS; Shah, R; Astekar, M; Purohit, S; Kovvuru, S

    2015-01-01

    Background: Periapical lesions occur in response to chronic irritation in periapical tissue, generally resulting from an infected root canal. Specific etiological agents of induction, participating cell population and growth factors associated with maintenance and resolution of periapical lesions are incompletely understood. Among the cells found in periapical lesions, mast cells have been implicated in the inflammatory mechanism. Aim: Quantifications and the possible role played by mast cells in the periapical granuloma and radicular cyst. Hence, this study is to emphasize the presence (localization) and quantification of mast cells in periapical granuloma and radicular cyst. Materials and Methods: A total of 30 cases and out of which 15 of periapical granuloma and 15 radicular cyst, each along with the case details from the previously diagnosed cases in the department of oral pathology were selected for the study. The gender distribution showed male 8 (53.3%) and females 7 (46.7%) in periapical granuloma cases and male 10 (66.7%) and females 5 (33.3%) in radicular cyst cases. The statistical analysis used was unpaired t-test. Results: Mean mast cell count in periapical granuloma subepithelial and deeper connective tissue, was 12.40 (0.99%) and 7.13 (0.83%), respectively. The mean mast cell counts in subepithelial and deeper connective tissue of radicular cyst were 17.64 (1.59%) and 12.06 (1.33%) respectively, which was statistically significant. No statistical significant difference was noted among males and females. Conclusion: Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of mast cells in the pathogenesis of periapical lesions. PMID:25861530

  12. What is the physiological function of mast cells?

    PubMed

    Maurer, M; Theoharides, T; Granstein, R D; Bischoff, S C; Bienenstock, J; Henz, B; Kovanen, P; Piliponsky, A M; Kambe, N; Vliagoftis, H; Levi-Schaffer, F; Metz, M; Miyachi, Y; Befus, D; Forsythe, P; Kitamura, Y; Galli, S

    2003-12-01

    Under physiological conditions, skin mast cells preferentially localize around nerves, blood vessels and hair follicles. This observation, which dates back to Paul Ehrlich, intuitively suggests that these enigmatic, multifacetted protagonists of natural immunity are functionally relevant to many more aspects of tissue physiology than just to the generation of inflammatory and vasodilatory responses to IgE-dependent environmental antigens. And yet, for decades, mainstream-mast cell research has been dominated by a focus on the -undisputedly prominent and important - mast cell functions in type I immune responses and in the pathogenesis and management of allergic diseases. Certainly, it is hard to believe that the very large and rather selectively distributed number of mast cells in normal, uninflamed, non-infected, non-traumatized mammalian skin or mucosal tissue simply hanging around there lazily day and night, just wait for the odd allergen or parasite-associated antigen to come by so the mast cell can finally swing into action. Indeed, the past decade has witnessed a renaissance of mast cell research 'beyond allergy', along with a more systematic exploration of the surprisingly wide range of physiological functions that mast cells may be involved in. The current debate sketches many exciting horizons that have recently come into our vision during this intriguing, ongoing search. PMID:14719507

  13. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    PubMed

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  14. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  15. Generation of leukotrienes by purified human lung mast cells.

    PubMed Central

    MacGlashan, D W; Schleimer, R P; Peters, S P; Schulman, E S; Adams, G K; Newball, H H; Lichtenstein, L M

    1982-01-01

    Although mediator release from mast cells and basophils plays a central role in the pathogenesis of human allergic disease, biochemical studies have been restricted to rat peritoneal mast cells and basophilic leukemia cells because they could be easily purified. We have used two new techniques of cell separation to purify human lung mast cells to 98% homogeneity. Lung cell suspensions were obtained by dispersion of chopped lung tissue with proteolytic enzymes. Mast cells were then purified from the suspensions by countercurrent centrifugal elutriation and affinity chromatography. The purified mast cells released both histamine and slow-reacting substance of anaphylaxis (SRS-A) (leukotriene C and D) during stimulation with goat anti-human IgE antibody. Moreover, these preparations were able to generate significant quantities of SRS-A (32 +/- 7 x 10(-17) LTD mole-equivalents/mast cell) at all stages of purification, indicating that a secondary cell is not necessary for the antigen-induced release of SRS. Images PMID:7119113

  16. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation.

    PubMed

    Henry, Everett K; Sy, Chandler B; Inclan-Rico, Juan M; Espinosa, Vanessa; Ghanny, Saleena S; Dwyer, Daniel F; Soteropoulos, Patricia; Rivera, Amariliz; Siracusa, Mark C

    2016-08-22

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine-mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2-associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy-like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell-mediated inflammation. PMID:27526715

  17. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  18. Mast Cell-Derived Histamine Mediates Cystitis Pain

    PubMed Central

    Rudick, Charles N.; Bryce, Paul J.; Guichelaar, Laura A.; Berry, Ruth E.; Klumpp, David J.

    2008-01-01

    Background Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC) is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pain directly and examined pain behavior using a murine model that recapitulates key aspects of IC. Methods and Findings Infection of mice with pseudorabies virus (PRV) induces a neurogenic cystitis associated with lamina propria mast cell accumulation dependent upon tumor necrosis factor alpha (TNF), TNF-mediated bladder barrier dysfunction, and pelvic pain behavior, but the molecular basis for pelvic pain is unknown. In this study, both PRV-induced pelvic pain and bladder pathophysiology were abrogated in mast cell-deficient mice but were restored by reconstitution with wild type bone marrow. Pelvic pain developed normally in TNF- and TNF receptor-deficient mice, while bladder pathophysiology was abrogated. Conversely, genetic or pharmacologic disruption of histamine receptor H1R or H2R attenuated pelvic pain without altering pathophysiology. Conclusions These data demonstrate that mast cells promote cystitis pain and bladder pathophysiology through the separable actions of histamine and TNF, respectively. Therefore, pain is independent of pathology and inflammation, and histamine receptors represent direct therapeutic targets for pain in IC and other chronic pain conditions. PMID:18461160

  19. The Role of TRP Proteins in Mast Cells

    PubMed Central

    Freichel, Marc; Almering, Julia; Tsvilovskyy, Volodymyr

    2012-01-01

    Transient receptor potential (TRP) proteins form cation channels that are regulated through strikingly diverse mechanisms including multiple cell surface receptors, changes in temperature, in pH and osmolarity, in cytosolic free Ca2+ concentration ([Ca2+]i), and by phosphoinositides which makes them polymodal sensors for fine tuning of many cellular and systemic processes in the body. The 28 TRP proteins identified in mammals are classified into six subfamilies: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. When activated, they contribute to cell depolarization and Ca2+ entry. In mast cells, the increase of [Ca2+]i is fundamental for their biological activity, and several entry pathways for Ca2+ and other cations were described including Ca2+ release activated Ca2+ (CRAC) channels. Like in other non-excitable cells, TRP channels could directly contribute to Ca2+ influx via the plasma membrane as constituents of Ca2+ conducting channel complexes or indirectly by shifting the membrane potential and regulation of the driving force for Ca2+ entry through independent Ca2+ entry channels. Here, we summarize the current knowledge about the expression of individual Trp genes with the majority of the 28 members being yet identified in different mast cell models, and we highlight mechanisms how they can regulate mast cell functions. Since specific agonists or blockers are still lacking for most members of the TRP family, studies to unravel their function and activation mode still rely on experiments using genetic approaches and transgenic animals. RNAi approaches suggest a functional role for TRPC1, TRPC5, and TRPM7 in mast cell derived cell lines or primary mast cells, and studies using Trp gene knock-out mice reveal a critical role for TRPM4 in mast cell activation and for mast cell mediated cutaneous anaphylaxis, whereas a direct role of cold- and menthol-activated TRPM8 channels seems to be unlikely for the development of cold urticaria at least in mice. PMID:22701456

  20. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells

    PubMed Central

    Drube, Sebastian; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A.; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R.; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H.; Kamradt, Thomas

    2015-01-01

    Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2+-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term “subthreshold IKK activation”. This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030

  1. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells.

    PubMed

    Drube, Sebastian; Weber, Franziska; Loschinski, Romy; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H; Kamradt, Thomas

    2015-03-10

    Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030

  2. Mast Cell Chemotaxis – Chemoattractants and Signaling Pathways

    PubMed Central

    Halova, Ivana; Draberova, Lubica; Draber, Petr

    2012-01-01

    Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems. PMID:22654878

  3. Mast cell heparin stimulates migration of capillary endothelial cells in vitro

    PubMed Central

    1980-01-01

    Migration of capillary endothelial cells is an important component of angiogenesis in vivo. Increased numbers of mast cells have been associated with several types of angiogenesis. We have used a quantitative assay in vitro to demonstrate that mast cells release a factor that significantly increases bovine capillary endothelial cell migration. The factor is present in medium conditioned by mast cells as well as lysates of mast cells. The stimulatory effect of mast cells on migration is specific for capillary endothelial cells. Furthermore, mast cells have no mitogenic activity for capillary endothelial cells. Of all the secretory products of mast cells tested, only heparin stimulated capillary endothelial cell migration in vitro. Heparin preparations from a variety of sources stimulated capillary endothelial cell migration to the same degree but did not stimulate migration of several other cell types. The migration activity of heparin and mast cell conditioned medium was blocked by specific antagonists of heparin (protamine and heparinase), but not by chondroitinase ABC. The migration activity of mast cell conditioned medium was resistant to heat (100 degrees C) and incubation with proteolytic enzymes. These results suggest that the role of mast cells in angiogenesis may be to enhance migration of the endothelial cells of growing capillaries. PMID:7420025

  4. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  5. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells.

    PubMed

    Stoyanov, Evgeniy; Uddin, Mohib; Mankuta, David; Dubinett, Steven M; Levi-Schaffer, Francesca

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect. PMID:21733595

  6. Blockade of mast cell activation reduces cutaneous scar formation.

    PubMed

    Chen, Lin; Schrementi, Megan E; Ranzer, Matthew J; Wilgus, Traci A; DiPietro, Luisa A

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  7. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    PubMed Central

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  8. Mast cell heterogeneity in non-human primates

    SciTech Connect

    Barrett, K.E.; Szucs, E.F.; Metcalfe, D.D.

    1986-03-05

    Mast cells of rodents may be subdivided in terms of their properties, but the extent of such heterogeneity in man and higher animals is still unknown. The authors have compared lung (LMC) and intestinal (IMC) mast cells obtained from individual monkeys. LMC contained more histamine (HA) than IMC (6.61+/-1.3 vs. 1.6+/-0.6 pg/cell, means+/-SEM, n=3). LMC released more HA (17.7+/-2.1% vs. 9.2+/-1.0%, means+/-SEM, n=16) and also generated more LTC/sub 4/ equivalents as measured by radioimmunoassay (range 13.4-41.5 vs. 3.0-4.0 ng/10/sup 6/ mast cells) following an anaphylactic stimulus. The majority (>90%) of LMC stained metachromatically under conditions appropriate for heparin-containing cells, whereas IMC required more forcing conditions to display metachromasia. In contrast to these quantitative and qualitative mediator differences, functional responses of LMC and IMC were similar. Thus, HA release was inhibited comparably by theophylline, isoprenaline and dibutyryl cyclic AMP, but quercetin was slightly more active on IMC. Substance P caused dose-related HA release from both cell types, although the amount released varied between individual animal, (range LMC 1.2-20.2%, IMC 1.8-23.0%, n=4). Other neuropeptides (pentagastrin) vasoactive intestinal peptide, neurotensin, somatostatin) did not release HA. They conclude that mast cell heterogeneity in higher animals may be reflected more by cytochemical rather than functional differences between mast cell classes.

  9. The transcription factor Zeb2 regulates signaling in mast cells.

    PubMed

    Barbu, Emilia Alina; Zhang, Juan; Berenstein, Elsa H; Groves, Jacqueline R; Parks, Lauren M; Siraganian, Reuben P

    2012-06-15

    Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.

  10. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  11. Does the mast cell have an intrinsic role in the pathogenesis of interstitial cystitis?

    PubMed

    Frenz, A M; Christmas, T J; Pearce, F L

    1994-06-01

    In order to examine the role of mast cells in the inflammatory bladder disease interstitial cystitis, mast cells isolated from the human bladder of normal and diseased tissue were challenged with a range of secretagogues. Calcium ionophore A23187 and anti-IgE caused histamine release from all bladder mast cells in a dose-related manner. Mast cells from the diseased tissue were far more responsive than those from the normal tissue. Mast cells from the muscle of normal bladder were responsive towards substance P and compound 48/80. However, mast cells from interstitial cystitis bladder did not release significant amounts of histamine with these two secretagogues.

  12. Principles of treatment for mast cell tumors.

    PubMed

    Govier, Susanne M

    2003-05-01

    Mast cell tumors (MCT) are the most common malignant cutaneous tumors that occur in dogs. They are most commonly found on the trunk, accounting for approximately 50% to 60% of all sites. MCTs associated with the limbs account for approximately 25% of all sites. Cutaneous MCTs have a wide variety of clinical appearances. Histologic grade is the most consistent prognostic factor available for dogs. MCTs located at 'nail bed' (subungual), inguinal/preputial area, and any mucocutaneous area like perineum or oral cavity carry a guarded prognosis and tend to metastasize. MCTs usually exfoliate well and are cytologically distinct. The extent of staging procedures following fine-needle aspirate cytologic diagnosis is based on the presence or absence of negative prognostic indicators. Surgery is the treatment of choice for solitary MCTs with no evidence of metastasis. Reponses rates to chemotherapy, (partial response) as high as 78% have been reported, and preliminary evidence suggests that multiagent (prednisone and vinblastine) protocols may confer a higher response rate than single-agent therapy. MCTs are the second most common cutaneous tumor in the cat. There are two distinct forms of cutaneous MCTs in the cat. The more common form is the mastocytic form, and the less common is the histiocytic form. Unlike in the dog, the head and neck are the most common sites for MCTs in the cat followed by the trunk and limbs. Cats with disseminated forms of MCT often present with systemic signs of illness, which include depression, anorexia, weight loss, and vomiting. The diagnosis and staging of MCTs in cats is similar to that in the dog. As with dogs with cutaneous MCTs, surgery is the treatment of choice. Little is known about the effectiveness of adjunctive chemotherapy options for cutaneous MCTs. Adjunctive chemotherapy does not appear to increase survival times.

  13. Effect of methylmercury on the rat mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Graevskaya, E. E.; Yasutake, A.; Aramai, R.; Rubin, A. B.

    2003-05-01

    Methylmercury is the well-known neurotoxicant as weil as a modulator of the immune system. We investigated the effects of MeHg on the rat mast cell degranulation induced by nonimmunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. In 8, 12 and 15 days afterthe final administration of MeHg we observed the suppression of calcium ionophore A23187-and 48/80-induced histamine release, which enhanced with time. In experiments in vitro incubation of peritoneal mast cells with MeHg alone in the dose range 10^{-8} to 10^{-6} did not induce mast cell degranulation, however modified the activation of mast cells by compound 48/80, and calcium ionophore A23187. We observed activation of stimulated secretion by preliminary incubation with low dose of MeHg 10^{-8} M and inhibition by dose of MeHg 10^{-6} M. These results show that MeHg treatment can modify mast cell function in vivo and in vitro and provide insight into the understanding what role this cell has in the pathogenesis of Minamata disease-comlected disorders.

  14. Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo

    PubMed Central

    Galli, Stephen J.; Tsai, Mindy; Marichal, Thomas; Tchougounova, Elena; Reber, Laurent L.; Pejler, Gunnar

    2016-01-01

    The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified. PMID:25727288

  15. Mast cell-cholinergic nerve interaction in mouse airways.

    PubMed

    Weigand, Letitia A; Myers, Allen C; Meeker, Sonya; Undem, Bradley J

    2009-07-01

    We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction. PMID:19403609

  16. Expression profiling of constitutive mast cells reveals a unique identity within the immune system

    PubMed Central

    Dwyer, Daniel F.; Barrett, Nora A.; Austen, K. Frank

    2016-01-01

    Mast cells are evolutionarily ancient sentinel cells. Like basophils, mast cells express the high-affinity IgE receptor and are implicated in host defense and diverse immune-mediated diseases. To better characterize the function of these cells, we assessed the transcriptional profiles of mast cells isolated from peripheral connective tissues and basophils isolated from spleen and blood. We found that mast cells were transcriptionally distinct, clustering independently from all other profiled cells, and that mast cells demonstrated considerably greater heterogeneity across tissues than previously appreciated. We observed minimal homology between mast cells and basophils, which share more overlap with other circulating granulocytes than with mast cells. Derivation of mast cell and basophil transcriptional signatures underscores their differential capacity to detect environmental signals and influence the inflammatory milieu. PMID:27135604

  17. Mast cells mediate acute inflammatory responses to implanted biomaterials

    PubMed Central

    Tang, Liping; Jennings, Timothy A.; Eaton, John W.

    1998-01-01

    Implanted biomaterials trigger acute and chronic inflammatory responses. The mechanisms involved in such acute inflammatory responses can be arbitrarily divided into phagocyte transmigration, chemotaxis, and adhesion to implant surfaces. We earlier observed that two chemokines—macrophage inflammatory protein 1α/monocyte chemoattractant protein 1—and the phagocyte integrin Mac-1 (CD11b/CD18)/surface fibrinogen interaction are, respectively, required for phagocyte chemotaxis and adherence to biomaterial surfaces. However, it is still not clear how the initial transmigration of phagocytes through the endothelial barrier into the area of the implant is triggered. Because implanted biomaterials elicit histaminic responses in the surrounding tissue, and histamine release is known to promote rapid diapedesis of inflammatory cells, we evaluated the possible role of histamine and mast cells in the recruitment of phagocytes to biomaterial implants. Using i.p. and s.c. implantation of polyethylene terephthalate disks in mice we find: (i) Extensive degranulation of mast cells, accompanied by histamine release, occurs adjacent to short-term i.p. implants. (ii) Simultaneous administration of H1 and H2 histamine receptor antagonists (pyrilamine and famotidine, respectively) greatly diminishes recruitment and adhesion of both neutrophils (<20% of control) and monocytes/macrophages (<30% of control) to implants. (iii) Congenitally mast cell-deficient mice also exhibit markedly reduced accumulation of phagocytes on both i.p. and s.c implants. (iv) Finally, mast cell reconstitution of mast cell-deficient mice restores “normal” inflammatory responses to biomaterial implants. We conclude that mast cells and their granular products, especially histamine, are important in recruitment of inflammatory cells to biomaterial implants. Improved knowledge of such responses may permit purposeful modulation of both acute and chronic inflammation affecting implanted biomaterials. PMID

  18. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. PMID:27396526

  19. Vaginal bacterial flora activates rat peritoneal mast cells.

    PubMed

    Brzezińska - Błaszczyk, E.; Wasiela, M.

    2002-01-01

    Sixteen strains of physiological and pathological vaginal bacteria were tested for their ability to secrete histamine from rat peritoneal mast cells in vitro. We noticed that Mycoplasma hominis-induced histamine release was very high (up to 53.6%). The stimulation of rat mast cells with Staphylococccus cohnii, Staphylococcus coagulase(-) (two strains), Ureaplasma urealyticum, Peptostreptococcus spp., Bacteroides capillosus, Staphylococcus aureus and Streptococcus agalactiae resulted in lower but significant histamine secretion (11.2%-17.5%). Other bacteria strains (Staphylococcus epidermidids, Enterococcus faecalis, Escherichia coli, Actinomyces naeslundii (two strains) and Lactobacillus fermentum (two strains) caused very low (4.2% - 8.8%) histamine release.

  20. Mast cells: Versatile regulators of inflammation, tissue remodeling, host defense and homeostasis

    PubMed Central

    Galli, Stephen J.; Tsai, Mindy

    2009-01-01

    Summary The possible roles of mast cells in heath and disease have been a topic of interest for over one hundred and twenty five years. Many adaptive or pathological processes affecting the skin or other anatomical sites have been associated with morphological evidence of mast cell activation, and/or with changes in mast cell numbers or phenotype. Such observations, taken together with the known functions of the diverse mediators, cytokines and growth factors which can be secreted by mast cells, have suggested many potential functions for mast cells in health and disease. Definitively identifying the importance of mast cells in biological responses in humans is difficult. However, mutant mice which are profoundly mast cell-deficient, especially those which can undergo engraftment with wild type or genetically-altered mast cells, provide an opportunity to investigate the importance of mast cells, and specific mast cell functions or products, in various adaptive or pathological responses in mice. Such work has shown that mast cells can significantly influence multiple features of inflammatory or immune responses, through diverse effects that can either promote or, surprisingly, suppress, aspects of these responses. Through such functions, mast cells can significantly influence inflammation, tissue remodeling, host defense and homeostasis. PMID:18024086

  1. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  2. Cutaneous mast cell tumor (Mastocytoma): Cyto- histopathological and haematological investigations

    PubMed Central

    2014-01-01

    Cutaneous mast cell tumours (MCTs) are the most common skin tumours in dogs. Due to the prevalence of canine MCTs and the variable biologic behavior of this disease, accurate prognostication and a thorough understanding of MCT biology are critical for the treatment of this disease. A cytologic diagnosis of mast cell tumor with evidence of prior hemorrhage was made, and the masses were surgically removed. Cytological evaluation of fine-needle aspirates from the cutaneous mass from the axillary comprised many well-differentiated, highly granulated mast cells with moderate numbers of eosinophils. Nuclei were varied in size and shape with high nuclear’to’cytoplasmic ratio, prominent nucleoli, marked atypical and mitotic figures. Microscopically, mass consisted of sheets of neoplastic round cells that formed nonencapsulated nodules in the dermis and infiltrated into the adjacent dermal collagen, and also there was diffuse subcutis invasion of round to pleomorphic tumor cells. Tumor cells had moderate to abundant cytoplasm, round to ovoid nuclei with scattered chromatin, and mitotic figures. In this tumor, cytoplasmic granules showed atypical metachromasia. In addition, eosinophils were scattered among the mast cells at the periphery of the nodules. The presence of eosinophils and the observation, at high magnification, of cells with cytoplasmic metachromatic granules. Invasion of the deep subcutaneous fat or cutaneous muscles were a common feature of grade III tumour. Finally, a diagnosis of grade III cutaneous mast cell tumor was made. Virtual slides The virtual slide(s) of this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4755249151157024. PMID:24444100

  3. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  4. Diagnosis and treatment of mast cell disorders: practical recommendations.

    PubMed

    Sandes, Alex Freire; Medeiros, Raphael Salles Scortegagna; Rizzatti, Edgar Gil

    2013-01-01

    CONTEXT AND OBJECTIVE The term mastocytosis covers a group of rare disorders characterized by neoplastic proliferation and accumulation of clonal mast cells in one or more organs. The aim of this study was to assess the principal elements for diagnosing and treating these disorders. DESIGN AND SETTING Narrative review of the literature conducted at Grupo Fleury, São Paulo, Brazil. METHODS This study reviewed the scientific papers published in the PubMed, Embase (Excerpta Medica Database), Lilacs (Literatura Latino-Americana e do Caribe em Ciências da Saúde) and Cochrane Library databases that were identified using the search term "mastocytosis." RESULTS The clinical presentation of mastocytosis is remarkably heterogeneous and ranges from skin lesions that may regress spontaneously to aggressive forms associated with organ failure and short survival. Currently, seven subtypes of mastocytosis are recognized through the World Health Organization classification system for hematopoietic tumors. These disorders are diagnosed based on clinical manifestations and on identification of neoplastic mast cells using morphological, immunophenotypic, genetic and molecular methods. Abnormal mast cells display atypical and frequently spindle-shaped morphology, and aberrant expression of the CD25 and CD2 antigens. Elevation of serum tryptase is a common finding in some subtypes, and more than 90% of the patients present the D816V KIT mutation in mast cells. CONCLUSION Here, we described the most common signs and symptoms among patients with mastocytosis and suggested a practical approach for the diagnosis, classification and initial clinical treatment of mastocytosis.

  5. Clonal mast cell activation syndrome with anaphylaxis to sulfites.

    PubMed

    Cifuentes, Liliana; Ring, Johannes; Brockow, Knut

    2013-01-01

    Sulfites are rarely suspected as causative agents of immediate-type hypersensitivity. We report on a 49-year-old male patient who developed recurrent severe hypotension after food ingestion. A diagnosis of monoclonal mast cell activation syndrome was established. In the double-blind, placebo-controlled food challenge, the patient reacted to potassium metabisulfite with anaphylaxis.

  6. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  7. Mast cell-derived tryptase in odontogenic cysts.

    PubMed

    Teronen, O; Hietanen, J; Lindqvist, C; Salo, T; Sorsa, T; Eklund, K K; Sommerhoff, C P; Ylipaavalniemi, P; Konttinen, Y T

    1996-08-01

    Inflammatory and developmental cysts of the jaws are relatively common bone destructive lesions in the human maxillofacial skeleton but their pathogenesis is still poorly understood. In this study the role of mast cells (MC), and mast cell tryptase in particular, was evaluated in the pathophysiology of bone resorption and jaw cyst formation in different types of cysts. The distribution of MC and the amount of tryptase in histological tissue sections were determined by immunohistochemistry using monoclonal antihuman tryptase antibodies and the results were quantitated by using an image analyzing system. The amount of tryptase was further studied by Western-blotting and measurement of trypsin-like activity from the neutral salt extracts obtained from different types of jaw cysts. In contrast to control tissue, high trypsin-like activities and abundant immunoreactive tryptase were observed in the extracts of all types of cysts studied (radicular, dentigerous and keratocyst). In tissue sections the highest amount of tryptase-positive staining was observed in radicular cysts (mean 6.2% of reference area) and the lowest amount in keratocysts (mean 2.1% of reference area, P < 0.01). MC were found to be located in inflammatory cell-rich tissue areas and just beneath the cyst epithelium. Importantly, MC located at the border of bone were observed to be degranulated, indicating high activity of MC and release of tryptase at the regions of early bone destruction. Based on previous findings addressing the role of mast cell tryptase in proteolytic cascades, and the known association of MC with osteoporosis, we suggest that mast cells and mast cell tryptase may contribute significantly to jaw cyst tissue remodelling during growth of a cyst, and to the destruction of the surrounding bone, resulting in jaw cyst expansion.

  8. Immunohistochemical Evaluation of Mast Cells in Leukoplakia and Oral Squamous Cell Carcinoma

    PubMed Central

    Narasimhan, Malathi

    2016-01-01

    Introduction More than 90% of oral cancers are squamous cell carcinomas with oral leukoplakia being the most common potentially malignant disorder. Among the cell types in the stroma, mast cells play an important role in tumourigenesis through various mechanisms. Aim The present study was aimed at comparing the mast cell count among normal oral mucosa, leukoplakia and Oral squamous cell carcinoma (OSSC) and to evaluate the possible role of mast cells in carcinogenesis. Materials and Methods Mast cell count was assessed immunohistochemically using anti-mast cell tryptase amongst 20 cases of leukoplakia and OSSC each and 10 normal gingival samples. Overall comparison was done using Kruskal Wallis test and intergroup comparison was done using Mann-Whitney U test. Results The results of the present study showed an increase in mast cell count from normal oral mucosa (Mean: 7.73) to leukoplakia (Mean: 15.11) to squamous cell carcinoma (Mean: 22.73). Comparison of mean number of mast cells amongst three groups (p-value: 0.001) and intergroup comparisons showed statistical significance. Conclusion Mast cells favour malignant transformation and can be used as indicators of disease progression. PMID:27656549

  9. Involvement of mast cells in inflammation induced by Trichomonas vaginalis via crosstalk with vaginal epithelial cells.

    PubMed

    Han, I H; Park, S J; Ahn, M H; Ryu, J S

    2012-01-01

    Vaginal epithelial cells (VECs) are thought to function as immune-responsive cells in trichomoniasis, and mast cells have been detected in vaginal smears and the vaginal wall in trichomoniasis. It therefore seemed possible that the VEC-trichomonad reaction might affect the activity of mast cells present in the lamina propria of the vaginal mucosa. In this study, we tested whether culture supernatants of VEC incubated with Trichomonas vaginalis (TCM) could stimulate mast cells. When VECs (MS74) were incubated with live trichomonads, IL-8, IL-6 and MCP-1 expressions increased in the TCM, and mast cells (HMC-1) and human neutrophils migrated more actively towards the TCM. Also, when the TCM was added to mast cells, β-hexosaminidase and cytokines (IL-8 and TNF-α) expressions were increased. Moreover, the culture supernatant of mast cells incubated with TCM (M-TCM) had more increased chemotactic activity for neutrophils than that of TCM. We conclude that inflammatory mediators made by VECs in response to activation by T. vaginalis activate and attract mast cells and then stimulate them to induce neutrophil migration. Our results indicate, for the first time, that VECs play a role in the infiltration of mast cells and neutrophils early in T. vaginalis infection. PMID:21981317

  10. Reversible expansion of primate mast cell populations in vivo by stem cell factor.

    PubMed Central

    Galli, S J; Iemura, A; Garlick, D S; Gamba-Vitalo, C; Zsebo, K M; Andrews, R G

    1993-01-01

    Mast cell development in mice is critically regulated by stem cell factor (SCF), the term used here to designate a product of fibroblasts and other cell types that is a ligand for the tyrosine kinase receptor protein encoded by the proto-oncogene c-kit. However, the factors which regulate the size of mast cell populations in primates are poorly understood. Here we report that the subcutaneous administration of recombinant human SCF (rhSCF) to baboons (Papio cynocephalus) or cynomolgus monkeys (Macaca fascicularis) produced a striking expansion of mast cell populations in many anatomical sites, with numbers of mast cells in some organs of rhSCF-treated monkeys exceeding the corresponding values in control monkeys by more than 100-fold. Animals treated with rhSCF did not exhibit clinical evidence of mast cell activation, and discontinuation of treatment with rhSCF resulted in a rapid decline of mast cell numbers nearly to baseline levels. These findings are the first to demonstrate that a specific cytokine can regulate mast cell development in primates in vivo. They also provide the first evidence, in any mammalian species, to indicate that the cytokine-dependent expansion of tissue mast cell populations can be reversed when administration of the cytokine is discontinued. Images PMID:7678600

  11. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen

  12. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  13. Identification of a lysophosphatidylserine receptor on mast cells.

    PubMed

    Sugo, Tsukasa; Tachimoto, Hiroshi; Chikatsu, Tomoko; Murakami, Yuko; Kikukawa, Yuhsuke; Sato, Shuji; Kikuchi, Kuniko; Nagi, Toshimi; Harada, Mioko; Ogi, Kazuhiro; Ebisawa, Motohiro; Mori, Masaaki

    2006-03-24

    Lysophosphatidyl-L-serine (lysoPS) is thought to be an immunological regulator because it dramatically augments the degranulation of rat peritoneal mast cells (RPMCs). This stimulatory effect may be mediated by a lysoPS receptor, but its molecule has not been identified yet. During a ligand fishing study for the orphan G-protein-coupled receptor 34 (GPR34), we found that lysoPS caused a dose-dependent inhibition of forskolin-stimulated cAMP accumulation in human GPR34-expressing Chinese hamster ovary (CHO/hGPR34) cells. The CHO/hGPR34 cells were unresponsive to other structurally related phospholipids examined. Quantitative real-time-PCR demonstrated that mRNAs of GPR34 are particularly abundant in mast cells. The effective lysoPS concentration for RPMC degranulation was similar to that required for GPR34 activation, and the structural requirement of lysoPS for RPMC degranulation was in good agreement with that observed in CHO/hGPR34 cells. These results suggest that GPR34 is the functional mast cell lysoPS receptor. PMID:16460680

  14. Quantitative evaluation of mast cells in cellularly dynamic and adynamic vascular malformations.

    PubMed

    Pasyk, K A; Cherry, G W; Grabb, W C; Sasaki, G H

    1984-01-01

    Mast cells were counted in 78 histologic specimens from 70 patients with various vascular malformations showing cellularly dynamic and cellularly adynamic lesions. In growing stages of strawberry hemangiomas, there was an increased number of mast cells (mean 11.0 cells per high-power field in stage III and 23.7 in stage IV), as well as a high number of mast cells in the initial involution of strawberry hemangiomas (stage V, mean 21.0 cells per high-power field). In later involuting stages (stages VI and VII), the number of mast cells decreased (mean 9.3 in stage VI; mean 4.7 in stage VII). In cellularly adynamic lesions, i.e., port wine stains, the mean number of mast cells was 4.8, and in congenital arteriovenous malformations, it was 3.6. In normal skin, the mean number of mast cells was 3.2. In cellular hemangiomas that showed active growth (stages III to IV), the number of mast cells was strikingly low (mean 1.3). It seems that the mast cells are not responsible for the proliferation of the endothelium or for growth of the hemangioma. The markedly increased number of mast cells in the growing stages and initial involuting stage of strawberry hemangiomas parallels the gradual growth of fibrous connective tissue inside the tumor. Mast cells may thus be a precursor of the beginning of the involution of a strawberry hemangioma. PMID:6691077

  15. Amarogentin Displays Immunomodulatory Effects in Human Mast Cells and Keratinocytes

    PubMed Central

    Wölfle, Ute; Haarhaus, Birgit; Schempp, Christoph M.

    2015-01-01

    Keratinocytes express the bitter taste receptors TAS2R1 and TAS2R38. Amarogentin as an agonist for TAS2R1 and other TAS2Rs promotes keratinocyte differentiation. Similarly, mast cells are known to express bitter taste receptors. The aim of this study was to assess whether bitter compounds display immunomodulatory effects on these immunocompetent cells in the skin, so that they might be a target in chronic inflammatory diseases such as atopic dermatitis and psoriasis. Here, we investigated the impact of amarogentin on substance P-induced release of histamine and TNF-α from the human mast cell line LAD-2. Furthermore, the effect of amarogentin on HaCaT keratinocytes costimulated with TNF-α and histamine was investigated. Amarogentin inhibited in LAD-2 cells substance P-induced production of newly synthesized TNF-α, but the degranulation and release of stored histamine were not affected. In HaCaT keratinocytes histamine and TNF-α induced IL-8 and MMP-1 expression was reduced by amarogentin to a similar extent as with azelastine. In conclusion amarogentin displays immunomodulatory effects in the skin by interacting with mast cells and keratinocytes. PMID:26600671

  16. Acrolein induction of oxidative stress and degranulation in mast cells.

    PubMed

    Hochman, Daniel J; Collaco, Christopher R; Brooks, Edward G

    2014-08-01

    Increases in asthma worldwide have been associated epidemiologically with expanding urban air pollution. The mechanistic relationship between airway hyper-responsiveness, inflammation, and ambient airborne triggers remains ambiguous. Acrolein, a ubiquitous aldehyde pollutant, is a product of incomplete combustion reactions. Acrolein is abundant in cigarette smoke, effluent from industrial smokestacks, diesel exhaust, and even hot oil cooking vapors. Acrolein is a potent airway irritant and can induce airway hyper-responsiveness and inflammation in the lungs of animal models. In the present study, we utilized the mast cell analog, RBL-2H3, to interrogate the responses of cells relevant to airway inflammation and allergic responses as a model for the induction of asthma-like conditions upon exposure to acrolein. We hypothesized that acrolein would induce oxidative stress and degranulation in airway mast cells. Our results indicate that acrolein at 1 ppm initiated degranulation and promoted the generation of reactive oxygen species (ROS). Introduction of antioxidants to the system significantly reduced both ROS generation and degranulation. At higher levels of exposure (above 100 ppm), RBL-2H3 cells displayed signs of severe toxicity. This experimental data indicates acrolein can induce an allergic inflammation in mast cell lines, and the initiation of degranulation was moderated by the application of antioxidants.

  17. Amarogentin Displays Immunomodulatory Effects in Human Mast Cells and Keratinocytes.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Schempp, Christoph M

    2015-01-01

    Keratinocytes express the bitter taste receptors TAS2R1 and TAS2R38. Amarogentin as an agonist for TAS2R1 and other TAS2Rs promotes keratinocyte differentiation. Similarly, mast cells are known to express bitter taste receptors. The aim of this study was to assess whether bitter compounds display immunomodulatory effects on these immunocompetent cells in the skin, so that they might be a target in chronic inflammatory diseases such as atopic dermatitis and psoriasis. Here, we investigated the impact of amarogentin on substance P-induced release of histamine and TNF-α from the human mast cell line LAD-2. Furthermore, the effect of amarogentin on HaCaT keratinocytes costimulated with TNF-α and histamine was investigated. Amarogentin inhibited in LAD-2 cells substance P-induced production of newly synthesized TNF-α, but the degranulation and release of stored histamine were not affected. In HaCaT keratinocytes histamine and TNF-α induced IL-8 and MMP-1 expression was reduced by amarogentin to a similar extent as with azelastine. In conclusion amarogentin displays immunomodulatory effects in the skin by interacting with mast cells and keratinocytes. PMID:26600671

  18. Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation.

    PubMed

    Strik, Merel C M; de Koning, Pieter J A; Kleijmeer, Monique J; Bladergroen, Bellinda A; Wolbink, Angela M; Griffith, Janice M; Wouters, Dorine; Fukuoka, Yoshihiro; Schwartz, Lawrence B; Hack, C Erik; van Ham, S Marieke; Kummer, J Alain

    2007-07-01

    Mast cells are widely distributed throughout the body and express effector functions in allergic reactions, inflammatory diseases, and host defense. Activation of mast cells results in exocytosis of preformed chemical mediators and leads to novel synthesis and secretion of lipid mediators and cytokines. Here, we show that human mast cells also express and release the cytotoxic lymphocyte-associated protease, granzyme B. Granzyme B was active and localized in cytoplasmic granules, morphologically resembling those present in cytotoxic lymphocytes. Expression and release of granzyme B by mast cell-lines HMC-1 and LAD 2 and by cord blood- and mature skin-derived human mast cells depended on the mode of activation of these cells. In mast cell lines and cord blood-derived mast cells, granzyme B expression was mainly induced by non-physiological stimuli (A23187/PMA, Compound 48/80) and substance P. In contrast, mature skin-derived mast cells only produced granzyme B upon IgE-dependent stimulation. We conclude that granzyme B is expressed and released by human mast cells upon physiologic stimulation. This suggests a role for granzyme B as a novel mediator in mast cell biology.

  19. Communication between mast cells and rat submucosal neurons.

    PubMed

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system. PMID:25224285

  20. Skin Mast Cells Protect Mice Against Vaccinia Virus by Triggering Mast Cell Receptor S1PR2 and Releasing Antimicrobial Peptides

    PubMed Central

    Wang, Zhenping; Lai, Yuping; Bernard, Jamie J; MacLeod, Daniel; Cogen, Anna L; Moss, Bernard; Di Nardo, Anna

    2011-01-01

    Mast cells (MCs) are well known effectors of allergic reactions and are considered sentinels in the skin and mucosa. In addition, through their production of cathelicidin, mast cells have the capacity to oppose invading pathogens. We therefore hypothesized that mast cells could act as sentinels in the skin against viral infections using antimicrobial peptides. Here, we demonstrate that mast cells react to Vaccinia virus (VV) and degranulate using a membrane-activated pathway that leads to antimicrobial peptide discharge and virus inactivation. This finding was supported using a mouse model of viral infection. Mast cell-deficient (Kitwsh−/−) mice were more susceptible to skin VV infection than the wild-type animals, while Kitwsh−/− mice reconstituted with mast cells in the skin showed a normal response to VV. Using mast cells derived from mice deficient in cathelicidin antimicrobial peptide, we showed that antimicrobial peptides are one important antiviral granule component in vivo skin infections. In conclusion, our paper demonstrates that: MC presence protects mice from VV skin infection. MC degranulation is required for protecting mice from VV. Neutralizing antibody to the L1 fusion entry protein of VV inhibits degranulation apparently by preventing S1PR2 activation by viral membrane lipids. Antimicrobial peptide release from mast cell granules is necessary to inactivate VV infectivity. PMID:22140255

  1. Mast cells in canine cutaneous hemangioma, hemangiosarcoma and mammary tumors.

    PubMed

    Woldemeskel, Moges; Rajeev, Sreekumari

    2010-02-01

    Mast cell count (MCC) in 45 dogs with cutaneous hemangioma (HA, n = 12), hemangiosarcoma (HSA, n = 12), mammary adenoma (AD, n = 9) and mammary adenocarcinoma (AC, n = 12) was made using Toluidine blue stained sections. Antibodies against endothelial cell markers, Factor VIII and VEGF were used to visualize and determine the hot spot micro-vessel density (MVD). Total MCC and MCC along the invasive edges were significantly higher (p < 0.001) in canine mammary AC than in AD. The total MCC did not significantly differ (p > 0.05), in HSAs (8.6 +/- 3.3) than in HAs (5.5 +/- 2.8). There is a positive correlation (r = 0.14) between the hot spot MCC and MVD in mammary AC, although not significant (p = 0.3172), indicating that mast cells are associated with angiogenesis in canine mammary AC. This study suggests that mast cells may play an important role in neovascularization of canine cutaneous vascular and mammary neoplasms. Detailed studies encompassing correlation of MCC and MVD with clinical outcomes and prognosis in these neoplasms are recommended.

  2. Quantitative observations on iliac bone marrow mast cells in chronic renal failure.

    PubMed Central

    Peart, K M; Ellis, H A

    1975-01-01

    Mast cells have been counted in sections of iliac bone from 61 control subjects at necropsy. Mast cells were found in all but three, and the range was 0-33-7, median 1-95 per mm2 marrow. The majority (82%) had less than 4-99 mast cells per mm2 marrow; in 37-7% there was less than 1 mast cell per mm2 marrow. In a group of 45 patients with chronic renal failure there was a significant increase in the numbers of mast cells (P less than 0-001) with a range of 0-96-55-63, median 9-55 per mm2 marrow. Mast cells were common in the areas of marrow fibrosis associated with osteitis fibrosa but this was not the sole cause of the increase since there was also an excess of mast cells in the non-fibrous parts of the marrow. There was a tendency towards greater numbers of mast cells in those cases with most marked osteitis fibrosa in association with the prominent marrow fibrosis, but there was no significant relationship between mast cell numbers and other features of oesteitis fibrosa such as the number of osteoclasts and the amount of woven bone formation. There was no relationship between the numbers of mast cells and the amounts of total bone, ostoid, percentage mineralization of cancellous bone, or the presence of osteomalacia. PMID:1206118

  3. Studies on the specific degranulation of mast cell sensitized by several allergens in vitro.

    PubMed

    Guo, Yongchao; Li, Zhenxing; Lin, Hong; Samee, Haider; Khalid, Jamil

    2009-04-01

    Food allergy is a major health issue worldwide. Mast cells play a very important role in the immediate hypersensitivity for which mast cell degranulation needs to be studied extensively. In this study, an approach was taken to study the characteristics of sensitized mast cell degranulation in vitro, which associated with the study of mast cells and animal models. BALB/c mice were immunized respectively by several food allergens, then blood and peritoneal mast cells were collected at different time points. A dynamic determination was carried out between mast cells and serumal IgE. Comparative analysis on sequential time points showed that there was a close coincidence between mast cell degranulation and IgE antibody titers in sensitized BALB/c mice. Furthermore, it is interesting that sensitized mast cells could implement specific degranulation against the challenges in vitro, but the closely tropomyosins induced mast cell degranulation displayed cross reactions. This is very similar to IgE resisting the allergens in vivo. The study disclosed some characteristics on mast cells, coming from sensitized BALB/c mice, degranulation in vitro.

  4. The Role of Mast Cells in Alzheimer's Disease.

    PubMed

    Shaik-Dasthagirisaheb, Yasdani B; Conti, Pio

    2016-01-01

    Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease. Cytokines/chemokines, which are generated mostly by microglia and astrocytes in Alzheimer's disease, contribute to nearly every aspect of neuroinflammation and amyloid â-protein plaque aggregates may induce in mast cells the release of a plethora of mediators, including pro-inflammatory cytokines/chemokines such as interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, vascular endothelial growth factor, transforming growth factor beta, CXCL8 and CCL2-3-4. These proinflammatory cytokines/chemokines are prominent mediators of neuroinflammation in brain disorders such as Alzheimer's disease, and their inhibition may be associated with improved recovery. In this review, we summarize the current knowledge regarding the roles of mast cell mediators (stored and de novo synthesis) in the pathogenesis of Alzheimer's disease. PMID:27629855

  5. The Role of Mast Cells in Alzheimer's Disease.

    PubMed

    Shaik-Dasthagirisaheb, Yasdani B; Conti, Pio

    2016-01-01

    Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease. Cytokines/chemokines, which are generated mostly by microglia and astrocytes in Alzheimer's disease, contribute to nearly every aspect of neuroinflammation and amyloid â-protein plaque aggregates may induce in mast cells the release of a plethora of mediators, including pro-inflammatory cytokines/chemokines such as interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, vascular endothelial growth factor, transforming growth factor beta, CXCL8 and CCL2-3-4. These proinflammatory cytokines/chemokines are prominent mediators of neuroinflammation in brain disorders such as Alzheimer's disease, and their inhibition may be associated with improved recovery. In this review, we summarize the current knowledge regarding the roles of mast cell mediators (stored and de novo synthesis) in the pathogenesis of Alzheimer's disease.

  6. The lectin ArtinM binds to mast cells inducing cell activation and mediator release.

    PubMed

    Barbosa-Lorenzi, Valéria Cintra; Buranello, Patrícia Andressa de Almeida; Roque-Barreira, Maria Cristina; Jamur, Maria Célia; Oliver, Constance; Pereira-da-Silva, Gabriela

    2011-12-16

    Mast cells are inflammatory cells that respond to signals of innate and adaptive immunity with immediate and delayed release of mediators. ArtinM, a lectin from Artocarpus integrifolia with immunomodulatory activities, is able to induce mast cell activation, but the mechanisms remain unknown. This study sought to further investigate the effects of the lectin on mast cells. We showed that ArtinM binds to mast cells, possibly to the high affinity receptor for immunoglobulin E (IgE) - FcεRI - and/or to IgE bound to FcεRI. Binding of the lectin resulted in protein tyrosine phosphorylation and release of the pre- and newly-formed mediators, β-hexosaminidase and LTB(4) by mast cells, activities that were potentiated in the presence of IgE. ArtinM also induced the activation of the transcription factors NFκB and NFAT, resulting in expression of some of their target genes such as IL-4 and TNF-α. In view of the established significance of mast cells in many immunological and inflammatory reactions, a better understanding of the mechanisms involved in mast cell activation by ArtinM is crucial to the pharmacological application of the lectin.

  7. The progress and promise of zebrafish as a model to study mast cells.

    PubMed

    Prykhozhij, Sergey V; Berman, Jason N

    2014-09-01

    Immunological and hematological research using the zebrafish (Danio rerio) has significantly advanced our understanding of blood lineage ontology, cellular functions and mechanisms, and provided opportunities for disease modeling. Mast cells are an immunological cell type involved in innate and adaptive immune systems, hypersensitivity reactions and cancer progression. The application of zebrafish to study mast cell biology exploits the developmental and imaging opportunities inherent in this model system to enable detailed genetic and molecular studies of this lineage outside of traditional mammalian models. In this review, we first place the importance of mast cell research in zebrafish into the context of comparative studies of mast cells in other fish species and highlight its advantages due to superior experimental tractability and direct visualization in transparent embryos. We discuss current and future tools for mast cell research in zebrafish and the notable results of using zebrafish for understanding mast cell fate determination and our development of a systemic mastocytosis model.

  8. The dark side of mast cell-targeted therapy in prostate cancer.

    PubMed

    Pittoni, Paola; Colombo, Mario Paolo

    2012-02-15

    Tumor development requires accomplices among white blood cells. Other than macrophages, mast cells have been observed to support the outgrowth of certain neoplasias because of their proangiogenic properties. In some tumor settings, however, mast cells may have a protective role, exerted by their proinflammatory mediators. In prostate cancer, no conclusive data on mast cell function were available. Here, we discuss recent work on the role of mast cells in mouse and human prostate cancer, showing that mast cells can behave alternatively as dangerous promoters, innocent bystanders, or essential guardians of tumors, according to the stage and origin of transformed cells. In particular, mast cells are essential for the outgrowth of early-stage tumors due to their matrix metalloproteinase-9 production, become dispensable in advanced-stage, post-epithelial-to-mesenchymal transition, and are protective against neuroendocrine prostate tumor variants. The common expression of c-Kit by mast cells and neuroendocrine clones suggests a possible competition for the ligand Stem cell factor and offers the chance of curing early-stage disease while preventing neuroendocrine tumors using c-Kit-targeted therapy. This review discusses the implications of these findings on the advocated mast cell-targeted cancer therapy and considers future directions in the study of mast cells and their interactions with other c-Kit-expressing cells. PMID:22307838

  9. Induction of Mast Cell Accumulation by Tryptase via a Protease Activated Receptor-2 and ICAM-1 Dependent Mechanism

    PubMed Central

    Liu, Xin; Wang, Junling; Zhang, Huiyun; Zhan, Mengmeng; Chen, Hanqiu; Fang, Zeman; Xu, Chiyan; Chen, Huifang; He, Shaoheng

    2016-01-01

    Mast cells are primary effector cells of allergy, and recruitment of mast cells in involved tissue is one of the key events in allergic inflammation. Tryptase is the most abundant secretory product of mast cells, but little is known of its influence on mast cell accumulation. Using mouse peritoneal model, cell migration assay, and flow cytometry analysis, we investigated role of tryptase in recruiting mast cells. The results showed that tryptase induced up to 6.7-fold increase in mast cell numbers in mouse peritoneum following injection. Inhibitors of tryptase, an antagonist of PAR-2 FSLLRY-NH2, and pretreatment of mice with anti-ICAM-1, anti-CD11a, and anti-CD18 antibodies dramatically diminished tryptase induced mast cell accumulation. On the other hand, PAR-2 agonist peptides SLIGRL-NH2 and tc-LIGRLO-NH2 provoked mast cell accumulation following injection. These implicate that tryptase induced mast cell accumulation is dependent on its enzymatic activity, activation of PAR-2, and interaction between ICAM-1 and LFA-1. Moreover, induction of trans-endothelium migration of mast cells in vitro indicates that tryptase acts as a chemoattractant. In conclusion, provocation of mast cell accumulation by mast cell tryptase suggests a novel self-amplification mechanism of mast cell accumulation. Mast cell stabilizers as well as PAR-2 antagonist agents may be useful for treatment of allergic reactions. PMID:27378825

  10. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    PubMed

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

  11. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia

    PubMed Central

    Jiang, Wen; Kirkup, Anthony J; Grundy, David

    2011-01-01

    Abstract Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping the mesenteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation

  12. Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation ▿

    PubMed Central

    Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert

    2011-01-01

    Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256

  13. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  14. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    PubMed Central

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  15. In vitro inhibition of human conjunctival mast-cell degranulation by ketotifen.

    PubMed

    Schoch, C

    2003-02-01

    Ketotifen relieves the symptoms of allergic conjunctivitis through multiple mechanisms of action. One such mechanism may involve stabilization of conjunctival mast cells. Because of inter- and intra-species variation, however, this hypothesis cannot be adequately tested using mast cells from animals or other human tissues. We therefore employed human conjunctival mast cells. The mast cells were prepared using human conjunctival tissues obtained from US eye banks. Cell suspensions were sensitized with human IgE and incubated with ketotifen fumarate or control. After antigenic challenge of sensitized cells with anti-IgE, levels of histamine and tryptase, two mast-cell granule markers, were measured in the supernatant fluid. Cell viability was assessed with a Trypan Blue assay. Ketotifen at concentrations of approximately 10(-11) to 10(-4) M inhibited mast-cell histamine release by 90% or more. Similarly, ketotifen at approximately 10(-10) to 10(-4) M inhibited tryptase release by 90% or more (apart from a single anomalous reading). At all ketotifen concentrations that stabilized mast cells, cell viability was preserved. Moreover, ketotifen did not impair cell viability unless concentrations were increased above the clinically relevant range, i.e., above the order of magnitude of 10(-4) M. These data demonstrate that ketotifen can stabilize human conjunctival mast cells, without impairing cell viability.

  16. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  17. Mast cell activation contributes to sickle cell pathobiology and pain in mice

    PubMed Central

    Vincent, Lucile; Vang, Derek; Nguyen, Julia; Gupta, Mihir; Luk, Kathryn; Ericson, Marna E.; Simone, Donald A.

    2013-01-01

    Sickle cell anemia (SCA) is an inherited disorder associated with severe lifelong pain and significant morbidity. The mechanisms of pain in SCA remain poorly understood. We show that mast cell activation/degranulation contributes to sickle pain pathophysiology by promoting neurogenic inflammation and nociceptor activation via the release of substance P in the skin and dorsal root ganglion. Mast cell inhibition with imatinib ameliorated cytokine release from skin biopsies and led to a correlative decrease in granulocyte-macrophage colony-stimulating factor and white blood cells in transgenic sickle mice. Targeting mast cells by genetic mutation or pharmacologic inhibition with imatinib ameliorates tonic hyperalgesia and prevents hypoxia/reoxygenation-induced hyperalgesia in sickle mice. Pretreatment with the mast cell stabilizer cromolyn sodium improved analgesia following low doses of morphine that were otherwise ineffective. Mast cell activation therefore underlies sickle pathophysiology leading to inflammation, vascular dysfunction, pain, and requirement for high doses of morphine. Pharmacological targeting of mast cells with imatinib may be a suitable approach to address pain and perhaps treat SCA. PMID:23775718

  18. The STAT5-GATA2 Pathway Is Critical in Basophil and Mast Cell Differentiation and Maintenance

    PubMed Central

    Li, Yapeng; Qi, Xiaopeng; Liu, Bing; Huang, Hua

    2015-01-01

    Transcription factor GATA2 plays critical roles in hematopoietic stem cell survival and proliferation, GMP differentiation, and basophil and mast cell differentiation. However, precise roles of GATA2 in basophil and mast cell differentiation and maintenance have not been delineated. We have identified GATA2 as an essential transcription factor in differentiation of newly identified common basophil and mast cell progenitors into basophils and mast cells. We observed Gata2 haploinsufficiency for mast cell differentiation but not for basophil differentiation. We examined the precise role of GATA2 in maintaining the expression of a wide range of genes that are important for performing basophil or mast cell functions. The effects of GATA2 on gene expression were broadly based. We demonstrated that GATA2 was required for maintaining Fcer1a mRNA and FcεRIα protein expression on both basophils and mast cells as well as for maintaining Kit mRNA and c-Kit protein expression on mast cells. GATA2 was required for histamine synthesis and was also critical for Il4 mRNA expression in basophils and Il13 mRNA expression in mast cells. We demonstrate a STAT5-GATA2 connection, showing that the STAT5 transcription factor directly bound to the promoter and an intronic region of the Gata2 gene. Overexpression of the Gata2 gene was sufficient to direct basophil and mast cell differentiation in the absence of the Stat5 gene. Our study reveals that the STAT5-GATA2 pathway is critical for basophil and mast cell differentiation and maintenance. PMID:25801432

  19. The Lectin ArtinM Induces Recruitment of Rat Mast Cells from the Bone Marrow to the Peritoneal Cavity

    PubMed Central

    de Almeida Buranello, Patricia Andressa; Moulin, Maria Raquel Isnard; Souza, Devandir Antonio; Jamur, Maria Célia; Roque-Barreira, Maria Cristina; Oliver, Constance

    2010-01-01

    Background The D-mannose binding lectin ArtinM is known to recruit neutrophils, to degranulate mast cells and may have potential therapeutic applications. However, the effect of ArtinM on mast cell recruitment has not been investigated. Methodology Male Wistar rats were injected i.p. with ArtinM or ConA (control). The ability of the lectin to degranulate peritoneal and mesenteric mast cells was examined. Recruitment of mast cells to the peritoneal cavity and mesentery after ArtinM injection was examined with or without depletion of peritoneal mast cells by distilled water. Results ArtinM degranulated both peritoneal and mesentery mast cells in vitro. Three days after i.p. injection of the lectin there were reduced numbers of mast cells in the peritoneal lavage, while at 7 days post injection of ArtinM, the number of peritoneal mast cells was close to control values. Since immature mast cells are recruited from the bone marrow, the effect of the lectin on bone marrow mast cells was examined. Injection of ArtinM resulted in an increased number of mast cells in the bone marrow. To determine if degranulation of mast cells in the peritoneal cavity was required for the increase in bone marrow mast cells, the peritoneal cavity was depleted of mast cells with ultrapure water. Exposure to ArtinM increased the number of mast cells in the bone marrow of rats depleted of peritoneal mast cells. Conclusions The ArtinM induced recruitment of mast cells from the bone marrow to the peritoneal cavity may partially explain the therapeutic actions of ArtinM. PMID:20339538

  20. The architectural relationship of components controlling mast cell endocytosis

    PubMed Central

    Cleyrat, Cédric; Darehshouri, Anza; Anderson, Karen L.; Page, Christopher; Lidke, Diane S.; Volkmann, Niels; Hanein, Dorit; Wilson, Bridget S.

    2013-01-01

    Summary Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways. PMID:23986485

  1. Inhibitory Effects of Angelica Polysaccharide on Activation of Mast Cells

    PubMed Central

    Mao, Wei-An; Sun, Yuan-Yuan; Mao, Jing-Yi; Wang, Li; Zhang, Jian; Zhou, Jie; Rahman, Khalid; Ye, Ying

    2016-01-01

    This study was designed to investigate the inhibitory effects of Angelica polysaccharide (AP) on activation of mast cells and its possible molecular mechanism. In our study, we determined the proinflammatory cytokines and allergic mediators in anti-DNP IgE stimulated RBL-2H3 cells and found that AP (50, 100, and 200 μg/mL) significantly decreased the release of histamine, β-hexosaminidase, leukotrienes C4 (LTC4), IL-1, IL-4, TNF-α, IL-6, and human monocyte chemotactic protein-1 (MCP-1/CCL2) (p < 0.05). In addition, Ca2+ entry was inhibited by treatment with AP. AP also downregulated the protein expressions of p-Fyn, p-Akt, p-P38, IL-4, TNF-α, and NF-κB p65 in both Fyn gene upregulated and normal RBL-2H3 cells (p < 0.05). Collectively, our results showed that AP could inhibit the activation of mast cells via suppressing the releases of proinflammatory cytokines allergic mediators, Gab2/PI3-K/Akt and Fyn/Syk pathways. PMID:27200102

  2. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo.

    PubMed

    Grimbaldeston, Michele A; Chen, Ching-Cheng; Piliponsky, Adrian M; Tsai, Mindy; Tam, See-Ying; Galli, Stephen J

    2005-09-01

    Mice carrying certain mutations in the white spotting (W) locus (ie, c-kit) exhibit reduced c-kit tyrosine kinase-dependent signaling that results in mast cell deficiency and other phenotypic abnormalities. The c-kit mutations in Kit(W/W-v) mice impair melanogenesis and result in anemia, sterility, and markedly reduced levels of tissue mast cells. In contrast, Kit(W-sh/W-sh) mice, bearing the W-sash (W(sh)) inversion mutation, have mast cell deficiency but lack anemia and sterility. We report that adult Kit(W-sh/W-sh) mice had a profound deficiency in mast cells in all tissues examined but normal levels of major classes of other differentiated hematopoietic and lymphoid cells. Unlike Kit(W/W-v) mice, Kit(W-sh/W-sh) mice had normal numbers of TCR gammadelta intraepithelial lymphocytes in the intestines and did not exhibit a high incidence of idiopathic dermatitis, ulcers, or squamous papillomas of the stomach, but like Kit(W/W-v) mice, they lacked interstitial cells of Cajal in the gut and exhibited bile reflux into the stomach. Systemic or local reconstitution of mast cell populations was achieved in nonirradiated adult Kit(W-sh/W-sh) mice by intravenous, intraperitoneal, or intradermal injection of wild-type bone marrow-derived cultured mast cells but not by transplantation of wild-type bone marrow cells. Thus, Kit(W-sh/W-sh) mice represent a useful model for mast cell research, especially for analyzing mast cell function in vivo. PMID:16127161

  3. Electrogene therapy with interleukin-12 in canine mast cell tumors

    PubMed Central

    Pavlin, Darja; Cemazar, Maja; Cör, Andrej; Sersa, Gregor; Pogacnik, Azra; Tozon, Natasa

    2011-01-01

    Background Mast cell tumors (MCT) are the most common malignant cutaneous tumors in dogs with extremely variable biological behaviour. Different treatment approaches can be used in canine cutaneous MCT, with surgical excision being the treatment of choice. In this study, electrogene therapy (EGT) as a new therapeutic approach to canine MCTs, was established. Materials and methods. Eight dogs with a total of eleven cutaneous MCTs were treated with intratumoral EGT using DNA plasmid encoding human interleukin-12 (IL-12). The local response to the therapy was evaluated by repeated measurements of tumor size and histological examination of treated tumors. A possible systemic response was assessed by determination of IL-12 and interferon- γ (IFN-γ) in patients’ sera. The occurence of side effects was monitored with weekly clinical examinations of treated animals and by performing basic bloodwork, consisting of the complete bloodcount and determination of selected biochemistry parameters. Results Intratumoral EGT with IL-12 elicits significant reduction of treated tumors’ size, ranging from 13% to 83% (median 50%) of the initial tumor volume. Additionally, a change in the histological structure of treated nodules was seen. There was a reduction in number of malignant mast cells and inflammatory cell infiltration of treated tumors. Systemic release of IL-12 in four patients was detected, without any noticeable local or systemic side effects. Conclusions These data suggest that intratumoral EGT with plasmid encoding IL-12 may be useful in the treatment of canine MCTs, exerting a local antitumor effect. PMID:22933932

  4. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function

    SciTech Connect

    Palmer, Rachel K.; Hutchinson, Lee M.; Burpee, Benjamin T.; Tupper, Emily J.; Pelletier, Jonathan H.; Kormendy, Zsolt; Hopke, Alex R.; Malay, Ethan T.; Evans, Brieana L.; Velez, Alejandro; Gosse, Julie A.

    2012-01-01

    Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells.

  5. Quantitative changes in mast cells and microvascular pattern associated with dietary gastric ulceration in rats.

    PubMed

    Jayaraj, A P; Tovey, F I; Riley, P A; Clark, C G

    1985-01-01

    The regional distribution of mast cells and the microvascular pattern in the stomach of Wistar rats fed on an ulcerogenic diet were compared with those of control animals. Mounts of the distended stomach were made and stained for blood vessels and mast cells in the subserosal layer. Measurements made under dark ground illumination in 12 operationally defined regions of the serosa demonstrated that the stomach wall in the region around the oesophagus is more richly vascularised and possesses a greater number of mast cells (60 cells per mm2) than other regions. Changes in the mast cells and microvasculature were observed in rats fed an ulcerogenic diet, notably in the zone around the oesophagus, where more than 30% mast cells were degranulated and the mean vascular diameter increased by 26%. The severity of the vascular changes correlated with the location of the ulcers of which 50% were in the zone surrounding the oesophagus.

  6. Influence of Physicochemical Properties of Silver Nanoparticles on Mast Cell Activation and Degranulation

    PubMed Central

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2014-01-01

    Silver nanoparticles (AgNPs) are increasingly being incorporated into products for their antimicrobial properties. This has resulted in increased human exposures and the possibility of adverse health effects. Mast cells orchestrate allergic immune responses through degranulation and release of pre-formed mediators. Little data exists on understanding interactions of AgNPs with mast cells and the properties that influence activation and degranulation. Using bone marrow-derived mast cells and AgNPs of varying physicochemical properties we tested the hypothesis that AgNP physicochemical properties influence mast cell degranulation and osteopontin production. AgNPs evaluated included spherical 20 nm and 110 nm suspended in either polyvinylpyrrolidone (PVP) or citrate, Ag plates suspended in PVP of diameters between 40–60 nm or 100–130 nm, and Ag nanowires suspended in PVP with thicknesses <100 nm and length up to 2 microns. Mast cell responses were found to be dependent on the physicochemical properties of the AgNP. Further, we determined a role for scavenger receptor B1 in AgNP-induced mast cell responses. Mast cell degranulation was not dependent on AgNP dissolution but was prevented by tyrosine kinsase inhibitor pretreatment. This study suggests that exposure to AgNPs may elicit adverse mast cell responses that could contribute to the initiation or exacerbation of allergic disease. PMID:25458489

  7. Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside

    PubMed Central

    Zhang, Lei; Song, Jun; Hou, Xiaohua

    2016-01-01

    Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder since it lacks demonstrable pathological abnormalities. However, in recent years, low grade inflammatory infiltration, often rich in mast cells, in both the small and large bowel, has been observed in some patients with IBS. The close association of mast cells with major intestinal functions, such as epithelial secretion and permeability, neuroimmune interactions, visceral sensation, and peristalsis, makes researchers and gastroenterologists to focus attention on the key roles of mast cells in the pathogenesis of IBS. Numerous studies have been carried out to identify the mechanisms in the development, infiltration, activation, and degranulation of intestinal mast cells, as well as the actions of mast cells in the processes of mucosal barrier disruption, mucosal immune dysregulation, visceral hypersensitivity, dysmotility, and local and central stress in IBS. Moreover, therapies targeting mast cells, such as mast cell stabilizers (cromoglycate and ketotifen) and antagonists of histamine and serotonin receptors, have been tried in IBS patients, and have partially exhibited considerable efficacy. This review focuses on recent advances in the role of mast cells in IBS, with particular emphasis on bridging experimental data with clinical therapeutics for IBS patients. PMID:26755686

  8. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life

    PubMed Central

    Patel, Kruti R.; Aven, Linh; Shao, Fengzhi; Krishnamoorthy, Nandini; Duvall, Melody G.; Levy, Bruce D.; Ai, Xingbin

    2016-01-01

    Asthma often progresses from early episodes of insults. How early life events connect to long-term airway dysfunction remains poorly understood. We demonstrated previously that increased neurotrophin 4 (NT4) levels following early life allergen exposure cause persistent changes in airway smooth muscle (ASM) innervation and airway hyper-reactivity (AHR) in mice. Herein, we identify pulmonary mast cells as a key source of aberrant NT4 expression following early insults. NT4 is selectively expressed by ASM and mast cells in mice, nonhuman primates and humans. We show in mice that mast cell-derived NT4 is dispensable for ASM innervation during development. However, upon insults, mast cells expand in number and degranulate to release NT4 and thus become the major source of NT4 under pathological condition. Adoptive transfer of wild type mast cells, but not NT4−/− mast cells restores ASM hyperinnervation and AHR in KitW-sh/W-sh mice following early life insults. Notably, an infant nonhuman primate model of asthma also exhibits ASM hyperinnervation associated with the expansion and degranulation of mast cells. Together, these findings identify an essential role of mast cells in mediating ASM hyperinnervation following early life insults by producing NT4. This role may be evolutionarily conserved in linking early insults to long-term airway dysfunction. PMID:26860818

  9. [The effect of a mite allergen on Na/H metabolic activity in peritoneal mast cells].

    PubMed

    Khlgatian, S V; Pinelis, V G; Berzhets, V M; Strukova, S M

    1992-12-01

    Mite allergen interacting with mast cells treated with sera from bronchial patient sensitized to home dust Dermatophagoides farinae causes changes in intracellular pH. Regulation of pHi peritoneal mast cells is participated by Na/H metabolism probably activated by protein kinase C.

  10. Effect of sulfur mustard on mast cells in hairless guinea pig skin

    SciTech Connect

    Graham, J.S.; Bryant, M.A.; Braue, E.H.

    1993-05-13

    The skin of 24 anesthetized hairless guinea pigs was exposed to saturated sulfur mustard (bis-2-chloroethyl sulfide; HD) for 5 and 7 minutes using 14-mm diameter vapor cups. Animals were euthanatized 24 hours after exposure and skin specimens taken for morphometric evaluation of granulated mast cells with an image analysis system (IAS). Tissue specimens were processed in paraffin, sectioned at 5 microns and stained with Unna's stain for mast cells. The number of granulated mast cells and the area occupied by mast cell granules was determined. There were significantly fewer mast cells (p < 0.05) in either HD exposure group than in sham-exposed animals, with significantly fewer mast cells in the 7-minute than the 5-minute HD group. There were also significantly smaller areas occupied by granules in either HD exposure group than in sham-exposed animals. HD-induced lesions in the hairless guinea pig have shown signs of an inflammatory response, and with their granules of vasoactive histamine, mast cells might be expected to play a role in HD-induced injury. Changes in mast cells exposed to low sulfur mustard levels, as detected by an IAS, may serve as an early marker for cutaneous damage, which might not be as easily determined with routine light microscopy.

  11. Mast cell gastritis: Children complaining of chronic abdominal pain with histologically normal gastric mucosal biopsies except for increase in mast cells, proposing a new entity

    PubMed Central

    Mahjoub, Fatemeh E; Farahmand, Fatemeh; Pourpak, Zahra; Asefi, Hoda; Amini, Zahra

    2009-01-01

    Background Mast cells reside within the connective tissue of a variety of tissues and all vascularized organs. Since 1996, few studies have been performed on mast cell density in gastrointestinal biopsies, mainly in adult age group. We recently studied mast cell density in pediatric age group on rather larger number of cases in a referral children hospital. Mast cell density was 12.6 ± 0.87 in 0.25 mm2 (range: 0-81) in our study. Since we frequently encounter cases with rather normal gastric biopsies with no H.pylori, which mainly complain of chronic abdominal pain, we gathered those cases with mast cell density more than 30/0.25 mm2. from 895 gastric biopsies and wanted to study their clinical and endoscopic findings and propose a new entity. Methods Between April 2005 and May 2008, 895 children (< 14 years old), with gastrointestinal complaints who underwent endoscopy were selected and antral biopsies were obtained for histological examination. Among these children, those who had normal or erythematous (but not nodular or ulcerative) gastric mucosa on endoscopic view, plus pathologic report of normal mucosa or mild gastritis in addition to mast cell count more than 30/25 mm2, were chosen and a questionnaire was filled for each patient including clinical, endoscopic and pathologic findings. The statistical analysis was performed using SPSS, version 13 (SPSS Inc., Chicago, IL, USA). Results Over a 3 year period of study, of 895 selected children, 86 patients fulfilled the entrance criteria. The major complaint of patients was recurrent abdominal pain. The mean mast cell density was 45.59 ± 13.81 in 0.25 mm2 (range: 30-93). Among our cases, about 67.4% (n = 58) had 30 to 49, 23.3% (n = 20) had 50 to 69, 8.1% (n = 7) had 70 to 89 and 1.2% (n = 1) had 93 mast cells/0.25 mm2 in their specimens Discussion In 29% of our cases, neither endoscopic nor pathologic change was detected and only increase in mast cell number was reported and in others endoscopic and

  12. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  13. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    PubMed

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined.

  14. Functional heterogeneity of mast cells isolated from different microenvironments within nasal polyp tissue.

    PubMed Central

    Finotto, S; Dolovich, J; Denburg, J A; Jordana, M; Marshall, J S

    1994-01-01

    Nasal polyposis is a chronic inflammatory condition of the upper airways characterized by infiltration of activated inflammatory cells, including mast cells, both in the epithelium and in the stroma. The aim of this work was to study human mast cells derived from two different anatomical sites within the same nasal polyp tissue. To this end, we isolated two distinct mast cell populations, one from the epithelial and the other from the stromal layers of individual human nasal polyp tissues. We examined the mediator content of the two mast cell populations and found that stromal mast cells had a significantly higher content of tryptase compared with the epithelial mast cells from the same tissue. In addition, mast cells from the stromal compartment, but not those from the epithelium, released a significant amount of histamine after anti-IgE stimulation. By contrast, both populations released over 50% of the total histamine after non-specific stimuli (A23187 10(-6) M). The content of mediators and the response to immunological activation were not significantly altered in patients receiving topical steroid therapy. It remains to be determined if the observed differences are the result of an intrinsic characteristic of the mast cell populations localized to separate tissue compartments, or reflect a different in vivo exposure to stimuli such as antigens, or different surrounding structural or infiltrating cells. In conclusion, these data provide evidence of functional heterogeneity and differences in mediator content between mast cell subpopulations from a single human tissue. The failure of release of epithelial mast cell mediators from an immunologic stimulus may have implications concerning acute effects of antigen exposure in nasal polyposis. Images Fig. 1 PMID:7508349

  15. Immunoreactivity for CD25 in gastrointestinal mucosal mast cells is specific for systemic mastocytosis.

    PubMed

    Hahn, Hejin P; Hornick, Jason L

    2007-11-01

    Systemic mastocytosis (SM) is characterized by the accumulation of neoplastic mast cells in bone marrow and other organs. Gastrointestinal (GI) symptoms are common in both SM and cutaneous mastocytosis [urticaria pigmentosa (UP)], and are usually caused by the release of histamine and other inflammatory mediators. Occasionally, neoplastic mast cells may also directly infiltrate the GI tract. Previous studies have suggested that enumeration of the mast cells in GI biopsies may help establish the diagnosis of SM. However, mast cells have been reported to be increased in various inflammatory diseases, and mast cell density has not been systematically evaluated in other GI disorders. Recently, expression of CD25 by mast cells in bone marrow has been shown to be specific for SM. The purpose of this study was (1) to quantitate and compare mast cells in mucosal biopsies from patients with SM involving the GI tract, UP with GI symptoms, and a control group of diverse inflammatory disorders, and (2) to determine whether immunostaining for CD25 can be used to distinguish neoplastic from reactive mast cells in GI biopsies. Seventeen GI biopsies from 6 patients with SM; 17 GI biopsies from 5 patients with UP; and 157 control cases including 10 each normal stomach, duodenum, terminal ileum, and colon, Helicobacter pylori gastritis, bile reflux gastropathy, peptic duodenitis, celiac disease, Crohn disease, ulcerative colitis, lymphocytic colitis, and collagenous colitis, 20 biopsies from 16 patients with irritable bowel syndrome, 8 biopsies from 5 patients with parasitic infections, and 9 biopsies from 7 patients with eosinophilic gastroenteritis were immunostained for mast cell tryptase, c-kit (CD117), and CD25. Mucosal mast cells were quantitated, and the presence or absence of CD25 expression on mast cells was determined. In SM patients, mast cells in the small intestine and colon numbered >100/high-power field (HPF) in nearly all cases (mean 196/HPF; range 74 to 339). This

  16. Characteristics of mast cells in normal bladder, bacterial cystitis and interstitial cystitis.

    PubMed

    Christmas, T J; Rode, J

    1991-11-01

    An analysis was made of the numbers and characteristics of mast cells in lateral bladder wall biopsies from 22 patients with interstitial cystitis, 6 with bacterial cystitis and 8 normal controls, using toluidine blue stains and computerised video image analysis techniques. A significantly greater number of mast cells were found within the detrusor muscle in interstitial cystitis than in bacterial cystitis or normal controls. Within the urothelium and submucosa, mast cell numbers were significantly greater than in normal controls in both interstitial and bacterial cystitis. In interstitial cystitis mast cells were significantly larger within the detrusor than in the urothelium/submucosa and they appeared to degranulate predominantly within the superficial layers. Differential staining techniques, using long and short toluidine blue stains, failed to reveal statistically significant evidence of mast cell heterogeneity within the bladder wall in interstitial cystitis.

  17. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    SciTech Connect

    Small-Howard, Andrea; Turner, Helen . E-mail: hturner@queens.org

    2005-04-15

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo.

  18. Mast cells, disease and gastrointestinal cancer: A comprehensive review of recent findings

    PubMed Central

    Hodges, Kyle; Kennedy, Lindsey; Meng, Fanyin; Alpini, Gianfranco; Francis, Heather

    2012-01-01

    Paul Ehrlich, a German scientist, discovered what is known as the mast cell in the late 1800’s, which has proven to be an important player in the immune system of vertebrates. Mast cells are ubiquitous throughout the tissues of the human body and play numerous roles, both beneficial and destructive. We know they are important in our army of immunity warrior cells, which defend us against viruses, bacteria and parasitic invaders. They are also very well known for the havoc they wreak, causing uncomfortable symptoms due to their release of histamine and other mediators which cause the all too familiar itching, sneezing, urticaria and rhinorrhea of allergic responses. Mast cell activities are diverse and include painful inflammatory reactions in autoimmune conditions such as rheumatoid arthritis. In the gastrointestinal system, mast cells are implicated in diverse actions such as increased gastric acid secretion, polyp formation and uncomfortable conditions such as Irritable Bowel Syndrome. The role of immunology and mast cells in these areas is intriguing but less well understood than their role in allergic responses. Because mast cells have been implicated in both physiologic as well as pathogenic processes, they have been the subjects of avid study. Review of the current literature on mast cell biology reveals that there are many studies of their presence within the tumor microenvironment and evidence, which supports mast cell influence on tumor angiogenesis, tumor invasion, and immune suppression. The studies reviewed in this article concentrate largely on mast cells in human GI malignancies. This review also provides background information regarding mast cells, such as their origination, their location within the body, how they are activated and how they function as mediators. PMID:22943044

  19. Extracellular matrix-anchored serum amyloid A preferentially induces mast cell adhesion.

    PubMed

    Hershkoviz, R; Preciado-Patt, L; Lider, O; Fridkin, M; Dastych, J; Metcalfe, D D; Mekori, Y A

    1997-07-01

    Mast cells are known to accumulate in various inflammatory processes, some of which are known to be associated with increased local and systemic levels of acute-phase reactants such as serum amyloid A (SAA) or with amyloid deposition. The mechanism(s) by which mast cells are recruited to these sites, however, has not been fully elucidated. It has recently been shown that SAA interacts with extracellular matrix (ECM) components and thereby acts as a chemoattractant and regulator of immune cell migration. On the basis of these observations, we examined the effect of SAA on mast cell adhesion to ECM, an essential step in cellular transmigration. We could first demonstrate strong specific binding of recombinant human SAA (rSAA) to murine mast cells using flow cytometry. Moreover, radiolabeled rSAA was found to bind, in a saturable manner, to mast cells, reaching a binding affinity of 10(-8) M. When immobilized by preincubation with ECM, SAA or its proteolytically degraded amyloid A fragment (amino acid residues 2-82), which contains RGD-related adhesion motif but not the COOH-terminal portion of SAA (amino acid residues 77-104), induced the adhesion of resting mast cells to ECM or laminin. SAA and AA, in soluble or immobilized forms, did not activate mast cells to release mediators. Mast cell adhesion to the immobilized ECM-SAA complex appeared to occur through an integrin recognition, inasmuch as adhesion was calcium dependent and could be blocked by an RGD-containing peptide or by anti-CD29 monoclonal antibody. Genistein also inhibited adhesion, indicating that tyrosine kinase activity was involved. These data suggest that SAA bound to ECM may serve as an important inducer of mast cell adhesion, thus regulating mast cell recruitment and accumulation at these sites, which in turn could potentiate further pathology. PMID:9252455

  20. Cell penetrating peptide-mediated transport enables the regulated secretion of accumulated cargoes from mast cells.

    PubMed

    Howl, John; Jones, Sarah

    2015-03-28

    The in vivo utility of technologies employing cell penetrating peptides and bioportides may be compromised by the general capacity of polycationic peptides to activate mast cell secretion. Moreover, the same technologies could be exploited in a clinical setting either to directly modulate intrinsic exocytotic mechanisms or to load mast cells with bioactive cargoes. Comparative investigations identified two cell penetrating vectors, Tat and C105Y, which readily translocate into mast cells without inducing receptor-independent exocytosis. Efficient Tat transduction also enabled the intracellular delivery and accumulation of cargoes within discrete intracellular compartments. A tetramethylrhodamine-Tat conjugate is effectively translocated into the secretory lysosomes of RBL-2H3 cells. In contract, the intracellular delivery of avidin, as a non-covalent complex with a biotinylated Tat vector, is also efficient but the protein is predominantly accumulated outside of secretory lysosomes. Significantly, both cargoes can be subsequently released following mast cell stimulation either by mastoparan, a wasp venom secretagogue, or by the physiological mechanism of antigen-induced aggregation of high affinity IgE receptors. These studies indicate that mast cells could be exploited to direct the delivery of bioactive agents to disease sites as an innovative cell-mediated therapy. PMID:25660072

  1. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  2. Mast cells are dispensable in a genetic mouse model of chronic dermatitis.

    PubMed

    Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine

    2015-06-01

    Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier.

  3. New Developments in Mast Cell Biology: Clinical Implications.

    PubMed

    Arthur, Greer; Bradding, Peter

    2016-09-01

    Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.

  4. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells

    PubMed Central

    Calero-Nieto, Fernando J; Ng, Felicia S; Wilson, Nicola K; Hannah, Rebecca; Moignard, Victoria; Leal-Cervantes, Ana I; Jimenez-Madrid, Isabel; Diamanti, Evangelia; Wernisch, Lorenz; Göttgens, Berthold

    2014-01-01

    Despite major advances in the generation of genome-wide binding maps, the mechanisms by which transcription factors (TFs) regulate cell type identity have remained largely obscure. Through comparative analysis of 10 key haematopoietic TFs in both mast cells and blood progenitors, we demonstrate that the largely cell type-specific binding profiles are not opportunistic, but instead contribute to cell type-specific transcriptional control, because (i) mathematical modelling of differential binding of shared TFs can explain differential gene expression, (ii) consensus binding sites are important for cell type-specific binding and (iii) knock-down of blood stem cell regulators in mast cells reveals mast cell-specific genes as direct targets. Finally, we show that the known mast cell regulators Mitf and c-fos likely contribute to the global reorganisation of TF binding profiles. Taken together therefore, our study elucidates how key regulatory TFs contribute to transcriptional programmes in several distinct mammalian cell types. PMID:24760698

  5. Differential effects of protoporphyrin and uroporphyrin on murine mast cells

    SciTech Connect

    Lim, H.W.; Gigli, I.; Wasserman, S.I.

    1987-03-01

    To investigate the mechanisms responsible for the distinct cutaneous manifestations of erythropoietic protoporphyria and porphyria cutanea tarda, the effects of protoporphyrin (PP) and uroporphyrin (URO), the predominant porphyrins in the respective disease, on mast cells were examined. Release of preformed and generated mediators was assessed by the release of radioactivity from cells labeled with (/sup 3/H)serotonin and (/sup 14/C)arachidonic acid, respectively. Clinically relevant doses of PP (25-500 ng/ml) and 396-407 nm irradiation (3-16 X 10(2)J/m2) induced maximal net release of preformed mediators ,f 44.52 +/- 6.6 to 58.01 +/- 4.0% (mean +/- SE). In contrast, irradiation in the presence of URO (50-5000 ng/ml) resulted in less than 5% net release. (3H)Serotonin release induced by PP and irradiation was calcium-independent, and was not enhanced by phorbol 12-myristate 13-acetate, a known activator of protein kinase C. This release was suppressed by catalase, a scavenger of hydrogen peroxide. Furthermore, irradiation in the presence of PP, but not in the presence of URO, resulted in perturbation of cell membrane. Irradiation in the presence of PP also resulted in a maximal net release of generated mediators of 9.98 +/- 3.5% (mean +/- SE), whereas similar treatment in the presence of URO induced less than 0.5% net release. These results suggested that the burning, stinging, erythema, and edema experienced by patients with erythropoietic protoporphyria following sun exposure, and the lack of such findings in patients with porphyria cutanea tarda, may be explained, at least in part, by the differential effects of PP and URO on mast cells.

  6. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor

    SciTech Connect

    Tsai, M.; Takeishi, Takashi; Geissler, E.N. ); Thompson, H.; Metcalfe, D.D. ); Langley, K.E.; Zsebo, K.M.; Galli, S.J. )

    1991-07-15

    The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mast cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.

  7. Methoxychlor enhances degranulation of murine mast cells by regulating FcεRI-mediated signal transduction.

    PubMed

    Yasunaga, Sho; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2015-01-01

    Methoxychlor, an organochlorine insecticide developed to replace DDT (dichlorodiphenyltrichloroethane), has been reported to induce mast cell degranulation and to enhance IgE-mediated allergic responses. However, the mechanisms underlying these effects are not clear. To clarify potential mechanisms, the effects of methoxychlor on degranulation of mast cells were examined. Degranulation responses were evaluated using RBL-2H3 cells and mouse bone marrow-derived mast cells with either the antigen-induced or calcium ionophore-induced stimulation. Phosphorylation of enzymes related to signaling events associated with mast cell degranulation was analyzed by immunoblotting. Effects on vascular permeability in the passive cutaneous anaphylaxis reaction were evaluated following oral administration of methoxychlor to BALB/c mice. The results indicated that methoxychlor caused increased mast cell degranulation in the presence of antigen, whereas it had no effect on calcium ionophore-induced degranulation of RBL-2H3 cells. Immunoblot analyses demonstrated that the phosphorylation level of phosphoinositide 3-kinase (which plays a central role in mast cell signaling) was increased by methoxychlor during antigen-induced degranulation. In addition, methoxychlor activated the signaling pathway via the high-affinity IgE receptor by inducing phosphorylation of Syk and PLCγ1/2, which transfer the signal for degranulation downstream. Lastly, oral administration of methoxychlor exhibited a tendency to promote vascular permeability in passive cutaneous anaphylaxis model mice. Taken together, the results here suggested that methoxychlor enhanced degranulation through FcεRI-mediated signaling and promoted allergenic symptoms involved in mast cell degranulation.

  8. Mast cell activation by conidia of Sporothrix schenckii: role in the severity of infection.

    PubMed

    Romo-Lozano, Y; Hernández-Hernández, F; Salinas, E

    2012-07-01

    Mast cells are abundant in the skin and other peripheral tissues, where they are one of the first immune cells to make contact with invading pathogens. As a result of pathogen recognition, mast cells can be activated and release different preformed and de novo-synthesized mediators. Sporothrix schenckii is the fungus that causes sporotrichosis, a worldwide-distributed subcutaneous mycosis considered as an important emerging health problem. It remains unknown whether or not mast cells are activated by S. schenckii. Here, we investigated the in vitro response of mast cells to conidia of S. schenckii and their in vivo involvement in sporotrichosis. Mast cells became activated after interaction with conidia, releasing early response cytokines as TNF-α and IL-6. Although histamine release was not significantly stimulated by S. schenckii, we determined that conidia potentiate histamine secretion induced by compound 48/80. Furthermore, functional depletion of peritoneal mast cells before S. schenckii infection significantly reduced the severity of cutaneous lesions of the sporotrichosis. These data demonstrate that mast cells are important contributors in the host response to S. schenckii infection, suggesting a role of these cells in the progress of clinical manifestations in sporotrichosis. PMID:22486186

  9. Mast cell activation by conidia of Sporothrix schenckii: role in the severity of infection.

    PubMed

    Romo-Lozano, Y; Hernández-Hernández, F; Salinas, E

    2012-07-01

    Mast cells are abundant in the skin and other peripheral tissues, where they are one of the first immune cells to make contact with invading pathogens. As a result of pathogen recognition, mast cells can be activated and release different preformed and de novo-synthesized mediators. Sporothrix schenckii is the fungus that causes sporotrichosis, a worldwide-distributed subcutaneous mycosis considered as an important emerging health problem. It remains unknown whether or not mast cells are activated by S. schenckii. Here, we investigated the in vitro response of mast cells to conidia of S. schenckii and their in vivo involvement in sporotrichosis. Mast cells became activated after interaction with conidia, releasing early response cytokines as TNF-α and IL-6. Although histamine release was not significantly stimulated by S. schenckii, we determined that conidia potentiate histamine secretion induced by compound 48/80. Furthermore, functional depletion of peritoneal mast cells before S. schenckii infection significantly reduced the severity of cutaneous lesions of the sporotrichosis. These data demonstrate that mast cells are important contributors in the host response to S. schenckii infection, suggesting a role of these cells in the progress of clinical manifestations in sporotrichosis.

  10. Effects of a Moderately Lower Temperature on the Proliferation and Degranulation of Rat Mast Cells

    PubMed Central

    Wang, Ruoyu; Yin, Xiaoqin; Zhang, Hui; Wang, Jiwei; Chen, Lin; Chen, Jingwen; Han, Xiaodong; Xiang, Zou; Li, Dongmei

    2016-01-01

    Mast cells are traditionally considered as key effector cells in IgE-mediated allergic diseases. However, the roles of mast cells have also been implicated in diverse physiological and pathological processes. Mast cells are distributed in various organs and tissues of various species. Some of the organs and tissues, such as testis, skin, and the upper part of the respiratory tract, have a temperature that is lower than the body's core temperature. The purpose of the present study was to investigate the effects of a lower temperature on the proliferation and degranulation of rat mast cells. Here, we demonstrate that cell growth was retarded at 35°C compared to 37°C for both rat peritoneal mast cells (RPMC) and RBL-2H3, a rat mast cell line. Furthermore, RPMC became more susceptible to degranulation at 35°C compared to 37°C. In contrast, degranulation of RBL-2H3 was not as sensitive to temperature change as RPMC. The functionality of mast cells in unique organs with a lower temperature warrants further analysis. PMID:27195304

  11. Dual effect of spermine on mast cell secretion exhibits different calcium and temperature requirements.

    PubMed

    Vliagoftis, H; Mak, L; Boucher, W; Theoharides, T C

    1999-09-01

    Mast cells release many biologically active molecules upon stimulation by a variety of molecules such as immunoglobulin E (IgE) and specific antigen, anaphylatoxins, as well as a number of cationic compounds which include drugs, kinins and neuropeptides. The effect of the naturally occurring polyamine spermine was studied because, even though it is polycationic, it has been implicated in the modulation of secretory processes in a variety of cells. In particular, it was previously shown that oxidation products of spermine inhibit mast cell secretion. High concentrations of spermine (5 x 10(-3) M) added at 37 degrees C induced mast cell secretion that had similar characteristics with that triggered by compound 48/80 (48/80). However, spermine inhibited mast cell secretion in a dose-dependent manner as long as it was added at 4-10 degrees C for at least 10 min in the absence of Ca++ before warming the cells to 37 degrees C and triggering them with 48/80. These findings were true both for purified rat peritoneal mast cells and for rat skin mast cells in situ. Addition of calcium after the cells had been warmed to 37 degrees C could not reverse this inhibition. The inhibition seen when spermine was added at 4 degrees C was, however, overcome if phorbol myristate acetate (PMA) or NaF, which activate PKC and G proteins respectively, were added to mast cells at 37 degrees C together with Ca++. These results indicate that polyamines could be important modulators of the activation state of mast cells and might help further define the biochemical events involved in mast cell secretion.

  12. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy?

    PubMed Central

    Brown, Melissa A.; Hatfield, Julianne K.

    2012-01-01

    There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention. PMID:22701454

  13. A TRPV2–PKA Signaling Module for Transduction of Physical Stimuli in Mast Cells

    PubMed Central

    Stokes, Alexander J.; Shimoda, Lori M.N.; Koblan-Huberson, Murielle; Adra, Chaker N.; Turner, Helen

    2004-01-01

    Cutaneous mast cell responses to physical (thermal, mechanical, or osmotic) stimuli underlie the pathology of physical urticarias. In vitro experiments suggest that mast cells respond directly to these stimuli, implying that a signaling mechanism couples functional responses to physical inputs in mast cells. We asked whether transient receptor potential (vanilloid) (TRPV) cation channels were present and functionally coupled to signaling pathways in mast cells, since expression of this channel subfamily confers sensitivity to thermal, osmotic, and pressure inputs. Transcripts for a range of TRPVs were detected in mast cells, and we report the expression, surface localization, and oligomerization of TRPV2 protein subunits in these cells. We describe the functional coupling of TRPV2 protein to calcium fluxes and proinflammatory degranulation events in mast cells. In addition, we describe a novel protein kinase A (PKA)–dependent signaling module, containing PKA and a putative A kinase adapter protein, Acyl CoA binding domain protein (ACBD)3, that interacts with TRPV2 in mast cells. We propose that regulated phosphorylation by PKA may be a common pathway for TRPV modulation. PMID:15249591

  14. Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2016-03-01

    Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.

  15. Our perception of the mast cell from Paul Ehrlich to now.

    PubMed

    Beaven, Michael A

    2009-01-01

    Just over a century ago Paul Ehrlich received the Nobel Prize for his studies of immunity. This review describes one of his legacies, the histochemical description of the mast cell, and the research that has ensued since then. After a long period of largely descriptive studies, which revealed little about the biological role of the mast cell, the field was galvanized in the 1950s by the recognition that the mast cell was the main repository of histamine and a key participant in anaphylactic reactions. Although the mast cell was long-viewed in these terms, recent research has now shown that the mast cell also plays a key role in innate and adaptive immune responses, autoimmune disease, and possibly tissue homeostasis by virtue of its expression of a diverse array of receptors and biologically active products. In addition, the responsiveness of mast cells to immunological and pathological stimulants is highly modulated by the tissue cytokine environment and by synergistic, or inhibitory, interactions among the various mast cell receptor systems. This once enigmatic cell of Paul Ehrlich has proved to be both adaptable and multifunctional.

  16. Emerging Role of Mast Cells and Macrophages in Cardiovascular and Metabolic Diseases

    PubMed Central

    Xu, Jia-Ming

    2012-01-01

    Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell–cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions. PMID:22240242

  17. Role of mast cell in the late phase of contact hypersensitivity induced by trimellitic anhydride

    PubMed Central

    Chai, Ok Hee

    2015-01-01

    Mast cells are known as effector cells of IgE-mediated allergic responses, but role of mast cells in contact hypersensitivity (CHS) has been considered controversial. In this study, we investigated role of mast cell in trimellitic anhydride (TMA)-induced CHS. The mice were sensitized to TMA on the back and repeatedly challenged with TMA on the left ear at 1-week intervals. The ear after challenge showed biphasic responses. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of early and late phase reactions in proportion to the frequency of TMA challenges in C57BL/6 mice. In late phase reaction, peak of ear response by single challenge showed at 24 hours after challenge, but the peak by repeat challenges at 8 hours after the last challenge. Number of mast cells and eosinophils per unit area increased in proportion to frequency of TMA challenges. However, mast cell-deficient WBB6F1/J-KitW/KitW-v mice developed the late phase reaction without the early phase reaction. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of ear response and the infiltration of eosinophils. The magnitude of these responses observed according to the frequency of the TMA challenge in mast cell-deficient WBB6F1/J-KitW/KitW-v mice was significantly lower than that in C57BL/6 mice. Also TMA elicited mast cell degranulation and histamine release from rat peritoneal mast cells in a concentration-dependent manner. Conclusively, TMA induces the early and late phase reactions in CHS, and mast cells may be required for TMA-induced CHS. PMID:26770872

  18. [Mast cells, their adenosine receptors and reactive oxygen species in chronic inflammatory pathologies of childhood].

    PubMed

    Renke, Joanna; Popadiuk, Stefan; Wozniak, Michał; Szlagatys-Sidorkiewicz, Agnieszka; Hansdorfer-Korzon, Rita

    2006-01-01

    Mast cells were described by Erhlich at the end of XIX-th century. Their role was deeply investigated in asthma and allergy. The massive degranulation of mast cells in allergy can lead to anaphylactic shock. Recently, mast cells have been recognized again as a very interesting topic for investigation, due to their possible role in chronic inflammation. Moreover, through adenosine receptors, mast cells can be activated or inactivated. That is why these cells are regarded as a potential target of new drugs. It has been reported, that mast cells generate intracellular reactive oxygen species (ROS) in response to stimulation with divergent physiologically relevant stimulants. The intensification of ROS production may be measured by the level of carbonyl groups, as a marker of protein peroxidation. However, the role of mast cells in other than asthma diseases with chronic inflammation needs further investigation. It was found out that the information about mast cell distribution in colonic mucosa may serve as help in differentiation between inflammatory bowel disease and collagenous colitis. Moreover, its accumulation in focal active gastritis was confirmed in patients with Crohn's disease. An important role in regulation of inflammatory process seems to be reserved for adenosine receptors present on mastocytes. The activation of mast cells through the adenosine receptor is connected with 11-8 release, which stimulate the migration of leukocytes and oxidation reactions. The detection of mast cells in tissues should not be limited only to the simple histologic examination. It should be completed by the detection of products of degranulation, e.g. tryptase. This is the way to find out their actual function and state of activation. PMID:17203808

  19. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation

    PubMed Central

    Abdala-Valencia, Hiam; Bryce, Paul J.; Schleimer, Robert P.; Wechsler, Joshua B.; Loffredo, Lucas F.; Cook-Mills, Joan M.; Hsu, Chia-Lin; Berdnikovs, Sergejs

    2016-01-01

    Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow–derived mast cells from CD151−/− mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI -induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells. PMID:26136426

  20. Developmental changes of mast cell populations in the cerebral meninges of the rat.

    PubMed

    Michaloudi, Helen; Batzios, Christos; Chiotelli, Maria; Papadopoulos, Georgios C

    2007-10-01

    It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21.

  1. Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation.

    PubMed

    Huang, Zhi Gang; Jin, Qun; Fan, Min; Cong, Xiao Liang; Han, Shu Fang; Gao, Hai; Shan, Yi

    2013-01-01

    Diabetic cardiomyopathy is a specific disease process distinct from coronary artery disease and hypertension. The disease features cardiac remodeling stimulated by hyperglycemia of the left ventricle wall and disrupts contractile functions. Cardiac mast cells may be activated by metabolic byproducts resulted from hyperglycermia and then participate in the remodeling process by releasing a multitude of cytokines and bioactive enzymes. Nedocromil, a pharmacologic stabilizer of mast cells, has been shown to normalize cytokine levels and attenuate cardiac remodeling. In this study, we describe the activation of cardiac mast cells by inducing diabetes in normal mice using streptozotocin (STZ). Next, we treated the diabetic mice with nedocromil for 12 weeks and then examined their hearts for signs of cardiac remodeling and quantified contractile function. We observed significantly impaired heart function in diabetic mice, as well as increased cardiac mast cell density and elevated mast cell secretions that correlated with gene expression and aberrant cytokine levels associated with cardiac remodeling. Nedocromil treatment halted contractile dysfunction in diabetic mice and reduced cardiac mast cell density, which correlated with reduced bioactive enzyme secretions, reduced expression of extracellular matrix remodeling factors and collagen synthesis, and normalized cytokine levels. However, the results showed nedocromil treatments did not return diabetic mice to a normal state. We concluded that manipulation of cardiac mast cell function is sufficient to attenuate cardiomyopathy stimulated by diabetes, but other cellular pathways also contribute to the disease process.

  2. Mast Cells as a Potential Prognostic Marker in Prostate Cancer

    PubMed Central

    Taverna, Gianluigi; Giusti, Guido; Seveso, Mauro; Hurle, Rodolfo; Colombo, Piergiuseppe; Stifter, Sanja

    2013-01-01

    Despite years of intensive investigation that has been made in understanding prostate cancer, it remains one of the major men's health issues and the leading cause of death worldwide. It is now ascertained that prostate cancer emerges from multiple spontaneous and/or inherited alterations that induce changes in expression patterns of genes and proteins that function in complex networks controlling critical cellular events. It is now accepted that several innate and adaptive immune cells, including T- and B-lymphocytes, macrophages, natural killer cells, dendritic cells, neutrophils, eosinophils, and mast cells (MCs), infiltrate the prostate cancer. All of these cells are irregularly scattered within the tumor and loaded with an assorted array of cytokines, chemokines, and inflammatory and cytotoxic mediators. This complex framework reflects the diversity in tumor biology and tumor-host interactions. MCs are well-established effector cells in Immunoglobulin-E (Ig-E) associated immune responses and potent effector cells of the innate immune system; however, their clinical significance in prostate cancer is still debated. Here, these controversies are summarized, focusing on the implications of these findings in understanding the roles of MCs in primary prostate cancer. PMID:24324287

  3. Histamine from Brain Resident MAST Cells Promotes Wakefulness and Modulates Behavioral States

    PubMed Central

    Chikahisa, Sachiko; Kodama, Tohru; Soya, Atsushi; Sagawa, Yohei; Ishimaru, Yuji; Séi, Hiroyoshi; Nishino, Seiji

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/Wv) mice. No significant difference was found in the basal amount of sleep/wake between W/Wv mice and their wild-type littermates (WT), although W/Wv mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/Wv mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/Wv mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/Wv mice. W/Wv mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior. PMID:24205232

  4. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    PubMed

    Chikahisa, Sachiko; Kodama, Tohru; Soya, Atsushi; Sagawa, Yohei; Ishimaru, Yuji; Séi, Hiroyoshi; Nishino, Seiji

    2013-01-01

    Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS). Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v)) mice. No significant difference was found in the basal amount of sleep/wake between W/W(v) mice and their wild-type littermates (WT), although W/W(v) mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v) mice. Injection of H1 antagonists (triprolidine and mepyramine) significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v) mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v) mice. W/W(v) mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  5. Mast Cell-Derived Tumor Necrosis Factor Can Promote Nerve Fiber Elongation in the Skin during Contact Hypersensitivity in Mice

    PubMed Central

    Kakurai, Maki; Monteforte, Rossella; Suto, Hajime; Tsai, Mindy; Nakae, Susumu; Galli, Stephen J.

    2006-01-01

    In humans, lesions of contact eczema or atopic dermatitis can exhibit increases in epidermal nerves, but the mechanism resulting in such nerve elongation are not fully understood. We found that contact hypersensitivity reactions to oxazolone in mice were associated with significant increases in the length of nerves in the epidermis and dermis. Using genetically mast cell-deficient c-kit mutant mice selectively repaired of their dermal mast cell deficiency with either wild-type or tumor necrosis factor (TNF)-deficient mast cells, we found that mast cells, and mast cell-derived TNF, significantly contributed to the elongation of epidermal and dermal PGP 9.5+ nerves and dermal CGRP+ nerves, as well as to the inflammation observed at sites of contact hypersensitivity in response to oxazolone. Moreover, the percentage of mast cells in close proximity to dermal PGP 9.5+ nerve fibers was significantly higher in wild-type mice and in c-kit mutant mice repaired of their dermal mast cell deficiency by the adoptive transfer of wild-type mast cells than in TNF-deficient mice or in TNF−/− mast cell-engrafted c-kit mutant mice. These observations show that mast cells, and mast cell-derived TNF, can promote the elongation of cutaneous nerve fibers during contact hypersensitivity in the mouse. PMID:17071594

  6. Mast Cell-Targeted Strategies in Cancer Therapy

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Luposella, Maria; Patruno, Rosa; Gadaleta, Cosmo Damiano; Sarro, Giovambattista De; Ranieri, Girolamo

    2016-01-01

    Summary Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. PMID:27330532

  7. Mast Cell-Targeted Strategies in Cancer Therapy.

    PubMed

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Luposella, Maria; Patruno, Rosa; Gadaleta, Cosmo Damiano; Sarro, Giovambattista De; Ranieri, Girolamo

    2016-03-01

    Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. PMID:27330532

  8. Tumor-Associated Mast Cells in Thyroid Cancer

    PubMed Central

    Visciano, Carla; Prevete, Nella; Liotti, Federica; Marone, Gianni

    2015-01-01

    There is compelling evidence that the tumor microenvironment plays a major role in mediating aggressive features of cancer cells, including invasive capacity and resistance to conventional and novel therapies. Among the different cell populations that infiltrate cancer stroma, mast cells (MCs) can influence several aspects of tumor biology, including tumor development and progression, angiogenesis, lymphangiogenesis, and tissue remodelling. Thyroid cancer (TC), the most frequent neoplasia of the endocrine system, is characterized by a MC infiltrate, whose density correlates with extrathyroidal extension and invasiveness. Recent evidence suggests the occurrence of epithelial-to-mesenchymal transition (EMT) and stemness in human TC. The precise role of immune cells and their mediators responsible for these features in TC remains unknown. Here, we review the relevance of MC-derived mediators (e.g., the chemokines CXCL1/GRO-α, CXCL10/IP-10, and CXCL8/IL-8) in the context of TC. CXCL1/GRO-α and CXCL10/IP-10 appear to be involved in the stimulation of cell proliferation, while CXCL8/IL-8 participates in the acquisition of TC malignant traits through its ability to induce/enhance the EMT and stem-like features of TC cells. The inhibition of chemokine signaling may offer novel therapeutic approaches for the treatment of refractory forms of TC. PMID:26379707

  9. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    SciTech Connect

    Kokkonen, J.O.; Kovanen, P.T.

    1987-04-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of /sup 125/I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in /sup 14/C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages.

  10. Influence of ethanolic extract of Tephrosia purpurea Linn. on mast cells and erythrocytes membrane integrity.

    PubMed

    Gokhale, A B; Dikshit, V J; Damre, A S; Kulkarni, K R; Saraf, M N

    2000-08-01

    The ethanolic extract of T. purpurea Linn. was studied for its in vitro effect on rat mast cell degranulation and erythrocyte membrane integrity in vitro. The extract in concentration of 25-200 microg/ml showed a dose-dependant inhibition of rat mast cell degranulation induded by compound 48/80 and egg albumin. T. purpurea extract was found to inhibit haemolysis of erythrocytes induced by hypotonic solution but accelerated haemolysis induced by heat at a concentration of 100 microg/ml. The studies reveal that the ethanolic extract of T. purpurea may inhibit degranulation of mast cells by a mechanism other than membrane stabilization.

  11. ANTI-INFLAMMATORY AND MAST CELL PROTECTIVE EFFECT OF FICUS RELIGIOSA

    PubMed Central

    Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M. Kannappa; Narasimhan, S.; Subramaniam, G. Anantha

    1990-01-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  12. Anti-inflammatory and mast cell protective effect of ficus religiosa.

    PubMed

    Viswanathan, S; Thirugnanasambantham, P; Reddy, M K; Narasimhan, S; Subramaniam, G A

    1990-10-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  13. Live Staphylococcus aureus Induces Expression and Release of Vascular Endothelial Growth Factor in Terminally Differentiated Mouse Mast Cells.

    PubMed

    Johnzon, Carl-Fredrik; Rönnberg, Elin; Guss, Bengt; Pejler, Gunnar

    2016-01-01

    Mast cells have been shown to express vascular endothelial growth factor (VEGF), thereby implicating mast cells in pro-angiogenic processes. However, the mechanism of VEGF induction in mast cells and the possible expression of VEGF in fully mature mast cells have not been extensively studied. Here, we report that terminally differentiated peritoneal cell-derived mast cells can be induced to express VEGF in response to challenge with Staphylococcus aureus, thus identifying a mast cell-bacteria axis as a novel mechanism leading to VEGF release. Whereas live bacteria produced a robust upregulation of VEGF in mast cells, heat-inactivated bacteria failed to do so, and bacteria-conditioned media did not induce VEGF expression. The induction of VEGF was not critically dependent on direct cell-cell contact between bacteria and mast cells. Hence, these findings suggest that VEGF can be induced by soluble factors released during the co-culture conditions. Neither of a panel of bacterial cell-wall products known to activate toll-like receptor (TLR) signaling promoted VEGF expression in mast cells. In agreement with the latter, VEGF induction occurred independently of Myd88, an adaptor molecule that mediates the downstream events following TLR engagement. The VEGF induction was insensitive to nuclear factor of activated T-cells inhibition but was partly dependent on the nuclear factor kappa light-chain enhancer of activated B cells signaling pathway. Together, these findings identify bacterial challenge as a novel mechanism by which VEGF is induced in mast cells. PMID:27446077

  14. The multitasking mast cell: positive and negative roles in the progression of autoimmunity.

    PubMed

    Christy, Alison L; Brown, Melissa A

    2007-09-01

    Among the potential outcomes of an aberrantly functioning immune system are allergic disease and autoimmunity. Although it has been assumed that the underlying mechanisms mediating these conditions are completely different, recent evidence shows that mast cells provide a common link. Mast cells reside in most tissues, are particularly prevalent at sites of Ag entry, and act as sentinel cells of the immune system. They express many inflammatory mediators that affect both innate and adaptive cellular function. They contribute to pathologic allergic inflammation but also serve an important protective role in bacterial and parasite infections. Given the proinflammatory nature of autoimmune responses, it is not surprising that studies using murine models of autoimmunity clearly implicate mast cells in the initiation and/or progression of autoimmune disease. In this review, we discuss the defined and hypothesized mechanisms of mast cell influence on autoimmune diseases, including their surprising and newly discovered role as anti-inflammatory cells.

  15. Paul Ehrlich's mastzellen: a historical perspective of relevant developments in mast cell biology.

    PubMed

    Ghably, Jack; Saleh, Hana; Vyas, Harsha; Peiris, Emma; Misra, Niva; Krishnaswamy, Guha

    2015-01-01

    Following the discovery of mast cells (or mastzellen) by the prolific physician researcher, Paul Ehrlich, many advances have improved our understanding of these cells and their fascinating biology. The discovery of immunoglobulin E and receptors for IgE and IgG on mast cells heralded further in vivo and in vitro studies, using molecular technologies and gene knockout models. Mast cells express an array of inflammatory mediators including tryptase, histamine, cytokines, chemokines, and growth factors. They play a role in many varying disease states, from atopic diseases, parasitic infections, hematological malignancies, and arthritis to osteoporosis. This review will attempt to summarize salient evolving areas in mast cell research over the last few centuries that have led to our current understanding of this pivotal multifunctional cell.

  16. The Role of Macrophage Migration Inhibitory Factor in Mast Cell-Stimulated Fibroblast Proliferation and Collagen Production

    PubMed Central

    Ningyan, Gu; Xu, Yao; Hongfei, Shi; Jingjing, Chen; Min, Chen

    2015-01-01

    Current clinical and translational studies have shown that mast cell plays a pivotal role in multiple fibrotic diseases including scleroderma. However, the lack of mature human mast cell culture model exhibits a major obstacle for further dissection of cytokines and signaling molecules required for mast cell mediated fibrosis in various diseases. Macrophage Migration Inhibitory Factor is a mast cell released pro-inflammatory cytokine which is deregulated in scleroderma patients and is also involved in non-scleroderma related fibrosis. In the current study, we successfully generated a practical and reliable human mast cell culture system with bone marrow CD34+ hematopietic precursors. The derivative mast cell is normal in terms of both morphology and function as manifested by normal degranulation. More importantly, we were able to show mast cell conditioned medium as well as MIF supplementation augments fibroblast proliferation and collagen synthesis. This positive regulatory effect of mast cell conditioned medium can be dampened by MIF antibody. In addition, MIF-knockdown significantly inhibits pro-fibrotic activities of CD34+ hematopietic precursor derived mast cells. These data strongly suggest that mast cell released MIF is required for mast cell mediated fibrogenic activities. The current manuscript seems to be the first mechanistic report showing the significance of MIF in mast cell mediated fibrosis, which may pave the way for the development of potential MIF-targeted therapy for fibrotic diseases to a further extent. Moreover, we strongly believe mast cell culture and differentiation model as well as corresponding genetic manipulation methodology will be helpful in characterizing novel mast cell based therapeutic targets. PMID:25826375

  17. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    PubMed

    Bladergroen, Bellinda A; Strik, Merel C M; Wolbink, Angela M; Wouters, Dorine; Broekhuizen, Roel; Kummer, J Alain; Hack, C Erik

    2005-04-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells against endogenous and locally released granzyme B. Moreover, PI9 expression by neoplastic cells may constitute one of the mechanisms for tumors to escape immune surveillance. Here we show that PI9 is also expressed by human mast cells. In immunohistochemical studies using a PI9-specific monoclonal antibody, strong cytoplasmic staining for PI9 was found in normal mast cells in various tissues throughout the body. In addition, in 80% of all cases of cutaneous and systemic mastocytosis tested the majority of the mast cells expressed PI9. As an in vitro model for PI9 expression by mast cells, we studied expression by the human mast cell line HMC-1. Stimulation of HMC-1 with PMA and the calcium ionophore A23187 resulted in a marked increase of PI9 expression. Thus, PI9 is expressed by activated mast cells. We suggest that this expression serves to protect these cells against apoptosis induced by granzyme B released during initiation of the local inflammatory response.

  18. Aspergillus oryzae lectin induces anaphylactoid oedema and mast cell activation through its interaction with fucose of mast cell-bound non-specific IgE.

    PubMed

    Yamaki, K; Yoshino, S

    2011-11-01

    We investigated whether Aspergillus oryzae lectin (AOL), a fucose-specific lectin, induces anaphylactoid reactions and mast cell activation. The injection of AOL into footpads of mice produced a dose-related acute paw oedema. The AOL-induced oedema was attenuated by predose of histamine H1 receptor blocker or pretreatment of the lectin with fucose before injection and was not observed in SCID and mast cell-deficient WBB6F1-W/Wv mice. These results suggested that the AOL-induced anaphylactoid reaction was mediated by histamine released from mast cells. In addition, the activation of mast cells was seemed to be induced by the crosslinking of IgE on the cell surface following the binding of AOL to fucose residues in IgE. Consistent with the in vivo results, AOL induced the degranulation of the rat mast cell line RBL2H3 sensitized with monoclonal IgE. As AOL induced the increase in intracellular Ca(2+) concentration of IgE-sensitized RBL2H3 cells as well as antigen stimulation, AOL could input signals from FcεRI. The degranulation of IgE-sensitized RBL2H3 cells by AOL was diminished by pretreatment of AOL with fucose. Defucosylated IgE did not induce degranulation of RBL2H3 cells in response to AOL stimulation, in spite of its ability to induce degranulation by antigen stimulation as intact IgE. These results indicated that AOL bound to fucose residue of IgE causing antigen-independent IgE-mediated mast cell activation and anaphylactoid reactions in vitro and in vivo, respectively. AOL bound to human IgE as well as to mouse IgE, suggesting the possible implication of AOL in the allergic response to Aspergillus oryzae in humans.

  19. Mast Cells Comprise the Major of Interleukin 17-Producing Cells and Predict a Poor Prognosis in Hepatocellular Carcinoma

    PubMed Central

    Tu, Jian-Fei; Pan, Hong-Ying; Ying, Xi-Hui; Lou, Jian; Ji, Jian-Song; Zou, Hai

    2016-01-01

    Abstract IL-17 and IL-17-producing cells have been found in many types of human cancers and murine models. However, the source of tumor-infiltrating IL-17 and IL-17-producing cells in HCC and the prognostic values remain poorly understood. A total of 57 HCC patients were enrolled in this study, and immunofluorescence double stain was used to evaluate the colocalization of CD3+ T cells, CD4+ T cells, CD56+ NK cells, CD20+ B cells, CD68+ Macrophages, and MCT+ mast cells with IL-17. The prognostic value of IL-17-producing cells was evaluated by Kaplan–Meier analysis and Cox regression model. MCT+ mast cells, but not other cells, were the predominant IL-17-producing cell type. Overall survival analysis revealed that the increasing intratumoral-infiltrated MCT+ mast cells were significantly associated with poor prognosis. Immunofluorescence double stain showed a positive correlation between the number of MCT+ mast cells and MCVs. These findings indicated the major IL-17-producing cells in HCC were MCT+ mast cells and these cells infiltration may promote tumor progression by angiogenesis. Increased MCT+ mast cells was associated with a poor prognosis, indicating therapy targeting MCT+ mast cells might be an effective strategy in controlling intratumor IL-17 infiltration and MCVs. PMID:27043690

  20. Mast Cells and Influenza A Virus: Association with Allergic Responses and Beyond

    PubMed Central

    Graham, Amy C.; Temple, Rachel M.; Obar, Joshua J.

    2015-01-01

    Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology. PMID:26042121

  1. Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies.

    PubMed

    Madjene, Lydia Celia; Pons, Maguelonne; Danelli, Luca; Claver, Julien; Ali, Liza; Madera-Salcedo, Iris K; Kassas, Asma; Pellefigues, Christophe; Marquet, Florian; Dadah, Albert; Attout, Tarik; El-Ghoneimi, Alaa; Gautier, Gregory; Benhamou, Marc; Charles, Nicolas; Daugas, Eric; Launay, Pierre; Blank, Ulrich

    2015-01-01

    Mast cells are hematopoietic cells involved in inflammation and immunity and have been recognized also as important effector cells in kidney inflammation. In humans, only a few mast cells reside in kidneys constitutively but in progressive renal diseases their numbers increase substantially representing an essential part of the interstitial infiltrate of inflammatory cells. Recent data obtained in experimental animal models have emphasized a complex role of these cells and the mediators they release as they have been shown both to promote, but also to protect from disease and fibrosis development. Sometimes conflicting results have been reported in similar models suggesting a very narrow window between these activities depending on the pathophysiological context. Interestingly in mice, mast cell or mast cell mediator specific actions became also apparent in the absence of significant mast cell kidney infiltration supporting systemic or regional actions via draining lymph nodes or kidney capsules. Many of their activities rely on the capacity of mast cells to release, in a timely controlled manner, a wide range of inflammatory mediators, which can promote anti-inflammatory actions and repair activities that contribute to healing, but in some circumstances or in case of inappropriate regulation may also promote kidney disease.

  2. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors

    PubMed Central

    de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia

    2015-01-01

    Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538

  3. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  4. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  5. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    SciTech Connect

    Kanakura, Y.; Thompson, H.; Nakano, T.; Yamamura, T.; Asai, H.; Kitamura, Y.; Metcalfe, D.D.; Galli, S.J.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S) proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.

  6. Inhibition of tryptase release from human colon mast cells by histamine receptor antagonists.

    PubMed

    He, Shao-Heng; Xie, Hua; Fu, Yi-Ling

    2005-03-01

    The main objective of this study was to investigate the ability of histamine receptor antagonists to modulate tryptase release from human colon mast cells induced by histamine. Enzymatically dispersed cells from human colon were challenged with histamine in the absence or presence of the histamine receptor antagonists, and the tryptase release was determined. It was found that histamine induced tryptase release from colon mast cells was inhibited by up to approximately 61.5% and 24% by the H1 histamine receptor antagonist terfenadine and the H2 histamine receptor antagonist cimetidine, respectively, when histamine and its antagonists were added to cells at the same time. The H3 histamine receptor antagonist clobenpropit had no effect on histamine induced tryptase release from colon mast cells at all concentrations tested. Preincubation of terfenadine, cimetidine or clobenpropit with cells for 20 minutes before challenging with histamine did not enhance the ability of these antihistamines to inhibit histamine induced tryptase release. Apart from terfenadine at 100 microg/ml, the antagonists themselves did not stimulate tryptase release from colon mast cells following both 15 minutes and 35 minutes incubation periods. It was concluded that H1 and H2 histamine receptor antagonists were able to inhibit histamine induced tryptase release from colon mast cells. This not only added some new data to our hypothesis of self-amplification mechanisms of mast cell degranulation, but also suggested that combining these two types of antihistamine drugs could be useful for the treatment of inflammatory bowel disease (IBD).

  7. Regulation of GATA Factor Expression Is Distinct between Erythroid and Mast Cell Lineages

    PubMed Central

    Ohmori, Shin'ya; Takai, Jun; Ishijima, Yasushi; Suzuki, Mikiko; Moriguchi, Takashi; Philipsen, Sjaak; Yamamoto, Masayuki

    2012-01-01

    The zinc finger transcription factors GATA1 and GATA2 participate in mast cell development. Although the expression of these factors is regulated in a cell lineage-specific and differentiation stage-specific manner, their regulation during mast cell development has not been clarified. Here, we show that the GATA2 mRNA level was significantly increased while GATA1 was maintained at low levels during the differentiation of mast cells derived from mouse bone marrow (BMMCs). Unlike in erythroid cells, forced expression or small interfering RNA (siRNA)-mediated knockdown of GATA1 rarely affected GATA2 expression, and vice versa, in mast cells, indicating the absence of cross-regulation between Gata1 and Gata2 genes. Chromatin immunoprecipitation assays revealed that both GATA factors bound to most of the conserved GATA sites of Gata1 and Gata2 loci in BMMCs. However, the GATA1 hematopoietic enhancer (G1HE) of the Gata1 gene, which is essential for GATA1 expression in erythroid and megakaryocytic lineages, was bound only weakly by both GATA factors in BMMCs. Furthermore, transgenic-mouse reporter assays revealed that the G1HE is not essential for reporter expression in BMMCs and peritoneal mast cells. Collectively, these results demonstrate that the expression of GATA factors in mast cells is regulated in a manner quite distinct from that in erythroid cells. PMID:22988301

  8. Impaired expression of the mitochondrial calcium uniporter suppresses mast cell degranulation.

    PubMed

    Furuno, Tadahide; Shinkai, Narumi; Inoh, Yoshikazu; Nakanishi, Mamoru

    2015-12-01

    Calcium ion (Ca(2+)) uptake into the mitochondrial matrix influences ATP production, Ca(2+) homeostasis, and apoptosis regulation. Ca(2+) uptake across the ion-impermeable inner mitochondrial membrane is mediated by the mitochondrial Ca(2+) uniporter (MCU) complex. The MCU complex forms a pore structure composed of several proteins. MCU is a Ca(2+)-selective channel in the inner-mitochondrial membrane that allows electrophoretic Ca(2+) entry into the matrix. Mitochondrial Ca(2+) uptake 1 (MICU1) functions as a Ca(2+)-sensing regulator of the MCU complex. Previously, by microscopic analysis at the single-cell level, we found that during mast cell activation, mitochondria capture cytosolic Ca(2+) in two steps. Consequently, mitochondrial Ca(2+) uptake likely plays a role in cellular function through cytosolic Ca(2+) buffering. Here, we investigate the role of MCU and MICU1 in mitochondrial Ca(2+) uptake and mast cell degranulation using MCU- and MICU1-knockdown (KD) mast cells. Whereas MCU- and MICU1-KD mast cells show normal proliferation rates and mitochondrial membrane potential, they exhibit slow and reduced cytosolic and mitochondrial Ca(2+) elevation after antigen stimulation. Moreover, β-hexosaminidase release induced by antigen was significantly suppressed in MCU-KD cells but not MICU1-KD cells. This suggests that both MCU and MICU1 are involved in mitochondrial Ca(2+) uptake in mast cells, while MCU plays a role in mast cell degranulation.

  9. Mast cells in common wolffish Anarhichas lupus L.: ontogeny, distribution and association with lymphatic vessels.

    PubMed

    Hellberg, Hege; Bjerkås, Inge; Vågnes, Øyvind B; Noga, Edward J

    2013-12-01

    The morphology, ontogeny and tissue distribution of mast cells were studied in common wolffish(Anarhichas lupus L.) at the larval, juvenile and adult life stages using light and electron-microscopy and immunohistochemistry. Fish were sampled at 1 day, 1, 2, 3, 4, 8 and 12 weeks post-hatching in addition to 6 and 9 months and 2 years and older. From 8 weeks post-hatching, mast cells in common wolffish mainly appeared as oval or rounded cells 8-15 mm in diameter with an eccentrically placed, ovoid nucleus and filled with cytoplasmic granules up to 1.2 mm in diameter. Granules were refractile and eosinophilic to slightly basophilic in H&E and stained bright red with Martius-scarlet-blue and purple with pinacyanol erythrosinate in formalin-fixed tissues. Mast cells stained positive for piscidin 4 and Fc ε RI by immunohistochemistry. From 1 day to 4 weeks post-hatching, immature mast cell containing only a few irregularly sized cytoplasmic granules were observed by light and electron-microscopy in loose connective tissue of cranial areas. From 1 day post-hatching, these cells stained positive for piscidin 4 and Fc ε RI by immunohistochemistry. From 12 weeks post-hatching, mast cells showed a primarily perivascular distribution and were particularly closely associated with lymphatic vessels and sinuses. Mast cells were mainly located at the peripheral border of the adventitia of arteries and veins, while they were in intimate contact with the endothelium of the lymphatic vessels. Numerous mast cells were observed in the intestine. A stratum compactum, as described in salmonids, was not observed in wolffish intestine,nor were mast cells confined to a separate layer, a stratum granulosum. Lymphatic vessels consisting of endothelium, intimal connective tissue and a poorly developed basal lamina were observed in the intestine. Scanning electron microscopy was used to compare the structure and localization of intestinal mast cells of common wolffish and rainbow trout

  10. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.

    PubMed

    Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L

    2010-06-01

    Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. PMID:20226521

  11. Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow.

    PubMed

    Siebler, T; Robson, H; Bromley, M; Stevens, D A; Shalet, S M; Williams, G R

    2002-01-01

    Thyroid hormone (T(3)) plays a key role in endochondral ossification. The process relies on the coordinated synthesis and degradation of cartilage matrix and is disrupted in juvenile hypothyroidism, leading to abnormal skeletal development. Mast cells synthesize and store matrix-degrading enzymes. We examined whether thyroid status influences skeletal mast cell distribution in growing rats to determine whether they might modulate the actions of T(3) in bone. Tibiae were collected for histological, histochemical, immunohistochemical, and immunofluorescence analysis. Mast cells were increased throughout the bone marrow in hypothyroid rats compared with euthyroid, thyrotoxic, and hypothyroid-thyroxine replaced animals. Large numbers were present in metaphyseal marrow adjacent to the growth plate in hypothyroid animals and cells were distributed evenly throughout the marrow. Very few mast cells were present in metaphyseal marrow in other groups, but their numbers increased with increasing distance from the growth plate. T(3) receptor alpha1 (TRalpha1) was expressed in the nucleus and cytoplasm of skeletal mast cells, whereas TRalpha2 and TRbeta1 were restricted to the cytoplasm. Localization of TRs was not affected by altered thyroid status. Thus, disrupted endochondral ossification in hypothyroidism may be mediated in part by skeletal mast cells, which express TR proteins and may function as T(3) target cells.

  12. Mast Cell Stabilization Improves Survival by Preventing Apoptosis in Sepsis

    PubMed Central

    Ramos, Laura; Peña, Geber; Cai, Bolin; Deitch, E. A.; Ulloa, Luis

    2011-01-01

    Inhibiting single cytokines produced modest effects in clinical trials, in part because the cytokines werenot specific for sepsis, and sepsis may require cellular strategies. Previous studies reported that mast cells (MCs) fight infections in early sepsis. In this study, we report that MC stabilizers restrain serum TNF levels and improve survival in wild-type but not in MC-deficient mice. Yet, MC depletion in knockout mice attenuates serum TNF but does not improve survival in sepsis. Serum HMGB1 was the only factor correlating with survival. MC stabilizers inhibit systemic HMGB1 levels and rescue mice from established peritonitis. MC stabilizers fail to inhibit HMGB1 secretion from macrophages, but they prevent apoptosis and caspase-3 activation in sepsis. These results suggest that MC stabilization provides therapeutic benefits in sepsis by inhibiting extracellular release of HMGB1 from apoptotic cells. Our study provides the first evidence that MCs have major immunological implications regulating cell death in sepsis and represent a pharmacological target for infectious disorders in a clinically realistic time frame. PMID:20519642

  13. Cytological grading of canine cutaneous mast cell tumours.

    PubMed

    Scarpa, Filippo; Sabattini, Silvia; Bettini, Giuliano

    2016-09-01

    A cytological grading for mast cell tumours (MCTs) would be highly desirable, allowing to select the most appropriate therapeutic intervention prior to surgery. This study evaluates the applicability on fine-needle aspirations (FNAs) of the novel Kiupel grading system, based on number of mitoses, multinucleated cells, bizarre nuclei and presence of karyomegaly. Fifty consecutive cases with pre-operative cytological diagnosis were included. In cytological specimens, approximately 1000 cells were evaluated, and the histological grade was assessed on the corresponding resected specimens. On cytology, the above parameters were significantly different between histologically low-grade and high-grade tumours (P < 0.001). The cytograding correctly predicted the histological grade in 47 cases (accuracy, 94%; sensitivity, 84.6%; specificity, 97.3%). Two high-grade MCTs (4%) were not detected on cytology. The cytograding can provide helpful insights to assist clinical decisions in most cases. However, the risk of underestimation in a minority of patients represents a limit to the overall utility of the technique.

  14. Lipid body formation during maturation of human mast cells.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  15. Human mast cells capture, store, and release bioactive, exogenous IL-17A.

    PubMed

    Noordenbos, Troy; Blijdorp, Iris; Chen, Sijia; Stap, Jan; Mul, Erik; Cañete, Juan D; Lubberts, Erik; Yeremenko, Nataliya; Baeten, Dominique

    2016-09-01

    IL-17A, a major proinflammatory cytokine, can be produced by a variety of leukocytes, but its exact cellular source in human inflammatory diseases remains incompletely understood. IL-17A protein is abundantly found in mast cells in human tissues, such as inflamed synovium, but surprisingly, mechanistic murine studies failed to demonstrate IL-17A production by mast cells. Here, we demonstrate that primary human tissue mast cells do not produce IL-17A themselves but actively capture exogenous IL-17A through receptor-mediated endocytosis. The exogenous IL-17A is stored in intracellular granules and can subsequently be released in a bioactive form. This novel mechanism confers to mast cells the capacity to steer IL-17A-mediated tissue inflammation by the rapid release of preformed cytokine. PMID:27034403

  16. Preservation of the secretory response of peritoneal mast cells in the absence of extracellular calcium.

    PubMed

    Bronner, C; Gies, J P; Vallé, A; Landry, Y

    1987-12-01

    The transfer of rat peritoneal mast cells from balanced salt solution to calcium-free buffer led to a time-dependent decrease in their response to compound 48/80 and to ionophore A23187. The concomittant absence of potassium from the calcium-free buffer enabled the mast cells to retain their secretory response. The increase in potassium level, with a parallel decrease in sodium to maintain osmolarity, led to a slight potentiation of the response to 48/80 and to a large but transient potentiation of the response to A23187. Mast cells can be considered nonexcitable. The apparent dependency upon extracellular calcium of mast cell secretory responses might be related to the presumed tight equilibrium between endoplasmic reticulum calcium stores and extracellular calcium. The control of this equilibrium by transmembrane gradients of monovalent ions is proposed. PMID:2446099

  17. Incidence of Mast Cells in Gingival and Periapical Inflammation- A Kaleidoscopic Study

    PubMed Central

    Sreedhar, Gadiputi; George, Jiji

    2016-01-01

    Introduction Mast cells are large granular cells that have classically been related to neutrophil stimulation during early step of inflammation. Aim The objective of this work was to identify the incidence of mast cells in inflammatory lesions like periapical granuloma, pyogenic granuloma, gingival hyperplasia. 1. To assess the staining intensity of mast cells by using different metachromatic stains. 2. To correlate the above findings histopathologically. Materials and Methods In this study, we used 5 micron thick sections from paraffin-embedded tissue blocks of previously diagnosed periapical and gingival inflammatory lesions. The sections were stained with routine H & E and metachromatic stains like Toluidine blue, Alcian blue, Aldehyde fuchsin and Giemsa. The number of mast cells was quantified. Statistical analysis was done and mast cell numbers were compared. Results In both gingival and periapical inflammatory lesions, toludine blue showed more number of mast cells followed by giemsa. Giemsa stain showed statistical significance in differentiating both periapical and gingival lesions (p<0.05) in terms of mast cell count. Moderate inflammation (46.4%) was seen in a higher propotion of gingival inflammations whereas periapical inflammatory lesions revealed severe inflammation (53.3%). In both types of inflammatory lesions, higher staining intensity was shown by toludine blue followed by giemsa which was statistically significant. Conclusion Mast cell number is inversely proportional to inflammatory response in gingival inflammatory lesions and directly proportional to inflammatory response in periapical inflammatory lesions. Although, toludine blue is found to be a better stain, giemsa has equivalent properties as that of toludine blue. PMID:27437338

  18. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  19. Cell-based phenotypic screening of mast cell degranulation unveils kinetic perturbations of agents targeting phosphorylation

    PubMed Central

    Qin, Shenlu; Wang, Xumeng; Wu, Huanwen; Xiao, Peng; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai

    2016-01-01

    Mast cells play an essential role in initiating allergic diseases. The activation of mast cells are controlled by a complicated signal network of reversible phosphorylation, and finding the key regulators involved in this network has been the focus of the pharmaceutical industry. In this work, we used a method named Time-dependent cell responding profile (TCRP) to track the process of mast cell degranulation under various perturbations caused by agents targeting phosphorylation. To test the feasibility of this high-throughput cell-based phenotypic screening method, a variety of biological techniques were used. We further screened 145 inhibitors and clustered them based on the similarities of their TCRPs. Stat3 phosphorylation has been widely reported as a key step in mast cell degranulation. Interestingly, our TCRP results showed that a Stat3 inhibitor JSI124 did not inhibit degranulation like other Stat3 inhibitors, such as Stattic, clearly inhibited degranulation. Regular endpoint assays demonstrated that the distinctive TCRP of JSI124 potentially correlated with the ability to induce apoptosis. Consequently, different agents possibly have disparate functions, which can be conveniently detected by TCRP. From this perspective, our TCRP screening method is reliable and sensitive when it comes to discovering and selecting novel compounds for new drug developments. PMID:27502076

  20. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells

    PubMed Central

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S.

    2015-01-01

    ABSTRACT The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+ T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4+ T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. PMID:26719250

  1. Quantification of mast cells and blood vessels in the skin of patients with cutaneous mucinosis.

    PubMed

    Martins, Clarice; Nascimento, Adriana Paulino; Monte-Alto-Costa, Andréa; Alves, Maria de Fátima Scotelaro; Carneiro, Sueli Coelho; Porto, Luís Cristóvão de Moraes Sobrino

    2010-07-01

    Recent studies have suggested that mast cell numbers are increased in the skin of patients with cutaneous mucinosis and that these cells may have an important role in angiogenesis and production of mucin. Then, skin biopsies from 30 patients with cutaneous mucinosis (papular mucinosis, focal mucinosis, and mucinosis associated with lupus erythematosus) and from 10 healthy subjects were analyzed. Mast cells and blood vessels were immunolabeled with anti-tryptase and anti-CD34 antibodies, respectively, and then quantified stereologically. Counting was performed in papillary and reticular dermis. An increase in the number of mast cells was observed in the skin of patients with cutaneous mucinosis compared with the control group. Only minimal differences were observed in vessel stereology. There was no correlation between the increase in the number of mast cells and the number of blood vessels in the patients studied. There was no significant difference in the numbers of mast cells or blood vessels between the 3 subgroups of cutaneous mucinosis. Although many clinical forms of mucinosis have been described, neither mast cell number nor vessel distribution seems to distinguish the 3 different forms studied here.

  2. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography

    PubMed Central

    Chen, Huan-Yuan; Chiang, Dapi Meng-Lin; Lin, Zi-Jing; Hsieh, Chia-Chun; Yin, Gung-Chian; Weng, I.-Chun; Guttermann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Lai, Lee-Jene; Liu, Fu-Tong

    2016-01-01

    Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level. PMID:27748356

  3. Arsenic inhibits mast cell degranulation via suppression of early tyrosine phosphorylation events.

    PubMed

    Shim, Juyoung; Kennedy, Rachel H; Weatherly, Lisa M; Hutchinson, Lee M; Pelletier, Jonathan H; Hashmi, Hina N; Blais, Kayla; Velez, Alejandro; Gosse, Julie A

    2016-11-01

    Exposure to arsenic is a global health concern. We previously documented an inhibitory effect of inorganic Arsenite on IgE-mediated degranulation of RBL-2H3 mast cells (Hutchinson et al., 2011; J. Appl. Toxicol. 31: 231-241). Mast cells are tissue-resident cells that are positioned at the host-environment interface, thereby serving vital roles in many physiological processes and disease states, in addition to their well-known roles in allergy and asthma. Upon activation, mast cells secrete several mediators from cytoplasmic granules, in degranulation. The present study is an investigation of Arsenite's molecular target(s) in the degranulation pathway. Here, we report that arsenic does not affect degranulation stimulated by either the Ca(2) (+) ionophore A23187 or thapsigargin, which both bypass early signaling events. Arsenic also does not alter degranulation initiated by another non-IgE-mediated mast cell stimulant, the G-protein activator compound 48/80. However, arsenic inhibits Ca(2) (+) influx into antigen-activated mast cells. These results indicate that the target of arsenic in the degranulation pathway is upstream of the Ca(2) (+) influx. Phospho-Syk and phospho-p85 phosphoinositide 3-kinase enzyme-linked immunosorbent assays data show that arsenic inhibits early phosphorylation events. Taken together, this evidence indicates that the mechanism underlying arsenic inhibition of mast cell degranulation occurs at the early tyrosine phosphorylation steps in the degranulation pathway. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27018130

  4. [Sex differences in neuromodulation of mucosal mast cells in the rat jejunum].

    PubMed

    Gottwald, T; Becker, H D; Stead, R H

    1997-01-01

    The effect of electrical stimulation of both cervical vagal nerves on mucosal mast cells in the jejunum was investigated in an in vivo animal model with rats of both sexes. Males showed a significant increase of mast cell densities after electrical stimulation (1.0 mA, 5 Hz, 5 ms, 12 min) in the lamina propria. Simultaneously, we observed a significant increase of tissue histamine levels (ANOVA: P < 0.05), whereas serum levels remained unchanged. However, even though females had significantly higher levels throughout compared to males (ANOVA: P < 0.05), they did not show any significant reaction to electrical stimulation. These in vivo data support morphological and in vitro data from other investigators, who hypothesized a functional interaction between mucosal mast cells and nerves. However, degranulation seems to be a poor in situ indicator for mast-cell stimulation, as mast-cell densities increased in males, while the percentage of degranulated cells remained the same in all groups (about 40%). Instead, electrical stimulation of the vagal nerve seems to trigger histamine synthesis, or simply stabilization of mast cells. Interestingly, this phenomenon seems to be sex-dependent, suggesting a regulatory role for sex hormones in this scenario.

  5. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  6. Mast cells respond to urticating extract from lepidoptera larva Morpheis ehrenbergii in the rat.

    PubMed

    Galicia-Curiel, María Fernanda; Quintanar, J Luis; Jiménez, Mariela; Salinas, Eva

    2014-01-01

    Mast cells and histamine participate in toxic effects of hairs from some caterpillars. This study reports that a crude extract of Morpheis ehrenbergii caterpillar hairs induces in vitro mast cells activation, triggers the release of histamine and causes a rapid urticarial reaction in the rat skin. Heating of the extract abolishes the inflammatory reaction. These results suggest that the use of antihistamines may improve the adverse skin reactions caused by the Mexican caterpillar M. ehrenbergii.

  7. Environmental Estrogens Induce Mast Cell Degranulation and Enhance IgE-Mediated Release of Allergic Mediators

    PubMed Central

    Narita, Shin-ichiro; Goldblum, Randall M.; Watson, Cheryl S.; Brooks, Edward G.; Estes, D. Mark; Curran, Edward M.; Midoro-Horiuti, Terumi

    2007-01-01

    Background Prevalence and morbidity of allergic diseases have increased over the last decades. Based on the recently recognized differences in asthma prevalence between the sexes, we have examined the effect of endogenous estrogens on a key element of the allergic response. Some lipophilic pollutants have estrogen-like activities and are termed environmental estrogens. These pollutants tend to degrade slowly in the environment and to bioaccumulate and bioconcentrate in the food chain; they also have long biological half-lives. Objectives Our goal in this study was to identify possible pathogenic roles for environmental estrogens in the development of allergic diseases. Methods We screened a number of environmental estrogens for their ability to modulate the release of allergic mediators from mast cells. We incubated a human mast cell line and primary mast cell cultures derived from bone marrow of wild type and estrogen receptor α (ER-α )–deficient mice with environmental estrogens with and without estradiol or IgE and allergens. We assessed degranulation of mast cells by quantifying the release of β -hexosaminidase. Results All of the environmental estrogens tested caused rapid, dose-related release of β -hexosaminidase from mast cells and enhanced IgE-mediated release. The combination of physiologic concentrations of 17β -estradiol and several concentrations of environmental estrogens had additive effects on mast cell degranulation. Comparison of bone marrow mast cells from ER-α –sufficient and ER-α –deficient mice indicated that much of the effect of environmental estrogens was mediated by ER-α . Conclusions Our findings suggest that estrogenic environmental pollutants might promote allergic diseases by inducing and enhancing mast cell degranulation by physiologic estrogens and exposure to allergens. PMID:17366818

  8. Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice.

    PubMed

    Sakamoto, Ayumi; Andoh, Tsugunobu; Kuraishi, Yasushi

    2016-03-01

    The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.

  9. Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice.

    PubMed

    Sakamoto, Ayumi; Andoh, Tsugunobu; Kuraishi, Yasushi

    2016-03-01

    The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents. PMID:26804251

  10. Inhibitory effects of mast cell-mediated allergic reactions by cell cultured Siberian Ginseng.

    PubMed

    Jeong, H J; Koo, H N; Myung, N I; Shin, M K; Kim, J W; Kim, D K; Kim, K S; Kim, H M; Lee, Y M

    2001-02-01

    The crude drug "Siberian Ginseng (SG)" has long been used in empirical Oriental medicine for the nonspecific enhancement of resistance in humans and animals. In this study, we investigated the effect of cell cultured SG by oral administration in mast cell-mediated allergic reactions. SG dose-dependently inhibited compound 48/80-induced systemic allergy with doses of 10(-2) to 1 g/kg 1 h before oral administration. Of special note, SG inhibited systemic allergy with the dose of 1 g/kg by 25%. SG (1 g/kg) also inhibited passive cutaneous allergic reaction by 51%. SG dose-dependently inhibited histamine release from rat peritoneal mast cells. When SG (0.01 mg/ml) was added, the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in antidinitrophenyl (DNP) IgE antibody-stimulated mast cells was inhibited 39.5% and 23.3%, respectively. In addition, SG inhibited anti-DNP IgE antibody-stimulated TNF-alpha protein expression in mast cells. Our studies provide evidence that SG may be beneficial in the treatment of various types of allergic diseases.

  11. Mast Cells Participate in Corneal Development in Mice

    PubMed Central

    Liu, Jun; Fu, Ting; Song, Fang; Xue, Yunxia; Xia, Chaoyong; Liu, Peng; Wang, Hanqing; Zhong, Jiajun; Li, Quanrong; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2015-01-01

    The development of the cornea, a highly specialized transparent tissue located at the anterior of the eye, is coordinated by a variety of molecules and cells. Here, we report that mast cells (MCs), recently found to be involved in morphogenesis, played a potentially important role in corneal development in mice. We show that two different waves of MC migration occurred during corneal development. In the first wave, MCs migrated to the corneal stroma and became distributed throughout the cornea. This wave occurred by embryonic day 12.5, with MCs disappearing from the cornea at the time of eyelid opening. In the second wave, MCs migrated to the corneal limbus and became distributed around limbal blood vessels. The number of MCs in this region gradually increased after birth and peaked at the time of eyelid opening in mice, remaining stable after postnatal day 21. We also show that integrin α4β7 and CXCR2 were important for the migration of MC precursors to the corneal limbus and that c-Kit-dependent MCs appeared to be involved in the formation of limbal blood vessels and corneal nerve fibers. These data clearly revealed that MCs participate in the development of the murine cornea. PMID:26627131

  12. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  13. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  14. Optical imaging of fibrin deposition to elucidate participation of mast cells in foreign body responses

    PubMed Central

    Weng, Hong; Tang, Ewin N.; Baker, David W.; Tang, Liping

    2014-01-01

    Mast cell activation has been shown to be an initiator and a key determinant of foreign body reactions. However, there is no non-invasive method that can quantify the degree of implant-associated mast cell activation. Taking advantage of the fact that fibrin deposition is a hallmark of mast cell activation around biomaterial implants, a near infrared probe was fabricated to have high affinity to fibrin. Subsequent in vitro testing confirmed that this probe has high affinity to fibrin. Using a subcutaneous particle implantation model, we found significant accumulation of fibrin-affinity probes at the implant sites as early as 15 min following particle implantation. The accumulation of fibrin-affinity probes at the implantation sites could also be substantially reduced if anti-coagulant – heparin was administered at the implant sites. Further studies have shown that subcutaneous administration of mast cell activator – compound 48/80 – prompted the accumulation of fibrin-affinity probes. However, implant-associated fibrin-affinity probe accumulation was substantially reduced in mice with mast cell deficiency. The results show that our fibrin-affinity probes may serve as a powerful tool to monitor and measure the extent of biomaterial-mediated fibrin deposition and mast cell activation in vivo. PMID:24342726

  15. Ripe fruit of Rubus coreanus inhibits mast cell-mediated allergic inflammation.

    PubMed

    Kim, Hui-Hun; Choi, Phil Hyung; Yoo, Jin-Su; Jeon, Hoon; Chae, Byeong-Suk; Park, Jeong-Suk; Kim, Sang-Hyun; Shin, Tae-Yong

    2012-02-01

    In this study, we investigated the effect of a water extract of the ripe fruits of Rubus coreanus Miq. (Rosaceae) (RFRC) on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, rhinitis, asthma and atopic dermatitis. RFRC dose-dependently inhibited compound 48/80-induced systemic anaphylaxis and serum histamine release in mice. RFRC reduced the immunoglobulin E (IgE)-mediated local allergic reaction, passive cutaneous anaphylaxis. RFRC attenuated histamine release from rat peritoneal mast cells and human mast cells by the reduction of intracellular calcium. RFRC decreased the phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187 (PMACI)-stimulated expression and secretion of pro-inflammatory cytokines in human mast cells. The inhibitory effect of RFRC on cytokine production was nuclear factor (NF)-κB- and mitogen-activated protein kinase (MAPK)-dependent. In addition, RFRC suppressed the activation of caspase-1. Our findings provide evidence that RFRC inhibits mast cell-derived allergic inflammatory reactions, and for the involvement of calcium, NF-κB, MAPKs and caspase-1 in these effects. Furthermore, in vivo and in vitro anti-allergic inflammatory effects of RFRC provide affirmative proof of a possible therapeutic application of this agent in allergic inflammatory diseases. PMID:22075758

  16. Effect of LED phototherapy (λ630 +/- 20nm) on mast cells during wound healing in hypothyroid

    NASA Astrophysics Data System (ADS)

    Paraguassú, Gardênia M.; De Castro, Isabele Cardoso V.; Vasconcelos, Rebeca M.; da Guarda, Milena G.; Rodriguez, Tânia T.; Ramalho, Maria José P.; Pinheiro, Antônio Luiz B.; Ramalho, Luciana Maria P.

    2014-02-01

    Hypothyroidism has been associated with the disruption of the body's metabolism, including the healing process. LED phototherapy has been studied using several healing models, but their effects on mast cells proliferation associated to hypothyroidism remains unknown. The aim of this study was to assess the effect LED (λ630+/-20nm) phototherapy on mast cells proliferation during tissue repair in hypothyroid rats. Under general anesthesia, a standard surgical wound (1cm2) was created on the dorsum of 24 male Wistar rats divided into 4 groups of 6 animals each: EC-Control Euthyroid; ED-Euthyroid+LED; HC-Control Hypothyroid and HD-Hypothyroid+LED. The irradiation started immediately after surgery and was repeated every other day for 7 days, when animals death occurred. Hypothyroidism was induced in rats with propylthiouracil (0.05g/100mL) administered orally for 4 weeks and maintained until the end of the experiment. The specimens removed were processed to wax and stained with toluidine blue for mast cell identification. The mast cell proliferation was significantly higher in HC group than in EC group (Mann Whitney, p<0.05), but when ED group was compared to HD group, no significant difference was found. Our results showed that there was increase of mast cells in the presence of hypothyroidism, prolonging the inflammatory phase of repair, and the LED light has a biomodulative effect on mast cell population, even when hipothyroidism was present.

  17. IgE and mast cells in host defense against parasites and venoms.

    PubMed

    Mukai, Kaori; Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2016-09-01

    IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly "maladaptive" immune response develop in evolution and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms. PMID:27225312

  18. Cultures of mast cell-like (MCL) cells from human pleural exudate cells.

    PubMed

    Krüger, G; Sterry, W; Czarnetzki, B M

    1983-03-01

    Under special culture conditions, rat peritoneal macrophages have previously been shown to transform into mast cells. This method has been adapted here to the human species. Adherent large mononuclear cells from human pleural exudates were cultured in a medium supplemented with horse serum (30%) and fibroblast supernatants (30%). Metachromatic staining (toluidine blue, pH 3.6) of cytoplasmic granules appeared first in a small percentage of cells by days 5-6 of culture and reached a high intensity in 50% of the cells between days 12-22. Histamine levels within the cells increased by a factor of 7 during this same time period and the cell size by a factor of 3. Cultures could be maintained for about three weeks, since viability and total cell number decreased on extended culture. The data suggest that mononuclear cells in inflammatory exudates can transform into mast cell-like cells under the influence of high levels of specific conditioning factors in their microenvironment. PMID:6824794

  19. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells.

    PubMed

    Mundy, D I; Strittmatter, W J

    1985-03-01

    Exocytosis is initiated by the receptor-mediated influx of calcium that results in fusion of the secretory vesicle with the plasma membrane. We examined the possibility that calcium-dependent exocytosis in mast cells and adrenal chromaffin cells requires metalloendoprotease activity. Metalloendoprotease inhibitors and dipeptide substrates block exocytosis in these cells with the same specificity and dose dependency as that with which they interact with metalloendoproteases. Metalloendoprotease activity is identified in these cells with fluorogenic synthetic substrates, which also blocked exocytosis. Metalloendoprotease activity is highest in the plasma membrane of chromaffin cells. The metalloendoprotease appears to be required in exocytosis at a step dependent on or after calcium entry, since exocytosis initiated by direct calcium introduction in both mast cells and chromaffin cells is blocked by metalloendoprotease inhibitors.

  20. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE.

    PubMed

    Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A

    2013-05-01

    The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS.

  1. [Mast cell-derived exosome participates in acupoint-stimulation initiated local network activities].

    PubMed

    Chen, Bo; Li, Ming-yue; Guo, Yi; Zhao, Xue; Liu, Yang-yang

    2015-02-01

    The exosome, released from mast cells, T cells, B cells and many other types of cells, is the common form of vesicle transportation between cells and participates in the exchange of information between cells, and may be also involved in acupuncture induced clinical effects. In the present paper, the authors reviewed recent development of researches on this field from 1) acupuncture stimulation induces changes of number and function of mast cells in the local acupoint area, probably being the key factor for initiating acupuncture effect; 2) acupuncture stimulation induces release of neurotransmitters, hormones, cytokines, Ca2+, etc., in the local acupoint region, possibly being closely associated with the production of clinical effects; 3) acupuncture stimulation results in excitation of sensory afferent nerve fibers, triggering neuro-regulation; 4) exosomes derived from mast cells contain multiple neurotransmitters, hormones, cytokines, etc. to activate immune cells and sensory afferent fibers, inducing immuno-regulation and neuro-regulation; and 5) acupuncture stimulation induced release of Ca2+, ATP, etc. may potentiate release and transportation of exosomes. However, current researches are lack of excavation of network connection and transformation from basic research to clinical application. The authors hold that the exosome, released from mast cells by needling acupoints, acts as a messenger in network connection of nerve-mast cell-signal molecule in the body and may be one of the key factors of therapeutic effects.

  2. Mast cells as modulators of hair follicle cycling.

    PubMed

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  3. Modulatory Effects of Connexin-43 Expression on Gap Junction Intercellular Communications with Mast Cells and Fibroblasts

    PubMed Central

    Pistorio, Ashey L.; Ehrlich, H. Paul

    2011-01-01

    The influence of mast cells upon aberrant wound repair and excessive fibrosis has supportive evidence, but the mechanism for these mast cell activities is unclear. It is proposed that heterocellular gap junctional intercellular communication (GJIC) between fibroblasts and mast cells directs some fibroblast activities. An in vitro model was used employing a rodent derived peritoneal mast cell line (RMC-1) and human dermal derived fibroblasts. The influence of the expression of the gap junction channel structural protein, connexin 43 (Cx-43) on heterocellular GJIC, the expression of microtubule β-tubulin and microfilament α smooth muscle actin (SMA) were investigated. The knockdown of Cx-43 by siRNA in RMC-1 cells completely blocked GJIC between RMC-1 cells. SiRNA knockdown of Cx-43 within fibroblasts only dampened GJIC between fibroblasts. It appears Cx-43 is the only expressed connexin in RMC-1 cells. Fibroblasts express other connexins that participate in GJIC between fibroblasts in the absence of Cx-43 expression. Heterocellular GJIC between RMC-1 cells and fibroblasts transformed fibroblasts into myofibroblasts, expressing α SMA within cytoplasmic stress fibers. The knockdown of Cx-43 in RMC-1 cells increased β-tubulin expression, but its knockdown in fibroblasts reduced β-tubulin expression. Knocking down the expression of Cx-43 in fibroblasts limited α SMA expression. Cx-43 participation is critical for heterocellular GJIC between mast cells and fibroblasts, which may herald a novel direction for controlling fibrosis. PMID:21328609

  4. Mast cells in human keloid, small intestine, and lung by an immunoperoxidase technique using a murine monoclonal antibody against tryptase.

    PubMed Central

    Craig, S. S.; DeBlois, G.; Schwartz, L. B.

    1986-01-01

    A murine monoclonal antibody (G5) against human lung mast cell tryptase was used for selective staining of human mast cells by an indirect immunoperoxidase method. Human tissues (keloid, small bowel, lung) were fixed in either Carnoy's fluid or neutral buffered formalin. In all three tissues the number and location of G5-stained mast cells corresponded closely with metachromatic toluidine blue-stained mast cells, although the immunospecific technique appeared to be more sensitive. In lung the average concentration of G5-positive mast cells after Carnoy's fixation was 15,695/cu mm of subepithelial tissue in bronchi and bronchioles and 26,580/cu mm of alveolar wall, in small bowel was 20,958/cu mm of mucosa and 8576/cu mm of submucosa, and in keloid was 3068/cu mm. Formalin fixation significantly reduced concentrations of G5-positive mast cells in all tissues except keloid. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3532813

  5. Increased mast cell counts in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad-Javad

    2014-01-01

    Background and aims. Mast cells are one of the characteristic factors in angiogenesis, growth, and metastatic spread of tumors. The distribution and significance of mast cells in many tumors have been demonstrated. However, few studies have evaluated mast cell infiltration in salivary gland tumors. In this study, mast cell counts were evaluated in benign and malig-nant salivary gland tumors. Materials and methods. This descriptive and cross-sectional study assessed 30 cases of pleomorphic adenoma, 13 cases of adenoid cystic carcinoma, 7 cases of mucoepidermoid carcinoma (diagnosed on the basis of 2005 WHO classifica-tion), with adequate stroma in peritumoral and intratumoral areas, and 10 cases of normal salivary glands. The samples were stained with 5% diluted Giemsa solution and the average stained cell counts were calculated in 10 random microscopic fields in peri- and intra-tumoral areas. Data were analyzed by t-test and Mann-Whitney and Krusskal-Wallis tests. Results. The average mast cell counts increased in the tumors compared to normal salivary glands. There was no signifi-cant difference between benign and malignant tumors and also between different malignant tumors. Infiltration was signifi-cantly denser in peri-tumoral stroma in both tumoral groups (P = 0.001). Minor salivary glands contained significantly more numerous mast cells. Conclusion. Although mast cell counts increased in benign and malignant salivary gland tumors, there were no signifi-cant differences between the tumoral groups. Further studies are suggested to determine the type of these cells which might be useful in the assessment of biological nature of the tumor and its future treatment modality.

  6. Mast cell degranulation by a hemolytic lipid toxin decreases GBS colonization and infection

    PubMed Central

    Gendrin, Claire; Vornhagen, Jay; Ngo, Lisa; Whidbey, Christopher; Boldenow, Erica; Santana-Ufret, Veronica; Clauson, Morgan; Burnside, Kellie; Galloway, Dionne P.; Waldorf, Kristina Adams; Piliponsky, Adrian M.; Rajagopal, Lakshmi

    2015-01-01

    Ascending infection of microbes from the lower genital tract into the amniotic cavity increases the risk of preterm birth, stillbirth, and newborn infections. Host defenses that are critical for preventing ascending microbial infection are not completely understood. Group B Streptococcus (GBS) are Gram-positive bacteria that frequently colonize the lower genital tract of healthy women but cause severe infections during pregnancy, leading to preterm birth, stillbirth, or early-onset newborn infections. We recently described that the GBS pigment is hemolytic, and increased pigment expression promotes GBS penetration of human placenta. Here, we show that the GBS hemolytic pigment/lipid toxin and hyperpigmented GBS strains induce mast cell degranulation, leading to the release of preformed and proinflammatory mediators. Mast cell–deficient mice exhibit enhanced bacterial burden, decreased neutrophil mobilization, and decreased immune responses during systemic GBS infection. In a vaginal colonization model, hyperpigmented GBS strains showed increased persistence in mast cell–deficient mice compared to mast cell–proficient mice. Consistent with these observations, fewer rectovaginal GBS isolates from women in their third trimester of pregnancy were hyperpigmented/hyperhemolytic. Our work represents the first example of a bacterial hemolytic lipid that induces mast cell degranulation and emphasizes the role of mast cells in limiting genital colonization by hyperpigmented GBS. PMID:26425734

  7. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    SciTech Connect

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  8. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.

  9. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog

    SciTech Connect

    Weaver, James L.

    2015-09-15

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30 min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2 min after dosing at the highest concentrations tested. - Highlights: • Peginesatide caused severe anaphylactoid reactions in 0.2% of patients. • Both formulated drug and vehicle cause degranulation of rat mast cells. • Phenol was identified as the vehicle component causing degranulation. • Human mast cells show similar dose response to phenol as rat mast cells

  10. Enhanced mucosal permeability and nitric oxide synthase activity in jejunum of mast cell deficient mice

    PubMed Central

    Komatsu, S; Grisham, M; Russell, J; Granger, D

    1997-01-01

    Background—Recent reports have described a modulating influence of nitric oxide (NO) on intestinal mucosal permeability and have implicated a role for mast cells in this NO mediated process. 
Aims—To assess further the contribution of mast cells to the mucosal permeability changes elicited by the NO synthase (NOS) inhibitor NG-nitro-L-arginine methylester (L-NAME), using mast cell deficient (W/WV) and mast cell replete mice (+/+). 
Methods—Chromium-51 EDTA clearance (from blood to jejunal lumen), jejunal NOS and myeloperoxidase (MPO) activities, and plasma nitrate/nitrite levels were monitored. 
Results—The increased EDTA clearance elicited by intraluminal L-NAME in W/WV mice (4.4-fold) was significantly greater than the response observed in control (+/+) mice (1.8-fold). The exacerbated response in W/Wv mice was greatly attenuated by pretreatment with either dexamethasone (1.3-fold) or the selective inducible NOS inhibitor, aminoguanidine (1.4-fold), and partially attenuated by the mast cell stabiliser, lodoxamide (2.9-fold). Jejunal inducible NOS activity was significantly higher in W/WV than in +/+ mice, while jejunal MPO was lower in W/WV mice than in +/+ mice, suggesting that the higher inducible NOS in W/WV does not result from the recruitment of inflammatory cells into the gut. The higher inducible NOS activity in the jejunum of W/WV was significantly reduced by dexamethasone treatment. 
Conclusions—Our results suggest that mast cells normally serve to inhibit inducible NOS activity tonically in the gut and that inhibitors of NOS elicit a larger permeability response when this tonic inhibitory influence is released by mast cell depletion. 

 Keywords: aminoguanidine; c-kit; dexamethasone; epithelium; neutrophils PMID:9414970

  11. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2–DP1 receptor paracrine axis

    PubMed Central

    Taketomi, Yoshitaka; Ueno, Noriko; Kojima, Takumi; Sato, Hiroyasu; Murase, Remi; Yamamoto, Kei; Tanaka, Satoshi; Sakanaka, Mariko; Nakamura, Masanori; Nishito, Yasumasa; Kawana, Momoko; Kambe, Naotomo; Ikeda, Kazutaka; Taguchi, Ryo; Nakamizo, Satoshi; Kabashima, Kenji; Gelb, Michael H.; Arita, Makoto; Yokomizo, Takehiko; Nakamura, Motonao; Watanabe, Kikuko; Hirai, Hiroyuki; Nakamura, Masataka; Okayama, Yoshimichi; Ra, Chisei; Aritake, Kosuke; Urade, Yoshihiro; Morimoto, Kazushi; Sugimoto, Yukihiko; Shimizu, Takao; Narumiya, Shuh; Hara, Shuntaro; Murakami, Makoto

    2014-01-01

    Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell–deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS–ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3–L-PGDS–DP1 loop that drives mast cell maturation. PMID:23624557

  12. Mast cells and IgE in defense against venoms: Possible "good side" of allergy?

    PubMed

    Galli, Stephen J; Starkl, Philipp; Marichal, Thomas; Tsai, Mindy

    2016-01-01

    Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, as well as against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance to reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice which survive an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcɛRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances. PMID:26666482

  13. The role of mast cells in histologically "normal" appendices following emergency appendectomy in pediatric patients.

    PubMed

    Yang, Zhongbo; Esebua, Magda; Layfield, Lester

    2016-10-01

    Fifteen percent to 25% of appendices resected for a preoperative diagnosis of acute appendicitis have no neutrophilic infiltration, thus histologically "normal." The discrepancy between clinical presentation and the lack of definite morphologic changes is confounding. It has been indicated that mast cells may play a role in the pathogenesis of the appendicitis-like pain in patients with histologically negative appendices (HNAs). To investigate whether mast cell density (MCD) is increased in pediatric HNAs, we retrieved 50 appendectomy cases (30 HNA and 20 control, ages 2 days-18 years) in our institute in the last 10 years. All cases were stained with mast cell tryptase by immunohistochemistry, and MCD (count/high-power field) was measured in mucosa, submucosa, muscularis, and serosa. Mast cells had the greatest density in the mucosa, followed by the submucosa, in all appendices. MCDs in all 4 layers were significantly higher in HNAs than in the normal controls (mucosa: 46±9 vs 26±11, P<.01; submucosa: 18±5 vs 11±5, P<.01; muscularis: 6±3 vs 4±2, P<.01; serosa: 6±2 vs 4±2, P<.01). This result suggests that mast cells play an important role in pathogenesis of HNA cases. In clinical practice, pathologists may order immunohistochemical stains for mast cells in cases with no classic histologic findings of acute appendicitis following emergency appendectomy. If increased MCD is noted, the case may be reported as "appendicitis with increased mast cells." This assures surgeons that the appendectomy is the correct treatment and it is not necessary to look for other causes of acute abdomen. This is especially important in children. PMID:27649944

  14. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy

    PubMed Central

    2013-01-01

    Introduction We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Methods Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Results Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Conclusion Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes. PMID:24517261

  15. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  16. Stimulation of cysteinyl leukotriene production in mast cells by heat shock and acetylsalicylic acid.

    PubMed

    Mortaz, Esmaeil; Redegeld, Frank A; Dunsmore, Kathy; Odoms, Kelli; Wong, Hector R; Nijkamp, Frans P; Engels, Ferdi

    2007-04-30

    Immunoglobulin (Ig) E-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that causes the release of preformed, and de novo synthesis of, allergic mediators. Cysteinyl leukotrienes are able to contract airway smooth muscle and increase mucus secretion and vascular permeability and recruit eosinophils. Mast cells have also recently been recognized as active participants in innate immune responses. Heat stress can modulate innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). We previously demonstrated that treatment of mast cells with heat shock or acetylsalicylic acid results in an increase of TNF-alpha and IL-6 release. This effect was paralleled by expression of HSP70. In the current study, we further investigated the effects of heat shock and acetylsalicylic acid on the activation of mast cells and the release of cysteinyl leukotrienes. In mouse mast cells, derived from a culture of bone marrow cells, responsiveness to heat shock, acetylsalicylic acid and exogenous or endogenous HSP70 was monitored by measuring leukotriene C4 release. We show that after heat shock treatment and exposure to acetylsalicylic acid leukotriene production was increased. Moreover, exogenous rHSP70 also induced leukotriene production. Because it has been reported that leukotriene production in mast cells may be mediated by Toll like receptor (TLR) activation, and HSP70 also activates TLRs signaling, we further explored these issues by using mast cells that are not able to produce HSP70, i.e. heat shock factor-1 (HSF-1) knockout cells. We found that in HSF-1 knockout bone marrow derived mast cells, heat shock and acetylsalicylic acid failed to induce release of leukotrienes. Moreover, in wild type cells the surface expression of TLR4 was attenuated, whereas the intracellular expression was up-regulated. We conclude that heat shock and acetylsalicylic acid induce

  17. Association of mast cells with calcification in the human pineal gland.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Deręgowski, Krzysztof; Maśliński, Sławomir

    2010-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. The role of calcification in the pathogenesis of pineal gland dysfunction remains unknown but the available data document that calcification is an organized, regulated process, rather than a passive aging phenomenon. The cellular biology and micro-environmental conditions required for calcification remain poorly understood but most studies have demonstrated evidence that mast cells are strongly implicated in this process. The aim of the present study was to examine the phenotype of mast cells associated with early stages and with the progressive development of calcification in the human pineal gland. The study was performed on pineal samples of 170 fetuses and children whose brains were autopsied and diagnosed during 1998-2002. The representative cerebral and pineal specimens were stained with haematoxylin and eosin or the von Kossa staining technique and for the distribution of mast cell tryptase, mast cell chymase, histamine H4 receptor and vascular network using biotinylated Ulex europaeus agglutinin. Tryptase mast cells were found in all stages of pineal gland development independently of the presence of local tissue lesions. All of them were always localized in the close vicinity of the blood vessels and expressed immunoreactivity to histamine H4 receptor antibody. Immunolocalization of mast cells by chymase antibody (and following dual immunostaining with both chymase and tryptase antibodies) demonstrated that these cells were few in number and were located in the subcapsular region of the gland. In our study, all functional mast cells that underwent activation and were co-localized with deposits of calcium did not contain chymase. All of them were stained with tryptase and represent the MC-T phenotype. Tryptase mast cells and extracellular tryptase were often associated with areas of early and more

  18. Association of mast cells with calcification in the human pineal gland.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Deręgowski, Krzysztof; Maśliński, Sławomir

    2010-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. The role of calcification in the pathogenesis of pineal gland dysfunction remains unknown but the available data document that calcification is an organized, regulated process, rather than a passive aging phenomenon. The cellular biology and micro-environmental conditions required for calcification remain poorly understood but most studies have demonstrated evidence that mast cells are strongly implicated in this process. The aim of the present study was to examine the phenotype of mast cells associated with early stages and with the progressive development of calcification in the human pineal gland. The study was performed on pineal samples of 170 fetuses and children whose brains were autopsied and diagnosed during 1998-2002. The representative cerebral and pineal specimens were stained with haematoxylin and eosin or the von Kossa staining technique and for the distribution of mast cell tryptase, mast cell chymase, histamine H4 receptor and vascular network using biotinylated Ulex europaeus agglutinin. Tryptase mast cells were found in all stages of pineal gland development independently of the presence of local tissue lesions. All of them were always localized in the close vicinity of the blood vessels and expressed immunoreactivity to histamine H4 receptor antibody. Immunolocalization of mast cells by chymase antibody (and following dual immunostaining with both chymase and tryptase antibodies) demonstrated that these cells were few in number and were located in the subcapsular region of the gland. In our study, all functional mast cells that underwent activation and were co-localized with deposits of calcium did not contain chymase. All of them were stained with tryptase and represent the MC-T phenotype. Tryptase mast cells and extracellular tryptase were often associated with areas of early and more

  19. ROCK1 via LIM kinase regulates growth, maturation and actin based functions in mast cells

    PubMed Central

    Kapur, Reuben; Shi, Jianjian; Ghosh, Joydeep; Munugalavadla, Veerendra; Sims, Emily; Martin, Holly; Wei, Lei; Mali, Raghuveer Singh

    2016-01-01

    Understanding mast cell development is essential due to their critical role in regulating immunity and autoimmune diseases. Here, we show how Rho kinases (ROCK) regulate mast cell development and can function as therapeutic targets for treating allergic diseases. Rock1 deficiency results in delayed maturation of bone marrow derived mast cells (BMMCs) in response to IL-3 stimulation and reduced growth in response to stem cell factor (SCF) stimulation. Further, integrin-mediated adhesion and migration, and IgE-mediated degranulation are all impaired in Rock1-deficient BMMCs. To understand the mechanism behind altered mast cell development in Rock1−/− BMMCs, we analyzed the activation of ROCK and its downstream targets including LIM kinase (LIMK). We observed reduced activation of ROCK, LIMK, AKT and ERK1/2 in Rock1-deficient BMMCs in response to SCF stimulation. Further, loss of either Limk1 or Limk2 also demonstrated altered BMMC maturation and growth; combined deletion of both Limk1 and Limk2 resulted in further reduction in BMMC maturation and growth. In passive cutaneous anaphylaxis model, deficiency of Rock1 or treatment with ROCK inhibitor Fasudil protected mice against IgE-mediated challenge. Our results identify ROCK/LIMK pathway as a novel therapeutic target for treating allergic diseases involving mast cells. PMID:26943578

  20. Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness.

    PubMed

    Chaïr-Yousfi, Imène; Laraba-Djebari, Fatima; Hammoudi-Triki, Djelila

    2015-03-01

    Lung injury and respiratory distress syndrome are frequent symptoms observed in the most severe cases of scorpion envenomation. The uncontrolled transmigration of leukocyte cells into the lung interstitium and alveolar space and pulmonary edema may be the cause of death. Mast cells can release various inflammatory mediators known to be involved in the development of lung edema following scorpion venom injection. The present study was designed to determine the evidence of neurokinin 1 (NK1) receptor and the involvement of mast cell activation to induce pulmonary edema and to increase vascular permeability after Androctonus australis hector (Aah) venom administration. To this end, mast cells were depleted using compound 48/80 (C48/80). Furthermore, the involvement of tachykinin NK1 receptors expressed on mast cell membranes was elucidated by their blocking with an antagonist. On the other hand, the ability of Aah venom to increase vascular permeability and to induce edema was also assessed by measuring the amount of Evans blue dye (EBD) extravasation in bronchoalveolar lavage (BAL) fluid and in the lungs of mice. Pulmonary edema, as assessed by the levels of EBD extravasation, was completely inhibited in compound 48/80-treated animals. Depletion by stimuli non-immunological C48/80 component markedly reduced induced inflammatory response following the venom administration. The mast cells seem to play an important role in the development of lung injury and the increase of vascular permeability in mice following the subcutaneous administration of Aah scorpion venom through the NK1 receptor. PMID:25601496

  1. A comparative study of lymph node mast cell populations in five marsupial species.

    PubMed

    Chiarini-Garcia, H; Pereira, F M

    1999-06-01

    In order to determine whether different subpopulations of mast cells exist, mast cells of mandibular and axillary lymph nodes from five species (Didelphis aurita, Metachirus nudicaudatus, Philander opossum, Marmosops incanus and Gracilinanus agilis) of South American marsupials were studied. Our results showed that mast cells present in the connective tissue of the capsule and septa (CTMC) were similar to those described for eutherian mammals. However, a population of mast cells that was present in the lymphatic sinuses and bathed by the lymph, plus in direct contact with granulocytes, lymphocytes, macrophages, and reticular cells, were morphologically and histochemically different from the CTMC. In the five species studied, these cellular types, called lymphatic-sinus mast cells (LSMC), had a lower concentration of intragranular heparin and, in four of the five species, the cytoplasmic granules appeared to be larger than those in CTMC. Although LSMC have been rarely described in eutherian mammals, it was verified, in this study, that LSMC are nevertheless present in lymphatic sinuses of the five metatherian species studied. These observations suggest that the presence of LSMC may be a characteristic of the marsupials and important in the immune response and adaptive success of the Didelphidae.

  2. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  3. Mast cells contribute to fibrin deposition in reverse passive Arthus reaction in mouse skin.

    PubMed

    Ramos, B F; Zhang, Y; Jakschik, B A

    1992-09-01

    The activation of the clotting system is an important process during inflammation to contain the injury and initiate tissue repair. In the present study, we investigated the effect of mast cells on fibrin deposition in reverse passive Arthus reaction in mast cell-deficient WBB6F1-W/Wv(W/Wv) and control WBB6F1-(+)/+(+/+) mice, that were given 125I-labeled fibrogen intravenousty. An antibody dose-dependent increase in radioactivity was observed in the challenged skin sites. Sequential water and urea extractions characterized the radioiodinated fibrinogen derivatives present in the tissue. The radioactivity found in the various fractions of the stimulated samples from +/+ was 2-10-fold higher than that in specimens from W/Wv mice. The greatest difference was observed in the urea-insoluble pellet (cross-linked fibrin and its early degradation products). Reconstitution of W/Wv mice with mast cells augmented the response to levels similar to those in +/+ mice. Pretreatment with the antihistamine pyrilamine blocked the accumulation of 125I-labeled fibrinogen and its derivatives by approximately 70% in +/+ but not in W/Wv mice. Inhibition of leukotriene synthesis by A-63162 markedly decreased the accumulation of iodinated fibrinogen in both +/+ and W/Wv mice. The data suggest that mast cells and their vasoactive mediator histamine contribute to the exudation of clotting factors, which results in fibrin deposition and that mast cells also enhance fibrin cross-linkage.

  4. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells

    PubMed Central

    Gorbea, Enrique; Ullrich, Stephen E.

    2015-01-01

    Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome. PMID:26316070

  5. Effect of fruits of Opuntia elatior Mill on mast cell degranulation

    PubMed Central

    Chauhan, Sanjay P.; Sheth, N. R.; Suhagia, B. N.

    2015-01-01

    Background: The presence of potentially active nutrients and their multifunctional properties make prickly pear a perfect candidate for the production of phytopharmaceutical products. Among the numerous Opuntia species, bioactive compounds have been isolated and characterized primarily from Opuntia ficus-indica, Opuntia polycantha, Opuntia stricta, Opuntia dilleni for various medicinal properties. Objective: Based on the traditional use of prickly pear for enhancement of immune function, the objective of the present study to evaluate the effect of prickly pear on mast cell degranulation function. Materials and Methods: The Opuntia fruit juice (OFJ) (10-200 μl/ml) were studied for the effect on sensitized rat peritoneal mast cell degranulation induced by immunological (egg albumin), and nonimmunological (compound 48/80) stimuli and compared with that of the reference standard, sodium cromoglycate and ketotifen (10 μg/ml). Results and Conclusion: The OFJ exhibited significantly (P < 0.001) concentration dependent inhibition of mast cell degranulation. The IC50 value of OFJ was found 12.24 and 18 μl/ml for immunological and nonimmunological induced mast cell degranulation, respectively. The betacyanin is an active principle compound in prickly pear that may responsible for mast cell stabilizing action. PMID:25883521

  6. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

    PubMed Central

    Janicki, Joseph S.; Brower, Gregory L.; Levick, Scott P.

    2015-01-01

    Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed. PMID:25388248

  7. Identification and characterization of the inducible murine mast cell gene, imc-415.

    PubMed

    Cho, S H; Cho, J J; Kim, I S; Vliagoftis, H; Metcalfe, D D; Oh, C K

    1998-11-01

    Activation of mast cells results in the generation and release of bioactive mediators which in turn initiate allergic inflammation. Mast cell function is enhanced following stimulation in part because of the induction of specific genes and their products. To identify additional genes induced in mast cells that support this process, we thus constructed an activation-specific mast cell subtraction library. To date, we have isolated 26 novel inducible murine mast cell (imc) cDNA clones. Among them, a full-coding region of the murine gene imc-415 was found to have a greater than 90% nucleotide sequence homology and a 97.5% amino acid sequence homology to both a human beta4 integrin-binding protein (p27(BBP)) and a human translation initiation factor 6 (eIF6), which in turn are identical. In vitro translation of the imc-415 gene yielded a band of an approximately 26 kDa. This is the same as the calculated molecular weight of murine IMC-415 protein based on the predicted amino acid sequence and is the molecular weight of p27(BBP)/eIF6. Murine imc-415 message was also induced in inflamed lung tissues in a mouse model of asthma. These results suggest a role for murine imc-415 in allergic inflammation where it may enhance protein synthesis. Human eIF6/p27(BBP) may also play a role in allergic diseases based on the similarities in sequence and in gene expression patterns.

  8. FES kinase promotes mast cell recruitment to mammary tumors via the stem cell factor/KIT receptor signaling axis.

    PubMed

    Kwok, Ester; Everingham, Stephanie; Zhang, Shengnan; Greer, Peter A; Allingham, John S; Craig, Andrew W B

    2012-07-01

    KIT receptor is required for mast cell development, survival, and migration toward its ligand stem cell factor (SCF). Many solid tumors express SCF and this leads to mast cell recruitment to tumors and release of mediators linked to tumor angiogenesis, growth, and metastasis. Here, we investigate whether FES protein-tyrosine kinase, a downstream effector of KIT signaling in mast cells, is required for migration of mast cells toward SCF-expressing mammary tumors. Using a novel agarose drop assay for chemotaxis of bone marrow-derived mast cells (BMMC) toward SCF, we found that defects in chemotaxis of fes-null BMMCs correlated with disorganized microtubule networks in polarized cells. FES displayed partial colocalization with microtubules in polarized BMMCs and has at least two direct microtubule binding sites within its N-terminal F-BAR and SH2 domains. An oligomerization-disrupting mutation within the Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain had no effect on microtubule binding, whereas microtubule binding to the SH2 domain was dependent on the phosphotyrosine-binding pocket. FES involvement in mast cell recruitment to tumors was tested using the AC2M2 mouse mammary carcinoma model. These tumor cells expressed SCF and promoted BMMC recruitment in a KIT- and FES-dependent manner. Engraftment of AC2M2 orthotopic and subcutaneous tumors in control or fes-null mice, revealed a key role for FES in recruitment of mast cells to the tumor periphery. This may contribute to the reduced tumor growth and metastases observed in fes-null mice compared with control mice. Taken together, FES is a potential therapeutic target to limit the progression of tumors with stromal mast cell involvement.

  9. Correlation of mast cells in different stages of human periodontal diseases: Pilot study

    PubMed Central

    Agrawal, Raina; Gupta, Jagriti; Gupta, Krishna Kumar; Kumar, Vinod

    2016-01-01

    Aims and Objectives: The aim of this study was to evaluate and correlate the relationship between mast cells counts and different stages of human periodontal diseases. Materials and Methods: The study sample comprised 50 patients, which were divided into three groups, consisting of 10 cases of clinically healthy gingival tissues (control group) 20 cases of dental plaque-induced gingivitis with no attachment loss and 20 cases of localized chronic periodontitis (LCP) characterized by the loss of periodontal support. The samples for control group were obtained during tooth extractions for orthodontic reasons. The specimens were immediately fixed in 10% neutral buffered formalin. Conclusion: In this study, LCP cases had higher mast cell counts compared to gingivitis sites or healthy tissues. Increased mast cell counts in the progressing sites of periodontal diseases may indicate the importance of these cells in the progression of chronic periodontitis. PMID:27194868

  10. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    SciTech Connect

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  11. Activation and function of the mTORC1 pathway in mast cells

    PubMed Central

    Kim, Mi-Sun; Kuehn, Hye Sun; Metcalfe, Dean D.; Gilfillan, Alasdair M.

    2009-01-01

    Little is known about the signals downstream of phosphoinositide 3-kinase (PI3K) which regulate mast cell homeostasis and function following FcεRI aggregation and Kit ligation. Here, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1) pathway in these responses. In human and mouse mast cells, stimulation via FcεRI or Kit resulted in a marked PI3K-dependent activation of the mTORC1 pathway, as revealed by the wortmannin-sensitive sequential phosphorylation of tuberin, mTOR, p70S6 kinase (p70S6K), and 4E-BP1. In contrast, in human tumor mast cells, the mTORC1 pathway was constitutively activated and this was associated with markedly elevated levels of mTORC1 pathway components. Rapamycin, a specific inhibitor of mTORC1, selectively and completely blocked the FcεRI- and Kit-induced mTORC1-dependent p70S6K phosphorylation and partially blocked the 4E-BP1 phosphorylation. In parallel, although rapamycin had no effect on FcεRI-mediated degranulation or Kit-mediated cell adhesion, it inhibited cytokine production, Kit-mediated chemotaxis and cell survival. Furthermore, Rapamycin also blocked the constitutive activation of the mTORC1 pathway and inhibited cell survival of tumor mast cells. These data provide evidence that mTORC1 is a point of divergency for the PI3K-regulated downstream events of FcεRI and Kit for the selective regulation of mast cell functions. Specifically, the mTORC1 pathway may play a critical role in normal and dysregulated control of mast cell homeostasis. PMID:18354181

  12. A fractal analysis of the spatial distribution of tumoral mast cells in lymph nodes and bone marrow.

    PubMed

    Guidolin, Diego; Marinaccio, Christian; Tortorella, Cinzia; Ruggieri, Simona; Rizzi, Anna; Maiorano, Eugenio; Specchia, Giorgina; Ribatti, Domenico

    2015-11-15

    The spatial distribution of mast cells inside the tumor stroma has been little investigated. In this study, we have evaluated tumor mast cells distribution through the analysis of the morphological features of the spatial patterns generated by these cells, including size, shape, and architecture of the cell pattern. We have compared diffuse large B cells lymphoma (DLBCL) and systemic mastocytosis in two different anatomical localizations (lymph nodes for DLBCL and, respectively, bone marrow for mastocytosis). Results have indicated that, despite the high difference in size exhibited by the mast cells patterns in the two conditions, the spatial relationship between the mast cells forming the aggregates resulted similar, characterized by a significant tendency of the mast cells to self-organize in clusters.

  13. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves.

    PubMed Central

    Stead, R H; Tomioka, M; Quinonez, G; Simon, G T; Felten, S Y; Bienenstock, J

    1987-01-01

    Inflammatory or allergic conditions, as well as situations where healing and repair processes occur, are characterized by the presence of increased numbers of mast cells. Previous work on the effect of neuropeptides on mast cell mediator release showed that only substance P caused such release from intestinal mucosal mast cells [Shanahan, F., Denburg, J. A., Fox, J., Bienenstock, J. & Befus, A. D. (1985) J. Immunol. 135, 1331-1337]. Accordingly, we investigated the microanatomical relationship between mast cells and enteric nerves in normal rat intestine and parasite-infected rat intestine, in which mucosal mast cell hyperplasia occurs. Combined immunohistochemistry for neuron-specific enolase and staining with alcian blue at pH 0.5 was employed on paraffin-embedded sections of normal and Nippostrongylus brasiliensis-infected rat jejunum. Sixty-seven percent of intestinal mucosal mast cells were touching subepithelial nerves, and an additional 20% were within 2 micron of nerves. Assessment of the proportion of the lamina propria occupied by mast cells (12.5%), the average mast cell area (121 +/- 28 microns 2), and the density of enteric nerves (one per 788 +/- 151 microns 2) suggested that the association was 5 times greater than would be expected by chance alone (P less than 0.0001). In consecutive sections, the nerves in contact with mast cells were also shown to contain substance P and/or calcitonin-gene-related peptide. Electron microscopy confirmed this association: 8% of the mast cells in infected rats exhibited membrane-membrane contact with unmyelinated axons containing 70- to 170-nm dense-core vesicles, and an additional 31% were situated less than 250 nm from nerves. Other mast cells appeared to embrace nerve bundles through the projection of lamellopodia. These data provide systematic quantitative evidence that a structural foundation for communication between the immune and nervous systems exists in the rat gastrointestinal tract. Images PMID:2437589

  14. Non FcεR-bearing Mast Cells Secrete Sufficient Interleukin-4 to Control Francisella tularensis Replication within Macrophages

    PubMed Central

    Thathiah, Prea; Sanapala, Shilpa; Rodriguez, Annette R.; Yu, Jieh-Juen; Murthy, Ashlesh K.; Guentzel, M. Neal; Forsthuber, Thomas G.; Chambers, James P.; Arulanandam, Bernard P.

    2011-01-01

    Mast cells have classically been implicated in the triggering of allergic and anaphylactic reactions. However, recent findings have elucidated the ability of these cells to selectively release a variety of cytokines leading to bacterial clearance through neutrophil and dendritic cell mobilization, and suggest an important role in innate host defenses. Our laboratory has established a primary bone marrow derived mast cell-macrophage co-culture system and found that mast cells mediated a significant inhibition of Francisella tularensis LVS uptake and replication within macrophages through contact and the secreted product interleukin-4 (IL-4). In this study, we utilized P815 mast cells and J774 macrophages to further investigate whether mast cell activation by non-FcεR driven signals could produce IL-4 and control intramacrophage LVS replication. P815 supernatants collected upon activation by the mast cell activating peptide MP7, as well as P815 cells co-cultured with J774 macrophages, exhibited marked inhibition of bacterial uptake and replication, which correlated with the production of IL-4. The inhibition noted in vitro was titratable and preserved at ratios relevant to cellular infiltration events following pulmonary challenge. Collectively, our data suggest that both primary mast cell and P815 mast cell (lacking FcεR) secreted IL-4 can control intramacrophage Francisella replication. PMID:21565523

  15. RIN3 is a negative regulator of mast cell responses to SCF.

    PubMed

    Janson, Christine; Kasahara, Noriyuki; Prendergast, George C; Colicelli, John

    2012-01-01

    Stimulation of the receptor tyrosine kinase KIT by Stem Cell Factor (SCF) triggers activation of RAS and its downstream effectors. Proper KIT activation is essential for the maturation, survival and proliferation of mast cells. In addition, SCF activation of KIT is critical for recruiting mast cells to sites of infection or injury, where they release a mix of pro-inflammatory substances. RIN3, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), is highly expressed and enriched in human mast cells. SCF treatment of mast cells increased the amount of GTP-bound RAB5, and the degree of RAB5 activation correlated with the expression level of RIN3. At the same time, SCF caused the dissociation of a pre-formed complex of RIN3 with BIN2, a membrane bending protein implicated in endocytosis. Silencing of RIN3 increased the rate of SCF-induced KIT internalization, while persistent RIN3 over-expression led to KIT down regulation. These observations strongly support a role for RIN3 in coordinating the early steps of KIT endocytosis. Importantly, RIN3 also functioned as an inhibitor of mast cell migration toward SCF. Finally, we demonstrate that elevated RIN3 levels sensitize mastocytosis cells to treatment with a KIT tyrosine kinase inhibitor, suggesting the value of a two-pronged inhibitor approach for this difficult to treat malignancy. These findings directly connect KIT activation with a mast cell-specific RAS effector that regulates the cellular response to SCF and provide new insight for the development of more effective mastocytosis treatments. PMID:23185384

  16. Spontaneous cutaneous mast cell tumor with lymph node metastasis in a Richardson's ground squirrel (Spermophilus richardsonii).

    PubMed

    He, Xi Jun; Uchida, Kazuyuki; Tochitani, Tomoaki; Uetsuka, Koji; Miwa, Yasutsugu; Nakayama, Hiroyuki

    2009-01-01

    A 4-year-old female Richardson's ground squirrel (Spermophilus richardsonii) presented with multicentric nodules arising from the skin of the middle of the tail and lumbosacral regions. Histologically, the nodules were composed of a proliferation of spindloid to pleomorphic cells that sometimes formed sheets and fascicular to storiform patterns. Diffuse infiltration of eosinophils was also noted. The results of immunohistochemistry indicated positive labeling for vimentin, mast cell tryptase, c-kit, and Ki-67. Toluidine blue stain revealed fine, metachromatic, cytoplasmic granules. The histologic diagnosis was mast cell tumor. The neoplasm recurred and metastasized to the right lumbar lymph node 1 month later.

  17. Are testicular mast cells involved in the regulation of germ cells in man?

    PubMed

    Windschüttl, S; Nettersheim, D; Schlatt, S; Huber, A; Welter, H; Schwarzer, J U; Köhn, F M; Schorle, H; Mayerhofer, A

    2014-07-01

    Protease activated receptor-2 (PAR-2) is the receptor for the prototype mast cell product tryptase. PAR-2 expression by cells of the human germinal epithelium was reported, but the exact cellular sites of testicular expression remained unknown. That became of interest, because mast cells, expressing tryptase, were found in the walls of seminiferous tubules of patients suffering from sub- and infertility. This location suggested that mast cells via tryptase might be able to influence PAR-2-expressing cells in the germinal epithelium. To explore these points, we used testicular paraffin-embedded sections for immunohistochemistry. PAR-2-positive cells were mostly basally located cells of the seminiferous epithelium, namely spermatogonia. Some stained for the receptor for GDNF (GFRalpha-1), and possibly represent spermatogonial stem cells (SSCs). As true human SSCs could not be examined, we turned to TCam-2 seminoma cells, expressing PAR-2 and stem cell markers, including GFRalpha-1. TCam-2 cells robustly responded to stimulation with a specific PAR-2 agonist (SLIGKV) by increased intracellular Ca(2+) levels. Recombinant tryptase and trypsin, but not a control peptide (VKGILS) evoked this response, implying functional PAR-2. Video imaging and caspase 3/7 assays showed that SLIGKV and tryptase prevented spontaneous apoptosis and increased proliferation of TCam-2 cells. The expression of the marker of pluripotency OCT3/4 was unchanged upon activation of PAR-2, suggesting that the stem cell-like character is not changed. Furthermore, human germ cell cancers were examined. A subset of seminoma and carcinoma in situ samples expressed PAR-2, indicating that yet unknown subgroups exist. Collectively, the descriptive data obtained in human testicular sections, in germ cell cancers and the functional results in TCam-2 cells imply a trophic role of mast cell-derived tryptase for human germ cells. This may be relevant for subtypes of human germ cell cancers, and possibly SSCs. It

  18. Involvement of Bruton's Tyrosine Kinase in FcεRI-dependent Mast Cell Degranulation and Cytokine Production

    PubMed Central

    Hata, Daisuke; Kawakami, Yuko; Inagaki, Naoki; Lantz, Chris S.; Kitamura, Toshio; Khan, Wasif N.; Maeda-Yamamoto, Mari; Miura, Toru; Han, Wei; Hartman, Stephen E.; Yao, Libo; Nagai, Hiroichi; Goldfeld, Anne E.; Alt, Frederick W.; Galli, Stephen J.; Witte, Owen N.; Kawakami, Toshiaki

    1998-01-01

    We investigated the role of Bruton's tyrosine kinase (Btk) in FcεRI-dependent activation of mouse mast cells, using xid and btk null mutant mice. Unlike B cell development, mast cell development is apparently normal in these btk mutant mice. However, mast cells derived from these mice exhibited significant abnormalities in FcεRI-dependent function. xid mice primed with anti-dinitrophenyl monoclonal IgE antibody exhibited mildly diminished early-phase and severely blunted late-phase anaphylactic reactions in response to antigen challenge in vivo. Consistent with this finding, cultured mast cells derived from the bone marrow cells of xid or btk null mice exhibited mild impairments in degranulation, and more profound defects in the production of several cytokines, upon FcεRI cross-linking. Moreover, the transcriptional activities of these cytokine genes were severely reduced in FcεRI-stimulated btk mutant mast cells. The specificity of these effects of btk mutations was confirmed by the improvement in the ability of btk mutant mast cells to degranulate and to secrete cytokines after the retroviral transfer of wild-type btk cDNA, but not of vector or kinase-dead btk cDNA. Retroviral transfer of Emt (= Itk/Tsk), Btk's closest relative, also partially improved the ability of btk mutant mast cells to secrete mediators. Taken together, these results demonstrate an important role for Btk in the full expression of FcεRI signal transduction in mast cells. PMID:9547335

  19. Agarwood Inhibits Histamine Release from Rat Mast Cells and Reduces Scratching Behavior in Mice

    PubMed Central

    Inoue, Eiji; Shimizu, Yasuharu; Masui, Ryo; Tsubonoya, Tomoe; Hayakawa, Tomomi; Sudoh, Keiichi

    2016-01-01

    Objectives: This study was conducted to clarify the effects of agarwood on histamine release from mast cells in rats and on the scratching behaviors in mice. Methods: Histamine release from rat mast cells induced by compound 48/80 or concanavalin A (Con A) and compound 48/80-induced scratching behavior in mice were examined to investigate the effects of agarwood. The hyaluronidase activity and the 3’,5’-cyclic adenosine monophosphate (cAMP) levels in mast cells were examined to investigate the mechanisms for the inhibition of histamine release. The correlation between the inhibitory effects of agarwood on histamine release and the content of its typical ingredients, a 2-(2-phenylethyl)chromone derivatives, was analyzed using thin-layer chromatography. Results: Agarwood showed an inhibitory effect on mast-cell histamine release induced by compound 48/80 or Con A without any effect on hyaluronidase activity; this effect involves an increase in the cAMP levels in mast cells. Oral administration of agarwood showed an inhibitory effect on compound 48/80-induced scratching behavior in mice. The inhibitory effects of agarwood on histamine release were quite different, depending on the area where the agarwood was produced, its quality, and its market price. No correlation was found between the inhibitory effects of agarwood on histamine release and the typical ingredients of agarwood, which are 2-(2-phenylethyl)chromone derivatives. Conclusion: These results show that agarwood inhibits histamine release from mast cells partially through an increase in the cAMP levels in cells. We suggest that some active ingredients of agarwood must be effective on oral intake and that agarwood can be used to treat patients with a number of conditions, including urticaria, atopic dermatitis, and bronchial asthma, in which an increase in histamine release occurs. Differences in the pharmacological effects of this crude drug among markets may provide important information for the quality

  20. Agarwood Inhibits Histamine Release from Rat Mast Cells and Reduces Scratching Behavior in Mice

    PubMed Central

    Inoue, Eiji; Shimizu, Yasuharu; Masui, Ryo; Tsubonoya, Tomoe; Hayakawa, Tomomi; Sudoh, Keiichi

    2016-01-01

    Objectives: This study was conducted to clarify the effects of agarwood on histamine release from mast cells in rats and on the scratching behaviors in mice. Methods: Histamine release from rat mast cells induced by compound 48/80 or concanavalin A (Con A) and compound 48/80-induced scratching behavior in mice were examined to investigate the effects of agarwood. The hyaluronidase activity and the 3’,5’-cyclic adenosine monophosphate (cAMP) levels in mast cells were examined to investigate the mechanisms for the inhibition of histamine release. The correlation between the inhibitory effects of agarwood on histamine release and the content of its typical ingredients, a 2-(2-phenylethyl)chromone derivatives, was analyzed using thin-layer chromatography. Results: Agarwood showed an inhibitory effect on mast-cell histamine release induced by compound 48/80 or Con A without any effect on hyaluronidase activity; this effect involves an increase in the cAMP levels in mast cells. Oral administration of agarwood showed an inhibitory effect on compound 48/80-induced scratching behavior in mice. The inhibitory effects of agarwood on histamine release were quite different, depending on the area where the agarwood was produced, its quality, and its market price. No correlation was found between the inhibitory effects of agarwood on histamine release and the typical ingredients of agarwood, which are 2-(2-phenylethyl)chromone derivatives. Conclusion: These results show that agarwood inhibits histamine release from mast cells partially through an increase in the cAMP levels in cells. We suggest that some active ingredients of agarwood must be effective on oral intake and that agarwood can be used to treat patients with a number of conditions, including urticaria, atopic dermatitis, and bronchial asthma, in which an increase in histamine release occurs. Differences in the pharmacological effects of this crude drug among markets may provide important information for the quality

  1. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    SciTech Connect

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J. . E-mail: gerhard.zlabinger@meduniwien.ac.at

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-{alpha} transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  2. Cutting Edge: Nitrogen bisphosphonate-induced inflammation is dependent upon mast cells and IL-1

    PubMed Central

    Norton, John T.; Hayashi, Tomoko; Crain, Brian; Cho, John S.; Miller, Lloyd S.; Corr, Maripat; Carson, Dennis A.

    2012-01-01

    Nitrogen containing bisphosphonates (NBPs) are taken by millions for bone disorders but may cause serious inflammatory reactions. Here, we utilized a murine peritonitis model to characterize the inflammatory mechanisms of these agents. At dosages comparable to those used in humans, injection of NBPs into the peritoneum caused recruitment of neutrophils, followed by an influx of monocytes. These cellular changes corresponded to an initial increase in IL-1α, which preceded a rise in multiple other proinflammatory cytokines. IL-1 receptor, IL-1α, and IL-1β were required for neutrophil recruitment, whereas other MyD88-dependent signaling pathways were needed for the monocyte influx. Mice deficient in mast cells, but not mice lacking lymphocytes, were resistant to NBP-induced inflammation and reconstitution of these mice with mast cells restored sensitivity to NBPs. These results document the critical role of mast cells and IL-1 in NBP mediated inflammatory reactions. PMID:22387558

  3. Mastocytemia associated with a visceral mast cell tumor in a Sumatran tiger (Panthera tigris).

    PubMed

    Graille, Mélanie; Huyghe, François-Pierre; Nicolier, Alexandra

    2013-03-01

    A 6-yr-old male Sumatran tiger (Panthera tigris) with no significant past clinical history was anesthetized for clinical examination after 5 days of lethargy. Clinically, the animal presented with anorexia, pale mucous membranes, and icterus. Hematologic results indicated moderate anemia and severe thrombocytopenia and showed a circulating population of atypical mast cells. The tiger died during anesthesia. On postmortem examination, abdominal hemorrhage associated with marked diffuse hepato-splenomegaly and mesenteric, hepatic, and splenic lymph node hypertrophy were observed. A visceral mast cell tumor was confirmed by histologic examination and toluidine blue staining, with splenic, hepatic, lymphoid, renal, and pulmonary infiltration. Hematologic, postmortem, and histologic findings were consistent with mastocytemia associated with the splenic form of mast cell tumor described in domestic cats. PMID:23505726

  4. Mast cells in the intestine and gills of the sea bream, Sparus aurata, exposed to a polychlorinated biphenyl, PCB 126.

    PubMed

    Lauriano, Eugenia Rita; Calò, Margherita; Silvestri, Giuseppa; Zaccone, Daniele; Pergolizzi, Simona; Lo Cascio, Patrizia

    2012-02-01

    The presence of mast cells has been reported in all classes of vertebrates, including many teleost fish families. The mast cells of teleosts, both morphologically and functionally, show a close similarity to the mast cells of mammals. Mast cells of teleosts, localized in the vicinity of blood vessels of the intestine, gills and skin, may play an important role in the mechanisms of inflammatory response, because they express a number of functional proteins, including piscidins, which are antimicrobical peptides that act against a broad-spectrum of pathogens. An increase in the number of mast cells in various tissues and organs of teleosts seems to be linked to a wide range of stressful conditions, such as exposure to heavy metals (cadmium, copper, lead and mercury), exposure to herbicides and parasitic infections. This study analyzed the morphological localization and abundance of mast cells in the intestine and gills of sea bream, Sparus aurata, after a 12, 24 or 72 h exposure to PCB 126, a polychlorinated biphenyl, which is a potent immunotoxic agent. In the organs of fish exposed to PCB 126, it was observed that in addition to congestion of blood vessels, there was extravasation of red blood cells, infiltration of lymphocytes, and a progressive increase in numbers of mast cells. These data confirm the immunotoxic action of PCB, and the involvement of mast cells in the inflammatory response. PMID:21565388

  5. Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells.

    PubMed Central

    Mariot, P; O'Sullivan, A J; Brown, A M; Tatham, P E

    1996-01-01

    Introducing non-hydrolysable analogues of GTP into the cytosolic compartment of mast cells results in exocytotic secretion through the activation of GTP binding proteins. The identity and mechanism of action of these proteins are not established. We have investigated the effects of Rho GDP dissociation inhibitor (RhoGDI) on exocytosis induced by guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) in rat mast cells, introducing the protein into cells by means of a patch pipette and recording the progress of exocytosis by monitoring cell capacitance. To allow time for the protein to enter the cells and find its correct location, stimulation was provided 5-10 min after patch rupture by photolysing caged GTP-gamma-S included in the pipette solution. When bovine RhoGDI was introduced into mast cells, exocytosis was inhibited at concentrations of 200-400 nM for native protein and 800 nM to 8 microM for the recombinant form. Protein denatured by heat or N-ethylmaleimide treatment did not inhibit. In permeabilized cells, recombinant RhoGDI increased the rate at which cells lose their ability to respond to GTP-gamma-S. These data demonstrate that one or more small GTP binding proteins of the Rho family has a central role in the exocytotic mechanism in mast cells. Images PMID:8978674

  6. AN EMERGING ROLE FOR THE LIPID MEDIATOR SPHINGOSINE-1-PHOSPHATE IN MAST CELL EFFECTOR FUNCTION AND ALLERGIC DISEASE*

    PubMed Central

    Olivera, Ana; Rivera, Juan

    2011-01-01

    Sphingosine-1-phosphate (S1P) plays important roles regulating functions of diverse biological systems, including the immune system. S1P affects immune cell function mostly by acting through its receptors at the cell membrane but it can also induce S1P receptor-independent responses in the cells where it is generated. S1P produced in allergically stimulated mast cells mediates degranulation, cytokine and lipid mediator production, and migration of mast cells towards antigen by mechanisms that are both S1P receptor-dependent and independent. Even in the absence of an antigen challenge, the differentiation and responsiveness of mast cells can be affected by chronic exposure to elevated S1P from a non-mast cell source, which may occur under pathophysiological conditions, potentially leading to the hyper-responsiveness of mast cells. The role of S1P extends beyond the regulation of the function of mast cells to the regulation of the surrounding or distal environment. S1P is exported out of antigen-stimulated mast cells and into the extracellular space and the resulting S1P gradient within the tissue may influence diverse surrounding tissue cells and several aspects of the allergic disease, such as inflammation or tissue remodeling. Furthermore, recent findings indicate that vasoactive mediators released systemically by mast cells induce the production of S1P in non-hematopoietic compartments, where it plays a role in regulating the vascular tone and reducing the hypotension characteristic of the anaphylactic shock and thus helping the recovery. The dual actions of S1P, promoting the immediate response of mast cells, while controlling the systemic consequences of mast cell activity will be discussed in detail. PMID:21713655

  7. Mast cells in citric acid-induced cough of guinea pigs

    SciTech Connect

    Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw; Lin, T.-Y.

    2005-01-01

    It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used to test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.

  8. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  9. Estrogen Inhibits Mast Cell Chymase Release to Prevent Pressure Overload-Induced Adverse Cardiac Remodeling

    PubMed Central

    Li, Jianping; Jubair, Shaiban; Janicki, Joseph S.

    2014-01-01

    Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized rats. Three days prior to creating the constriction, additional groups of ovariectomized rats began receiving 17β-Estradiol, a chymase inhibitor, or a mast cell stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, mast cell density and degranulation, and myocardial and plasma chymase levels were assessed 18 days post-surgery. Aortic constriction resulted in ventricular hypertrophy in intact and ovariectomized groups while collagen volume fraction was increased only in ovariectomized rats. Chymase protein content was increased by aortic constriction in the intact and ovariectomized groups with the magnitude of the increase being greater in ovariectomized rats. Mast cell density and degranulation, plasma chymase levels and myocardial active transforming growth factor- 1 levels were increased by aortic constriction only in ovariectomized rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, mast cell density and degranulation, plasma chymase and myocardial active transforming growth factor- 1 as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction induced ventricular hypertrophy and collagen volume fraction in the ovariectomized rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects except for the reduction of chymase content. We conclude that the estrogen-inhibited release of mast cell chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling. PMID:25403608

  10. [Degranulation of skin mast cells caused by high frequency electromagnetic irradiation of low intensity].

    PubMed

    Popov, V I; Rogachevskiĭ, V V; Gapeev, A B; Khramov, R N; Fesenko, E E

    2001-01-01

    It was shown by light and electron microscopy that local exposure of the projection of the MC-8 lao-gun acupuncture point in rat pad to low-intensity (0.05 mW/cm2) extremely high-frequency (42.0 GHz) electromagnetic radiation caused a degranulation of derma mast cells. It was suggested that the response of skin mast cells is an important amplifying mechanism in the chain of events leading to a systemic response of the organism to low-intensity electromagnetic radiation.

  11. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice

    SciTech Connect

    Park, Kui Lea; Ko, Na Young; Lee, Jun Ho; Kim, Do Kyun; Kim, Hyuk Soon; Kim, A-Ram; Her, Erk; Kim, Bokyung; Kim, Hyung Sik; Moon, Eun-Yi; Kim, Young Mi; Kim, Hang-Rae; Choi, Wahn Soo

    2011-12-15

    4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observed in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.

  12. Human lung fibroblasts express interleukin-6 in response to signaling after mast cell contact.

    PubMed

    Fitzgerald, S Matthew; Lee, Steven A; Hall, H Kenton; Chi, David S; Krishnaswamy, Guha

    2004-04-01

    Asthma is a chronic inflammatory disease of the airways. Mast cell-derived cytokines may mediate both airway inflammation and remodeling. It has also been shown that fibroblasts can be the source of proinflammatory cytokines. In the human airways, mast cell-fibroblast interactions may have pivotal effects on modulating inflammation. To study this further, we cocultured normal human lung fibroblasts (NHLF) with a human mast cell line (HMC-1) and assayed for production of interleukin (IL)-6, an important proinflammatory cytokine. When cultured together, NHLF/HMC-1 contact induced IL-6 secretion. Separation of HMC-1 and NHLF cells by a porous membrane inhibited this induction. HMC-1-derived cellular membranes caused an increase in IL-6 production in NHLF. Activation of p38 MAPK was also seen in cocultures by Western blot, whereas IL-6 production in cocultures was significantly inhibited by the p38 inhibitor SB203580. IL-6 production in cocultures was minimally inhibited by a chemical inhibitor of nuclear factor-kappaB (Bay11), indicating that nuclear factor-kappaB may have a minimal role in signaling IL-6 production in mast cell/fibroblasts cocultures. Blockade of inter-cellular adhesion molecule-1, tumor necrosis factor-RI, and surface IL-1beta with neutralizing antibodies failed to significantly decrease IL-6 production in our coculture, indicating that other receptor-ligand associations may be responsible for this activation. These novel studies reveal the importance of cell-cell interactions in the complex milieu of airway inflammation.

  13. Mouse bone marrow-derived mast cells (BMMC) change their phenotype when cultured with fibroblasts

    SciTech Connect

    Levi-Schaffer, F.; Austen, K.F.; Stevens, R.L.

    1986-03-05

    The heparin-containing mast cells (HP-MC) that reside in the connective tissues of the mouse, but not the chondroitin sulfate containing mast cells in the gastrointestinal mucosa, stain with safranin when exposed to alcian blue/safranin. Mouse BMMC (the presumptive in vitro counterpart of the in vivo differentiated mucosal mast cell) were cultured for 2-14 days with confluent skin-derived 3T3 fibroblasts in RPMI-1640 containing 10% fetal calf serum and 50% WEHI-3 conditioned medium. Although the BMMC adhered to the fibroblast monolayer, they continued to divide, probably due to the presence of interleukin-3 in the conditioned medium. The mast cells remained viable throughout the period of co-culture, since they failed to release LDG and because they increased their histamine content per cell approx.15-fold. After 8-9 days of co-culture, >50% of the BMMC changed histochemically becoming safranin positive. At this time, 30-50% of the (/sup 35/S)glycosaminoglycans on the proteoglycans synthesized by these co-cultured mass cells were heparin, whereas the initial BMMC synthesized proteoglycans containing only chondroitin sulfate E. That interleukin 3-dependent mouse BMMC can be induced to undergo a phenotypic change so as to express characteristics of a HP-MC suggests that the tissue microenvironment determines the differentiated characteristics of these cells.

  14. Urticating histiocytosis: a mast cell-rich variant of histiocytosis X.

    PubMed

    Foucar, E; Piette, W W; Tse, D T; Goeken, J; Olmstead, A D

    1986-05-01

    Histiocytosis X and mastocytosis are proliferative processes that may have similar cutaneous manifestations. However, a positive Darier's sign (urtication on stroking of the lesion) is thought to reliably distinguish between these two diseases. We recently studied a 13-year-old girl with a 2-year history of extensive skin lesions and a positive Darier's sign. Routine histopathologic studies revealed a polymorphous cutaneous infiltrate composed of histiocytes, mast cells, eosinophils, and lymphoid cells. Electron microscopic studies demonstrated Langerhans granules in some of the histiocytes, and immunologic studies of frozen tissue showed that a significant subpopulation of the histiocytes marked as Langerhans cells. Giemsa staining of specimens from eight other cases of cutaneous histiocytosis X from our files revealed mast cells in all of the lesions, although none showed the abundance of mast cells present in the case with urtication. Our studies emphasize the often polymorphous nature of the cell population in cutaneous histiocytosis X and demonstrate that confusing clinical findings can result when the mast cell population in histiocytosis X produces urtication.

  15. Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function.

    PubMed

    Chillo, Omary; Kleinert, Eike Christian; Lautz, Thomas; Lasch, Manuel; Pagel, Judith-Irina; Heun, Yvonn; Troidl, Kerstin; Fischer, Silvia; Caballero-Martinez, Amelia; Mauer, Annika; Kurz, Angela R M; Assmann, Gerald; Rehberg, Markus; Kanse, Sandip M; Nieswandt, Bernhard; Walzog, Barbara; Reichel, Christoph A; Mannell, Hanna; Preissner, Klaus T; Deindl, Elisabeth

    2016-08-23

    The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit(+)/CXCR-4(+) cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.

  16. Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function.

    PubMed

    Chillo, Omary; Kleinert, Eike Christian; Lautz, Thomas; Lasch, Manuel; Pagel, Judith-Irina; Heun, Yvonn; Troidl, Kerstin; Fischer, Silvia; Caballero-Martinez, Amelia; Mauer, Annika; Kurz, Angela R M; Assmann, Gerald; Rehberg, Markus; Kanse, Sandip M; Nieswandt, Bernhard; Walzog, Barbara; Reichel, Christoph A; Mannell, Hanna; Preissner, Klaus T; Deindl, Elisabeth

    2016-08-23

    The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit(+)/CXCR-4(+) cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases. PMID:27524614

  17. Combination therapy for KIT-mutant mast cells: targeting constitutive NFAT and KIT activity.

    PubMed

    Macleod, Alison C; Klug, Lillian R; Patterson, Janice; Griffith, Diana J; Beadling, Carol; Town, Ajia; Heinrich, Michael C

    2014-12-01

    Resistant KIT mutations have hindered the development of KIT kinase inhibitors for treatment of patients with systemic mastocytosis. The goal of this research was to characterize the synergistic effects of a novel combination therapy involving inhibition of KIT and calcineurin phosphatase, a nuclear factor of activated T cells (NFAT) regulator, using a panel of KIT-mutant mast cell lines. The effects of monotherapy or combination therapy on the cellular viability/survival of KIT-mutant mast cells were evaluated. In addition, NFAT-dependent transcriptional activity was monitored in a representative cell line to evaluate the mechanisms responsible for the efficacy of combination therapy. Finally, shRNA was used to stably knockdown calcineurin expression to confirm the role of calcineurin in the observed synergy. The combination of a KIT inhibitor and a calcineurin phosphatase inhibitor (CNPI) synergized to reduce cell viability and induce apoptosis in six distinct KIT-mutant mast cell lines. Both KIT inhibitors and CNPIs were found to decrease NFAT-dependent transcriptional activity. NFAT-specific inhibitors induced similar synergistic apoptosis induction as CNPIs when combined with a KIT inhibitor. Notably, NFAT was constitutively active in each KIT-mutant cell line tested. Knockdown of calcineurin subunit PPP3R1 sensitized cells to KIT inhibition and increased NFAT phosphorylation and cytoplasmic localization. Constitutive activation of NFAT appears to represent a novel and targetable characteristic of KIT-mutant mast cell disease. Our studies suggest that combining KIT inhibition with NFAT inhibition might represent a new treatment strategy for mast cell disease.

  18. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal.

    PubMed

    Naccache, Alexandre; Louiset, Estelle; Duparc, Céline; Laquerrière, Annie; Patrier, Sophie; Renouf, Sylvie; Gomez-Sanchez, Celso E; Mukai, Kuniaki; Lefebvre, Hervé; Castanet, Mireille

    2016-10-15

    Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development. PMID:27302892

  19. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog.

    PubMed

    Weaver, James L; Boyne, Michael; Pang, Eric; Chimalakonda, Krishna; Howard, Kristina E

    2015-09-15

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2min after dosing at the highest concentrations tested. PMID:26079829

  20. Ctr2 Regulates Mast Cell Maturation by Affecting the Storage and Expression of Tryptase and Proteoglycans.

    PubMed

    Öhrvik, Helena; Logeman, Brandon; Noguchi, Glyn; Eriksson, Inger; Kjellén, Lena; Thiele, Dennis J; Pejler, Gunnar

    2015-10-15

    Copper (Cu) is essential for multiple cellular functions. Cellular uptake of Cu(+) is carried out by the Ctr1 high-affinity Cu transporter. The mobilization of endosomal Cu pools is regulated by a protein structurally similar to Ctr1, called Ctr2. It was recently shown that ablation of Ctr2 caused an increase in the concentration of Cu localized to endolysosomes. However, the biological significance of excess endolysosomal Cu accumulation has not been assessed. In this study, we addressed this issue by investigating the impact of Ctr2 deficiency on mast cells, a cell type unusually rich in endolysosomal organelles (secretory granules). We show that Ctr2(-/-) mast cells have increased intracellular Cu concentrations and that the absence of Ctr2 results in increased metachromatic staining, the latter indicating an impact of Ctr2 on the storage of proteoglycans in the secretory granules. In agreement with this, the absence of Ctr2 caused a skewed ratio between proteoglycans of heparin and chondroitin sulfate type, with increased amounts of heparin accompanied by a reduction of chondroitin sulfate. Moreover, transmission electron microscopy analysis revealed a higher number of electron-dense granules in Ctr2(-/-) mast cells than in wild-type cells. The increase in granular staining and heparin content is compatible with an impact of Ctr2 on mast cell maturation and, in support of this, the absence of Ctr2 resulted in markedly increased mRNA expression, storage, and enzymatic activity of tryptase. Taken together, the present study introduces Ctr2 and Cu as novel actors in the regulation of mast cell maturation and granule homeostasis. PMID:26342034

  1. Complement C3 is expressed by mast cells in cutaneous vasculitis and is degraded by chymase.

    PubMed

    Lipitsä, Tiina; Naukkarinen, Anita; Laitala, Joel; Harvima, Ilkka T

    2016-10-01

    The complement factor C3 and chymase released from tryptase(+), chymase(+) mast cells may be involved in the pathogenesis of cutaneous leukocytoclastic vasculitis. To study whether mast cells contain C3 in vasculitis and whether chymase interacts with C3, cryosections from vasculitis biopsies were double-stained histochemically for C3c in tryptase(+) mast cells, as well as for chymase and vessel wall C3c, or they were treated with 5 µg/ml rh-chymase for 24 h followed by immunofluorescence (IF) analysis of C3c, IgG, IgM and IgA. The effect of rh-chymase on purified human C3, C3a and IgG was studied using SDS-PAGE electrophoresis and LAD2 mast cell cultures. The results show that 34.2 ± 17.9, 37.4 ± 15.5 and 43.4 ± 18.6 % (mean ± SD) of the mast cells express C3c immunoreactivity in the healthy skin, initial petechial (IP) and palpable purpura (PP) lesions, respectively. About 9.4-12.1 % of the chymase(+) mast cells were in apparent contact with C3c(+) vessels in IP and PP. The treatment of cryosections with rh-chymase decreased the IF staining of C3c, but not that of immunoglobulins. In SDS-PAGE, 1-10 µg/ml rh-chymase degraded the alpha- and beta-chains of C3, but did not degrade IgG. Unexpectedly, the rh-chymase treatment of C3 produced fragments that resulted in the release of tryptase and histamine from LAD2 cells. However, rh-chymase degraded C3a and consequently inhibited C3a activity on LAD2. In conclusion, mast cells can be one source for C3 in the early and late phases of vasculitis pathogenesis. However, rh-chymase degraded native C3, vessel wall C3c, and biologically active C3a. Therefore, chymase may control C3-related pathology. PMID:27465068

  2. Modulation of host defense peptide-mediated human mast cell activation by LPS

    PubMed Central

    Gupta, Kshitij; Subramanian, Hariharan; Ali, Hydar

    2016-01-01

    Human β-defensin3 (hBD3) and the cathelicidin LL-37 are host defense peptides (HDPs) that directly kill microbes and display immunomodulatory/wound healing properties via the activation of chemokine, formylpeptide and epidermal growth factor receptors on monocytes and epithelial cells. A C-terminal 14 amino acid hBD3 peptide with all Cys residues replaced with Ser (CHRG01) and an LL-37 peptide consisting of residues 17-29 (FK-13) display antimicrobial activity but lack immunomodulatory property. Surprisingly, we found that CHRG01 and FK-13 caused Ca2+ mobilization and degranulation in human mast cells via a novel G protein coupled receptor (GPCR) known as Mas-related gene-X2 (MrgX2). At local sites of bacterial infection, the negatively charged LPS likely interacts with cationic HDPs to inhibit their activity and thus providing a mechanism for pathogens to escape the host defense mechanisms. We found that LPS caused almost complete inhibition of hBD3 and LL-37-induced Ca2+ mobilization and mast cell degranulation. In contrast, it had no effect on CHRG01 and FK-13-induced mast cell responses. These findings suggest that HDP derivatives that kill microbes, harness mast cell’s host defense and wound healing properties via the activation of MrgX2 but are resistant to inhibition by LPS could be utilized for the treatment of antibiotic-resistant microbial infections. PMID:26511058

  3. Visceral mast cell tumor in a captive black jaguar (Panthera onca).

    PubMed

    de Castro, Márcio Botelho; Werther, Karin; Godoy, Guilherme Sellera; Borges, Vivian Palmeira; Alessi, Antonio Carlos

    2003-03-01

    Little is known about neoplasia in the jaguar (Panthera onca), the largest American feline. A captive black jaguar was diagnosed at necropsy with a mastocytic form of visceral mast cell tumor similar to that which occurs in domestic cats. This animal had no previous clinical disease and died during anesthesia for a routine dental treatment.

  4. Anti-allergic effects of nilotinib on mast cell-mediated anaphylaxis like reactions.

    PubMed

    El-Agamy, Dina S

    2012-04-01

    Nilotinib is a new orally bioavailable potent tyrosine kinase inhibitor that is used for the treatment of BCR-ABL-positive chronic myelogenous leukemia. However, its effect on mast cell-mediated anaphylactic reaction is still not known. The present study aimed to investigate the effect of nilotinib on the anaphylactic allergic reaction and study its possible mechanism(s) of action. Nilotinib administration prevented systemic anaphylaxis in mice, mediated by compound 48/80, in a dose- and time-dependent manner. Also, nilotinib significantly inhibited (P<0.05) allergic paw edema in rats. Furthermore, nilotinib significantly decreased (P<0.05) the IgE-mediated passive cutaneous anaphylaxis in a dose dependent manner. In addition, nilotinib dose-dependently reduced histamine release from the rat peritoneal mast cells activated either by compound 48/80 or by ovalbumin. Moreover, nilotinib attenuated the secretion of pro-inflammatory cytokine, tumor necrosis factor (TNF)-α expression in the rat peritoneal mast cells. These findings provide evidence that nilotinib inhibits mast cell-derived immediate-type allergic reactions and so it could be a candidate as an anti-allergic agent.

  5. Acute Stress-Induced Changes in Follicular Dermal Papilla Cells and Mobilization of Mast Cells: Implications for Hair Growth

    PubMed Central

    Shin, Hyoseung; Choi, Soon-Jin; Cho, A-Ri; Kim, Dong Young; Kim, Kyu Han

    2016-01-01

    Background Stress is a known cause of hair loss in many species. Objective In this study, we investigated the role of acute stress on hair growth using a rat model. Methods Rats were immobilized for 24 hours and blood samples, and skin biopsies were taken. The effect of stress-serum on the in vitro proliferation of rat and human dermal papilla cells (hDPCs), as well as serum cortisol and corticotropin-releasing hormone levels, were measured. Mast cell staining was performed on the biopsied tissue. In addition, Western blot and quantitative real time polymerase chain reaction were used to assess mast cell tryptase and cytokine expression, respectively in rat skin biopsies. Results Stress-serum treatment reduced significantly the number of viable hDPCs and arrested the cell cycle in the G1 phase, compared to serum from unrestrained rats (p<0.05, respectively). Moreover, restrained rats had significantly higher levels of cortisol in serum than unrestrained rats (p<0.01). Acute stress serum increased mast cell numbers and mast cell tryptase expression, as well as inducing interleukin (IL)-6 and IL-1β up-regulation. Conclusion These results suggest that acute stress also has an inhibitory effect on hair growth via cortisol release in addition to substance P-mast cell pathway. PMID:27746640

  6. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    SciTech Connect

    Stevens, R.L.; Austen, K.F. ); Fox, C.C.; Lichtenstein, L.M. )

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  7. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics

    PubMed Central

    Allen, Jayme D.; Jaffer, Zahara M.; Park, Su-Jung; Burgin, Sarah; Hofmann, Clemens; Sells, Mary Ann; Chen, Shi; Derr-Yellin, Ethel; Michels, Elizabeth G.; McDaniel, Andrew; Bessler, Waylan K.; Ingram, David A.; Atkinson, Simon J.; Travers, Jeffrey B.

    2009-01-01

    Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcϵRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process. In a passive cutaneous anaphylaxis experiment, Wsh/Wsh mast cell–deficient mice locally reconstituted with Pak1−/− bone marrow–derived mast cells (BMMCs) experienced strikingly decreased allergen-induced vascular permeability compared with controls. Consistent with the in vivo phenotype, Pak1−/− BMMCs exhibited a reduction in FcϵRI-induced degranulation. Further, Pak1−/− BMMCs demonstrated diminished calcium mobilization and altered depolymerization of cortical filamentous actin (F-actin) in response to FcϵRI stimulation. These data implicate Pak1 as an essential molecular target for modulating acute mast cell responses that contribute to allergic diseases. PMID:19124833

  8. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  9. Mast Cell Stabilizer (Ketotifen) in Fibromyalgia: Phase 1 Randomized Controlled Clinical Trial

    PubMed Central

    Ang, Dennis C.; Hilligoss, Janna; Stump, Timothy

    2014-01-01

    Objectives Compared to healthy controls, patients with fibromyalgia (FM) have more mast cells in the skin. Whether mast cells are involved in the pathogenesis of FM is unclear. We sought to determine the effects of a mast cell stabilizer (ketotifen) on FM symptoms. Methods Fifty-one FM subjects were randomized to daily oral ketotifen 2 mg BID (n=24) for 8 weeks or placebo (N=27). Mean age of subjects was 51.2 years (standard deviation/SD 8.4); 88% were female and 88% were white; 22% were taking concomitant opiates; and mean pressure pain sensitivity (range 0-20) was 10.0 (0.4). At study entry, the weekly average pain intensity was 6.4 (1.1) and the mean score on the Revised Fibromyalgia Impact Questionnaire (FIQR) was 66.8 (14.0). Results We found no statistically significant treatment group differences from baseline in either group for the two primary measures: weekly average pain intensity [ketotifen −1.3 (1.9) vs. placebo −1.5 (1.9), p=0.7]; and FIQR score [−12.1 (19.5) vs. −12.2 (18.1), p=0.9]. No secondary outcome measures (BPI pain intensity, and pressure pain sensitivity) reached statistical significance; results did not differ in the intent-to-treat and completer analyses. Other than transient sedation [6 (28.6%) vs. 1 (4.0%)], ketotifen was well tolerated. Discussion The study results question whether skin mast cells play a major role in the pathogenesis of FM. However, given the role of mast cells in peripheral and central nociception, and the minimal side effects of ketotifen, a randomized clinical trial using increasing doses of ketotifen may be warranted. PMID:25370135

  10. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    SciTech Connect

    Lin, C.-H.; Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{sub 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

  11. [Anthocyanidin inhibits immunoglobulin E-mediated allergic response in mast cells].

    PubMed

    Jin, Guang-Ri; Hong, Hai; Jin, Guang-Yu; Li, Ying-Zhe; Li, Guang-Zhao; Yan, Guang-Hai

    2012-01-01

    This study is to investigate the anti-allergic effect of anthocyanidin and to explore its possible mechanism. The experiments of passive cutaneous anaphylaxis reaction (PCA) and colorimetry were used to determine the effect of anthocyanidin on degranulation of mast cells in vivo. For in vitro study, various concentrations of anthocyanidin (100, 50 and 25 micromol x L(-1)) were added to the culture medium of mast cells cultured with 100 microg x L(-1) of dinitrophenyl (DNP) specific IgE overnight. The azelastine (100 micromol x L(-1)) was selected as the positive control. The antigen (DNP-human serum albumin, DNP-HAS)-induced release of degranulation was measured by enzymatic assay, histamine was determined by EIA, and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were measured by Western blotting, separately. In addition, the effects of anthocyanidin on phosphorylation of NF-kappaB, p38MAPK and Akt were observed by Western blotting. The results showed that treatments with anthocyanidin (100 and 50 mg x kg(-1)) were followed by a decrease in PCA of rats. Anthocyanidin (100 and 50 micromol x L(-1)) obviously suppressed the degranulation from mast cells, whereas results from anthocyanidin (100 and 50 micromol x L(-1)) group indicated significant inhibitory effect on histamine, the calcium uptake, TNF-alpha, IL-6, phosphorylation of NF-kappaB, p38MAPK and Akt of mast cells induced by antigen. Anthocyanidin may suppress the anaphylactic reaction by inhibiting the action of mast cells. NF-kappaB, p38MAPK and Akt at least in part contribute to this event. PMID:22493802

  12. Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia

    PubMed Central

    McKittrick, Craig M; Lawrence, Catherine E; Carswell, Hilary V O

    2015-01-01

    Blood brain barrier (BBB) breakdown and neuroinflammation are key events in ischemic stroke morbidity and mortality. The present study investigated the effects of mast cell deficiency and stabilization on BBB breakdown and neutrophil infiltration in mice after transient middle cerebral artery occlusion (tMCAo). Adult male C57BL6/J wild type (WT) and mast cell-deficient (C57BL6/J KitWsh/Wsh (Wsh)) mice underwent tMCAo and BBB breakdown, brain edema and neutrophil infiltration were examined after 4 hours of reperfusion. Blood brain barrier breakdown, brain edema, and neutrophil infiltration were significantly reduced in Wsh versus WT mice (P<0.05). These results were reproduced pharmacologically using mast cell stabilizer, cromoglycate. Wild-type mice administered cromoglycate intraventricularly exhibited reduced BBB breakdown, brain edema, and neutrophil infiltration versus vehicle (P<0.05). There was no effect of cromoglycate versus vehicle in Wsh mice, validating specificity of cromoglycate on brain mast cells. Proteomic analysis in Wsh versus WT indicated that effects may be via expression of endoglin, endothelin-1, and matrix metalloproteinase-9. Using an in vivo model of mast cell deficiency, this is the first study showing that mast cells promote BBB breakdown in focal ischemia in mice, and opens up future opportunities for using mice to identify specific mechanisms of mast cell-related BBB injury. PMID:25564235

  13. Histamine H3 receptors regulate vascular permeability changes in the skin of mast cell-deficient mice.

    PubMed

    Hossen, Maria Alejandra; Fujii, Yoko; Sugimoto, Yukio; Kayasuga, Ryoji; Kamei, Chiaki

    2003-11-01

    The participation of histamine H(3) receptors in the regulation of skin vascular permeability changes in mast cell-deficient mice was studied. Although intradermal injection of histamine H(3) antagonists, iodophenpropit and clobenpropit, at a dose of 100 nmol/site caused significant increases in skin vascular permeability in both mast cell-deficient (WBB6F1 W/W(v)) and wild-type (WBB6F1 +/+) mice, this response was significantly lower in mast cell-deficient mice than in the wild-type controls. Histamine also caused dose-related increases in skin vascular permeability in both wild-type and mast cell-deficient mice. Significant effects were observed at doses of 10 and 100 nmol/site, and no significant difference in skin vascular permeability was observed between mast cell-deficient and wild-type mice. However, histamine contents of dorsal skin in mast cell-deficient mice were significantly lower than in wild-type mice. In addition, the H(1) antagonists diphenhydramine and chlorpheniramine and the NK(1) antagonists, L-732,138 and L-733,060, were able to antagonize H(3) antagonist-induced skin vascular permeability. These results indicated that blockade of H(3) receptors by H(3) antagonists induce skin vascular permeability through mast cell-dependent mechanisms. In addition, histamine and, to a lesser extent substance P are involved in the reaction.

  14. Selective, α2β1 Integrin-Dependent Secretion of IL-6 by Connective Tissue Mast Cells

    PubMed Central

    McCall-Culbreath, Karissa D.; Li, Zhengzhi; Zhang, Zhonghua; Lu, Lucy X.; Orear, Lynda; Zutter, Mary M.

    2011-01-01

    Mast cells, critical mediators of inflammation and anaphylaxis, are poised as one of the first lines of defense against external assault. Mast cells release several classes of preformed and de novo synthesized mediators. Cross-linking of the high-affinity Fc∊RI results in degranulation and the release of preformed, proinflammatory mediators including histamine and serotonin. We previously demonstrated that mast cell activation by Listeria monocytogenes requires the α2β1 integrin for rapid IL-6 secretion both in vivo and in vitro. However, the mechanism of IL-6 release is unknown. Here, we demonstrate the Listeria- and α2β1 integrin-mediated mast cell release of preformed IL-6 without the concomitant release of histamine or β-hexosaminidase. α2β1 integrin-dependent mast cell activation and IL-6 release is calcium independent. In contrast, IgE cross-linking-mediated degranulation is calcium dependent and does not result in IL-6 release, demonstrating that distinct stimuli result in the release of specific mediator pools. These studies demonstrate that IL-6 is presynthesized and stored in connective tissue mast cells and can be released from mast cells in response to distinct, α2β1 integrin-dependent stimulation, providing the host with a specific innate immune response without stimulating an allergic reaction. Copyright © 2011 S. Karger AG, Basel PMID:21502744

  15. Selective, α2β1 integrin-dependent secretion of il-6 by connective tissue mast cells.

    PubMed

    McCall-Culbreath, Karissa D; Li, Zhengzhi; Zhang, Zhonghua; Lu, Lucy X; Orear, Lynda; Zutter, Mary M

    2011-01-01

    Mast cells, critical mediators of inflammation and anaphylaxis, are poised as one of the first lines of defense against external assault. Mast cells release several classes of preformed and de novo synthesized mediators. Cross-linking of the high-affinity FcεRI results in degranulation and the release of preformed, proinflammatory mediators including histamine and serotonin. We previously demonstrated that mast cell activation by Listeria monocytogenes requires the α2β1 integrin for rapid IL-6 secretion both in vivo and in vitro. However, the mechanism of IL-6 release is unknown. Here, we demonstrate the Listeria- and α2β1 integrin-mediated mast cell release of preformed IL-6 without the concomitant release of histamine or β-hexosaminidase. α2β1 integrin-dependent mast cell activation and IL-6 release is calcium independent. In contrast, IgE cross-linking-mediated degranulation is calcium dependent and does not result in IL-6 release, demonstrating that distinct stimuli result in the release of specific mediator pools. These studies demonstrate that IL-6 is presynthesized and stored in connective tissue mast cells and can be released from mast cells in response to distinct, α2β1 integrin-dependent stimulation, providing the host with a specific innate immune response without stimulating an allergic reaction.

  16. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation

    PubMed Central

    Carroll-Portillo, Amanda; Cannon, Judy L.; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra

    2015-01-01

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response. PMID:26304724

  17. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    SciTech Connect

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  18. Evaluation of myeloid cells (tumor-associated tissue eosinophils and mast cells) infiltration in different grades of oral squamous cell carcinoma

    PubMed Central

    Debta, Priyanka; Debta, Fakir Mohan; Chaudhary, Minal; Bussari, Smita

    2016-01-01

    Background: The multifunctional involvement and infiltration of myeloid cells (tumor-associated tissue eosinophils [TATE] and mast cells) can provide a unique opportunity to define relevant effectors functions that may represent novel, therapeutic options for modulation of tumor onset/growth. Aim: Our study aimed to evaluate infiltration of myeloid cells (TATE and Mast cells) infiltration in different grades (WHO grading) of oral squamous cell carcinoma (OSCC). Materials and Methods: Total 30 cases of OSCC were selected for this study. Hematoxylin and eosin stain and toluidine blue special stain, to evaluate TATE and the mast cells infiltration, were used. Three-year follow-up of OSCC cases was done. Result: Among 30 cases, 63.33% cases of OSCC showed TATE-positive and 36.66% cases showed TATE-negative. Regarding mast cells infiltration, 66.66% OSCC cases showed mast cells positive and 33.33% cases did not show significant mast cells infiltration. We found significant association of TATE and mast cells infiltration in OSCC cases. These myeloid cells infiltration significantly associated with age of patients but did not show any significant association with gender, site, and habit of cases. When we compared these cells infiltration with clinical stages and different histological grades of tumor, we found their infiltration is decreasing, from Stages 1 to Stage 3 of tumor and from well to poorly differentiated carcinoma. We have also found the less infiltration of these myeloid in recurrence cases of OSCC. Conclusion: As the infiltration of TATE and mast cells are correlated, along with evaluation of TATE, we should also evaluate the presence of mast cells infiltration in OSCC. The assessment of myeloid cells could become, in the future, useful for therapeutic approaches in this subset of the patient. PMID:27688609

  19. Evaluation of myeloid cells (tumor-associated tissue eosinophils and mast cells) infiltration in different grades of oral squamous cell carcinoma

    PubMed Central

    Debta, Priyanka; Debta, Fakir Mohan; Chaudhary, Minal; Bussari, Smita

    2016-01-01

    Background: The multifunctional involvement and infiltration of myeloid cells (tumor-associated tissue eosinophils [TATE] and mast cells) can provide a unique opportunity to define relevant effectors functions that may represent novel, therapeutic options for modulation of tumor onset/growth. Aim: Our study aimed to evaluate infiltration of myeloid cells (TATE and Mast cells) infiltration in different grades (WHO grading) of oral squamous cell carcinoma (OSCC). Materials and Methods: Total 30 cases of OSCC were selected for this study. Hematoxylin and eosin stain and toluidine blue special stain, to evaluate TATE and the mast cells infiltration, were used. Three-year follow-up of OSCC cases was done. Result: Among 30 cases, 63.33% cases of OSCC showed TATE-positive and 36.66% cases showed TATE-negative. Regarding mast cells infiltration, 66.66% OSCC cases showed mast cells positive and 33.33% cases did not show significant mast cells infiltration. We found significant association of TATE and mast cells infiltration in OSCC cases. These myeloid cells infiltration significantly associated with age of patients but did not show any significant association with gender, site, and habit of cases. When we compared these cells infiltration with clinical stages and different histological grades of tumor, we found their infiltration is decreasing, from Stages 1 to Stage 3 of tumor and from well to poorly differentiated carcinoma. We have also found the less infiltration of these myeloid in recurrence cases of OSCC. Conclusion: As the infiltration of TATE and mast cells are correlated, along with evaluation of TATE, we should also evaluate the presence of mast cells infiltration in OSCC. The assessment of myeloid cells could become, in the future, useful for therapeutic approaches in this subset of the patient.

  20. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body.

    PubMed

    Kambe, Naotomo; Hiramatsu, Hidefumi; Shimonaka, Mika; Fujino, Hisanori; Nishikomori, Ryuta; Heike, Toshio; Ito, Mamoru; Kobayashi, Kimio; Ueyama, Yoshito; Matsuyoshi, Norihisa; Miyachi, Yoshiki; Nakahata, Tatsutoshi

    2004-02-01

    The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient (NOD/SCID)/gamma(c)(null) (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor gamma-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.

  1. Effects of long-acting beta 2-adrenoceptor agonists on mast cells of rat, guinea pig, and human.

    PubMed

    Lau, H Y; Wong, P L; Lai, C K; Ho, J K

    1994-10-01

    The effects of two recently developed long-acting beta 2-adrenoceptor agonists, formoterol and salmeterol, on mast cells from different sources were compared with those of the prototype short-acting analogue, salbutamol. With the exception of high concentrations of salmeterol (> 10(-5) M), none of the tested beta 2-adrenoceptor agonists inhibited the anti-IgE-induced histamine release from rat peritoneal mast cells. In contrast, all three compounds dose dependently inhibited the immunologically induced histamine release from isolated lung mast cells of guinea pig and human at concentrations < or = 10(-5) M.

  2. Changes in mast cells and in permeability of mesenteric microvessels under the effect of immobilization and electrostimulation

    NASA Technical Reports Server (NTRS)

    Gorizontova, M. P.

    1980-01-01

    It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.

  3. Effects of melanin-induced free radicals on the isolated rat peritoneal mast cells

    SciTech Connect

    Ranadive, N.S.; Shirwadkar, S.; Persad, S.; Menon, I.A.

    1986-03-01

    Pheomelanin from human red hair (RHM) produces considerably more cellular damage in Ehrlich ascites carcinoma cells when subjected to radiations of wavelength 320-700 nm than eumelanin from black hair (BHM). Irradiation of RHM generated large amounts of superoxide while BHM did not produce detectable amounts of superoxide. The present investigations describe the effects of irradiation of mast cells in the presence of various natural and synthetic melanins. Irradiation of mast cells in the presence of RHM and red hair melanoprotein released large amounts of histamine while BHM and synthetic melanins prepared from dopa, cysteinyldopa, or a mixture of dopa and cysteinyldopa did not release histamine. The release of histamine at lower concentrations of RHM was not accompanied by the release of /sup 51/Cr from chromium-loaded cells, suggesting that this release was of noncytotoxic nature. On the other hand, the release of histamine at higher concentrations of RHM was due to cell lysis since both histamine and cytoplasmic marker /sup 51/Cr were released to the same extent. The release evoked by large concentration RHM was not inhibited by superoxide dismutase or catalase. This suggests that the cell lysis under these conditions was not due to H/sub 2/O/sub 2/ or O-2. The finding that mast cells release histamine when irradiated in the presence of RHM suggests that the immediate and late-phase reactions seen in sunburn may in part be due to the release of mediators from these cells.

  4. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment

    PubMed Central

    Cousty, Sarah; Cambus, Jean-Pierre; Valentin, Alexis

    2015-01-01

    Introduction Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial. Methods and Results Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells. Conclusion These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy. PMID:26275141

  5. Mechanisms of Granule Membrane Recapture following Exocytosis in Intact Mast Cells*

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Alés, Eva

    2013-01-01

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event. PMID:23709219

  6. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells.

    PubMed

    Bekeschus, S; Kolata, J; Winterbourn, C; Kramer, A; Turner, R; Weltmann, K D; Bröker, B; Masur, K

    2014-05-01

    Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma-skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma-cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells. PMID:24528134

  7. Mast Cells Might Have a Protective Role against the Development of Calcification and Hyalinisation in Severe Aortic Valve Stenosis.

    PubMed

    Milutinovic, A; Petrovič, D; Zorc, M; Vraspir Porenta, O; Arko, M; Pleskovič, A; Alibegovic, A; Zorc-Pleskovic, R

    2016-01-01

    Aortic valve stenosis is characterized by inflammation and extracellular matrix remodelling. The aim of this study was to analyse the impact of mast cells on the occurrence of histopathological changes of aortic valves in patients with severe grade, non-rheumatic degenerative aortic valve stenosis. Valve specimens were obtained from 38 patients undergoing valve replacement. The role of mast cells was analysed by dividing the specimens into two groups, characterized by the presence (group A, N = 13) or absence of mast cells (group B, N = 25). There were no significant differences in clinical data between the two groups. In group A, T cells and macrophages were present in all aortic valves, as compared to a significantly lower proportion of valves with T cells and macrophages in group B. Valves in group A were less often calcified and hyaline-degenerated than valves in group B. There were no changes in fibrosis between the two groups. We found a positive correlation between the presence of mast cells and macrophages/T cells, a negative correlation between the presence of mast cells and calcification/ hyaline degeneration, and no correlation between the presence of mast cells and fibrosis. There was also a negative correlation between the presence of macrophages/T cells and calcification. The linear regression model identified only the presence of mast cells as an independent negative prediction value for calcification. In conclusion, mast cells might have a protective role against the development of calcification and hyaline degeneration in severe grade, non-rheumatic aortic valve stenosis. PMID:27643581

  8. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    PubMed

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function.

  9. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  10. Effects of long-term administration of cancer-promoting substances on oral subepithelial mast cells in the rat.

    PubMed

    Sand, L; Hilliges, M; Larsson, P A; Wallstrom, M; Hirsch, J M

    2002-01-01

    The role of oral subepithelial mast cells in the defence against tumours is a matter of controversy. The effect of established and suggested carcinogens, such as the carcinogen 4-nitroquinoline-N-oxide (4-NQO) and Herpes simplex virus type 1 (HSV-1), in combination with oral snuff on lower lip subepithelial mast cells (MC) was studied in rats. The rats were exposed to prolonged use of oral snuff. The test substances were administered in a surgically created canal in the lower lip of the rats. There were 15 rats in each test group and 10 rats in the control group. The amount of countable subepithelial mast cells decreased significantly when the rat oral mucosa was exposed to the oral carcinogen 4-NQO but the effect of oral snuff and HSV-1 infection was weak. Our findings suggest that mast cells play a role in immunological cell defence against chemical carcinogens. Further studies are needed to clarify the mechanisms. PMID:12529973

  11. Comparison of bone marrow-derived and mucosal mast cells in controlling intramacrophage Francisella tularensis replication

    PubMed Central

    Hunter, Colleen; Rodriguez, Annette; Yu, Jieh-Juen; Chambers, James; Guentzel, M Neal; Arulanandam, Bernard

    2014-01-01

    Although the importance of mast cells (MCs) in response to allergens has been characterized extensively, the contribution of these cells in host defense against bacterial pathogens is not well understood. Previously, we have demonstrated that the release of interleukin-4 by bone marrow-derived MCs inhibits intramacrophage replication of Francisella tularensis live vaccine strain (LVS). Because pneumonic tularemia is one of the several manifestations of infection by Francisella, it is important to determine whether MCs present in mucosal tissues, i.e. the lung, exhibit similar effects on LVS replication. On the basis of this rationale, we phenotypically compared mucosal mast cells (MMCs) to traditional bone marrow-derived MCs. Both cell types exhibited similar levels of cell surface expression of fragment crystal epsilon receptor I (FcεRI), mast/ stem cell growth factor receptor (c-Kit) and major histocompatibility complex I (MHCI), as well as patterns of granulation. MMCs exhibited a comparable, but somewhat greater uptake of fluorescent-labeled beads compared with MCs, suggesting an increased phagocytic ability. MCs and MMCs co-cultured with primary macrophages exhibited comparable significant decreases in LVS replication compared with macrophages cultured alone. Collectively, these results suggest that MMCs are phenotypically similar to MCs and appear equally effective in the control of intramacrophage F. tularensis LVS replication. PMID:22688822

  12. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium.

    PubMed Central

    Knudsen, T.; Johansen, T.

    1989-01-01

    1. Pure populations of rat peritoneal mast cells were used to study cellular potassium uptake. The radioactive potassium analogue, 86rubidium, was used as a tracer for potassium for measurements of the activity of the cellular potassium uptake process. 2. The ouabain-sensitive and the ouabain-resistant potassium (86rubidium) uptake of mast cells incubated in the presence of calcium, 1 mmol l-1, were very low, 52 and 147 pmol per 10(6) cells min-1. 3. Calcium-deprivation of the cells uncovered a large capacity ouabain-sensitive potassium (86rubidium) uptake mechanism. The activity of the uptake mechanism was decreased by reintroduction of calcium into the cell suspension, and it was dependent on cellular energy metabolism, temperature and pH. 4. The potassium (86rubidium) uptake of mast cells incubated in a calcium-free medium occurs through an active and ouabain-sensitive mechanism that has the nature of an enzyme, and it is mediated by the Na+ -K+ pump located in the plasma membrane. It is demonstrated that the activity of the Na+ -K+ pump mechanism is inhibited by low concentrations of extracellular calcium (0.1-1.2 mmol l-1). The possibility is discussed that calcium-deprivation may increase the pump activity by increasing the permeability of the plasma membrane for Na+. PMID:2743077

  13. Adoptive cell transfer of contact sensitivity-initiation mediated by nonimmune cells sensitized with monoclonal IgE antibodies. Dependence on host skin mast cells.

    PubMed

    Matsuda, H; Ushio, H; Paliwal, V; Ptak, W; Askenase, P W

    1995-05-15

    A role for mast cell release of serotonin (5-HT), via Ag-specific factors derived from Thy-1+ B220+ lymphoid cells in the initiation of murine contact sensitivity (CS) has been suggested. However, because CS in mast cell-deficient mice was intact, a role for mast cells in CS initiation was unclear. Therefore, we examined whether CS could be initiated by i.v. injection of nonimmune mixed lymphoid cells that were sensitized in vitro with IgE. When naive mice received IgE-sensitized nonimmune spleen or lymph node cells, or IgE-sensitized purified mast cells, together with immune CS-effector B220- T cells, which therefore were depleted of CS-initiating, Thy-1+, B220+ cells, which could not transfer CS, then reconstitution of CS occurred. Mast cell-deficient W/Wv mice could not elicit this IgE-dependent CS ear swelling, but when mast cell deficiency was reversed by ear injection of normal bone marrow-derived cultured mast cells, then CS was restored. In vitro pretreatment with irrelevant monoclonal anti-OVA IgE prevented CS initiation mediated by Ag-specific, IgE mAb-sensitized cells, presumably by blocking sensitization with IgE. Thus Fc epsilon R on the normal lymphoid cells were involved. When ketanserin, a 5-HT2 receptor antagonist, was injected i.v. before cell transfer, CS initiation via IgE-sensitized cells and CS were no longer elicited. Thus, in this system, IgE Abs bound to circulating IgE Fc epsilon R bearing lymphoid cells sensitized in vitro (most likely basophils), probably mediated early activation of these circulating basophils to release mediators, causing 5-HT release from cutaneous mast cells, to mediate CS initiation. PMID:7730614

  14. Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells.

    PubMed

    Tsai, Shih Han; Takeda, Kiyoshi

    2016-09-01

    Adenosine 5'-triphosphate (ATP) is released from dying or damaged cells, as well as from activated cells. Once secreted, extracellular ATP induces several immune responses via P2X and P2Y receptors. Basophils and mast cells release ATP upon FcεRI-crosslinking, and ATP activates basophils and mast cells in an autocrine manner. Nucleotide-converting ectoenzymes, such as E-NTPD1, E-NTPD7, and E-NPP3, inhibit ATP-dependent immune responses by hydrolyzing ATP, thereby contributing to immune response regulation. E-NPP3 is a well-known activation marker for human basophils. E-NPP3's physiologic function has recently been disclosed in mice. E-NPP3 is rapidly induced on basophils and mast cells after FcεRI-crosslinking and hydrolyzes extracellular ATP on cell surfaces to prevent ATP-dependent excess activation of basophils and mast cells. In the absence of E-NPP3, basophils and mast cells are overactivated and mice suffer from severe chronic allergic inflammation. Thus, the ATP-hydrolyzing ectoenzymes E-NPP3 has a nonnegligible role in the regulation of basophil- and mast cell-mediated allergic responses.

  15. Systemic candidiasis and mesenteric mast cell tumor with multiple metastases in a dog.

    PubMed

    Matsuda, Kazuya; Sakaguchi, Kanako; Kobayashi, Shintaro; Tominaga, Makiko; Hirayama, Kazuko; Kadosawa, Tsuyoshi; Taniyama, Hiroyuki

    2009-02-01

    A 5-year-old female miniature dachshund presenting with persistent vomiting and diarrhea had two concurrent rare pathological conditions: systemic candidiasis and mesenteric mast cell tumor with multiorgan metastases. Neoplastic mast cells formed mass in the mesentery of the cecal-colonic region and were also found in the liver, spleen, kidneys, lungs, adrenal grands, ovaries, bone marrow and other tissues. The cells had intracytoplasmic granules with metachromasia and were immunohistochemically positive for c-kit and histamine. Granulomatous lesions with fungal organisms were present in the heart, lungs, kidneys, pancreas, subserosal and surrounding adipose tissue of the duodenum, thyroid glands and mesenteric mass, and phagocytosed organisms were detected in the liver and bone marrow. Bacteriologically and immunohistochemically, the fungi were consistent with Candida albicans. PMID:19262039

  16. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    SciTech Connect

    Kawahara, Takeshi

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  17. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    SciTech Connect

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-07-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment.

  18. CD84 negatively regulates IgE high affinity receptor signaling in human mast cells

    PubMed Central

    Álvarez-Errico, Damiana; Oliver-Vila, Irene; Aínsua-Enrich, Erola; Gilfillan, Alasdair M.; Picado, César; Sayós, Joan; Martín, Margarita

    2011-01-01

    CD84 is a self-binding receptor from the CD150 family that is broadly expressed in hematopoietic cells. It has been described that the adaptors SAP and EAT-2 are critical for CD150 family members signaling and function. We observed that human mast cells express CD84 but lack SAP or EAT-2, that CD84 is tyrosine phosphorylated upon FcεRI engagement, and that the release of granule contents is reduced when FcεRI is co-engaged with CD84 in LAD2 and human CD34+-derived mast cells (huMCs). In addition, we observed that the release of IL-8 and GM-CSF was also reduced in FcεRI/CD84 costimulated cells as compared to FcεRI/Ig control. In order to understand how CD84 down-regulates FcεRI-mediated function, we analyzed signaling pathways affected by CD84 in human mast cells. Our results showed that CD84 dampens FcεRI-mediated calcium mobilization after its co-crosslinking with the receptor. Furthermore, FcεRI-mediated Syk-LAT-PLCγ1 axis activity is down-regulated after CD84 stimulation, compared to FcεRI/Ig control. The inhibitory kinase Fes phosphorylates mainly the inhibitory motif for CD84. Moreover Fes, which has been described to become phosphorylated after substrate binding, also gets phosphorylated when co-expressed with CD84. Consistently, Fes was observed to be more phosphorylated after CD84 and FcεRI co-crosslinking. The phosphorylation of the protein phosphatase SHP-1 also increases after CD84 and FcεRI coengagement. Taken together, our results show that CD84 is highly expressed in mast cells and that it contributes to the regulation of FcεRI signaling in a SAP and EAT-2 independent and Fes and SHP-1 dependent mechanisms. PMID:22068234

  19. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties.

    PubMed

    Gupta, Kshitij; Kotian, Akhil; Subramanian, Hariharan; Daniell, Henry; Ali, Hydar

    2015-10-01

    Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems. PMID:26378047

  20. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases

    SciTech Connect

    Reynolds, D.S.; Gurley, D.S.; Stevens, R.L.; Austen, K.F.; Serafin, W.E. Brigham and Women's Hospital, Boston, MA ); Sugarbaker, D.J. )

    1989-12-01

    Human skin and lung mast cells and rodent peritoneal cells contain a carboxypeptidase in their secretory granules. The authors have screened human lung cDNA libraries with a mouse mast cell carboxypeptidase A (MC-CPA) cDNA probe to isolate a near-full-length cDNA that encodes human MC-CPA. The 5{prime} end of the human MC-CPA transcript was defined by direct mRNA sequencing and by isolation and partial sequencing of the human MC-CPA gene. Human MC-CPA is predicted to be translated as a 417 amino acid preproenzyme which includes a 15 amino acid signal peptide and a 94-amino acid activation peptide. The mature human MC-CPA enzyme has a predicted size of 36.1 kDa, a net positive charge of 16 at neutral pH, and 86% amino acid sequence identity with mouse MC-CPA. DNA blot analyses showed that human MC-CPA mRNA is transcribed from a single locus in the human genome. Comparison of the human MC-CPA with mouse MC-CPA and with three rat pancreatic carboxypeptidases shows that these enzymes are encoded by distinct but homologous genes.

  1. Further studies on the effect of nitrogen dioxide on mast cells: The effect of the metabolite, nitrite

    SciTech Connect

    Fujimaki, Hidekazu ); Ozawa, Masashi ); Bissonnette, E.; Befus, A.D. )

    1993-05-01

    To evaluate the relationship between atmospheric nitrogen dioxide exposure and the development of allergic diseases, the effects of nitrite as a chemical product of inhaled nitrogen dioxide on mast cell functions were investigated. We have studied nitride-induced histamine release from two functionally distinct mast cell populations, namely peritoneal mast cells (PMC) and intestinal mucosal mast cells (IMMC) of Nippostrongylus brasiliensis-infected rats. High concentrations of nitrite alone (10, 20, and 50 mM) induced histamine release from IMMC, but not from PMC. Moreover, histamine release from PMC and IMMC stimulated with sensitizing antigen was significantly enhanced by pretreatment with 50 mM nitrite or nitrate. No differences in histamine release from nitrite-treated and control PMC were seen below 1 mM. To investigate the effect of nitrite on tumor cell cytotoxic activity, PMC were incubated with various concentrations of nitrite. Pretreatment with 5 and 50 mM nitrite markedly depressed tumor necrosis factor (TNF)-[alpha]-dependent natural cytotoxicity of PMC for the tumor target WEHI-164. Thus, high concentrations of nitrite enhanced mast cell histamine release, but depressed TNF-[alpha]-dependent cytotoxicity. However, low concentrations of nitrite (<1 mM) that would normally be produced by short-term atmospheric exposure to nitrogen dioxide may have no significant effects on mast cell functions. 27 refs., 3 figs., 1 tab.

  2. Contribution of mast cells and snake venom metalloproteinases to the hyperalgesia induced by Bothrops jararaca venom in rats.

    PubMed

    Bonavita, André Gustavo C; da Costa, Aline S; Pires, Ana Lucia A; Neves-Ferreira, Ana G C; Perales, Jonas; Cordeiro, Renato S B; Martins, Marco A; e Silva, Patrícia M R

    2006-06-15

    Bothrops jararaca venom (Bjv) is known to induce local inflammation and severe pain. Since, mast cells are able to secrete mediators involved in algesic processes, in this study we examined the putative role of these cells in the hyperalgesia triggered by Bjv in the rat paw. We noted that treatment with mast cell stabilizer sodium cromoglicate as well as with histamine and 5-hydroxytriptamine receptor antagonists meclizine and methysergide, respectively, inhibited the Bjv-induced hyperalgesia. In addition, we showed that stimulation of isolated rat peritoneal mast cells with Bjv in vitro resulted in the release of stored and neo-generated inflammatory mediators such as histamine and leukotriene C(4), respectively. Bjv-induced histamine secretion was clearly sensitive to treatment with sodium cromoglicate and sodium nedocromil. We further observed that metalloproteinase inhibitors 1,10-phenantroline and DM43 inhibited mast cell degranulation in vitro, under conditions where inhibitors of phospholipase A(2) as well as of serine- and cysteine-proteinases were inactive. Altogether, our findings indicate that mast cells seem to contribute to the hyperalgesia caused by Bjv in the rat paw, and also provide evidence that this response might be dependent on the ability of the Bjv to activate directly mast cells. PMID:16730041

  3. Mast cell toll-like receptor 2 signaling is crucial for effective killing of Francisella tularensis1

    PubMed Central

    Rodriguez, Annette R.; Yu, Jieh-Juen; Guentzel, M. N.; Navara, Christopher S.; Klose, Karl E.; Forsthuber, Thomas G.; Chambers, James P.; Berton, Michael T.; Arulanandam, Bernard P

    2012-01-01

    Toll-like receptor (TLR) signaling is critical for early host defense against pathogens, but the contribution of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection is largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the Live Vaccine Strain (LVS) were utilized to investigate the contribution of mast cell-TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHCII and lysosomal associated membrane protein 2 (LAMP2). Infected TLR2−/− mast cells, in contrast to WT and TLR4−/−, lacked detectable IL-4 and displayed increased cell death with a 2–3 log increase of F. tularensis replication, but could be rescued with recombinant IL-4 treatment. Importantly, MHCII and LAMP2 localization with labeled F. tularensis in the lungs was greater in WT than in TLR2−/− mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses. PMID:22529298

  4. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    SciTech Connect

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-06-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with (/sup 3/H)arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms.

  5. Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation.

    PubMed

    Feltis, B N; Elbaz, A; Wright, P F A; Mackay, G A; Turney, T W; Lopata, A L

    2015-08-01

    The development of nanoparticles (NPs) for commercial products is undergoing a dramatic expansion. Many sunscreens and cosmetics now use zinc oxide (ZnO) or titania (TiO2) NPs, which are effective ultraviolet (UV) filters. Zinc oxide topical creams are also used in mild anti-inflammatory treatments. In this study we evaluated the effect of size and dispersion state of ZnO and TiO2 NPs, compared to "bulk" ZnO, on mast cell degranulation and viability. ZnO and TiO2 NPs were characterized using dynamic light scattering and disc centrifugation. Rat basophilic leukaemia (RBL-2H3) cells and primary mouse bone marrow-derived mast cells (BMMCs) were exposed to ZnO and TiO2 NPs of different sizes (25-200 nm) and surface coatings at concentrations from 1 to 200 μg/mL. The effect of NPs on immunoglobulin E (IgE)-dependent mast cell degranulation was assessed by measuring release of both β-hexosaminidase and histamine via colorimetric and ELISA assays. The intracellular level of Zn(2+) and Ca(2+) ions were measured using zinquin ethyl ester and Fluo-4 AM fluorescence probes, respectively. Cellular viability was determined using the soluble tetrazolium-based MTS colorimetric assay. Exposure of RBL-2H3 and primary mouse BMMC to ZnO NPs markedly inhibited both histamine and β-hexosaminidase release. This effect was both particle size and dispersion dependent. In contrast, TiO2 NPs did not inhibit the allergic response. These effects were independent of cytotoxicity, which was observed only at high concentrations of ZnO NPs, and was not observed for TiO2 NPs. The inhibitory effects of ZnO NPs on mast cells were inversely proportional to particle size and dispersion status, and thus these NPs may have greater potential than "bulk" zinc in the inhibition of allergic responses.

  6. Influence of β2-adrenoceptor gene polymorphisms on β2-adrenoceptor-mediated responses in human lung mast cells

    PubMed Central

    Kay, L J; Rostami-Hodjegan, A; Suvarna, S K; Peachell, P T

    2007-01-01

    Background and purpose: Previous studies have shown that β 2-adrenoceptor-mediated responses in human lung mast cells are highly variable. The aims of the present study were to establish whether polymorphisms of the β 2-adrenoceptor gene (ADRB2) influence this variability in (a) β 2-adrenoceptor-mediated inhibition and (b) desensitization of β 2-adrenoceptor-mediated responses in human lung mast cells. Experimental approach: Mast cells were isolated from human lung tissue. The inhibitory effects of the β-adrenoceptor agonist, isoprenaline (10−10–10−5 M), on IgE-mediated histamine release from mast cells were determined (n=92). Moreover, the inhibitory effects of isoprenaline were evaluated following a desensitizing treatment involving long-term (24 h) incubation of mast cells with isoprenaline (10−6 M) (n=65). A potential influence of polymorphisms on these functional responses was determined by genotyping 11 positions, in the promoter and coding regions, of ADRB2 previously reported as polymorphic. Key results: There was no influence of any of the polymorphic positions of ADRB2 on the potency of isoprenaline to inhibit histamine release from mast cells with the exception of position 491C>T (Thr164Ile). There was no influence of any of the polymorphic positions of ADRB2 on the extent of desensitization of the isoprenaline-mediated response following a desensitizing treatment except for position 46G>A (Gly16Arg). Analyses at the haplotype level indicated that there was no influence of haplotype on β 2-adrenoceptor-mediated responses in mast cells. Conclusions and implications: These data indicate that certain polymorphisms in ADRB2 influence β 2-adrenoceptor-mediated responses in human lung mast cells. PMID:17643132

  7. Altered expression of mast cell chymase and tryptase and of c-Kit in human cutaneous scar tissue.

    PubMed

    Hermes, B; Feldmann-Böddeker, I; Welker, P; Algermissen, B; Steckelings, M U; Grabbe, J; Henz, B M

    2000-01-01

    In order to explore a possible involvement of mast cells during human wound healing, we studied sections from scars (4-369-d-old) (N = 20) and normal skin (N = 10) for mast-cell-specific tryptase and chymase by enzyme histochemistry, for the stem cell factor receptor c-Kit and the melanosomal marker TA99 by immunohistochemistry, and for simultaneous c-Kit expression and avidin fluorescence by double staining. Enzyme activities and mRNA expression were also studied in tissue extracts. Chymase-reactive mast cell numbers as well as chymase activity and mRNA expression were reduced in all scars, whereas overall numbers of tryptase-reactive cells did not differ from normal skin, although tryptase activity and mRNA expression were increased in scar extracts. In contrast, numbers of c-Kit positive cells were significantly increased in old scars, and in the mid and lower dermis of all scars. A marked reduction of c-Kit reactivity was noted, however, in avidin-positive dermal mast cells and in epidermal basal cells, despite unchanged numbers of melanosome-positive cells, with an associated overall decrease of c-Kit mRNA in scar extracts. These data thus show that numbers of resident mast cells are very low in human cutaneous scars, suggesting massive mediator release from these cells into fresh wounds. Downregulation of stem cell factor receptors may also prevent these cells from increasing in number even in old scars. Instead, scar tissue is populated by a mast cell subpopulation that is chymase-, avidin-, tryptase +, c-Kit +, reflecting most probably an increased immigration and/or proliferation of immature mast cells and their precursors.

  8. In vitro studies on mast cell proliferation in N. brasiliensis infection.

    PubMed Central

    Haig, D M; Jarrett, E E; Tas, J

    1984-01-01

    We have previously shown that mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) proliferate and mature in rat bone marrow cultures stimulated with factors from antigen or mitogen-activated T lymphocytes. Here we have used this system to explore the MMC hyperplasia which occurs in infections with gastrointestinal nematode parasites. Lymphocytes producing MMC-growth factor were present from day 10 onwards in N. brasiliensis-infected rats and mesenteric lymph nodes (MLN) were the major source of activated lymphocytes. When different tissues of normal rats were cultured in the presence of conditioned medium by far the greatest proliferation of MMC occurred in bone marrow, indicating an origin of MMC from haemopoietic precursors. Cultures of infected rat bone marrow yielded considerably greater numbers of MMC than cultures of normal rat bone marrow and experiments using semisolid culture media indicated that N. brasiliensis infection causes an increase in the frequency of MMC progenitors in the bone marrow. A scheme is put forward for the sequence of events occurring in vivo based on the results of these and other published experiments. The reasons for the restricted in vivo localization of MMC to the mucous membranes and associated lymph nodes is discussed. Finally we give the results of microspectrophotometric analysis which has shown that the cultured mast cell contain a non-heparin proteoglycan, thus adding a further feature to the list of MMC-like properties of these cells. PMID:6608486

  9. ROLE OF MENINGEAL MAST CELLS IN INTRATHECAL MORPHINE EVOKED GRANULOMA FORMATION

    PubMed Central

    Yaksh, Tony L.; Allen, Jeffery W.; Veesart, Samantha L.; Horais, Kjersti A; Malkmus, Shelle A.; Scadeng, Miriam; Steinauer, Joanne J.; Rossi, Steve S

    2013-01-01

    Background Intrathecal morphine forms granulomas that arise from the adjacent arachnoid membrane. We propose that these inflammatory cells exit the meningeal vasculature secondary to meningeal mast cell degranulation. Methods Three sets of experiments were accomplished in dogs. 1) Ex vivo Meningeal mast cell degranulation. Histamine release was measured ex vivo from canine dura incubated with opiates. 2) In vivo cutaneous mast cell degranulation. Flare areas on the dog abdomen were measured after subcutaneous opiates. 3) In vivo granuloma pharmacology. Dogs with lumbar intrathecal catheters received infusion of intrathecal saline or intrathecal morphine. Intrathecal morphine dogs received: i) No other treatment (Control); ii) Twice daily subcutaneous naltrexone; iii) Intrathecal co-infusion of cromolyn; or, iv) Twice daily subcutaneous cromolyn for the 24–28 day study course. Results 1) Morphine but not fentanyl evoked dural histamine release, which was blocked by cromolyn but not naloxone. 2) Wheal/flare was produced by subcutaneous morphine, methadone, hydromorphone, but not fentanyl, and was unaffected by naltrexone but prevented by cromolyn. 3) Granulomas occurred in all dogs receiving intrathecal morphine (15/15); subcutaneous naltrexone had no effect on granulomas (6/6), but was reduced by concurrent intrathecal cromolyn (0/5) or twice daily subcutaneous cromolyn (1 of 5). Conclusions The pharmacology of cutaneous/dural MC degranulation and intrathecal granulomas are comparable, not mediated by opioid receptors, and reduced by agents preventing MC degranulation. If an agent produces cutaneous MC degranulation at concentrations produced by intrathecal delivery, the agent may initiate granulomas. PMID:23426209

  10. Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors

    PubMed Central

    Syenina, Ayesa; Jagaraj, Cyril J; Aman, Siti AB; Sridharan, Aishwarya; St John, Ashley L

    2015-01-01

    Dengue virus (DENV) is the most significant human arboviral pathogen and causes ∼400 million infections in humans each year. In previous work, we observed that mast cells (MC) mediate vascular leakage during DENV infection in mice and that levels of MC activation are correlated with disease severity in human DENV patients (St John et al., 2013b). A major risk factor for developing severe dengue is secondary infection with a heterologous serotype. The dominant theory explaining increased severity during secondary DENV infection is that cross-reactive but non-neutralizing antibodies promote uptake of virus and allow enhanced replication. Here, we define another mechanism, dependent on FcγR-mediated enhanced degranulation responses by MCs. Antibody-dependent mast cell activation constitutes a novel mechanism to explain enhanced vascular leakage during secondary DENV infection. DOI: http://dx.doi.org/10.7554/eLife.05291.001 PMID:25783751

  11. Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors.

    PubMed

    Syenina, Ayesa; Jagaraj, Cyril J; Aman, Siti A B; Sridharan, Aishwarya; St John, Ashley L

    2015-01-01

    Dengue virus (DENV) is the most significant human arboviral pathogen and causes ∼400 million infections in humans each year. In previous work, we observed that mast cells (MC) mediate vascular leakage during DENV infection in mice and that levels of MC activation are correlated with disease severity in human DENV patients (St John et al., 2013b). A major risk factor for developing severe dengue is secondary infection with a heterologous serotype. The dominant theory explaining increased severity during secondary DENV infection is that cross-reactive but non-neutralizing antibodies promote uptake of virus and allow enhanced replication. Here, we define another mechanism, dependent on FcγR-mediated enhanced degranulation responses by MCs. Antibody-dependent mast cell activation constitutes a novel mechanism to explain enhanced vascular leakage during secondary DENV infection.

  12. The mast cells of the mammalian central nervous system. VI. Uptake of tritiated thymidine by mast cells, neurolipomastocytoid cells and other elements of the central nervous system.

    PubMed

    Ibrahim, M Z; Koshayan, D S; Khreis, Y M

    1980-01-01

    The central nervous system (CNS) of two mammalian species was studied autoradiographically using tritium-labeled thymidine; the rat, whose brain contains few localized mast cells (MCs) but many ubiquitous neurolipomastocytoid cells (NLMs), and the guinea pig, whose brain contains only ubiquitous NLMs. A few guinea pigs were also injected with an MC discharger compound 48/80 and the response of the NLMs, which are thought to be allied to MCs, as well as of neuroglial and vascular endothelial cells, was noted. The rats were 3 days to 6 weeks old whereas all the guinea pigs were young adults. Both MCs and NLMs took up the label, and much more so in the babies, paralleling similar uptakes in only very small immature MCs outside the CNS. Neuroglial elements, especially subependymal and oligodendroglial, as well as endothelial, perivascular, leptomeningeal and ependymal cells demonstrated some uptake. This was considerably increased upon receipt of compound 48/80, especially in the case of the subependymal glia, the NLMs and the endothelial cells; capillary neoformations were seen in the spinal cords of guinea pigs that had shown signs of paralysis. The cause of this increase is discussed in terms of mild stress induced by that compound. The subependymal response is also discussed with reference to periventricular plaques seen in multiple sclerosis and lymphoreticular and glial tumors seen in that region. It is concluded that both MCs and NLMs are capable of DNA replication and mitosis in immature animals. The NLMs can also divide upon stimulation in adult CNS.

  13. The fundamental contribution of William Bate Hardy to shape the concept of mast cell heterogeneity.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico

    2010-07-01

    This review article acknowledges the pioneering contribution of William Bate Hardy in shaping the concept of mast cell heterogeneity. In two outstanding papers, published in 1894 and 1895, he focussed on the 'wandering cells' (the modern leucocytes) in different mammalian species and distinguished two types of granular basophil cells, i.e., the coarsely granular basophil cells and the splanchnic basophil cells. These corresponded to the populations of connective tissue-type and mucosal mast cells, respectively, described 70 years later by Enerbäck in rodents. Among the coarsely granular basophil cells, he also differentiated those cells which populated the serosal cavities - the so-called coelomic coarsely granular basophil cells - from the common coarsely granular basophil cells, which were localized in the connective tissues. He stated that the granular basophil cells presented with different morphological and histochemical characteristics in diverse animal species as well as at different anatomical sites. Remarkably, he performed a series of functional experiments on the basophil cells as well as the other wandering cells, and suggested the view that different granular basophil cells might express functional specializations.

  14. The suppression of IgE-mediated histamine release from mast cells following exocytic exclusion of biodegradable polymeric nanoparticles.

    PubMed

    Tahara, Kohei; Tadokoro, Satoshi; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Hirashima, Naohide

    2012-01-01

    The objective of this study is to evaluate the effect of polymeric nanoparticles (NPs) on the allergic response of mast cells that release inflammatory mediators such as histamine through exocytosis. Submicron-sized biodegradable poly(DL-lactide-co-glycolide) (PLGA) NPs were prepared by the emulsion solvent diffusion method. Here, we examined the interactions of the mast cells with two types of PLGA NPs, unmodified NPs and NPs modified with chitosan (CS), a biodegradable cationic polymer. The cellular uptake of NPs increased by CS modification due to electrostatic interactions with the plasma membrane. NPs were taken up by mast cells through an endocytic pathway (endocytic phase) and then the cellular uptake was saturated and maintained plateau level by the exclusion of NPs through exocytosis (exocytic phase). Antigen-induced histamine release from mast cells was inhibited during the exocytic phase. The extent of histamine release inhibition was related to the amount of excluded NPs. Exocytic exclusion of NPs competitively antagonize the antigen-induced exocytotic release of histamine by highjacking exocytosis machinery such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, since histamine release was recovered in mast cells that overexpress SNAP-23. The inhibitory effect of the allergic response by PLGA NPs was also evaluated in vivo using the mouse model for systemic anaphylaxis. The administration of NPs suppressed the antigen-induced systemic allergic response in vivo. In conclusion, PLGA NP itself has actions to inhibit the allergic responses mediated by mast cells.

  15. Influence of laser and LED irradiation on mast cells of cutaneous wounds of rats with iron deficiency anemia

    NASA Astrophysics Data System (ADS)

    Becher Rosa, Cristiane; Oliveira Sampaio, Susana C. P.; Monteiro, Juliana S. C.; Ferreira, Maria F. L.; Zanini, Fátima A. A.; Santos, Jean N.; Cangussú, Maria Cristina T.; Pinheiro, Antonio L. B.

    2011-03-01

    This work aimed to study histologically the effect of Laser or LED phototherapy on mast cells on cutaneous wounds of rats with iron deficiency. 18 rats were used and fed with special peleted iron-free diet. An excisional wound was created on the dorsum of each animal which were divided into: Group I - Control with anemia + no treatment; Group II - Anemia + Laser; Group III - Anemia + LED; Group IV - Healthy + no treatment; Group V - Healthy + Laser; Group VI - Healthy + LED. Irradiation was performed using a diode Laser (λ660nm, 40mW, CW, total dose of 10J/cm2, 4X2.5J/cm2) or a RED-LED ( λ700nm, 15mW, CW, total dose of 10J/cm2). Histological specimens were routinely processed, cut and stained with toluidine blue and mast cell counts performed. No significant statistic difference was found between groups as to the number of degranulated, non-degradulated or total mast cells. Greater mean values were found for degranulated mast cells in the Anemia + LED. LED irradiation on healthy specimens resulted in a smaller number of degranulated mast cells. Our results leads to conclude that there are no significant differences in the number of mast cells seven days after irradiation following Laser or LED phototherapy.

  16. Activated Human Mast Cells Induce LOX-1-Specific Scavenger Receptor Expression in Human Monocyte-Derived Macrophages

    PubMed Central

    Alanne-Kinnunen, Mervi; Lappalainen, Jani; Öörni, Katariina; Kovanen, Petri T.

    2014-01-01

    Objective Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs). Results Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1) mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta (TGF-β1), which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell –induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages. Conclusions Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis. PMID:25250731

  17. Chronic mast cell leukemia (MCL) with KIT S476I: a rare entity defined by leukemic expansion of mature mast cells and absence of organ damage.

    PubMed

    Valent, Peter; Berger, Jörg; Cerny-Reiterer, Sabine; Peter, Barbara; Eisenwort, Gregor; Hoermann, Gregor; Müllauer, Leonhard; Mannhalter, Christine; Steurer, Michael; Bettelheim, Peter; Horny, Hans-Peter; Arock, Michel

    2015-02-01

    Mast cell leukemia (MCL) is a rare, life-threatening malignancy defined by a substantial increase in neoplastic mast cells (MCs) in bone marrow (BM) smears, drug-resistance, and a poor prognosis. In most patients, the survival time is less than 1 year. However, exceptional cases may present with a less malignant course. We report on a 49-year-old female patient with MCL diagnosed in 2013. In February 2013, first symptoms, including flushing, headache, and diarrhea, were recorded. In addition, mild anemia was detected. The disease was characterized by a massive increase in well-granulated, mature, and often spindle-shaped MCs (80 %) in BM smears. The serum tryptase level amounted to 332 ng/mL. Like in most other MCL patients, no skin lesions were detected. However, unlike in other patients, tryptase levels remained stable, and no other signs or symptoms of MCL-induced organ damage were found. Sequencing studies revealed an isolated S476I point mutation in KIT but no mutation in codon 816. The patient received histamine receptor blockers but refused cytoreductive therapy. After 9 months, still no progression or organ damage was detected. However, progression with transformation to acute MCL occurred after 12 months. We propose that the chronic type of MCL with stable conditions, absence of organ damage, and a mature MC morphology is recognized as a distinct entity that should be distinguished from the acute variant of MCL.

  18. Inhibition of mast cell secretion by oxidation products of natural polyamines.

    PubMed

    Vliagoftis, H; Boucher, W S; Mak, L L; Theoharides, T C

    1992-05-28

    Mast cells secrete many biologically active compounds upon stimulation by immunoglobulin E (IgE) and specific antigen (Ag), anaphylatoxins, as well as a number of cationic compounds which include drugs, kinins and neuropeptides. The effects of the two naturally occurring polyamines, spermine (SP) and spermidine (SPD), on mast cell secretion were studied because they have been implicated in the modulation of cellular processes, possibly through their cationic charge or the regulation of calcium ions. SP and SPD over the range of 10(-7) to 10(-4) M inhibited the release of 5-hydroxytryptamine (5-HT, serotonin) triggered by compound 48/80 (C48/80) in a time- and concentration-dependent manner, as long as at least 2% calf serum (CS) was present. SP also inhibited secretion of both histamine and serotonin stimulated immunologically by using IgE and anti-rat IgE. This inhibition was not accompanied by cytotoxicity. The major available polyamine metabolites tested, N1-acetyl spermine (N1-acSP) and N8-acetyl spermidine (N8-acSPD), also showed inhibition in the presence of CS, whereas putrescine, N8,N1-hexamethylene-bis-acetamide (HMBA) and benzylamine did not. Fetal bovine serum (FBS), as well as human and rat serum, which do not contain polyamine oxidase, did not result in any inhibition with the polyamines tested. Inhibitors of the polyamine oxidase blocked the polyamine effect, indicating that the inhibition of mast cell secretion must derive from aldehydes produced from these polyamines. Addition of the aldehyde inhibitor phenylhydrazine (phi-HDZ), simultaneously with, but not following the polyamines, blocked their inhibitory effect, further strengthening the involvement of aldehydes. These results indicate that naturally occurring polyamines may regulate mast cell secretion through metabolic products of polyamine oxidase, a similar enzyme of which is also present in human liver, placenta and pregnant serum.

  19. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model

    SciTech Connect

    Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr; Kim, Sang-Hyun; Suk, Kyoungho; Ha, Jeoung-Hee; Kim, InKyeom; Lee, Maan-Gee; Jun, Chang-Duk; Kim, Sang-Yong; Lim, Jong-Pil; Eun, Jae-Soon; Shin, Hye-Young; Kim, Hyung-Min

    2005-12-15

    The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody. LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.

  20. Mast cell-macrophage dynamics in modulation of dengue virus infection in skin.

    PubMed

    Chu, Ya-Ting; Wan, Shu-Wen; Anderson, Robert; Lin, Yee-Shin

    2015-09-01

    Dengue virus (DENV) infection causes dengue fever, dengue haemorrhagic fever, or dengue shock syndrome. Mast cells have been speculated to play a role in DENV disease although their precise roles are unclear. In this study, we used mast cell-deficient Kit(W-sh/W-sh) mice to investigate the involvement of mast cells after intradermal DENV infection. An approximately two- to three-fold higher level of DENV NS3 antigen was detected at the skin inoculation site in DENV-infected Kit(W-sh/W-sh) mice than in DENV-infected wild-type (WT) mice (using a dose of 1 × 10(9) plaque-forming units/mouse). Moreover, as an indicator of heightened pathogenesis, a more prolonged bleeding time was observed in DENV-infected Kit(W-sh/W-sh) mice than in WT mice. Monocytes/macrophages are considered to be important targets for DENV infection, so we investigated the susceptibility and chemokine response of DENV-infected peritoneal macrophages from Kit(W-sh/W-sh) and WT mice both ex vivo and in vivo. There was a tendency for higher DENV infection and higher secretion of CCL2 (MCP-1) from peritoneal macrophages isolated from Kit(W-sh/W-sh) mice than those from WT mice. In vivo studies using intradermal inoculation of DENV showed about twofold higher levels of infiltrating macrophages and CCL2 (MCP-1) at the inoculation site in both mock control and DENV-inoculated Kit(W-sh/W-sh) mice than in corresponding WT mice. In summary, compared with WT mice, Kit(W-sh/W-sh) mice show enhanced DENV infection and macrophage infiltration at the skin inoculation site as well as increased DENV-associated bleeding time. The results indicate an intriguing interplay between mast cells and tissue macrophages to restrict DENV replication in the skin.

  1. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells.

    PubMed

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-10-28

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-33(95-270), IL-33(107-270), and IL-33(109-270), were 30-fold more potent than full-length human IL-33(1-270) for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33-dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66-111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33-mediated responses in allergic asthma and other inflammatory diseases.

  2. Mast Cell Adenosine Receptors Function: A Focus on the A3 Adenosine Receptor and Inflammation

    PubMed Central

    Rudich, Noam; Ravid, Katya; Sagi-Eisenberg, Ronit

    2012-01-01

    Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed. PMID:22675325

  3. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways.

    PubMed

    Tiwari, Neeraj; Wang, Cheng-Chun; Brochetta, Cristiana; Ke, Gou; Vita, Francesca; Qi, Zeng; Rivera, Juan; Soranzo, Maria Rosa; Zabucchi, Giuliano; Hong, Wanjin; Blank, Ulrich

    2008-04-01

    Inflammatory responses by mast cells are characterized by massive exocytosis of prestored granular mediators followed by cytokine/chemokine release. The vesicular trafficking mechanisms involved remain poorly understood. Vesicular-associated membrane protein-8 (VAMP-8), a member of the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) family of fusion proteins initially characterized in endosomal and endosomal-lysosomal fusion, may also function in regulated exocytosis. Here we show that in bone marrow-derived mast cells (BMMCs) VAMP-8 partially colocalized with secretory granules and redistributed upon stimulation. This was associated with increased SNARE complex formation with the target t-SNAREs, SNAP-23 and syntaxin-4. VAMP-8-deficient BMMCs exhibited a markedly reduced degranulation response after IgE+ antigen-, thapsigargin-, or ionomycin-induced stimulation. VAMP-8-deficient mice also showed reduced plasma histamine levels in passive systemic anaphylaxis experiments, while cytokine/chemokine release was not affected. Unprocessed TNF accumulated at the plasma membrane where it colocalized with a VAMP-3-positive vesicular compartment but not with VAMP-8. The findings demonstrate that VAMP-8 segregates secretory lysosomal granule exocytosis in mast cells from cytokine/chemokine molecular trafficking pathways.

  4. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection.

  5. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation.

    PubMed

    Phong, Binh L; Avery, Lyndsay; Sumpter, Tina L; Gorman, Jacob V; Watkins, Simon C; Colgan, John D; Kane, Lawrence P

    2015-12-14

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.

  6. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation

    PubMed Central

    Phong, Binh L.; Avery, Lyndsay; Sumpter, Tina L.; Gorman, Jacob V.; Watkins, Simon C.; Colgan, John D.

    2015-01-01

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation. PMID:26598760

  7. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation.

    PubMed

    Li, Fei; Wang, Yuping; Lin, Lihui; Wang, Juan; Xiao, Hui; Li, Jia; Peng, Xia; Dai, Huirong; Li, Li

    2016-01-01

    Exosomes are nanovesicles released by different cell types, such as dendritic cells (DCs), mast cells (MCs), and tumor cells. Exosomes of different origin play a role in antigen presentation and modulation of immune response to infectious disease. In this study, we demonstrate that mast cells and CD4(+) T cells colocated in peritoneal lymph nodes from BALB/c mouse. Further, bone marrow-derived mast cells (BMMCs) constitutively release exosomes, which express CD63 and OX40L. BMMC-exosomes partially promoted the proliferation of CD4(+) T cells. BMMC-exosomes significantly enhanced the differentiation of naive CD4(+) T cells to Th2 cells in a surface contact method, and this ability was partly inhibited by the addition of anti-OX40L Ab. In conclusion, BMMC-exosomes promoted the proliferation and differentiation of Th2 cells via ligation of OX40L and OX40 between exosomes and T cells. This method represents a novel mechanism, in addition to direct cell surface contacts, soluble mediators, and synapses, to regulate T cell actions by BMMC-exosomes. PMID:27066504

  8. Oxidized Low-Density Lipoprotein Contributes to Atherogenesis via Co-activation of Macrophages and Mast Cells

    PubMed Central

    Chen, Chong; Khismatullin, Damir B.

    2015-01-01

    Oxidized low-density lipoprotein (OxLDL) is a risk factor for atherosclerosis, due to its role in endothelial dysfunction and foam cell formation. Tissue-resident cells such as macrophages and mast cells release inflammatory mediators upon activation that in turn cause endothelial activation and monocyte adhesion. Two of these mediators are tumor necrosis factor (TNF)-α, produced by macrophages, and histamine, produced by mast cells. Static and microfluidic flow experiments were conducted to determine the number of adherent monocytes on vascular endothelium activated by supernatants of oxLDL-treated macrophages and mast cells or directly by oxLDL. The expression of adhesion molecules on activated endothelial cells and the concentration of TNF-α and histamine in the supernatants were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. A low dose of oxLDL (8 μg/ml), below the threshold for the clinical presentation of coronary artery disease, was sufficient to activate both macrophages and mast cells and synergistically increase monocyte-endothelium adhesion via released TNF-α and histamine. The direct exposure of endothelial cells to a much higher dose of oxLDL (80 μg/ml) had less effect on monocyte adhesion than the indirect activation via oxLDL-treated macrophages and mast cells. The results of this work indicate that the co-activation of macrophages and mast cells by oxLDL is an important mechanism for the endothelial dysfunction and atherogenesis. The observed synergistic effect suggests that both macrophages and mast cells play a significant role in early stages of atherosclerosis. Allergic patients with a lipid-rich diet may be at high risk for cardiovascular events due to high concentration of low-density lipoprotein and histamine in arterial vessel walls. PMID:25811595

  9. Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with beta-tryptase monomers.

    PubMed

    Strik, Merel C M; Wolbink, Angela; Wouters, Dorine; Bladergroen, Bellinda A; Verlaan, Angelique R; van Houdt, Inge S; Hijlkema, Sanne; Hack, C Erik; Kummer, J Alain

    2004-04-01

    SERPINB6 (PI6) is a member of the intracellular serine protease inhibitors (serpins). Previous studies showed that SERPINB6 is localized mainly in the cytoplasm of endothelial cells, some epithelial cells, monocytes, and neutrophils. In these cells SERPINB6 is thought to prevent cellular damage by scavenging leaking lysosomal proteases. We show here, using novel, well-defined monoclonal antibodies, that SERPINB6 is abundantly expressed by mast cells in all organs and by the human mast cell line HMC-1. Gel filtration experiments revealed that the latter cells contain a high-molecular-weight form of SERPINB6, which consists of sodium dodecyl sulfate (SDS)-stable complexes of this inhibitor with monomeric beta-tryptase. Expression of SERPINB6 by mast cells was compared with those of tryptase and CD117 (c-kit) in biopsies from patients with different forms of mast cell disease. In all cases the lesional mast cells expressed SERPINB6, and, in diffuse cutaneous mastocytosis and mastocytoma, SERPINB6 was expressed by a substantially higher number of mast cells when compared with tryptase. In conclusion, SERPINB6 is abundantly expressed by normal mast cells and by mast cells in mastocytoma lesions. We suggest that in mast cells, SERPINB6 serves to regulate the activity of endogenous beta-tryptase in the cytoplasm.

  10. Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4.

    PubMed

    Dahinden, C A; Clancy, R M; Gross, M; Chiller, J M; Hugli, T E

    1985-10-01

    The glutathione-containing leukotriene C4 (LTC4) is a major mediator of smooth muscle contraction and is released by mast cells when antigen interacts with cell-bound IgE. Antigen-stimulated mast cells undergo phospholipase activation. We report a pathway of LTC4 production by mast cells that does not require phospholipase activation but depends on the interaction of activated neutrophils with unstimulated mast cells, using as an intermediate extracellular leukotriene A4 (LTA4). The epoxide LTA4 is released by neutrophils and, together with leukotriene B4 and 5-hydroxyeicosatetraenoic acid, constitutes the major lipoxygenase metabolites found in supernatants of stimulated neutrophils. Five minutes after activation of neutrophils by calcium ionophore A23187 we measured 136 pmol of extracellular LTA4 per 10(7) neutrophils (range 40-300, n = 7) by trapping the epoxide with alcohols. Therefore, we conclude that LTA4 is not just an intracellular leukotriene precursor but is released as a lipoxygenase metabolite. LTA4 is known to be stabilized by albumin and is efficiently converted by mast cells into LTC4 even at low LTA4 concentrations. The LTA4 complexed to albumin is converted into LTC4 rapidly and completely within 10-15 min. More than 50% of the LTA4 presented to mast cells is metabolized to LTC4 at concentrations of LTA4 between 0.2 and 2 nmol of LTA4 per 10(7) mast cells. This observation establishes a potential physiologic role for extracellular LTA4. Therefore, interactions between various cell types that release or utilize LTA4 may provide an important metabolic pathway for the production of leukotrienes.

  11. Elemental levels in mast cell granules differ in sections from normal and diabetic rats: an X-ray microanalysis study

    SciTech Connect

    Kendall, M.D.

    1988-03-01

    Mast cells around the thymus of rats stain red with alcian blue and safranin indicating that the mast cells are probably of the peritoneal (connective tissue) type. After the onset of streptozotocin induced diabetes some cells contain both red and blue granules and blue staining cells may appear. X-ray microanalysis of frozen freeze-dried sections from diabetic male CSE Wistar rats showed electron dense granules to have similar amounts of S to normal rat mast cell granules but reduced levels of Na, Mg, P, Cl and K. Two cells also had electron lucent granules with very high levels of Na, Cl, K and Ca and reduced concentrations of S. The differences in elemental composition suggest that the mast cells from diabetic rats are not immature, but are related to the condition of induced diabetes, and that granules of very different composition can occur within a single cell. X-ray microanalysis has given an insight into mast cell granule elemental content which was not possible by conventional biochemical methods.

  12. SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis.

    PubMed

    Sharma, Namit; Everingham, Stephanie; Ramdas, Baskar; Kapur, Reuben; Craig, Andrew W B

    2014-05-15

    SHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis. To address the mechanisms involved, we tested whether SHP2 promotes activation of Lyn kinase that was previously shown to promote mast cell chemotaxis. In SHP2 KO BMMCs, SCF-induced phosphorylation of the inhibitory C-terminal residue (pY507) was elevated compared with control cells, and phosphorylation of activation loop (pY396) was diminished. Because Lyn also was detected by substrate trapping assays, these results are consistent with SHP2 activating Lyn directly by dephosphorylation of pY507. Further analyses revealed a SHP2- and Lyn-dependent pathway leading to phosphorylation of Vav1, Rac activation, and F-actin polymerization in SCF-treated BMMCs. Treatment of BMMCs with a SHP2 inhibitor also led to impaired chemotaxis, consistent with SHP2 promoting SCF-induced chemotaxis of mast cells via a phosphatase-dependent mechanism. Thus, SHP2 inhibitors may be useful to limit SCF/KIT-induced mast cell recruitment to inflamed tissues or the tumor microenvironment.

  13. Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection.

    PubMed

    Podlech, Jürgen; Ebert, Stefan; Becker, Marc; Reddehase, Matthias J; Stassen, Michael; Lemmermann, Niels A W

    2015-06-01

    Reactivation of latent cytomegalovirus (CMV) in the transient immunocompromised state after hematoablative treatment is a major concern in patients undergoing hematopoietic cell transplantation (HCT) as a therapy of hematopoietic malignancies. Timely reconstitution of antiviral CD8 T cells and their efficient recruitment to the lungs is crucial for preventing interstitial pneumonia, the most severe disease manifestation of CMV in HCT recipients. Here, we review recent work in a murine model, implicating mast cells (MC) in the control of pulmonary infection. Murine CMV (mCMV) productively infects MC in vivo and triggers their degranulation, resulting in the release of the CC chemokine ligand 5 (CCL5) that attracts CD8 T cells to infiltrate infected tissues. Comparing infection of MC-sufficient C57BL/6 mice and congenic MC-deficient Kit (W-sh/W-sh) "sash" mutants revealed an inverse relation between the number of lung-infiltrating CD8 T cells and viral burden in the lungs. Specifically, reduced lung infiltration by CD8 T cells in "sash" mutants was associated with an impaired infection control. The causal, though indirect, involvement of MC in antiviral control was confirmed by reversion of the deficiency phenotype in "sash" mutants reconstituted with MC. These recent findings predict that efficient MC reconstitution facilitates the control of CMV infection also in immunocompromised HCT recipients. PMID:25648117

  14. Tolerogenic IDO(+) Dendritic Cells Are Induced by PD-1-Expressing Mast Cells.

    PubMed

    Rodrigues, Cecilia Pessoa; Ferreira, Ana Carolina Franco; Pinho, Mariana Pereira; de Moraes, Cristiano Jacob; Bergami-Santos, Patrícia Cruz; Barbuto, José Alexandre Marzagão

    2016-01-01

    Mast cells (MCs) are tissue resident cells, rich in inflammatory mediators, involved in allergic reactions, and with an increasingly recognized role in immunomodulation. Dendritic cells (DCs), on the other hand, are central to the determination of immune response patterns, being highly efficient antigen-presenting cells that respond promptly to changes in their microenvironment. Here, we show that direct cell contact between immature monocyte-derived DCs (iDCs) and MC bends DCs toward tolerance induction. DCs that had direct contact with MC (MC-iDC) decreased HLA-DR but increased PD-L1 expression and stimulated regulatory T lymphocytes, which expresses FoxP3(+), secrete TGF-β and IL-10, and suppress the proliferation of mitogen-stimulated naïve T lymphocytes. Furthermore, MC-iDC expressed higher levels of indoleamine-2,3-deoxigenase (IDO), a phenomenon that was blocked by treatment of MC with anti-PD-1 or by the treatment of DCs with anti-PD-L1 or anti-PD-L2, but not by blocking of H1 and H2 histamine receptors on DCs. Contact with MC also increased phosphorylated STAT-3 levels in iDCs. When a STAT-3 inhibitor, JSI-124, was added to the DCs before contact with MC, the MC-iDC recovered their ability to induce allogeneic T cell proliferation and did not increase their IDO expression.

  15. Cell permeable ITAM constructs for the modulation of mediator release in mast cells.

    PubMed

    Kuil, Joeri; Fischer, Marcel J E; de Mol, Nico J; Liskamp, Rob M J

    2011-02-01

    Spleen tyrosine kinase (Syk) is essential for high affinity IgE receptor (FcεRI) mediated mast cell degranulation. Once FcεRI is stimulated, intracellular ITAM motifs of the receptor are diphosphorylated (dpITAM) and Syk is recruited to the receptor by binding of the Syk tandem SH2 domain to dpITAM, resulting in activation of Syk and, eventually, degranulation. To investigate intracellular effects of ITAM mimics, constructs were synthesized with ITAM mimics conjugated to different cell penetrating peptides, i.e. Tat, TP10, octa-Arg and K(Myr)KKK, or a lipophilic C(12)-chain. In most constructs the cargo and carrier were linked to each other through a disulfide bridge, which is convenient for combining different cargos with different carriers and has the advantage that the cargo and the carrier may be separated by reduction of the disulfide once it is intracellular. The ability of these ITAM constructs to label RBL-2H3 cells was assessed using flow cytometry. Fluorescence microscopy showed that the octa-Arg-SS-Flu-ITAM construct was present in various parts of the cells, although it was not homogeneously distributed. In addition, cell penetrating constructs without fluorescent labels were synthesized to examine degranulation in RBL-2H3 cells. Octa-Arg-SS-ITAM stimulated the mediator release up to 140%, indicating that ITAM mimics may have the ability to activate non-receptor bound Syk.

  16. Tolerogenic IDO+ Dendritic Cells Are Induced by PD-1-Expressing Mast Cells

    PubMed Central

    Rodrigues, Cecilia Pessoa; Ferreira, Ana Carolina Franco; Pinho, Mariana Pereira; de Moraes, Cristiano Jacob; Bergami-Santos, Patrícia Cruz; Barbuto, José Alexandre Marzagão

    2016-01-01

    Mast cells (MCs) are tissue resident cells, rich in inflammatory mediators, involved in allergic reactions, and with an increasingly recognized role in immunomodulation. Dendritic cells (DCs), on the other hand, are central to the determination of immune response patterns, being highly efficient antigen-presenting cells that respond promptly to changes in their microenvironment. Here, we show that direct cell contact between immature monocyte-derived DCs (iDCs) and MC bends DCs toward tolerance induction. DCs that had direct contact with MC (MC-iDC) decreased HLA-DR but increased PD-L1 expression and stimulated regulatory T lymphocytes, which expresses FoxP3+, secrete TGF-β and IL-10, and suppress the proliferation of mitogen-stimulated naïve T lymphocytes. Furthermore, MC-iDC expressed higher levels of indoleamine-2,3-deoxigenase (IDO), a phenomenon that was blocked by treatment of MC with anti-PD-1 or by the treatment of DCs with anti-PD-L1 or anti-PD-L2, but not by blocking of H1 and H2 histamine receptors on DCs. Contact with MC also increased phosphorylated STAT-3 levels in iDCs. When a STAT-3 inhibitor, JSI-124, was added to the DCs before contact with MC, the MC-iDC recovered their ability to induce allogeneic T cell proliferation and did not increase their IDO expression. PMID:26834749

  17. Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    PubMed Central

    Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita

    2014-01-01

    Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458

  18. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy.

  19. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  20. Comparative cytokine gene expression: regulation and release by human mast cells.

    PubMed Central

    Möller, A; Henz, B M; Grützkau, A; Lippert, U; Aragane, Y; Schwarz, T; Krüger-Krasagakes, S

    1998-01-01

    Since data on the ability of human mast cells to produce various cytokines are scanty, we examined the mRNA expression, its modulation and the resulting protein expression of a number of well-characterized cytokines, using semi-quantitative reverse transcription-polymerase chain reaction of cell extracts and enzyme-linked immunosorbent assays for analysis of cell supernatants. One million cells/ml of the human mast cell line HMC-1 were stimulated with 25 ng/ml phorbol myristate acetate (PMA), 5 x 10(-7) M calcium ionophore A 23187 (ionophore) or both stimuli combined for various time periods. Constitutive expression in unstimulated cells was found for interleukin-1 beta (IL-1 beta) -3, -4, -8, tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta). Maximal mRNA up-regulation was observed by 2-4 hr, with a second peak for TNF-alpha at 24 hr. After a 4-hr stimulation, IL-13 expression was detectable as well, whereas for IL-12, only the p35 but not the p40 chain was found, and IL-2, -5, -7 and interferon-gamma (IFN-gamma) were not expressed at all. Large quantities of IL-8, TNF-alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-3 were secreted time-dependently over a 72-hr period, with lower levels of IL-1 beta, -6, -10 and TGF-beta and no detectable IL-2, -4 and IFN-gamma protein. When IL-6 and IL-8 expression was compared in more detail, IL-6 mRNA was found to be up-regulated only with ionophore but not PMA, whereas both stimuli alone or combined increased IL-8 mRNA expression. Preincubation with cycloheximide inhibited IL-6 but not IL-8 transcription, and incubation of stimulated cells with actinomycin D stabilized IL-8 and also IL-6 mRNA. These data suggest a selective regulation of distinct cytokines in human mast cells at the transcriptional and post-transcriptional levels. Furthermore, the spectrum of cytokines produced by HMC-1 cells supports the well-recognized role of mast cells in immediate

  1. Differential effects of the complement peptides, C5a and C5a des Arg on human basophil and lung mast cell histamine release.

    PubMed Central

    Schulman, E S; Post, T J; Henson, P M; Giclas, P C

    1988-01-01

    The ability of purified anaphylatoxins to induce human lung mast cell mediator release was investigated. In eight anti-IgE responsive (histamine release = 22 +/- 5%, mean +/- SEM) mast cell preparations of 1-96% purity, C5a and C5a des Arg (0.55 pg/ml to 55 micrograms/ml), failed to elicit or potentiate histamine release; lung fragments were similarly unresponsive. The related peptide C3a was also inactive. All anaphylatoxins failed to induce mast cell leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) release. LTC4 release was also negligible from basophils where C5a was a potent histamine release stimulus. Supernatants from C5a-challenged mast cells remained fully active on basophils, excluding carboxypeptidase inactivation of C5a as an explanation for the lung mast cell results. In contrast to lung, skin mast cells were C5a-responsive (histamine release = 8 +/- 1%, at 55 micrograms/ml, n = 2). We conclude that C5a, though devoid of activity on the human lung mast cell, is a human basophil and skin mast cell secretagogue. These findings demonstrate significant organ-specific heterogeneity in mast cell responsiveness. PMID:2449462

  2. The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells.

    PubMed

    Tsai, Shih Han; Kinoshita, Makoto; Kusu, Takashi; Kayama, Hisako; Okumura, Ryu; Ikeda, Kayo; Shimada, Yosuke; Takeda, Akira; Yoshikawa, Soichiro; Obata-Ninomiya, Kazushige; Kurashima, Yosuke; Sato, Shintaro; Umemoto, Eiji; Kiyono, Hiroshi; Karasuyama, Hajime; Takeda, Kiyoshi

    2015-02-17

    Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity. PMID:25692702

  3. Diamine oxidase-gold ultrastructural localization of histamine in human skin biopsies containing mast cells stimulated to degranulate in vivo by exposure to recombinant human stem cell factor.

    PubMed

    Dvorak, A M; Costa, J J; Morgan, E S; Monahan-Earley, R A; Galli, S J

    1997-10-15

    Stem cell factor (SCF) has a major role in hematopoiesis and in the regulation of mast cell development and function. For example, recombinant human SCF (rhSCF) can induce the development of human mast cells from precursor cells in vitro, stimulate mediator release from human skin mast cells in vitro, and promote both the development and functional activation of human skin mast cells in vivo. In the present study, we used a new ultrastructural enzyme-affinity method, employing diamine oxidase (DAO)-conjugated gold particles (DAO-gold), to detect histamine in skin biopsies obtained from patients with breast carcinomas who were receiving daily subcutaneous (SC) injections of rhSCF in a phase I study of this cytokine. We examined control biopsies obtained at sites remote from rhSCF injection as well as biopsies of rhSCF-injected skin that were obtained within 2 hours and 30 minutes of the SC injection of rhSCF at that site. The rhSCF-injected sites (which clinically exhibited a wheal-and-flare response), but not the control sites, contained mast cells undergoing regulated secretion by granule extrusion. The DAO-gold-affinity method detected histamine in electron-dense granules of mast cells in control and injected skin biopsies; however, the altered matrix of membrane-free, extruded mast cell granules was largely unreactive with DAO-gold. Notably, DAO-gold bound strongly to fibrin deposits and collagen fibers that were adjacent to degranulated mast cells. These findings represent the first morphologic evidence of histamine secretion by classical granule exocytosis in human mast cells in vivo. PMID:9376568

  4. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.

    PubMed

    de Castro, Rodrigo Orlandini

    2011-01-01

    The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk(-/-) cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.

  5. 20(S)-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

    PubMed Central

    Kim, Dae Yong; Ro, Jai Youl; Lee, Chang Ho

    2014-01-01

    Background Antiallergic effect of 20(S)-protopanaxatriol (PPT), an intestinal metabolite of ginseng saponins, was investigated in guinea pig lung mast cells and mouse bone marrow-derived mast cells activated by a specific antigen/antibody reaction. Methods Increasing concentrations of PPT were pretreated 5 min prior to antigen stimulation, and various inflammatory mediator releases and their relevant cellular signaling events were measured in those cells. Results PPT dose-dependently reduced the release of histamine and leukotrienes in both types of mast cells. Especially, in activated bone marrow-derived mast cells, PPT inhibited the expression of Syk protein, cytokine mRNA, cyclooxygenase-1/2, and phospholipase A2 (PLA2), as well as the activities of various protein kinase C isoforms, mitogen-activated protein kinases, PLA2, and transcription factors (nuclear factor-κB and activator protein-1). Conclusion PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells. PMID:26199549

  6. Tick Salivary Sialostatin L Represses the Initiation of Immune Responses by Targeting IRF4-Dependent Transcription in Murine Mast Cells.

    PubMed

    Klein, Matthias; Brühl, Till-Julius; Staudt, Valérie; Reuter, Sebastian; Grebe, Nadine; Gerlitzki, Bastian; Hoffmann, Markus; Bohn, Toszka; Ulges, Alexander; Stergiou, Natascha; de Graaf, Jos; Löwer, Martin; Taube, Christian; Becker, Marc; Hain, Tobias; Dietzen, Sarah; Stassen, Michael; Huber, Magdalena; Lohoff, Michael; Campos Chagas, Andrezza; Andersen, John; Kotál, Jan; Langhansová, Helena; Kopecký, Jan; Schild, Hansjörg; Kotsyfakis, Michalis; Schmitt, Edgar; Bopp, Tobias

    2015-07-15

    Coevolution of ticks and the vertebrate immune system has led to the development of immunosuppressive molecules that prevent immediate response of skin-resident immune cells to quickly fend off the parasite. In this article, we demonstrate that the tick-derived immunosuppressor sialostatin L restrains IL-9 production by mast cells, whereas degranulation and IL-6 expression are both unaffected. In addition, the expression of IL-1β and IRF4 is strongly reduced in the presence of sialostatin L. Correspondingly, IRF4- or IL-1R-deficient mast cells exhibit a strong impairment in IL-9 production, demonstrating the importance of IRF4 and IL-1 in the regulation of the Il9 locus in mast cells. Furthermore, IRF4 binds to the promoters of Il1b and Il9, suggesting that sialostatin L suppresses mast cell-derived IL-9 preferentially by inhibiting IRF4. In an experimental asthma model, mast cell-specific deficiency in IRF4 or administration of sialostatin L results in a strong reduction in asthma symptoms, demonstrating the immunosuppressive potency of tick-derived molecules.

  7. Tick salivary Sialostatin L represses the initiation of immune responses by targeting IRF4-dependent transcription in murine mast cells

    PubMed Central

    Klein, Matthias; Brühl, Till-Julius; Staudt, Valérie; Reuter, Sebastian; Grebe, Nadine; Gerlitzki, Bastian; Hoffmann, Markus; Bohn, Toszka; Ulges, Alexander; Stergiou, Natascha; de Graaf, Jos; Löwer, Martin; Taube, Christian; Becker, Marc; Hain, Tobias; Dietzen, Sarah; Stassen, Michael; Huber, Magdalena; Lohoff, Michael; Chagas, Andrezza Campos; Andersen, John; Kotál, Jan; Langhansová, Helena; Kopecký, Jan; Schild, Hansjörg; Kotsyfakis, Michalis; Schmitt, Edgar; Bopp, Tobias

    2015-01-01

    Co-evolution of ticks and the vertebrate immune system has led to the development of immunosuppressive molecules that prevent immediate response of skin-resident immune cells to quickly fend off the parasite. Herein, we demonstrate that the tick-derived immunosuppressor sialostatin L restrains IL-9 production by mast cells while degranulation and IL-6 expression are both unaffected. In addition, the expression of IL-1β and IRF4 is strongly reduced in the presence of sialostatin L. Correspondingly, IRF4- or IL-1 receptor-deficient mast cells exhibit strong impairment in IL-9 production demonstrating the importance of IRF4 and IL-1 in the regulation of the Il9 locus in mast cells. Furthermore, IRF4 binds to the promoters of Il1b and Il9 suggesting that sialostatin L suppresses mast cell-derived IL-9 preferentially by inhibiting IRF4. In an experimental asthma model, mast cell-specific deficiency in IRF4 or administration of sialostatin L results in a strong reduction of asthma symptoms demonstrating the immunosuppressive potency of tick-derived molecules. PMID:26078269

  8. Affinity cytochemistry analysis of mast cells in skin lesions: a possible tool to assess the timing of lesions after death.

    PubMed

    Bonelli, A; Bacci, S; Norelli, G A

    2003-12-01

    The histamine content in vital wounds is known to increase, with a zenith after 3 h, and then decrease until 24 h after wounding. We addressed whether this biochemical alteration has a morphological counterpart. Since the main source of skin histamine are mast cells, the distribution and number of these cells was assessed upon labeling with fluorescent avidin and with antibodies to the mast cell specific enzymes, chymase and tryptase. Analyses were performed on skin from 15 healthy controls (from surgical biopsies), from 15 post-mortem lesions and 75 vital lesions, obtained at autopsy from subjects who had survived from a few seconds to 24 h. The number of mast cells per unit area of section surface increased progressively with survival time, up to a maximum in subjects who survived 1-3 h ( p<0.01), and decreased thereafter becoming less than in the controls if lesions had occurred earlier than 6 h before death ( p<0.01). Samples from post-mortem lesions had significantly fewer mast cells than those of any other groups of samples ( p<0.01). We suggest that in association to other histological and circumstantial evidence the analysis of mast cells by affinity cytochemistry can help to discriminate vital from post-mortem lesions and to estimate survival time after lesions.

  9. The Killer Cell Ig-like Receptor 2DL4 Expression in Human Mast Cells and Its Potential Role in Breast Cancer Invasion.

    PubMed

    Ueshima, Chiyuki; Kataoka, Tatsuki R; Hirata, Masahiro; Furuhata, Ayako; Suzuki, Eiji; Toi, Masakazu; Tsuruyama, Tatsuaki; Okayama, Yoshimichi; Haga, Hironori

    2015-08-01

    The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2-containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G(+) cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G(+) breast cancer cells and KIR2DL4(+) tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ(2) = 7.439; P < 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G-expressing cancer invasion and the subsequent metastasis.

  10. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca(2+)-NOS pathway.

    PubMed

    Gong, Liping; Li, Jing; Tang, Yan; Han, Ting; Wei, Chuanfei; Yu, Xiao; Li, Jingxin; Wang, Rong; Ma, Xuelian; Liu, Kejing; Geng, Lingyun; Liu, Shaozhuang; Yan, Bing; Liu, Chuanyong

    2016-01-01

    This study was conducted to investigate the effects of oxytocin (OT) on visceral hypersensitivity/pain and mast cell degranulation and the underlying mechanisms. We found that oxytocin receptor (OTR) was expressed in colonic mast cells in humans and rats, as well as in human mast cell line-1 (HMC-1), rat basophilic leukemia cell line (RBL-2H3) and mouse mastocytoma cell line (P815). OT decreased 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, colonic mast cell degranulation and histamine release after mast cell degranulation in rats. Also, OT attenuated the compound 48/80 (C48/80)-evoked histamine release in P815 cells and inward currents, responsible for the mast cell degranulation, in HMC-1, RBL-2H3 and P815 cells. Moreover, these protective effects of OT against visceral hypersensitivity and mast cell degranulation were eliminated by coadministration of OTR antagonist atosiban or a nonselective inhibitor of nitric oxide synthase (NOS), NG-Methyl-L-arginine acetate salt (L-NMMA). Notably, OT evoked a concentration-dependent increase of intracellular Ca(2+) in HMC-1, RBL-2H3 and P815 cells, which was responsible for the activation of neuronal NOS (NOS1) and endothelial NOS (NOS3). Our findings strongly suggest that OT might exert the antinociception on colonic hypersensitivity through inhibition of mast cell degranulation via Ca(2+)-NOS pathway. PMID:27538454

  11. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca2+-NOS pathway

    PubMed Central

    Gong, Liping; Li, Jing; Tang, Yan; Han, Ting; Wei, Chuanfei; Yu, Xiao; Li, Jingxin; Wang, Rong; Ma, Xuelian; Liu, Kejing; Geng, Lingyun; Liu, Shaozhuang; Yan, Bing; Liu, Chuanyong

    2016-01-01

    This study was conducted to investigate the effects of oxytocin (OT) on visceral hypersensitivity/pain and mast cell degranulation and the underlying mechanisms. We found that oxytocin receptor (OTR) was expressed in colonic mast cells in humans and rats, as well as in human mast cell line-1 (HMC-1), rat basophilic leukemia cell line (RBL-2H3) and mouse mastocytoma cell line (P815). OT decreased 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, colonic mast cell degranulation and histamine release after mast cell degranulation in rats. Also, OT attenuated the compound 48/80 (C48/80)-evoked histamine release in P815 cells and inward currents, responsible for the mast cell degranulation, in HMC-1, RBL-2H3 and P815 cells. Moreover, these protective effects of OT against visceral hypersensitivity and mast cell degranulation were eliminated by coadministration of OTR antagonist atosiban or a nonselective inhibitor of nitric oxide synthase (NOS), NG-Methyl-L-arginine acetate salt (L-NMMA). Notably, OT evoked a concentration-dependent increase of intracellular Ca2+ in HMC-1, RBL-2H3 and P815 cells, which was responsible for the activation of neuronal NOS (NOS1) and endothelial NOS (NOS3). Our findings strongly suggest that OT might exert the antinociception on colonic hypersensitivity through inhibition of mast cell degranulation via Ca2+-NOS pathway. PMID:27538454

  12. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    SciTech Connect

    Lee, Dong-Hee; Kim, Sang-Hyun . E-mail: shkim72@knu.ac.kr; Eun, Jae-Soon; Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMD attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.

  13. Stress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice.

    PubMed

    Kandere-Grzybowska, Kristiana; Gheorghe, Daniela; Priller, Josef; Esposito, Pamela; Huang, Man; Gerard, Norma; Theoharides, Theoharis C

    2003-08-01

    Migraine headaches are often precipitated by stress and seem to involve neurogenic inflammation (NI) of the dura mater associated with the sensation of throbbing pain. Trigeminal nerve stimulation had been reported to activate rat dura mast cells and increase vascular permeability, effects inhibited by neonatal pretreatment with capsaicin implicating sensory neuropeptides, such as substance P (SP). The aim of the present study was to investigate NI, assessed by extravasation of 99-Technetium-gluceptate (99Tc-G), as well as the role of mast cells, SP and its receptor (NK-1R) in dura mater of mice in response to acute stress. Restraint stress for thirty min significantly increased 99Tc-G extravasation in the dura mater of C57BL mice. This effect was absent in W/W(v) mast cell-deficient mice and NK-1 receptor knockout mice (NK-1R-/-), but was unaltered in SP knockout mice (SP-/-). Acute restraint stress also resulted in increased dura mast cell activation in C57BL mice, but not in NK-1R-/- mice. These data demonstrate for the first time that acute stress triggers NI and mast cell activation in mouse dura mater through the activation of NK-1 receptors. The fact that SP-/- mice had intact vascular permeability response to stress indicates that some other NK-1 receptor agonist may substitute for SP. These results may help explain initial events in pathogenesis of stress-induced migraines.

  14. Monitoring exocytosis and release from individual mast cells by capillary electrophoresis and UV imaging microscopy

    SciTech Connect

    Yeung, E.S. |; Lillard, S.J.; McCloskey, M.A.

    1997-12-31

    The complex temporal evolution of on-column exocytotic release of serotonin from individual peritoneal mast cells (RPMCs) was monitored by using capillary electrophoresis and UV imaging microscopy. Laser-induced native fluorescence detection with 275-nm excitation was used, and a detection limit of 1.7 amol (S/N = 3; rms) was obtained for serotonin. A physiological running buffer was used to ensure that the cell remained viable throughout. The secretagogue was polymyxin B sulfate (Pmx). Following the injection of a single mast cell into the capillary, electromigration of Pmx toward and past the cell induced degranulation and release of serotonin. The time course of release was registered in the electropherograms with subsecond resolution. Subsequent introduction of SDS caused the cell to lyse completely and allowed the residual serotonin to be quantified. The average amount of serotonin observed per RPMC was 1.6 {+-} 0.6 fmol; the average percentage of serotonin released was 28 {+-} 14%. Events that are consistent with released serontonin from single submicron granules (250 aL each) were evident, each of which contained an average amount of 5.9 {+-} 3 amol. Alternatively, UV movies can be taken of the entire event to provide temporal and spatial information.

  15. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps

    PubMed Central

    Möllerherm, Helene; von Köckritz-Blickwede, Maren; Branitzki-Heinemann, Katja

    2016-01-01

    Mast cells (MCs) have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs) comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, which leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators, such as TNF-α. Moreover, various studies demonstrate that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms, including MCET formation similar to that of professional phagocytes. Recent literature leads to the suggestion that MCET formation is not the result of a passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation, which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with a special focus on MCETs, and their role and relevance during infection and inflammation. PMID:27486458

  16. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases

    PubMed Central

    Qin, Yanwen; Shi, Guo-Ping

    2011-01-01

    The initiation and progression of cardiovascular diseases involve extensive arterial wall matrix protein degradation. Proteases are essential to these pathological events. Recent discoveries suggest that proteases do more than catabolize matrix proteins. During the pathogenesis of atherosclerosis, abdominal aortic aneuryms, and associated complications, cysteinyl cathepsins and mast cell tryptases and chymases participate importantly in vascular cell apoptosis, foam cell formation, matrix protein gene expression, and pro-enzyme, latent cytokine, chemokine, and growth factor activation. Experimental animal disease models have been invaluable in examining each of these protease functions. Deficiency and pharmacological inhibition of cathepsins or mast cell proteases have allowed their in vivo evaluation in the setting of pathological conditions. Recent discoveries of highly selective and potent inhibitors of cathepsins, chymase, and tryptase, and their applications in vascular diseases in animal models and non-vascular diseases in human trials, have led to the hypothesis that selective inhibition of cathepsins, chymases, and tryptase will benefit patients suffering from cardiovascular diseases. This review highlights recent discoveries from in vitro cell-based studies to experimental animal cardiovascular disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with cathepsin-associated non-vascular diseases to those affected by cardiovascular complications. PMID:21605595

  17. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  18. Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation.

    PubMed

    Horiguchi, Tomoko; Ishiguro, Nahoko; Chihara, Kazuyasu; Ogi, Kazuhiro; Nakashima, Kenji; Sada, Kiyonao; Hori-Tamura, Naoko

    2011-05-25

    The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.

  19. Migrating mast cells in the gallbladder epithelium of cattle and sheep. A comparative morphologic and histochemical study.

    PubMed

    Toledo, O M; Morales, C R; Pereyra, L A; Jordão, T; Montes, G S

    1981-01-01

    This paper reports the existence of mast cells in an epithelial location in the gallbladders of both cattle and sheep. The histochemical studies performed on these cells showed that their cytoplasmic granules contain heparin and biogenic amines in both species. Optical- and electron microscopic observations demonstrated that, in both species, mast cells from the connective tissue of the gallbladder diapedese across the basal lamina and migrate through the epithelium all the way to the luminal surface, and that a degranulation process takes place during this migration. The biochemical results showed a correlation between the number of mast cells present in the epithelium and the amount of heparin detected in the different regions of the gallbladders of the species studied. Unusually high contents of heparin were found in both cattle and sheep gallbladders, suggesting that they should be studied as possible commercial sources of this polimer.

  20. Potential effector and immunoregulatory functions of mast cells in mucosal immunity

    PubMed Central

    Reber, Laurent L; Sibilano, Riccardo; Mukai, Kaori; Galli, Stephen J

    2016-01-01

    Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs – such as secreting pre-formed and/or newly synthesized biologically active products – in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues. PMID:25669149

  1. Increased expression of the antiapoptotic protein MCL1 in canine mast cell tumors.

    PubMed

    Amagai, Yosuke; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jung, Kyungsook; Nishikawa, Sho; Jang, Hyosun; Ishizaka, Saori; Matsuda, Hiroshi

    2013-07-31

    Myeloid cell leukemia sequence 1 (MCL1) is a potent antiapoptotic protein that plays a critical role in cell survival and drug resistance in various cancers. However, to the best of our knowledge, the role of MCL1 in mast cell tumors (MCTs) has not been investigated in dogs. Here, we detected increased MCL1 expression in MCT cell lines, regardless of the presence of a c-kit mutation. MCL1 expression increased when the cells were exposed to specific inhibitors of mitogen-activated protein kinase or Janus kinase-signaling pathways, thus protecting the cells from apoptosis, but not when KIT or phosphatidylinositol-3 kinase signaling cascades were inhibited. These results indicate that MCL1 expression may contribute to MCT survival and confer drug resistance. PMID:23428776

  2. Localization and quantitation of macrophages, mast cells, and eosinophils in the developing bovine mammary gland.

    PubMed

    Beaudry, K L; Parsons, C L M; Ellis, S E; Akers, R M

    2016-01-01

    Prepubertal mammary development involves elongation and branching of ducts and stromal tissue remodeling. This process is highly regulated and in mice is known to be affected by the presence of innate immune cells. Whether or not such immune cells are present or involved in bovine mammary development is unknown. For the first time, we determined the presence, location (relative to mammary ductal structures), and changes in numbers of eosinophils, mast cells, and macrophages in prepubertal bovine mammary tissue, and evaluated the effects of age, ovariectomy, and exogenous estrogen on numbers of each cell type. Chemical stains and immunofluorescence were used to identify the 3 cell types in formalin-fixed, paraffin-embedded mammary tissue from prepubertal female calves from 3 archived tissue sets. The ontogeny tissue set included samples of mammary tissue from female calves (n=4/wk) from birth to 6 wk of age. The ovary tissue set contained samples from ovary intact and ovariectomized heifers allowing us to investigate the influence of the ovaries on immune cells in the developing mammary gland in prepubertal heifers. Nineteen animals were intact or ovariectomized 30 d before sampling; they were 90, 120, or 150 d old at the time of sampling. A third tissue set, the estrogen set, allowed us to determine the effect of exogenous estrogen on innate immune cells in the gland. Eosinophils were identified via Luna staining, mast cells by May-Grunwald Giemsa staining, and macrophages with immunofluorescence. Key findings were that more eosinophils and mast cells were observed in near versus far stroma in the ontogeny and ovary tissue sets but not estrogen. More macrophages were observed in near versus far stroma in ontogeny animals. Eosinophils were more abundant in the younger animals, and fewer macrophages tended to be observed in ovariectomized heifers as compared with intact heifers and estrogen treatment resulted in a reduction in cell numbers. In summary, we show for

  3. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils

    PubMed Central

    Royer, Derek J.; Zheng, Min; Conrady, Christopher D.; Carr, Daniel J. J.

    2015-01-01

    Purpose. The contributions of mast cells (MCs) to immunologic defense against pathogens in the eye are unknown. We have characterized pericorneal MCs as tissue-resident innate sentinels and determined their impact on the immune response to herpes simplex virus type-1 (HSV-1), a common ocular pathogen. Methods. The impact of mast cells on the immune response to HSV-1 infection was investigated using MC-deficient KitW-sh mice. Virus titers, inflammatory cytokine production, eicosanoid profiles, cellular immune responses, and ocular pathology were evaluated and compared with C57BL/6J mice during an acute corneal HSV-1 infection. Results. Corneas of KitW-sh mice have higher viral titers, increased edema, and greater leukocyte infiltration following HSV-1 infection. Following infection, cytokine profiles were slightly elevated overall in KitW-sh mice. Eicosanoid profiles were remarkably different only when comparing uninfected corneas from both groups. Neutrophils within infected corneas expressed HSV-1 antigen, lytic genes, and served as a disease-causing vector when adoptively transferred into immunocompromised animals. Myeloid-derived suppressor cells did not infiltrate into the cornea or suppress the expansion, recruitment, or cytokine production by CD8+ T cells following acute HSV-1 infection. Conclusions. Collectively, these findings provide new insight into host defense in the cornea and the pathogenesis of HSV-1 infection by identifying previously unacknowledged MCs as protective innate sentinels for infection of the ocular surface and reinforcing that neutrophils are detrimental to corneal infection. PMID:26066745

  4. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.

  5. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  6. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  7. Human tissue mast cells are an inducible reservoir of persistent HIV infection.

    PubMed

    Sundstrom, J Bruce; Ellis, Jane E; Hair, Gregory A; Kirshenbaum, Arnold S; Metcalfe, Dean D; Yi, Hong; Cardona, Adriana C; Lindsay, Michael K; Ansari, Aftab A

    2007-06-15

    We have proposed that, unlike other HIV-vulnerable cell lineages, progenitor mast cells (prMCs), cultured in vitro from undifferentiated bone marrow-derived CD34(+) pluripotent progenitors (PPPs), are susceptible to infection during a limited period of their ontogeny. As infected prMCs mature in culture, they lose expression of viral chemokine coreceptors necessary for viral entry and develop into long-lived, latently infected mature tissue mast cells (MCs), resistant to new infection. In vivo recruitment of prMCs to different tissue compartments occurs in response to tissue injury, growth, and remodeling or allergic inflammation, allowing populations of circulating and potentially HIV-susceptible prMCs to spread persistent infection to diverse tissue compartments. In this report, we provide in vivo evidence to confirm this model by demonstrating that HIV-infected women have both circulating prMCs and placental tissue MCs (PLMCs) that harbor inducible infectious HIV even after highly active antiretroviral therapy (HAART) during pregnancy. Furthermore, infectious virus, capable of infecting alloactivated fetal cord blood mononuclear cells (CBMCs), could be induced in isolated latently infected PLMCs after weeks in culture in vitro. These data provide the first in vivo evidence that tissue MCs, developed from infected circulating prMCs, comprise a long-lived inducible reservoir of persistent HIV in infected persons during HAART.

  8. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia.

  9. Involvement of histamine released from mast cells in acute radiation dermatitis in mice.

    PubMed

    Moriyasu, Saiko; Yamamoto, Kouichi; Kureyama, Naoko; Okamura, Keita; Ikeda, Toshiji; Yamatodani, Atsushi

    2007-06-01

    A possible involvement of histamine in acute radiation dermatitis in mice was investigated. The dose of 40 Gy of gamma irradiation induced erythema and edema in C57BL/6 mice treated with vehicle. However, in C57BL/6 mice treated with chlorpheniramine and WBB6F1-W/Wv mice, erythema and edema were not observed. In all of these mice, epilation and dry desquamation were induced, but bepotastine significantly reduced the extent of these areas. These results suggest that gamma irradiation-induced erythema and edema were caused by histamine released from mast cells via histamine H1 receptor, and epilation was induced by other inflammatory mediators.

  10. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-{kappa}B-mediated survival signaling

    SciTech Connect

    Leskinen, Markus J.; Heikkilae, Hanna M.; Speer, Mei Y.; Hakala, Jukka K.; Laine, Mika; Kovanen, Petri T.; Lindstedt, Ken A. . E-mail: ken.lindstedt@wri.fi

    2006-05-01

    Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-{kappa}B-mediated survival signaling. Following chymase treatment, the translocation of active NF-{kappa}B/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1{beta}-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-{kappa}B-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-{kappa}B-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques.

  11. Shared clonal cytogenetic abnormalities in aberrant mast cells and leukemic myeloid blasts detected by single nucleotide polymorphism microarray-based whole-genome scanning.

    PubMed

    Frederiksen, John K; Shao, Lina; Bixby, Dale L; Ross, Charles W

    2016-04-01

    Systemic mastocytosis (SM) is characterized by a clonal proliferation of aberrant mast cells within extracutaneous sites. In a subset of SM cases, a second associated hematologic non-mast cell disease (AHNMD) is also present, usually of myeloid origin. Polymerase chain reaction and targeted fluorescence in situ hybridization studies have provided evidence that, in at least some cases, the aberrant mast cells are related clonally to the neoplastic cells of the AHNMD. In this work, a single nucleotide polymorphism microarray (SNP-A) was used to characterize the cytogenetics of the aberrant mast cells from a patient with acute myeloid leukemia and concomitant mast cell leukemia associated with a KIT D816A mutation. The results demonstrate the presence of shared cytogenetic abnormalities between the mast cells and myeloid blasts, as well as additional abnormalities within mast cells (copy-neutral loss of heterozygosity) not detectable by routine karyotypic analysis. To our knowledge, this work represents the first application of SNP-A whole-genome scanning to the detection of shared cytogenetic abnormalities between the two components of a case of SM-AHNMD. The findings provide additional evidence of a frequent clonal link between aberrant mast cells and cells of myeloid AHNMDs, and also highlight the importance of direct sequencing for identifying uncommon activating KIT mutations.

  12. Fc Gamma Receptor Signaling in Mast Cells Links Microbial Stimulation to Mucosal Immune Inflammation in the Intestine

    PubMed Central

    Chen, Xiao; Feng, Bai-Sui; Zheng, Peng-Yuan; Liao, Xue-Qing; Chong, Jasmine; Tang, Shang-Guo; Yang, Ping-Chang

    2008-01-01

    Microbes and microbial products are closely associated with the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms behind this connection remain unclear. It has been previously reported that flagellin-specific antibodies are increased in IBD patient sera. As mastocytosis is one of the pathological features of IBD, we hypothesized that flagellin-specific immune responses might activate mast cells that then contribute to the initiation and maintenance of intestinal inflammation. Thirty-two colonic biopsy samples were collected from IBD patients. A flagellin/flagellin-specific IgG/Fc gamma receptor I complex was identified on biopsied mast cells using both immunohistochemistry and co-immunoprecipitation experiments; this complex was shown to co-localize on the surfaces of mast cells in the colonic mucosa of patients with IBD. In addition, an ex vivo study showed flagellin-IgG was able to bind to human mast cells. These cells were found to be sensitized to flagellin-specific IgG; re-exposure to flagellin induced the mast cells to release inflammatory mediators. An animal model of IBD was then used to examine flagellin-specific immune responses in the intestine. Mice could be sensitized to flagellin, and repeated challenges with flagellin induced an IBD-like T helper 1 pattern of intestinal inflammation that could be inhibited by pretreatment with anti-Fc gamma receptor I antibodies. Therefore, flagellin-specific immune responses activate mast cells in the intestine and play important roles in the pathogenesis of intestinal immune inflammation. PMID:18974296

  13. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    PubMed Central

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  14. Single-Cell Analysis of Mast Cell Degranulation Induced by Airway Smooth Muscle-Secreted Chemokines

    PubMed Central

    Manning, Benjamin M.; Meyer, Audrey F.; Gruba, Sarah M.; Haynes, Christy L.

    2015-01-01

    Background Asthma is a chronic inflammatory disease characterized by narrowed airways, bronchial hyper-responsiveness, mucus hyper-secretion, and airway remodeling. Mast cell (MC) infiltration into airway smooth muscle (ASM) is a defining feature of asthma, and ASM regulates the inflammatory response by secreting chemokines, including CXCL10 and CCL5. Single cell analysis offers a unique approach to study specific cellular signaling interactions within large and complex signaling networks such as the inflammatory microenvironment in asthma. Methods Carbon fiber microelectrode amperometry was used to study the effects of ASM–secreted chemokines on mouse peritoneal MC degranulation. Results MC degranulation in response to CXCL10 and CCL5 was monitored at the single cell level. Relative to IgE-mediated degranulation, CXCL10- and CCL5-stimulated MCs released a decreased amount of serotonin per granule with fewer release events per cell. Decreased serotonin released per granule was correlated with increased spike half-width and rise-time values. Conclusions MCs are directly activated with ASM-associated chemokines. CXCL10 and CCL5 induce less robust MC degranulation compared to IgE- and A23187-stimulation. The kinetics of MC degranulation are signaling pathway-dependent, suggesting a biophysical mechanism of regulated degranulation that incorporates control over granule trafficking, transport, and docking machinery. General Significance The biophysical mechanisms, including variations in number of exocytotic release events, serotonin released per granule, and the membrane kinetics of exocytosis that underlie MC degranulation in response to CXCL10 and CCL5 were characterized at the single cell level. These findings clarify the function of ASM-derived chemokines as instigators of MC degranulation relative to classical mechanisms of MC stimulation. PMID:25986989

  15. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase.

    PubMed

    Zhang, Hanying; Du, Min; Yang, Qiyuan; Zhu, Mei-Jun

    2016-01-01

    Beyond their nutritional impact to colonic epithelial cells, the intestinal microbiota metabolite butyrate has pleotropic effects to host cells and is known for its beneficial effects on intestinal homeostasis and metabolism. However, it remains unclear how it modulates mast cell function. Here, we demonstrate that butyrate profoundly inhibited proliferation of mouse mastocytoma P815 cells through inducing cell cycle arrest and apoptosis, as well as decreasing c-Kit activation. In addition, butyrate increased early- and late-stage apoptotic P815 cells. In murine bone marrow-derived mast cells (BMMC), butyrate-suppressed FcεRI-dependent tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) release without affecting β-Hexosaminidase, but that was associated with decreased mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, p38 and c-Jun N-terminal kinases activation. Butyrate treatment substantially enhanced histone 3 acetylation in both P815 and BMMC and decreased FcεRI-dependent mRNA expression of tnf-α and il-6 in BMMC, mimicking the effect of Trichostatin A, a known histone deacetylase inhibitor. Chromatin immunoprecipitation revealed that butyrate enhanced acetylation of the tnf-α and il-6 promoter regions but blocked RNA polymerase II binding to the promoters of tnf-α and il-6 genes, indicating suppressed transcription initiation. These phenotypes mimicked those of Trichostatin A treatment. In conclusion, butyrate inhibits cell proliferation and increases cell apoptosis in mastocytoma P815 cells and suppresses FcεRI-dependent cytokine production in murine primary BMMC, which are likely mediated by HDAC inhibition.

  16. Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation

    PubMed Central

    Matsukawa, Toshihiro; Izawa, Kumi; Isobe, Masamichi; Takahashi, Mariko; Maehara, Akie; Yamanishi, Yoshinori; Kaitani, Ayako; Okumura, Ko; Teshima, Takanori; Kitamura, Toshio; Kitaura, Jiro

    2016-01-01

    Objective Extracellular ATP mediates mast cell-dependent intestinal inflammation via P2X7 purinoceptors. We have previously shown that CD300f (also called the leucocyte mono-immunoglobulin-like receptor 3 (LMIR3)) suppresses immunoglobulin E-dependent and mast cell-dependent allergic responses by binding to ceramide. The aim of the present study was to clarify the role of ceramide–LMIR3 interaction in the development of IBD. Design The dextran sodium sulfate (DSS)-induced colitis model was used in wild-type (WT), LMIR3−/−, mast cell-deficient KitW-sh/W-sh, KitW-sh/W-shLMIR3−/− or KitW-sh/W-sh mice engrafted with WT or LMIR3−/− bone marrow-derived mast cells (BMMCs). The severity of colitis was determined by clinical and histological criteria. Lamina propria cell populations were assessed by flow cytometry. Production of chemical mediators from lamina propria cells was measured by real-time reverse transcription PCR. Production of chemical mediators from ATP-stimulated BMMCs in the presence or absence of ceramide was measured by ELISA. The severity of DSS-induced colitis was assessed in mice given either an Fc fusion protein containing an extracellular domain of LMIR3, and anticeramide antibody, or ceramide liposomes. Results LMIR3 deficiency exacerbated DSS-induced colitis in mice. KitW-sh/W-sh mice harbouring LMIR3−/− mast cells exhibited more severe colitis than those harbouring WT mast cells. Ceramide–LMIR3 interaction inhibited ATP-stimulated activation of BMMCs. DSS-induced colitis was aggravated by disrupting the ceramide–LMIR3 interaction, whereas it was suppressed by treating with ceramide liposomes. Conclusions LMIR3-deficient colonic mast cells were pivotal in the exacerbation of DSS-induced colitis in LMIR3−/− mice. Ceramide liposomes attenuated DSS-induced colitis by inhibiting ATP-mediated activation of colonic mast cells through ceraimide–LMIR3 binding. PMID:25673319

  17. A comparative analysis of mast cell quantification in five common dermatoses: lichen simplex chronicus, psoriasis, lichen planus, lupus, and insect bite/allergic contact dermatitis/nummular dermatitis.

    PubMed

    Patel, Nikhil; Mohammadi, Amir; Rhatigan, Ronald

    2012-01-01

    There is a large body of literature demonstrating an important role of mast cells in adaptive and innate immunity. The distribution of mast cells in the skin varies in different parts of the body. It is well known that mast cells are important for effector functions of classic IgE-associated allergic disorders as well as in host defense against infective agents and influence the manifestation of autoimmune diseases. We aimed to quantify mast cells in five common dermatoses and compare them statistically with respect to the immunostains. We retrieved paraffin-embedded tissue sections from the archives of the Pathology Department at the UF, Jacksonville, for five cases with each of the above diagnosis from the last three years. We performed CD-117 and tolidine blue stains on each one of them. The presence or absence of mast cells was evaluated and quantified. We observed that, in the skin, mast cells are mainly located close to the vessels, smooth muscle cells, hair follicles, and nerve ending. Our study showed that the mast cell distribution pattern is different across the two methods of staining for the five aforesaid dermatoses. The other important observation was the dendritic morphology of the mast cells.

  18. Soluble CD14 is essential for lipopolysaccharide-dependent activation of human intestinal mast cells from macroscopically normal as well as Crohn's disease tissue.

    PubMed

    Brenner, Sibylle A; Zacheja, Steffi; Schäffer, Michael; Feilhauer, Katharina; Bischoff, Stephan C; Lorentz, Axel

    2014-10-01

    Mast cells are now considered sentinels in immunity. Given their location underneath the gastrointestinal barrier, mast cells are entrusted with the task of tolerating commensal microorganisms and eliminating potential pathogens in the gut microbiota. The aim of our study was to analyse the responsiveness of mast cells isolated from macroscopically normal and Crohn's disease-affected intestine to lipopolysaccharide (LPS). To determine the LPS-mediated signalling, human intestinal mast cells were treated with LPS alone or in combination with soluble CD14 due to their lack of surface CD14 expression. LPS alone failed to stimulate cytokine expression in human intestinal mast cells from both macroscopically normal and Crohn's disease tissue. Upon administration of LPS and soluble CD14, there was a dose- and time-dependent induction of cytokine and chemokine expression. Moreover, CXCL8 and interleukin-1β protein expression was induced in response to activation with LPS plus soluble CD14. Expression of cytokines and chemokines was at similar levels in mast cells from macroscopically normal and Crohn's disease-affected intestine after LPS/soluble CD14 treatment. In conclusion, human intestinal mast cells appear to tolerate LPS per se. The LPS-mediated activation in mast cells may be provoked by soluble CD14 distributed by other LPS-triggered cells at the gastrointestinal barrier.

  19. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a

    PubMed Central

    Ali, Hydar

    2009-01-01

    Allergic diseases such as asthma result from inappropriate immunologic responses to common environmental allergens in genetically susceptible individuals. Following allergen exposure, interaction of dendritic cells (DC) with CD4+ T cells leads to the production of Th2 cytokines, which induce B cells to synthesize IgE molecules (sensitization phase). These IgE molecules bind to their high affinity receptors (FcεRI) on the surface of mast cells and basophils and their subsequent cross-linking by allergen results in the release of preformed and newly synthesized mediators, which cause bronchoconstriction, lung inflammation and airway hyperresponsiveness (AHR) in asthma (effector phase). The complement components C3a and C5a levels are increased in the lungs of patients with asthma and are likely generated via the actions of both allergen and mast cell proteases. In vivo studies with rodents have shown that while C3a facilitates allergen sensitization in some models C5a inhibits this response. Despite this difference, both anaphylatoxins promote lung inflammation and AHR in vivo indicating that cells other than DC and T cells likely mediate the functional effects of C3a and C5a in asthma. This review focuses on the contribution of C3a and C5a in the pathogenesis of asthma with a particular emphasis on mast cells and basophils. It discusses the mechanisms by which anaphylatoxins activate mast cells and basophils and the associated signaling pathways via which their receptors are regulated by priming and desensitization. PMID:19895849

  20. p161, a murine membrane protein expressed on mast cells and some macrophages, is mouse CD13/aminopeptidase N.

    PubMed

    Chen, H; Kinzer, C A; Paul, W E

    1996-09-15

    pl6l is a membrane glycoprotein expressed on mast cells and on activated macrophages but on few if any other cells of hematopoietic lineages. Its lack of expression on basophils makes it useful to distinguish mast cells from basophils and aids in the analysis of mast cells and their precursors. p161 was purified from the mast cell line CFTL-12 by affinity chromatography and subjected to limited proteolysis. The sequences of the resultant peptides indicated that p161 is homologous with rat and human CD13/aminopeptidase N. Using oligonucleotide primers derived from rat CD13 cDNA, a mouse cDNA was obtained. Its deduced amino acid sequence displays 87% identity with rat CD13 and 76 % identity with human CD13. Expression of the mouse cDNA in M12 cells, which are p161 negative, renders these cells positive for staining with the monoclonal anti-p161 Ab, K-1. Furthermore, a mAb raised against partially purified mouse intestinal aminopeptidase N specifically blocked the binding of K-1 to both CFTL-12 cells and the transfected M12 cells. These results strongly indicate that mouse p161 is CD13/aminopeptidase N. Northern blot analysis shows that p161 mRNA is most abundantly expressed in the intestinal tract and kidney and is present in liver, lymph node, spleen, and brain.

  1. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    PubMed

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment.

  2. Class IA PI3Kinase Regulatory Subunit, p85α, Mediates Mast Cell Development through Regulation of Growth and Survival Related Genes

    PubMed Central

    Krishnan, Subha; Mali, Raghuveer Singh; Koehler, Karl R.; Vemula, Sasidhar; Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Ma, Peilin; Hashino, Eri; Kapur, Reuben

    2012-01-01

    Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes. PMID:22238586

  3. The Na+/K(+)-pump in rat peritoneal mast cells: some aspects of regulation of activity and cellular function.

    PubMed

    Knudsen, T

    1995-11-01

    The mast cell contains potent mediators of inflammation which are released after IgE-directed and non-IgE-directed stimulation of the cell. This highly specialized cell is therefore ascribed a role in the pathogenesis of disease states in which the inflammatory response plays a role for the development of the clinical symptoms. Thus, besides being of interest in basic research, studies of the cellular processes leading to release of inflammatory mediators from the mast cell also have important clinical implications. The aim of the present work has been to document the existence of the Na+/K(+)-pump in rat peritoneal mast cells, to investigate the regulation of the pump activity and to explore whether modulation of the pump activity interferes with the cellular stimulus/secretion coupling mechanism. The Na+/K(+)-pump activity following stimulation of the mast cell was also investigated. The pump activity was assessed as the ouabain-sensitive cellular potassium uptake with 86Rb+ as a tracer for potassium. The histamine release from the mast cell following IgE-directed and non-IgE directed stimulation of the cell was used as a parameter for cellular degranulation. Histamine was measured by spectrofluorometry. The finding of an ouabain-sensitive uptake mechanism in the mast cell documents the presence of a functional Na+/K(+)-pump in this cell. The pump activity is inhibited by lanthanides and by the divalent cations calcium, magnesium, barium and strontium. The pump has a large reserve capacity which probably is caused by a low intracellular concentration of sodium. This enables the pump to respond to changes in the intracellular sodium concentration. The inhibitory effect of di- and trivalent ions on the pump activity is probably a result of the inhibitory effect of these ions on the cellular sodium uptake. The digitalis glycosides, ouabain and digoxin, but not the more lipophilic drug digitoxigenin, increase both IgE-directed and non-IgE-directed histamine release

  4. Pulmonary Mast Cell Tumor and Possible Paraganglioma in a Free-ranging Pacific Walrus ( Odobenus rosmarus divergens), Barrow, Alaska, USA.

    PubMed

    Seguel, Mauricio; Stimmelmayr, Raphaela; Howerth, Elizabeth; Gottdenker, Nicole

    2016-04-28

    We describe a pulmonary mast cell tumor in a subsistence-harvested free-ranging Pacific walrus (Odobenus rosmarus divergens). Neoplastic cells effacing a focal area of pulmonary parenchyma were characterized by rare metachromatic granules and positive staining for C-kit. We also report co-occurrence of a peribronchial mass with a morphologic and immunohistochemical profile compatible with paraganglioma. PMID:27054472

  5. Pulmonary Mast Cell Tumor and Possible Paraganglioma in a Free-ranging Pacific Walrus ( Odobenus rosmarus divergens), Barrow, Alaska, USA.

    PubMed

    Seguel, Mauricio; Stimmelmayr, Raphaela; Howerth, Elizabeth; Gottdenker, Nicole

    2016-04-28

    We describe a pulmonary mast cell tumor in a subsistence-harvested free-ranging Pacific walrus (Odobenus rosmarus divergens). Neoplastic cells effacing a focal area of pulmonary parenchyma were characterized by rare metachromatic granules and positive staining for C-kit. We also report co-occurrence of a peribronchial mass with a morphologic and immunohistochemical profile compatible with paraganglioma.

  6. Intestinal and peritoneal mast cells differ in kinetics of quantal release.

    PubMed

    Balseiro-Gomez, Santiago; Ramirez-Ponce, M Pilar; Acosta, Jorge; Ales, Eva; Flores, Juan A

    2016-01-15

    5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties. Rat peritoneal (PMC) and intestinal mast cells (IMC) were isolated and purified using a percoll gradient, and the efflux of 5-HT from each SG was measured by amperometric detection. IMC exhibited a ∼34% reduction in the release of 5-HT compared with PMC because of a lower number of exocytotic events, rather than a lower secretion per single exocytotic event. Amperometric spikes from IMC exhibited a slower decay phase and increased half-width but a similar ascending phase and foot parameters, indicating that the fusion pore kinetics are comparable in both MC subclasses. We conclude that both PG subtypes are equally efficient systems, directly involved in serotonin accumulation, and play a crucial role in regulating the kinetics of exocytosis from SG, providing specific secretory properties for the two cellular subtypes. PMID:26692491

  7. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  8. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Desbiens, Louisane; Lapointe, Catherine; Gharagozloo, Marjan; Mahmoud, Shaimaa; Pejler, Gunnar; Gris, Denis; D'Orléans-Juste, Pedro

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35-55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  9. Intestinal and peritoneal mast cells differ in kinetics of quantal release.

    PubMed

    Balseiro-Gomez, Santiago; Ramirez-Ponce, M Pilar; Acosta, Jorge; Ales, Eva; Flores, Juan A

    2016-01-15

    5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties. Rat peritoneal (PMC) and intestinal mast cells (IMC) were isolated and purified using a percoll gradient, and the efflux of 5-HT from each SG was measured by amperometric detection. IMC exhibited a ∼34% reduction in the release of 5-HT compared with PMC because of a lower number of exocytotic events, rather than a lower secretion per single exocytotic event. Amperometric spikes from IMC exhibited a slower decay phase and increased half-width but a similar ascending phase and foot parameters, indicating that the fusion pore kinetics are comparable in both MC subclasses. We conclude that both PG subtypes are equally efficient systems, directly involved in serotonin accumulation, and play a crucial role in regulating the kinetics of exocytosis from SG, providing specific secretory properties for the two cellular subtypes.

  10. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS.

  11. Mast cell activation disease: An underappreciated cause of neurologic and psychiatric symptoms and diseases.

    PubMed

    Afrin, Lawrence B; Pöhlau, Dieter; Raithel, Martin; Haenisch, Britta; Dumoulin, Franz L; Homann, Juergen; Mauer, Uwe M; Harzer, Sabrina; Molderings, Gerhard J

    2015-11-01

    Neurologists and psychiatrists frequently encounter patients whose central and/or peripheral neurologic and/or psychiatric symptoms (NPS) are accompanied by other symptoms for which investigation finds no unifying cause and for which empiric therapy often provides little to no benefit. Systemic mast cell activation disease (MCAD) has rarely been considered in the differential diagnosis in such situations. Traditionally, MCAD has been considered as just one rare (neoplastic) disease, mastocytosis, generally focusing on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, MC activation syndrome (MC), has been recognized, featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. There also has developed greater appreciation for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic themes--including very wide arrays of central and peripheral NPS. Significantly helpful treatment--including for neuropsychiatric issues--usually can be identified once MCAD is accurately diagnosed. We describe MCAD's pathogenesis, presentation (focusing on NPS), and therapy, especially vis-à-vis neuropsychotropes. Since MCAD patients often present NPS, neurologists and psychiatrists have the opportunity, in recognizing the diagnostic possibility of MCAD, to short-circuit the often decades-long delay in establishing the correct diagnosis required to identify optimal therapy.

  12. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    PubMed Central

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  13. Increased numbers of mast cells in the hyperplastic buccal mucosa of the zinc-deficient rat.

    PubMed

    Kreavich, M E; Meyer, J; Waterhouse, J P

    1981-02-01

    Six weanling male Sprague Dawley rats were fed a diet containing 0.4 ppm Zn and seven were fed an identical diet except for 40 ppm Zn. After 4 weeks, specimens of buccal mucosa in the region facing the molar teeth were removed. Paraffin sections, cut at 6 micron, were stained with toluidine blue, and tracings made of five sections per animal, spaced no less than 60 micron apart. Counts of mast cells of five sections length of section were made in a superficial zone of the lamina propria of 50 micron width and a deeper zone of 250 micron width. The average number of mast cells, per mm in the subepithelial zone of the experimental animals was 15.4, the range 9.2-33.1. The control average was 4.0; the range was 2.9-5.3. No increase was found in the deeper zone. The epithelium was parakeratotic and its thickness was increased two-fold. In the peripheral portion of the section, cellular and keratin layers were evenly increased in thickness, but in the central portion a disproportionate, nearly four-fold increase occurred in the keratin layer and a lesser increase in the cellular layer.

  14. Mast cells in Canine parvovirus-2-associated enteritis with crypt abscess.

    PubMed

    Woldemeskel, M W; Saliki, J T; Blas-Machado, U; Whittington, L

    2013-11-01

    The role of mast cells (MCs) in allergic reactions and parasitic infections is well established. Their involvement in host immune response against bacterial and viral infections is reported. In this study, investigation is made to determine if MCs are associated with Canine parvovirus-2 (CPV-2)-induced enteritis with crypt abscess (ECA). Mast cell count (MCC) was made on toluidine blue-stained intestinal sections from a total of 34 dogs. These included 16 dogs exhibiting ECA positive for CPV-2 and negative for Canine distemper virus and Canine coronavirus by immunohistochemistry and fluorescent antibody test, 12 dogs with inflammatory bowel disease (IBD), and 6 non-ECA/non-IBD (control) dogs. The average total MCC per high-power field in ECA (40.8 ± 2.2) and IBD (24.7 ± 2.1) was significantly higher (P < .05) than in the control (3.4 ± 0.6). Although not significant (P > .05), MCC was also higher in ECA than in IBD. The present study for the first time has documented significantly increased MCs in CPV-2-associated ECA as was previously reported for IBD, showing that MCs may also play an important role in CPV-2-associated ECA. Further studies involving more CPV-infected dogs are recommended to substantiate the findings.

  15. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix

  16. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca{sup 2+} mobilization

    SciTech Connect

    Yuan, Meichun; Li, Jianjie; Lv, Jingzhang; Mo, Xucheng; Yang, Chengbin; Chen, Xiangdong; Liu, Zhigang; Liu, Jie

    2012-11-01

    Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca{sup 2+} increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca{sup 2+} increase were largely inhibited by using LaCl{sub 3} to block the Ca{sup 2+} release-activated Ca{sup 2+} channels (CRACs). Furthermore, PD significantly inhibited Ca{sup 2+} entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca{sup 2+} influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca{sup 2+} mobilization mainly through inhibiting Ca{sup 2+} entry via CRACs, thus exerting a protective effect against PCA. -- Highlights: ► Polydatin can prevent the pathogenesis of passive cutaneous anaphylaxis in mice. ► Polydatin stabilizes mast cells by decreasing FcεRI-mediated degranulation. ► Polydatin suppresses Ca{sup 2+} entry through CRAC channels in mast cells.

  17. Ethanol-Induced Mast Cell-Mediated Inflammation Leads to Increased Susceptibility of Intestinal Tumorigenesis in the APC Δ468 Min Mouse Model of Colon Cancer

    PubMed Central

    Wimberly, Andre L.; Forsyth, Christopher B.; Khan, Mohammad Wasim; Pemberton, Alan; Khazaie, Khashayarsha; Keshavarzian, Ali

    2013-01-01

    Background Chronic and frequent ethanol (EtOH) intake has been associated with an increased incidence of several types of cancers including breast, mouth, throat, esophageal, stomach and colorectal (CRC). The underlying mechanism of this deleterious carcinogenic effect of alcohol has not been clearly established but inflammation may be one unifying feature of these cancers. We have recently shown that intestinal mast cells play a central role in intestinal carcinogenesis. In this study, we tested our hypothesis that mast cell-mediated inflammation is one underlying mechanism by which chronic alcohol promotes intestinal tumorigenesis. Methods APC Δ468 mice were fed either an alcohol containing Nanji liquid diet or isocaloric dextrose containing Nanji diet for 10 weeks and then sacrificed to collect small and large intestine samples. Assessments of tumor number and size as well as mast cell number and mast cell activity and histology score for invasion were compared between Control (dextrose fed) and Alcohol fed APCΔ468 mice. The effect of alcohol on mast cell mediated tumor migration was also assessed using an in vitro migration assay. Results Alcohol feeding increased both polyp number and size within both the small and large intestines of APCΔ468 mice. Only alcohol fed mice showed evidence of tumor invasion. Chronic alcohol feeding also resulted in an increased mast cell number and activity in tumor stroma and invading borders. In vitro migration assay showed that alcohol significantly increases mast cell mediated tumor migration in vitro. Conclusions Our data show that chronic alcohol intake promotes: (1) intestinal tumorigenesis and tumor invasion in genetically susceptible mice; (2) increases in polyp associated mast cells; (3) mast cell mediated tumor migration in vitro. Both our in vivo and in vitro studies suggest that mast cell mediated inflammation could be one mechanism by which alcohol promotes carcinogenesis. PMID:23320800

  18. A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent

    PubMed Central

    Shim, Juyoung; Gosse, Julie A.

    2013-01-01

    Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential. PMID:24300285

  19. Establishment of a novel high-affinity IgE receptor-positive canine mast cell line with wild-type c-kit receptors

    SciTech Connect

    Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro; Matsuda, Hiroshi

    2008-02-15

    Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (Fc{epsilon}RI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophore but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with Fc{epsilon}RI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders.

  20. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells

    SciTech Connect

    Gilead, L.; Bibi, O.; Razin, E. )

    1990-09-15

    Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

  1. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1.

    PubMed

    Pinke, Karen Henriette; Lima, Heliton Gustavo de; Cunha, Fernando Queiroz; Lara, Vanessa Soares

    2016-02-01

    Candida albicans (C. albicans) is a fungus commonly found in the human mucosa, which may cause superficial and systemic infections, especially in immunosuppression. Until now, the main actors in the defense against this fungus are the epithelial cells, neutrophils, macrophages/monocytes and dendritic cells. However, mast cells are strategically located to play a first line of anti-Candida defense and it has appropriate mechanisms to do it. As with other cells, the recognition of C. albicans occurs meanly via TLR2 and Dectin-1. We assess the TLR2/Dectin-1 involvement in phagocytosis and production of nitric oxide (NO) and reactive oxygen species (ROS) by mast cells challenged with C. albicans. Bone marrow-derived mast cells (MC) from wild type (Wt) or knockout (TLR2-/-) mice C57BL/6 were subjected to in vitro Dectin-1 blockade. After challenged with FITC-labeled C. albicans or zymosan, phagocytosis was analyzed by microscopy. The intracellular production of NO and ROS was measured by DAF-FM diacetate and CellROX Deep/Red Reagent kits. The nitrite formation and hydrogen peroxide release were analyzed by Griess reaction and Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit. Wt/MC phagocytose C. albicans with production of intracellular NO, but not ROS. Moreover, increased levels of nitrite were also observed. The absence and/or blockade of TLR2/Dectin-1 caused significant decreased in C. albicans phagocytosis and NO production. Our results showed that mast cells are able to phagocytose and produce NO against C. albicans via TLR2/Dectin-1. Therefore, mast cells could be important during the course of Candida infection and as a therapeutic target.

  2. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis.

    PubMed

    He, Shao-Heng; Zhang, Hui-Yun; Zeng, Xiao-Ning; Chen, Dong; Yang, Ping-Chang

    2013-10-01

    The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy. PMID:23974516

  3. Lung mast cells are a source of secreted phospholipases A2

    PubMed Central

    Triggiani, Massimo; Giannattasio, Giorgio; Calabrese, Cecilia; Loffredo, Stefania; Granata, Francescopaolo; Fiorello, Alfonso; Santini, Mario; Gelb, Michael H.; Marone, Gianni

    2009-01-01

    Background Secreted phospholipases A2 (sPLA2s) are released in plasma and other biologic fluids of patients with inflammatory, autoimmune, and allergic diseases. Objective We sought to evaluate sPLA2 activity in the bronchoalveolar lavage fluid (BALF) of asthmatic patients and to examine the expression and release of sPLA2s from primary human lung mast cells (HLMCs). Methods sPLA2 activity was measured in BALF and supernatants of either unstimulated or anti-IgE–activated HLMCs as hydrolysis of oleic acid from radiolabeled Escherichia coli membranes. Expression of sPLA2s was examined by using RT-PCR. The release of cysteinyl leukotriene (LT) C4 was measured by means of enzyme immunoassay. Results Phospholipase A2 (PLA2) activity was higher in the BALF of asthmatic patients than in the control group. BALF PLA2 activity was blocked by the sPLA2 inhibitors dithiothreitol and Me-Indoxam but not by the cytosolic PLA2 inhibitor AZ-1. HLMCs spontaneously released a PLA2 activity that was increased on stimulation with anti-IgE. This PLA2 activity was blocked by dithiothreitol and Me-Indoxam but not by AZ-1. HLMCs constitutively express mRNA for group IB, IIA, IID, IIE, IIF, III, V, X, XIIA, and XIIB sPLA2s. Anti-IgE did not modify the expression of sPLA2s. The cell-impermeable inhibitor Me-Indoxam significantly reduced (up to 40%) the production of LTC4 from anti-IgE–stimulated HLMCs. Conclusions sPLA2 activity is increased in the airways of asthmatic patients. HLMCs express multiple sPLA2s and release 1 or more of them when activated by anti-IgE. The sPLA2s released by mast cells contribute to LTC4 production by acting in an autocrine fashion. Mast cells can be a source of sPLA2s in the airways of asthmatic patients. PMID:19541351

  4. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    SciTech Connect

    Kamide, Yosuke; Ishizuka, Tamotsu; Tobo, Masayuki; Tsurumaki, Hiroaki; Aoki, Haruka; Mogi, Chihiro; Nakakura, Takashi; Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko; Sato, Koichi; Hisada, Takeshi; Dobashi, Kunio; Yamada, Masanobu; Okajima, Fumikazu

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  5. Mosla punctulata Inhibits Mast Cell-mediated Allergic Reactions Through the Inhibition of Histamine Release and Inflammatory Cytokine Production

    PubMed Central

    Je, I. G.; Shin, T. Y.; Kim, S. H.

    2013-01-01

    Allergic inflammatory diseases such as food allergy, asthma, sinusitis and atopic dermatitis are increasing worldwide. This study examined the effects of aqueous extract of Mosla punctulata on mast cell-mediated allergic inflammation and studied the possible mechanism of action. Aqueous extract of Mosla punctulata inhibited compound 48/80-induced systemic and immunoglobulin E-mediated local anaphylaxis and it also reduced intracellular calcium level and down-streamed histamine release from mast cells. In addition, aqueous extract of Mosla punctulata decreased gene expression and secretion of tumour necrosis factor alpha, an important proinflammatory cytokine, in mast cells. The inhibitory effect on tumour necrosis factor alpha expression was nuclear factor kappa B dependent. The results indicate that aqueous extract of Mosla punctulata inhibited mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of tumour necrosis factor alpha, and involvement of calcium and nuclear factor kappa B in these effects. Hence it can be concluded tha