Science.gov

Sample records for plasmatron fuel reformer

  1. Plasmatron-catalyst system

    SciTech Connect

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  2. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  3. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  4. Low current plasmatron fuel converter having enlarged volume discharges

    DOEpatents

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2009-10-06

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  5. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  6. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at

  7. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  8. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  9. Reduced Toxicity Fuel Satellite Propulsion System Including Plasmatron

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2003-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster. whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  10. Fuel Reformer Nozzle Development

    NASA Technical Reports Server (NTRS)

    Lai, Ming-Chia D.

    2003-01-01

    The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).

  11. Fuel Reformer Nozzle Development

    NASA Technical Reports Server (NTRS)

    Lai, Ming-Chia D.

    2003-01-01

    The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).

  12. NETL - Fuel Reforming Facilities

    SciTech Connect

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  13. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2016-07-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  14. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  15. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  16. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  17. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  18. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  19. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  20. Steam reforming of fuel to hydrogen in fuel cell

    DOEpatents

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  1. Steam reforming of fuel to hydrogen in fuel cells

    DOEpatents

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  2. Development incentives for fossil fuel subsidy reform

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Chen, Claudine; Fuss, Sabine; Marxen, Annika; Edenhofer, Ottmar

    2015-08-01

    Reforming fossil fuel subsidies could free up enough funds to finance universal access to water, sanitation, and electricity in many countries, as well as helping to cut global greenhouse-gas emissions.

  3. Effects of fuel cell anode recycle on catalytic fuel reforming

    SciTech Connect

    shekhawat, D.; Berry, D.; Gardner, T.; Haynes, D.; Spivey, J.

    2007-01-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed. Published by Elsevier B.V.

  4. Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming

    SciTech Connect

    Shekhawat, Dushyant; Berry, D.A.; Gardner, T.H.; Haynes, D.J.; Spivey, J.J.

    2007-06-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  7. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  8. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  9. Plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  10. Solid oxide fuel cell steam reforming power system

    DOEpatents

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  11. Steam plasmatron gasification of distillers grains residue from ethanol production.

    PubMed

    Shie, Je-Lueng; Tsou, Feng-Ju; Lin, Kae-Long

    2010-07-01

    In this study, a plasmatron reactor was used for gasifying the waste of distillers grains at different temperatures (773, 873, 973 K) and water flow rates (1, 2, 3 mL min(-1)), which were heated to produce steam. Among all the gas products, syngas was the major component (88.5 wt.% or 94.66 vol.%) with temperatures yielding maximum concentrations at 873 K with a relatively high reaction rate. The maximum concentrations regarding gaseous production occurring times are all below 1 min. With the increase of steam, the recovery mass yield of syngas also increases from 34.14 to 45.47 approximately 54.66 wt.% at 873 K. Water-gas reactions and steam-methane reforming reactions advance the production of syngas with the increase of steam. Furthermore, the water-shift reaction also increases in the context of steam gasification which leads to the decrease of CO(2) at the same time.

  12. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  13. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  14. Catalytic autothermal reforming increases fuel cell flexibility

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1981-01-01

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  15. Laser plasmatron for diamond coating deposition

    NASA Astrophysics Data System (ADS)

    Glova, A. F.; Lysikov, A. Yu.; Malyuta, D. D.; Nelyubin, S. S.; Peretyatko, P. I.; Ryzhkov, Yu. F.

    2016-12-01

    An experimental installation with a laser plasmatron based on a continuous wave CO2 laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH4/H2 gas mixture under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.

  16. Laser plasmatron for diamond coating deposition

    SciTech Connect

    Glova, A. F. Lysikov, A. Yu.; Malyuta, D. D.; Nelyubin, S. S.; Peretyatko, P. I.; Ryzhkov, Yu. F.

    2016-12-15

    An experimental installation with a laser plasmatron based on a continuous wave CO{sub 2} laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH{sub 4}/H{sub 2} gas mixture under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.

  17. The VKI Plasmatron Characteristics and Performance

    DTIC Science & Technology

    2000-04-01

    free electrons have appeared, the1. The Plasmatron facility whole gas is rapidly heated by Joule effect . Argon is used in order to facilitate the...gas part of the MSTP (Manned Space Transportation by Joule effect . Once the gas heats up, it dissociates and Programme) research program of the...reached on a catalytic cold wall in order to direct contact. The central gas flux is used to push the avoid uncertainties due to catalytic effects . This

  18. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    NASA Astrophysics Data System (ADS)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  19. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  20. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  1. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  2. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  3. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  4. Hydrocarbon fuel reforming catalyst and use thereof

    DOEpatents

    Ming, Qimin; Healey, Todd; Irving, Patricia Marie

    2006-06-27

    The subject invention is a catalyst consisting of an oxide or mixed oxide support and bimetallic catalytically active compounds. The supporting oxide can be a single oxide, such as Al.sub.2O.sub.3; it also can be a mixture of oxides, such as Y.sub.2O.sub.3 stabilized ZrO.sub.2 (YSZ), Al.sub.2O.sub.3 with CeO.sub.2, Al.sub.2O.sub.3 with YSZ and others. The bimetallic compounds, acting as active components, are selected from platinum, and ruthenium, prepared in an appropriate ratio. The catalyst is used in the steam reforming of hydrocarbons to produce hydrogen for applications such as polymer electrolyte membrane fuel cells.

  5. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  6. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  7. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOEpatents

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  8. Microwave plasmatrons for giant integrated circuit processing

    SciTech Connect

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  9. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.

    SciTech Connect

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-12-04

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

  10. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.

    SciTech Connect

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-12-04

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

  11. Methanol reformers for fuel cell powered vehicles: Some design considerations

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1990-01-01

    Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

  12. Apparatus for reforming fuel oil wherein ultrasonic waves are utilized

    SciTech Connect

    Kunishio, M.; Shirai, K.; Takezi, H.

    1981-08-04

    An apparatus for reforming fuel oil wherein ultrasonic waves are utilized. The apparatus comprises a closed vessel, a rotary collector formed in a cylindrical shape, an inlet conduit for supplying fuel oil to be reformed into the vessel, an outlet conduit for delivering reformed oil from the vessel, and a ultrasonic irradiating device. The rotary collector has a layered mesh structure of a fine mesh, preferably of mesh size between 2 mu M and 20 mu m, mounted thereon so that sludge contained in the fuel oil to be reformed is collected on the layered mesh structure. One end of a horn connected to the ultrasonic wave irradiating device faces the layered mesh structure forming a small gap therebetween so that the sludge collected on the layered mesh structure is dissociated by the ultrasonic waves.

  13. The low-temperature partial-oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Passenger cars powered by fuel cell propulsion systems with high efficiency offer superior fuel economy, very low to zero pollutant emissions, and the option to operate on alternative and/or renewable fuels. Although the fuel cell operates on hydrogen, a liquid fuel such as methanol or gasoline is more attractive for automotive use because of the convenience in handling and vehicle refueling. Such a liquid fuel must be dynamically converted (reformed) to hydrogen on board the vehicle in real time to meet fluctuating power demands. This paper describes the low-temperature Argonne partial-oxidation reformer (APOR) developed for this application. The APOR is a rapid-start, compact, lightweight, catalytic device that is efficient and dynamically responsive. The reformer is easily controlled by varying the feed rates of the fuel, water, and air to satisfy the rapidly changing system power demands during the vehicle`s driving cycle.

  14. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  15. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    SciTech Connect

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensors and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.

  16. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  17. Thermally efficient melting and fuel reforming for glass making

    DOEpatents

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  18. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  19. The low-temperature partial oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Argonne`s partial-oxidation reformer (APOR) is a compact, lightweight, rapid-start, and dynamically responsive device to convert liquid fuels to H{sub 2} for use in automotive fuel cells. An APOR catalyst for methanol has been developed and tested; catalysts for other fuels are being evaluated. Simple in design, operation, and control, the APOR can help develop efficient fuel cell propulsion systems.

  20. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOEpatents

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  1. Producing Clean Syngas via Catalytic Reforming for Fuels Production

    SciTech Connect

    Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

    2012-01-01

    Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

  2. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  3. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  4. Methane/steam reforming kinetics for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Achenbach, E.; Riensche, E.

    Experiments have been carried out to determine the kinetics of the methane/steam reforming process at anode materials of a solid oxide fuel cell. A nickel cermet was applied consisting of 80 wt.% ZrO 2 and 20 wt.% Ni. The temperature was varied from 700 to 940 °C, the CH 4 partial pressure from 0.11 to 0.33 bar, and the system pressure from 1.1 to 2.8 bar. The influence of the ratio H 2O/CH 4 was studied, in particular, by increasing this quantity from 2.6 to 8. The tests showed that, within the accuracy of the data, no effect of the H 2O partial pressure on the catalytic reforming process could be observed. Due to the high conversion rates of CH 4 at high temperatures, however, mass-transfer effects occurred, that must be taken into account when evaluating the steam-reforming data.

  5. How fuel composition affects on-board reforming for fuel cell vehicles.

    SciTech Connect

    Kopasz, J. P.; Miller, L. E.; Applegate, D. V.; Chemical Engineering

    2003-01-01

    Different blends of gasoline range hydrocarbons were investigated to determine the effect of aromatic, naphthenic, and paraffinic content on performance in an autothermal reformer. In addition, we investigated the effects of detergent, antioxidant, and oxygenate additives. These tests indicate that composition effects are minimal at temperatures of 800C and above, but at lower temperatures or at high gas hourly space velocities (GHSV approaching 100,000 h{sup -1} ) composition can have a large effect on catalyst performance. Fuels high in aromatic and naphthenic components were more difficult to reform. In addition, additives, such as detergents and oxygenates were shown to decrease reformer performance at lower temperatures.

  6. A reformer performance model for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sandhu, S. S.; Saif, Y. A.; Fellner, J. P.

    A performance model for a reformer, consisting of the catalytic partial oxidation (CPO), high- and low-temperature water-gas shift (HTWGS and LTWGS), and preferential oxidation (PROX) reactors, has been formulated. The model predicts the composition and temperature of the hydrogen-rich reformed fuel-gas mixture needed for the fuel cell applications. The mathematical model equations, based on the principles of classical thermodynamics and chemical kinetics, were implemented into a computer program. The resulting software was employed to calculate the chemical species molar flow rates and the gas mixture stream temperature for the steady-state operation of the reformer. Typical computed results, such as the gas mixture temperature at the CPO reactor exit and the profiles of the fractional conversion of carbon monoxide, temperature, and mole fractions of the chemical species as a function of the catalyst weight in the HTWGS, LTWGS, and PROX reactors, are here presented at the carbon-to-oxygen atom ratio (C/O) of 1 for the feed mixture of n-decane (fuel) and dry air (oxidant).

  7. Purifier-integrated methanol reformer for fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  8. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  9. A Methanol Steam Reforming Micro Reactor for Proton Exchange Membrane Micro Fuel Cell System

    SciTech Connect

    Park, H G; Piggott, W T; Chung, J; Morse, J D; Havstad, M; Grigoropoulos, C P; Greif, R; Benett, W; Sopchak, D; Upadhye, R

    2003-07-28

    The heat, mass and momentum transfer from a fuel reforming packed bed to a surrounding silicon wafer has been simulated. Modeling showed quantitatively reasonable agreement with experimental data for fuel conversion efficiency, hydrogen production rate, outlet methanol mole fraction and outlet steam mole fraction. The variation in fuel conversion efficiency with the micro reformer thermal isolation can be used to optimize fuel-processing conditions for micro PEM fuel cells.

  10. Internal reforming development for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, A. L.

    1987-02-01

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) should simplify the overall system design and make the SOFC an attractive means for producing electrical power. This program was undertaken to investigate the catalytic properties of nickel cermets, which are prime candidates for SOFC anodes. The initial task in this program was an extensive literature search for information on steam reforming of light hydrocarbons. The second task was to modify and calibrate the reactor systems that were used in the experimental kinetic studies. Two systems were used in this investigation; a continuously stirred tank reactor system (CSTR) and a plug flow reactor system (PFR). In the third task, 16 nickel-zirconia cermets were prepared using four procedures, tape casting, Westinghouse slurry, incorporation of performers, and granulation. The catalytic behavior of three cermets was determined in the fourth task. The reaction was first order with respect to methane and -1.25 for steam. Ethane and propane in the feed did not affect the methane conversion rate. The cermet has a higher initial tolerance for sulfur than standard nickel reforming catalysts. The final task was a mechanistic study of the steam reforming reaction on nickel and nickel-zirconia catalysts.

  11. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    SciTech Connect

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  12. The Effects of Reforming Byproducts on PEM Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Craft, Justin Thomas

    One of the main goals of the Thermodynamics and Sustainable Energy Laboratory at Duke University is to create a Hybrid Solar System (HSS). The HSS is to consist of four main processes: solar steam reformation, fuel cleaning via a preferential oxidation reactor (PROX), hydrogen storage, and a Proton Exchange Membrane Fuel Cell (PEMFC). The key goal of this research is to determine whether it is feasible to run this PEMFC on the expected gas mixture from the solar steam reformer after it is cleaned by the PROX (75% H2 and 25% CO2) with no significant power loss and no long-term damage to the fuel cell catalyst. Findings were that even if the gas mixture input to the PEMFC consisted of 30% carbon dioxide and 70% hydrogen, the PEMFC would continue to operate as if the flow were 100% hydrogen with no negative long term effects to the PEMFC. The PROX was then added to the setup and the expected gas mixture (from the solar collector) was run through the system. The results demonstrated that if the PROX achieves the expected 100% conversion (removal of the carbon monoxide to the necessary level of < 10 ppm), the PEMFC should handle the expected cleaned flow as if it were 100% hydrogen. The findings in this research provide validation of the overall concept of the HSS.

  13. Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kang, Inyong; Bae, Joongmyeon; Bae, Gyujong

    This paper discusses the reforming of liquid hydrocarbons to produce hydrogen for fuel cell applications, focusing on gasoline and diesel due to their high hydrogen density and well-established infrastructures. Gasoline and diesel are composed of numerous hydrocarbon species including paraffins, olefins, cycloparaffins, and aromatics. We have investigated the reforming characteristics of several representative liquid hydrocarbons. In the case of paraffin reforming, H 2 yield and reforming efficiency were close to thermodynamic equilibrium status (TES), although heavier hydrocarbons required slightly higher temperatures than lighter hydrocarbons. However, the conversion efficiency was much lower for aromatics than paraffins with similar carbon number. We have also investigated the reforming performance of simulated commercial diesel and gasoline using simple synthetic diesel and gasoline compositions. Reforming performances of our formulations were in good agreement with those of commercial fuels. In addition, the reforming of gas to liquid (GTL) resulted in high H 2 yield and reforming efficiency showing promise for possible fuel cell applications.

  14. Direct internal reforming of hydrocarbon fuels in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang

    2005-07-01

    The direct operation of solid oxide fuel cells (SOFCs) on hydrocarbon fuels is desired since it could reduce power plant size, weight and complexity. The primary challenge is to find effective means through which anode-coking could be suppressed or avoided. Throughout the research, conventional Ni-anode supported SOFCs were employed because they provide high power densities and are being actively developed for commercial applications. Various strategies were used to reduce or avoid anode-coking during the SOFC operation. Firstly, air or CO2/H2O was added to hydrocarbon fuels, such that coking was less thermodynamically favorable, and the resulting internal partial oxidation or dry/steam reforming reactions provided H 2 and CO to the fuel cell. For example, for low hydrocarbons like propane, coke-free operation was achieved on 8% yttrium-stabilized zirconia (YSZ) electrolyte SOFCs via internal partial oxidation, yielding stable and high power densities, e.g. 0.7 W·cm-2 at 790°C. Secondly, a novel design for hydrocarbon fueled SOFCs was proposed, i.e. a separate supported catalyst (Ru-CeO2) layer was placed against the anode side. The catalyst layer provided good catalytic activity for the hydrocarbon reforming reactions, while the nickel-based anode was retained to provide excellent electrochemical activity for the oxidation of the hydrogen and carbon monoxide reforming products. For heavy hydrocarbons like iso-octane, the catalyst layer was crucial far allowing stable cell operation without coking. The lack of coking at the Ni-YSZ anode can be explained by reforming at the Ru-Ceria catalyst layer, which eliminated most of the hydrocarbon species before the fuel reached the anode. A key element of this strategy was the choice of a catalyst metal, Ru, that promotes hydrocarbon reforming but does not itself cause coking. Thirdly, reduced-temperature SOFCs with thin samarium-doped Ceria (SDC) electrolytes were developed; these devices have potentially improved

  15. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  16. Applications of internal reforming molten carbonate fuel cells

    SciTech Connect

    Maru, H.C.; Baker, B.S.

    1986-03-01

    A modified version of the molten carbonate fuel cell (MCFC) is being developed which is capable of direct utilization of hydrocarbon fuels such as natural gas, methanol, alcohol, propane, coal-derived synthetic gas and others. This version is termed internal reforming MCFC or Direct Fuel Cell, DFC. The DFC provides an ideal match of heat and mass transfer requirements within the cell, and minimizes external processing equipment. Efficiencies as high as 55 to 60% can be expected, making DFC a unique and practical device. The overall system is expected to be simple and cost effective. Many attractive applications exist for the simple and highly efficient DFC generators. Natural gas fueled dispersed generators in the size range of 500kW to 10 Mw may provide early market entry. DFC applications to smaller-size on-site power plants, large coal-powered central stations and industrial cogeneration applications can follow once the technology is demonstrated and manufacturing base is established. 8 references, 3 figures, 2 table.

  17. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  18. Characterization of the performance of adiabatic reformers operated with logistic fuels. Final technical report

    SciTech Connect

    Bett, J.A.S.; Lesieur, R.R.; Meyer, A.P.; Setzer, H.J.

    1981-07-30

    United Technologies Corporation, in cooperation with the Electric Power Research Institute, has developed an adiabatic steam reformer capable of processing sulfur-containing fuels for commercial fuel cell power plants. No. 2 fuel oil and various coal-derived liquids have recently been successfully reformed to hydrogen using advanced catalyst formulations. The objective of this program is to determine the performance of the adiabatic reformer when operated with military logistic fuels. The test data will form the basis for system evaluation of the use of the adiabatic reformer in Army 'SLEEP' power plants using military logistic fuels. A two-inch diameter adiabatic reformer capable of supplying the hydrogen required for a 2.5 kW to 6 kW power plant was loaded with advanced metal oxide and nickel catalysts. It ran over 1400 hours; 840 hours with No. 2 fuel oil as reference fuel, 350 hours on unleaded gasoline, and 216 hours on diesel fuel. The performance of the reformer on No. 2 fuel oil (for calibration against previous tests) closely matched previous tests both with respect to fuel conversion and carbon formation characteristics. After an initial decay period of about 200 hours, the performance remained stable for the remaining 1200 hours of test. The reformer operated at conditions set as design goals for a commercial fuel cell power plant. With unleaded gasoline, the tendency for carbon formation was greatly reduced; even at the lowest values for oxygen to carbon ratio in the process steam no carbon was detected. Operating parameters were defined for each of the fuels. The effect of steam/carbon ratio, pressure and fuel flow rate on fuel conversion was determined.

  19. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  20. Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.

    PubMed

    Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C

    2016-06-01

    Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.

  1. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  2. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  3. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  4. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  6. Internal reforming characteristics of cermet supported solid oxide fuel cell using yttria stabilized zirconia fed with partially reformed methane

    NASA Astrophysics Data System (ADS)

    Momma, Akihiko; Takano, Kiyonami; Tanaka, Yohei; Negishi, Akira; Kato, Ken; Nozaki, Ken; Kato, Tohru; Ichigi, Takenori; Matsuda, Kazuyuki; Ryu, Takashi

    In order to investigate the internal reforming characteristics in a cermet supported solid oxide fuel cell (SOFC) using YSZ as the electrolyte, the concentration profiles of the gaseous species along the gas flow direction in the anode were measured. Partially reformed methane using a pre-reformer kept at a constant temperature is supplied to the center of the cell which is operated with a seal-less structure at the gas outlet. The anode gas is sucked in via silica capillaries to the initially evacuated gas tanks. The process is simultaneously carried out using five sampling ports. The sampled gas is analyzed by a gas chromatograph. Most of the measurements are made at the cell temperature (T cell) of 750 °C and at various temperatures of the pre-reformer (T ref) with various fuel utilizations (U f) of the cell. The composition of the fuel at the inlet of the anode was confirmed to be almost the same as that theoretically calculated assuming equilibrium at the temperature of the pre-reformer. The effect of internal reforming in the anode is clearly observed as a steady decrease in the methane concentration along the flow axis. The effect of the water-gas shift reaction is also observed as a decrease in the CO 2 concentration and an increase of CO concentration around the gas inlet region, as the water-gas shift reaction inversely proceeds when T cell is higher than T ref. The diffusion of nitrogen from the seal-less outermost edge is observed, and the diffusion is confirmed to be more significant as U f decreases. The observations are compared with the results obtained by the SOFC supported by lanthanum gallate electrolyte. With respect to the internal reforming performance, the cell investigated here is found to be more effective when compared to the previously reported electrolyte supported cell.

  7. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    DOEpatents

    Gardner, Todd H [Morgantown, WV; Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  8. Uncertainty Quantification For Gas-Surface Interaction In Plasmatron Facility

    NASA Astrophysics Data System (ADS)

    Villedieu, N.; Panerai, F.; Chazot, O.; Magin, T. E.

    2011-08-01

    To design Thermal Protection Systems for atmospheric re-entry, it is crucial to take in account the catalytic properties of the material. At the von Karman Institute, these properties are determined by combining experiments per- formed in the Plasmatron facility and boundary layer code simulations. During this process, many uncertain- ties are involved: experimental data and physical model. The aim of this article is to develop an uncertainty quantification methodology to compute the error bars on the rebuilt enthalpy and the effective catalytic recombination coefficient due to the uncertainties on the experimental data. The purpose is also to understand which uncertainties have the largest impact on the error. We have coupled the open source software DAKOTA from Sandia National Laboratory with the VKI boundary layer code.

  9. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  10. ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS

    SciTech Connect

    Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.; Korolev, Alexander; Khaleel, Mohammad A.; Singh, Prabhakar

    2007-01-16

    ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated for the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.

  11. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  12. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  13. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  15. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  16. Plasma catalytic reforming of methane

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Alexeev, N.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  17. Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report

    SciTech Connect

    1996-11-01

    Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

  18. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-09-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  19. Methanol steam reforming in a fuel cell drive system

    NASA Astrophysics Data System (ADS)

    Wiese, W.; Emonts, B.; Peters, R.

    Within the framework of the Joule III project a compact methanol reformer (CMR) with a specific weight of 2 kg/kW (lower heating value of H 2) was developed. This CMR contains a methanol and water vaporizer, a steam reformer, a heat carrier circuit and a catalytic burner unit. A laboratory fixed-bed reactor consisting of four tubes which could be filled with different amounts of catalyst was used to investigate the catalyst performance and the ageing behaviour. A hydrogen yield of 10 m N3/(h l Cat) can be achieved at 280°C. In this case, the methanol conversion rate is 95% and the dry product gas contains 0.9% CO. A linear decrease of the catalyst activity was observed which can be described by a loss of active catalyst mass of 5.5 mg/h. The catalyst was operated for more than 1000 h without having exhibited activity losses that made a catalyst change necessary. Besides, the stationary behaviour of the reforming reactor, the dynamic behaviour was studied. The time needed for start-up procedures has to be improved for reformers of a next generation. Moreover, the hydrogen production during reformer load changes will be discussed. Simulations of the power train in driving cycles show the different states of a reformer during dynamic operation.

  20. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  1. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  2. Synthesis of carbon nanostructures in an RF induction plasmatron

    NASA Astrophysics Data System (ADS)

    Zalogin, G. N.; Krasil'nikov, A. V.; Rudin, N. F.; Popov, M. Yu.; Kul'nitskii, B. A.; Kirichenko, A. N.

    2015-05-01

    The method and results of synthesizing carbon nanotubes and onion-like structures by the sublimation of a mixture of a carbon powder with a catalyst (Y2(CO3)3) in the plasma flow of an inert gas (argon) generated in an rf plasmatron are described. Carbon vapors are condensed into fullerene-containing soot onto various materials (Al, Cu, Ti, stainless steel) placed in the working chamber of an experimental setup. The composition of the synthesized soot is analyzed by modern highly informative methods (Raman spectroscopy, transmission electron microscopy, X-ray diffraction). Single-wall carbon nanotubes of a small diameter (1.2 nm) and onion-like structures 10-20 nm in size are formed in experiments. In a reference experiment on a mixture of argon and methane, a material, which consists of a mixture of amorphous carbon, nanosized graphite, and graphite with a crystallite size of several microns, is synthesized. The effect of the substrate material, the gas pressure, and the plasma flow velocity on the formation of carbon nanotubes is studied.

  3. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    NASA Astrophysics Data System (ADS)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  4. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  5. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  6. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    SciTech Connect

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  7. Experimental investigation on IXV TPS interface effects in Plasmatron

    NASA Astrophysics Data System (ADS)

    Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio

    2016-06-01

    An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.

  8. Performance of a miniaturized silicon reformer-PrOx-fuel cell system

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Joong; Hwang, Sun-Mi; Chae, Je Hyun; Kang, Moo Seong; Kim, Jae Jeong

    A fuel cell made with silicon is operated with hydrogen supplied by a reformer and a preferential oxidation (PrOx) reactor those are also made with silicon. The performance and durability of the fuel cell is analyzed and tested, then compared with the results obtained with pure hydrogen. Three components of the system are made using silicon technologies and micro electro-mechanical system (MEMS) technology. The commercial Cu-ZnO-Al 2O 3 catalyst for the reformer and the Pt-Al 2O 3 catalyst for the PrOx reactor are coated by means of a fill-and-dry method. A conventional membrane electrode assembly composed of a 0.375 mg cm -2 PtRu/C catalyst for the anode, a 0.4 mg cm -2 Pt/C catalyst for the cathode, and a Nafion™ 112 membrane is introduced to the fuel cell. The reformer gives a 27 cm 3 min -1 gas production rate with 3177 ppm CO concentration at a 1 cm 3 h -1 methanol feed rate and the PrOx reactor shows almost 100% CO conversion under the experimental conditions. Fuel cells operated with this fuel-processing system produce 230 mW cm -2 at 0.6 V, which is similar to that obtained with pure hydrogen.

  9. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  10. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  11. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  12. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-09-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  13. Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation

    NASA Astrophysics Data System (ADS)

    Waller, Michael G.; Walluk, Mark R.; Trabold, Thomas A.

    2015-01-01

    Fuel cell technology has yet to realize widespread deployment, in part because of the hydrogen fuel infrastructure required for proton exchange membrane systems. One option to overcome this barrier is to produce hydrogen by reforming propane, which has existing widespread infrastructure, is widely used by the general public, easily transported, and has a high energy density. The present work combines thermodynamic modeling of propane catalytic partial oxidation (cPOx) and experimental performance of a Precision Combustion Inc. (PCI) Microlith® reactor with real-time soot measurement. Much of the reforming research using Microlith-based reactors has focused on fuels such as natural gas, JP-8, diesel, and gasoline, but little research on propane reforming with Microlith-based catalysts can be found in literature. The aim of this study was to determine the optimal operating parameters for the reformer that maximizes efficiency and minimizes solid carbon formation. The primary parameters evaluated were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. Including the lower heating values for product hydrogen and carbon monoxide, efficiency of 84% was achieved at an O2/C ratio of 0.53 and a catalyst temperature of 940 °C, resulting in near equilibrium performance. Significant solid carbon formation was observed at much lower catalyst temperatures, and carbon concentration in the effluent was determined to have a negative linear relationship at T < 750 °C. The Microlith reactor displayed good stability during more than 80 experiments with temperature cycling from 360 to 1050 °C.

  14. Fuel cell hydrogen production by catalytic ethanol-steam reforming

    SciTech Connect

    Amphlett, J.C.; Leclerc, S.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.

    1998-07-01

    It is clear that the reaction network that results from catalytic reaction of ethanol, with and without steam, is very complex and involves over a dozen potential products. Reactions to avoid are any that lead to CP{sub 4} species and ethylene, the former representing a more difficult challenge for subsequent steam reforming and the latter providing what is probably the major route to carbon production and coking of the catalyst. Dehydration reactions, therefore, should generally be avoided. Dehydrogenation catalysts would seem to be most appropriate, especially since the production of hydrogen is the main goal. Copper-based catalysts have been long-established for this function so that they are commercially available and therefore lower cost. CuO/ZnO, CuO/SiO{sub 2}, CuO/Cr{sub 2}O{sub 3} or CuO/NiO/SiO{sub 2} may be the best catalyst candidates. Reaction pressures should be relatively low (1 to a few atm) and the best reaction temperature could be in the range 350 to 450 C. Insufficient experimental work has been reported to give a clear idea of the required water-to-ethanol mole ratio. The stoichiometric value of this ratio is three and it is likely that excess water, although presenting some process complications, will be necessary to minimize yields of CO and CH{sub 4}. A major new aspect of catalyst selection and operation, when comparing ethanol to methanol steam reforming, will be catalyst deactivation due to temperature. The methanol process works well on CuO/ZnO around 250 to 260 C, just on the threshold of fairly rapid catalyst deactivation. If the ethanol process is to work at or above 300 C, the present CuO/ZnO catalysts will be operating at an activity well below that obtainable in methanol-steam reformers. This means that larger reformers (i.e. more catalyst) will be necessary or that Cu-based (or other) catalysts with slower deactivation in the 300 C-plus range will have to be developed.

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2005-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  16. Microplasma reforming of hydrocarbons for fuel cell power

    NASA Astrophysics Data System (ADS)

    Besser, R. S.; Lindner, P. J.

    The implementation of a microplasma approach for small scale reforming processes is explored as an alternative to more standard catalyst-based processes. Plasmas are a known approach to activating a chemical reaction in place of catalysts, and microplasmas are particularly attractive owing to their extremely high electron and power densities. Their inherent compactness gives them appeal for portable applications, but their modularity leads to scalability for higher capacity. We describe the realization of experimental microplasma reactors based on the microhollow cathode discharge (MHCD) structure by silicon micromachining for device fabrication. Experiments were carried out with model hydrocarbons methane and butane in the reactors within a microfluidic flow and analytical setup. We observe several key phenomena, including the ability to liberate hydrogen from the hydrocarbons at temperatures near ambient and sub-Watt input power levels, the tendency toward hydrocarbon decomposition rather than oxidation even in the presence of oxygen, and the need for a neutral carrier to obtain conversion. Mass and energy balances on these experiments revealed conversions up to nearly 50%, but the conversion of electrical power input to chemical reaction enthalpy was only on the order of 1%. These initial, exploratory results were recorded with devices and at process settings without optimization, and are hence promising for an emerging, catalyst-free reforming approach.

  17. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  18. Performance and endurance of a PEMFC operated with synthetic reformate fuel feed

    NASA Astrophysics Data System (ADS)

    Sishtla, Chakravarthy; Koncar, Gerald; Platon, Renato; Gamburzev, Serguei; Appleby, A. John; Velev, Omourtag A.

    Widespread implementation of polymer electrolyte membrane fuel cell (PEMFC) powerplants for stationary and vehicular applications will be dependent in the near future on using readily available hydrocarbon fuels as the source of the hydrogen fuel. Methane and propane are ideal fuels for stationary applications, while methanol, gasoline, and diesel fuel are better suited for vehicular applications. Various means of fuel processing are possible to produce a gaseous fuel containing H2, CO2 and CO. CO is a known electrocatalyst poison and must be reduced to low (10's) ppm levels and CO2 is said to cause additional polarization effects. Even with no CO in the feed gas a H2/CO2/H2O gas mixture will form some CO. Therefore, as a first step of developing a PEMFC that can operate for thousands of hours using a reformed fuel, we used an anode gas feed of 80% H2 and 20% CO2 to simulate the reforming of CH4. To investigate the effect of reformate on cell performance and endurance, a single cell with an active area of 58 cm2 was assembled with a membrane electrode assembly (MEA) furnished by Texas A&M University using IGT's internally manifolded heat exchange (IMHEX™) design configuration. The MEA consisted of a Nafion 112 membrane with anode and cathode Pt catalyst loadings of 0.26 and 1.46 mg/cm2, respectively. The cell was set to operate on a synthetic reformate-air at 60°C and 1 atm and demonstrated over 5000 h of endurance with a decay rate of less than 1%/1000 h of operation. The cell also underwent four successful thermal cycles with no appreciable loss in performance. The stable performance is attributed to a combination of the IGT IMHEX plate design with its inherent uniform gas flow distribution across the entire active area and MEA quality. The effects of temperature, gas composition, fuel utilization (stoics) and thermal cycle on cell performance are described.

  19. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    SciTech Connect

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

  20. Methane on-cell reforming in nickel-iron alloy supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Jian, Li

    2015-06-01

    Ni0.9Fe0.1-supported solid oxide fuel cells are fabricated by tape casting-screen printing-sintering process; and the activity for CH4 reforming and electrochemical performance are examined with wet (3 vol.% H2O) CH4 as the fuel at 650 °C, in comparison with Ni-supported cells. At a flow rate of 100 ml min-1, the wet CH4 is partially (35 vol.%) reformed to H2, CO and CO2 in the Ni0.9Fe0.1 anode-support, demonstrating a higher reforming activity than that of the Ni anode-support. The maximum power density is 1.01 Wcm-2 at a high limiting current density of 2.6 A cm-2; and cell voltage at 0.4 A cm-2 is slightly decreased from 0.65 to 0.60 V within 50 h durability test. This high performance is attributed to the Ni0.9Fe0.1 anode-support that is more active for CH4 reforming and resistant to carbon deposition than its Ni counterpart.

  1. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  2. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    DTIC Science & Technology

    2010-04-30

    and advantageous of non- equilibrium chemically reacting plasmas. The main ideas are related to possibilities of cost-effective non-thermal plasma...properties of non- equilibrium plasma in heterogeneous gas-liquid systems; characteristics of plasma reforming of ethanol-water mixtures in plasma...thermodynamically equilibrium , has characteristics of high ionization by higher energetic density. This has merits of good rate of fuel decomposition but demerits

  3. Evaluation of lab tests of the internal reformation of desulfurized diesel fuel in an MCFC test stack. Final report

    SciTech Connect

    Not Available

    1993-03-01

    Starting with the known capability of DFC stacks to internally reform natural gas (CH4), the fuel vaporization and judicious breaking of the carbon bond in the more complex diesel type fuel molecule (represented typically as C7H14) was addressed. Free carbon could potentially load up the reformer passages and is thus to be avoided. Following careful testing of numerous sub scale vaporization, fuel conditioning and reforming techniques, the most appropriate thermochemical means was derived by the AEL test subcontractor Energy Research Corporation (ERC). It consists of a combined fuel vaporizer and adiabatic fuel conditioner column which, in effect, creates synthesized CH4 molecules from the heavier hydrocarbon and then steam reforms the synthesis gas in the plate type reformer within the stack using the heat from the fuel cell stack. The demonstration was successfully carried out in August 1992 for 400 hours under the Navy contract plus an additional 200 hours under a contract from the Electric Power Research Institute (EPRI). The equipment was then to be dismantled and the internal characteristics of the reformer and the DFC test stack analyzed and evaluated to determine whether any life-limiting phenomena had occurred.

  4. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells

    SciTech Connect

    Vernoux, P.; Guindet, J.; Kleitz, M.

    1998-10-01

    Gradual internal reforming is based on local coupling between steam reforming of the fuel which occurs on a catalyst and hydrogen electrochemical oxidation which occurs at the electrode triple-phase perimeter. In order to demonstrate the feasibility of this strategy, the catalytic and electrochemical properties of lanthanum chromite, pure and impregnated with ruthenium, were investigated. Ruthenium supported on lanthanum chromite exhibits very good catalytic activity for the steam reforming of methane. Full conversion of steam is obtained for ratios H{sub 2}O/CH{sub 4} even lower than 1 at 700 C. No carbon deposition could be detected after 100 h of operation. Electrochemical measurements, carried out by impedance spectroscopy on cone-shaped microelectrodes of lanthanum chromite, show that the overpotential resistance under H{sub 2}/H{sub 2}O is lower than under CO/CO{sub 2} and much lower than under CH{sub 4}/H{sub 2}O. In the presence of ruthenium, impedance diagrams under hydrogen and methane are fairly similar and gas analysis shows that some methane is reformed. This observation demonstrates that gradual internal reforming can be implemented. A detailed analysis of the electrode impedance diagrams shows that the so-called high-frequency semicircle is virtually independent of the nature of the atmosphere. This indicates that it is not directly related to any chemical or electrochemical step of the electrode reaction.

  5. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  6. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-06-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  7. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  8. Synthesis of carbon onionlike nanostructures from methane in plasma flow of induction plasmatron

    NASA Astrophysics Data System (ADS)

    Anchukov, K. E.; Zalogin, G. N.; Krasil'nikov, A. V.; Popov, M. Yu.; Kul'nitskii, B. A.

    2015-11-01

    The results of synthesis of carbon onionlike nanostructures from methane in plasma flow of inert gas (argon) generated in induction high-frequency plasmatron are considered and discussed. Carbon vapor obtained via dissociation of methane in plasma flow was condensed on copper substrates placed in a working chamber of the setup. The content of the synthesized soot was analyzed using scanning and transmission electron microscopy. As a result of the performed experiments, carbon onionlike structures with 20- to 100-nm sizes were obtained.

  9. Methodology, Technical Approach and Measurement Techniques for Testing of TPM Thermal Protection Materials in IPM Plasmatrons

    DTIC Science & Technology

    2000-04-01

    in real study of SiC reference material oxidation identical with that one of tested model, which was made for ESTEC /ESA [4-6]. e enthalpy (is...methods were developed for reusable 18, 1998, Albuquerque, NM, ESA- ESTEC . thermal protection materials on the basis of plasmatron 7. J.E.Medford...European Workshop on Induction Plasma Application to "Buran’s" Heat Thermal Protection Systems, ESTEC , 25-27 Protection Tiles Ground Tests.- SAMPE

  10. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    NASA Astrophysics Data System (ADS)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  11. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 < carbon dioxide/methane ratio < 2, which is an interesting result for prospective direct biogas fueled SOFCs. Conversion is stable over a period of 70 h. Both for temperatures lower than 450 °C and for carbon dioxide-methane ratios lower than equi-molar at 800 °C, conversion is poor due to low activity of the anode toward dry reforming and cracking reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  12. Microlith catalytic reactors for reforming iso-octane-based fuels into hydrogen

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Subir; Castaldi, Marco; Lyubovsky, Maxim; LaPierre, Rene; Ahmed, Shabbir

    Recent advances in the development of short contact time (SCT) reactor design approaches allow reformers capable of overcoming current barriers of cost, size, weight, complexity and efficiency associated with conventional reactor design approaches. PCI has developed an SCT based approach using a patented substrate (trademarked Microlith ®) and proprietary coating technology [1]. The high heat and mass transport properties of the substrate have been shown to significantly reduce reactor size while improving performance. Resistance to coking, especially at low H 2O:C ratios, has also been observed with these reactors. This paper summarizes the results of auto thermal reforming (ATR) of an iso-octane-based liquid fuel. In addition Microlith-based water gas shift (WGS) and preferential CO oxidation (PROX) reactors were also examined for fuel processing applications. Surprisingly, selectivity advantages for these kinetically controlled reactions were observed [2]. Examples described here include low methanation selectivity in WGS applications and large operating windows for PROX at very high space velocities. A complete reformer system with Microlith ATR, WGS and PROX reactors has been identified. Sensitivity of system size with regard to steam:carbon ratios, and the resulting implications for reactor/heat exchanger sizes were documented and a compact system identified.

  13. Fuel reforming and electrical performance studies in intermediate temperature ceria-gadolinia-based SOFCs

    NASA Astrophysics Data System (ADS)

    Livermore, Stephanie J. A.; Cotton, John W.; Ormerod, R. Mark

    The methane reforming and carbon deposition characteristics of two nickel/ceria-gadolinia cermet anodes have been studied over the temperature range 550-700°C, for use in intermediate temperature ceria-gadolinia (CGO)-based solid oxide fuel cells (SOFCs), using conventional catalytic methods and temperature-programmed spectroscopy. The electrical performance and durability of planar CGO-based SOFCs with a 280-μm-thick CGO electrolyte, screen printed cathode and different screen printed nickel/CGO cermet anodes have been studied over the temperature range 500-650°C. Temperature-programmed reduction has been used to study the reduction characteristics of the anodes, and indicates the presence of "bulk" NiO particles and smaller NiO particles in intimate contact with the ceria. Both anodes show good activity towards methane steam reforming with methane activation occurring at temperatures as low as 210°C; steady-state steam reforming of methane was observed using a methane-rich mixture at 650°C, with 20% methane conversion. Post-reaction temperature-programmed oxidation has been used to determine the amount of carbon deposited during reforming and the strength of its interaction with the anode.

  14. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-06-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  15. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  16. Millisecond autothermal catalytic reforming of carbohydrates for synthetic fuels by reactive flash volatilization

    NASA Astrophysics Data System (ADS)

    Dauenhauer, Paul Jakob

    Carbohydrates including glucose, cellulose, starch and polyols including glycerol, ethylene glycol and methanol produced in large quantities from biomass are considered as a carbon-based feedstock for high temperature catalytic reforming by catalytic partial oxidation. Autothermal catalytic partial oxidation of methanol, ethylene glycol, and glycerol with Rh and Pt-based catalysts with ceria on alumina foam supports at residence times less than ten milliseconds produced equilibrium selectivity to synthesis gas. The addition of steam at S/C>4 produced selectivity to H2 higher than 80% with little or no selectivity to minor products. In a new process referred to as 'reactive flash volatilization,' catalytic partial oxidation was combined with pyrolysis of biomass by directly impinging particles of cellulose, starch, polyethylene, soy oil, or Aspen (Populous Tremuloides) on an operating Rh-based reforming catalyst at 700-800°C. Solid particles endothermically pyrolyzed to volatile organic compounds which mixed with air and reformed on the catalyst exothermically generating heat to drive the overall process. Particles of ˜250 mum microcrystalline cellulose processed at the conditions of C/O=1.0 on a RhCe/gamma-Al2O3/alpha-Al 2O3 at a residence time of ˜70 milliseconds produced a gaseous effluent stream selecting for 50% H2 and 50% CO with no observable side products other than H2O and CO2, and <1% CH4. To obtain a more optimal synthesis gas stream, the reforming of ˜400 mum microcrystalline particles was examined over a fixed bed of RhCe/gamma-Al2O3/alpha-Al2O 3 spheres by varying the feed ratio of N2/O2, the temperature of the feed gas, the total particle feed rate, and the addition of steam permitting cellulose conversion with ˜75% fuel efficiency. Cellulose, sucrose, and glycerol particle conversion was examined with high-speed photography (1000 frames/second) revealing the formation of a liquid intermediate from cellulose permitting extremely high heat flux (

  17. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOEpatents

    Liu, Di-Jia

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  18. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  19. Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron

    NASA Astrophysics Data System (ADS)

    Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.

    2015-12-01

    The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.

  20. Hydrogen production for fuel cells through methane reforming at low temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Wen; Jun, Ki-Won; Roh, Hyun-Seog; Park, Sang-Eon

    Hydrogen production for fuel cells through methane (CH 4) reforming at low temperatures has been investigated both thermodynamically and experimentally. From the thermodynamic equilibrium analysis, it is concluded that steam reforming of CH 4 (SRM) at low pressure and a high steam-to-CH 4 ratio can be achieved without significant loss of hydrogen yield at a low temperature such as 550 °C. A scheme for the production of hydrogen for fuel cells at low temperatures by burning the unconverted CH 4 to supply the heat for SRM is proposed and the calculated value of the heat-balanced temperature is 548 °C. SRM with and/or without the presence of oxygen at low temperatures is experimentally investigated over a Ni/Ce-ZrO 2/θ-Al 2O 3 catalyst. The catalyst shows high activity and stability towards SRM at temperatures from 400 to 650 °C. The effects of O 2:CH 4 and H 2O:CH 4 ratios on the conversion of CH 4, the hydrogen yield, the selectivity for carbon monoxide, and the H 2:CO ratio are investigated at 650 °C with a constant CH 4 space velocity. Results indicate that CH 4 conversion increases significantly with increasing O 2:CH 4 or H 2O:CH 4 ratio, and the hydrogen content in dry tail gas increases with the H 2O:CH 4 ratio.

  1. REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR

    SciTech Connect

    Shamsuddin Ilias

    2003-06-30

    We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

  2. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  3. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  4. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  5. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  6. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  7. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  8. Modeling and optimization of catalytic partial oxidation methane reforming for fuel cells

    NASA Astrophysics Data System (ADS)

    Chaniotis, A. K.; Poulikakos, D.

    The objective of this paper is the investigation and optimization of a micro-reformer for a fuel cell unit based on catalytic partial oxidation using a systematic numerical study of chemical composition and inflow conditions. The optimization targets hydrogen production from methane. Additionally, the operating temperature, the amount of carbon formation and the methane conversion efficiency are taking into account. The fundamental investigation is first based on simplified reactor models (surface perfectly stirred reactor (SPRS)). A detailed surface chemistry mechanism is adopted in order to capture all the important features of the reforming process. As a consequence, the residence time of the process is taken into account, which means that the products are not necessary in equilibrium. Subsequently, in order to test the validity of the findings from the simplified reactor model, more detailed simulations (involving the Navier-Stokes equations) were performed for the regions of interest. A region where all the targeted operating conditions are satisfied and the yield of hydrogen is around 80% is identified.

  9. Development of biogas reforming Ni-La-Al catalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Benito, M.; García, S.; Ferreira-Aparicio, P.; Serrano, L. García; Daza, L.

    In this work, the results obtained for Ni-La-Al catalysts developed in our laboratory for biogas reforming are presented. The catalyst 5% Ni/5% La 2O 3-γ-Al 2O 3 has operated under kinetic control conditions for more than 40 h at 700 °C and feeding CH 4/CO 2 ratio 1/1, similar to the composition presented in biogas streams, being observed a stable behaviour. Reaction parameters studied to evaluate the catalyst activity were H 2/CO and CH 4/CO 2 conversion ratio obtained. On the basis of a CH 4 conversion of 6.5%, CH 4/CO 2 conversion ratio achieved 0.48 and H 2/CO ratio obtained was 0.43. By comparison of experimental results to equilibrium prediction for such conditions, is detectable a lower progress of reverse water gas shift reaction. This fact increases the H 2/CO ratio obtained and therefore the hydrogen production. The higher H 2/CO and a CH 4/CO 2 conversion ratio in comparison to CH 4 one close to equilibrium is due to the carbon deposits gasification which avoids catalyst deactivation. A thermodynamic analysis about the application of dry and combined methane reforming to hydrogen production for fuel cells application is presented. Data obtained by process simulation considering a Peng-Robinson thermodynamic model, allows optimizing process conditions depending on biogas composition.

  10. Study on the decontamination of surface of radioactive metal device using plasmatron

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Keun; Yang, Ik-Jun; Kim, Seung-Hyeon; Rai, Suresh; Lee, Heon-Ju

    2015-09-01

    Radioactive waste contiguously produced during operation of NPP (nuclear power plant). Therefore, KHNP (korea hydro & nuclear power co., ltd) decided to disband the NPP unit 1 in the Kori area. Since most of the metallic radioactive wastes are not contaminated ones themselves but rather ones containing polluted nuclides on their surface, the amount of wastes can be sharply reduced through decontamination process. In this study DC plasmatron and isotope sheet of radioactive cobalt was used to study the decontamination process. Decontamination can be achieved by etching the contaminated layer from the surface. Due to the restricted usage of radioactive materials, we have studied etching of Cobalt (Co) sheet to imitate the radioactive contamination. Plasma was generated using mixture gas of CF4/O2 in the ratio of 10:0, 9:1, 8:2, 7:3, 6:4 maintaining the plasma sample distance of 20 mm, 30 mm, 40 mm and exposed time of 60 sec, 120 sec, 180 sec using fixed Ar carrier gas flow rate of 1000 sccm. As a result, we obtained maximum etching rate of 9.24 μm/min when the mixture ratio of CF4/O2 gas was 4:1, which was confirmed by SEM and mass-meter. It was confirmed that more close positioning the Co samples to the plasmatron nozzle yields maximum etching rate.

  11. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC

    NASA Astrophysics Data System (ADS)

    Laosiripojana, N.; Assabumrungrat, S.

    This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. It was further observed that ethanol with steam can be used for an indirect internal reforming operation (IIR-SOFC) instead. When ethanol was first reformed by Ni/Ce-ZrO 2 at the temperature above 850 °C, the product gas can be fed to Ni/YSZ without the problem of carbon formation. Finally, it was also proposed from the present work that methanol with steam can be efficiently fed to Ni/YSZ anode (as DIR operation) at the temperature between 900 and 975 °C without the problem of carbon formation when SOFC system has sufficient space volume at the entrance of the anode chamber, where methanol can homogeneously convert to CH 4, CO, CO 2, and H 2 before reaching SOFC anode.

  12. Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pla, D.; Salleras, M.; Garbayo, I.; Morata, A.; Sabaté, N.; Divins, N. J.; Llorca, J.; Tarancón, A.

    2015-05-01

    A novel design of a fuel-flexible micro-reactor for hydrogen generation from ethanol and methane is proposed in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an array of more than 20000 through-silicon vertically aligned micro-channels per cm2 of 50 μm in diameter. Due to this unique configuration, the micro-reformer presents a total surface per projected area of 16 cm2/cm2 and per volume of 320 cm2/cm3. The active surface of the micro-reformer, i.e. the walls of the micro-channels, is homogenously coated with a thin film of Rh- Pd/CeO2 catalyst. Excellent steam reforming of ethanol and dry reforming of methane are presented with hydrogen production rates above 3 mL/min·cm2 and hydrogen selectivity of ca. 50% on a dry basis at operations conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 700-800ºC and fuel flows of 0.02 mLL/min for ethanol and 36 mLG/min for methane (corresponding to a system able to produce one electrical watt).

  13. Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel

    SciTech Connect

    Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

    2006-02-01

    The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

  14. Thermodynamic study of characteristics of the converter with separated supply of hydrocarbon fuel for thermo-oxidative and steam reforming

    NASA Astrophysics Data System (ADS)

    Bassina, I. A.; Malkov, Yu. P.; Molchanov, O. N.; Stepanov, S. G.; Troshchinenko, G. A.; Zasypkin, I. M.

    2014-04-01

    Thermodynamic studies of the converter characteristics were performed to produce hydrogen-containing syngas from hydrocarbon fuel (kerosene) with its separated supply for thermo-oxidative and steam reforming. It is demonstrated that the optimal conditions of the converter performance correlate with the oxidant ratio of α > 0.5 at the heattransfer wall temperature of 1200 K. Hydrogen content in the final syngas reaches 60 % by volume, free carbon (soot) deposition in reforming products is excluded, and there is no need to apply walls water cooling in the converter.

  15. Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung

    In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.

  16. Intermediate-temperature solid oxide fuel cell employing reformed effective biogas: Power generation and inhibition of carbon deposition

    NASA Astrophysics Data System (ADS)

    Miyake, Michihiro; Iwami, Makoto; Goto, Kenta; Iwamoto, Kazuhito; Morimoto, Koki; Shiraishi, Makoto; Takatori, Kenji; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2017-02-01

    A power generation system consisting of an intermediate-temperature solid oxide fuel cell (IT-SOFC) and an external reformer for biogas is developed, and its performance is investigated for advanced use of effective biogas. The IT-SOFC is fueled with syngas produced via biogas reforming, and is successfully operated at 600 and 700 °C using Ni0.8Cu0.2 alloy/gadolinia-doped ceria electrolyte (Ni0.8Cu0.2/GDC) cermet anodes and a LaAlO3 supported-Ni (Ni/LaAlO3) catalyst. The Ni/LaAlO3 catalyst stably exhibits high reforming performance for effective biogas at 800 °C for 27 h, and carbon deposition on the catalyst is prevented. The electrochemical performance of the Ni0.8Cu0.2/GDC cermet anode using syngas fuel possessing a H2:CO ratio of approximately 3:1 is comparable to the performance achieved with H2 fuel; the anode remains stable after 24 h of operation at 700 °C without interruption and is unaffected by carbon deposition.

  17. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  18. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  19. A passively-fed methanol steam reformer heated with two-stage bi-fueled catalytic combustor

    NASA Astrophysics Data System (ADS)

    Lo, Kai-Fan; Wong, Shwin-Chung

    2012-09-01

    This paper presents further progress on our simple novel passively-fed methanol steam reformer. The present study focuses on the development of a catalytic combustor workable with both hydrogen and methanol fuels. The aim is to reutilize the exhaust hydrogen from a fuel cell under stable operation but burn methanol during the start-up. On a copper plate, the catalytic combustor in a u-turn channel is integrally machined under a two-turn serpentine-channel reformer. To resolve the highly different fuel reactivities, a suitably diluted catalyst formula demonstrates uniform temperature distributions burning with either liquid methanol or an H2/CO2 mixture simulating the exhaust gas from a fuel cell. In a two-stage process, it first takes 25 min to reach 270 °C by burning methanol. After the fuel is switched to the H2/CO2 mixture, another 20 min is needed to attain an optimal steady state which yields a high methanol conversion of 95% and acceptably low CO fraction of 1.04% at a reaction temperature of 278 °C. The H2 and CO2 concentrations are 75.1% and 23.6%.

  20. Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support

    NASA Astrophysics Data System (ADS)

    Hoang, D. L.; Chan, S. H.; Ding, O. L.

    Experimental and modelling studies have been conducted on catalytic autothermal reforming (ATR) of methane for hydrogen production over a sulfide nickel catalyst on a gamma alumina support. The experiments are performed with different feedstock under thermally neutral conditions. The results show that the performance of the reformer is dependent on the molar air-to-fuel ratio (A/F), the molar water-to-fuel ratio (W/F) and the flowrate of the feedstock mixture. The optimum conditions for high methane conversion and high hydrogen yield are A/F = 3-3.5, W/F = 2-2.5 and a fuel flowrate below 120-250 l h -1. Under these conditions, a methane conversion of 95-99% and a hydrogen yield of 39-41% on a dry basis can be achieved and 1 mole of methane can produce 1.8 moles of hydrogen at an equilibrium reactor temperature of not exceeding 850 °C. A two-dimensional reactor model is developed to simulate the conversion behaviour of the reactor for further study of the reforming process. The model includes all aspects of the major chemical kinetics and the heat and mass transfer phenomena in the reactor. The predicted results are successfully validated with experimental data.

  1. Glass fiber entrapped sorbent for reformates desulfurization for logistic PEM fuel cell power systems

    NASA Astrophysics Data System (ADS)

    Yang, HongYun; Lu, Yong; Tatarchuk, Bruce J.

    Glass fiber entrapped ZnO/SiO 2 sorbent (GFES) was developed to remove sulfur species (mainly hydrogen sulfide, H 2S) from reformates for logistic PEM fuel cell power systems. Due to the use of microfibrous media and nanosized ZnO grains on highly porous SiO 2 support, GFES demonstrated excellent desulfurization performance and potential to miniaturize the desulfurization reactors. In the thin bed test, GFES (2.5 mm bed thickness) attained a breakthrough time of 540 min with up to 75% ZnO utilization at 1 ppm breakthrough. At equivalent ZnO loading, GFES yielded a breakthrough time twice as long as the ZnO/SiO 2 sorbent; at equivalent bed volume, GFES provided a three times longer breakthrough time (with 67% reduction in ZnO loading) than packed beds of 1-2 mm commercial extrudates. GFES is highly regenerable compared with the commercial extrudates, and can easily be regenerated in situ in air at 500 °C. During 50 regeneration/desulfurization cycles, GFES maintained its desulfurization performance and structural integrity. A composite bed consisting of a packed bed of large extrudates followed by a polishing layer of GFES demonstrated a great extension in gas life and overall bed utilization. This approach synergistically combines the high volume loading of packed beds with the overall contacting efficiency of small particulates.

  2. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  3. Rapid, online quantification of H2S in JP-8 fuel reformate using near-infrared cavity-enhanced laser absorption spectroscopy.

    PubMed

    Dong, Feng; Junaedi, Christian; Roychoudhury, Subir; Gupta, Manish

    2011-06-01

    One of the key challenges in reforming military fuels for use with fuel cells is their high sulfur content, which can poison the fuel cell anodes. Sulfur-tolerant fuel reformers can convert this sulfur into H(2)S and then use a desulfurizing bed to remove it prior to the fuel cell. In order to optimize and verify this desulfurization process, a gas-phase sulfur analyzer is required to measure H(2)S at low concentrations (<1 ppm(v)) in the presence of other reforming gases (e.g., 25-30% H(2), 10-15% H(2)O, 15% CO, 5% CO(2), 35-40% N(2), and trace amounts of light hydrocarbons). In this work, we utilize near-infrared cavity-enhanced optical absorption spectroscopy (off-axis ICOS) to quantify H(2)S in a JP-8 fuel reformer product stream. The sensor provides rapid (2 s), highly precise (±0.1 ppm(v)) measurements of H(2)S in reformate gases over a wide dynamic range (0-1000 ppm(v)) with a low detection limit (3σ = ±0.09 ppm(v) in 1 s) and minimal cross-interferences from other present species. It simultaneously quantifies CO(2) (±0.2%), CH(4) (±150 ppm(v)), C(2)H(4) (±30 ppm(v)), and H(2)O (±300 ppm(v)) in the reformed gas for a better characterization of the fuel reforming process. Other potential applications of this technology include measurement of coal syngas and H(2)S in natural gas. By including additional near-infrared, distributive feedback diode lasers, the instrument can also be extended to other reformate species, including CO and H(2).

  4. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  5. Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance

    SciTech Connect

    Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2009-03-01

    Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

  6. Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane

    NASA Astrophysics Data System (ADS)

    Wang, Qiusheng; Li, Lijun; Wang, Cheng

    A three-dimensional mathematical thermo-fluid model coupling the electrochemical kinetics with fluid dynamics was developed to simulate the heat and mass transfer in planar anode-supported solid oxide fuel cell (SOFC). The internal reforming reactions and electrochemical reactions of carbon monoxide and hydrogen in the porous anode layer were analyzed. The temperature, species mole fraction, current density, overpotential loss and other performance parameters of the single cell unit were obtained by a commercial CFD code (Fluent) and external sub-routine. Results show that the current density produced by electrochemical reactions of carbon monoxide cannot be ignored, the cathode overpotential loss is the biggest one among the three overpotential losses, and that the proper decrease of the operating voltage leads to the increase of the current density, PEN structure temperature, fuel utilization factor, fuel efficiency and power output of the SOFC.

  7. The Feasibility of Mo2C Catalysts for the Reforming of Sulfur-Laden Transportation Fuels

    DTIC Science & Technology

    2006-04-30

    bulk Mo2C catalysts for steam and dry reforming of methane at stoichiometric feeds and in the presence of sulfur, this project was undertaken to...data with methane reforming [1], it was observed that higher operating temperatures are favorable for higher conversions, and necessary to avoid...the carburizing and oxidizing gases, as observed in our previous studies during dry methane reforming (DMR) reactions [2]. The effect of space velocity

  8. Modelling of CH4 multiple-reforming within the Ni-YSZ anode of a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Tran, Dang Long; Tran, Quang Tuyen; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2017-08-01

    A new approach for the modelling of the simultaneous dry and steam reforming of CH4 (methane multiple-reforming (MMR)) within the Ni-YSZ anode of a solid oxide fuel cell (SOFC) is introduced in this paper. MMR is modelled by using artificial neural network (ANN) and fuzzy inference system (FIS) that can express the gas composition and temperature dependences of the consumption or the production rate of gaseous species involved in MMR. The necessary parameters for this approach are determined from the measured reforming kinetics for an anode-supported cell (ASC) fuelled by a CH4-CO2-H2O-N2 mixture. The developed MMR model is incorporated into a 3D-CFD planar ASC model to calculate the SOFC performance, and the calculated results match well with experimental values for the feed of simulated biogas (CH4/CO2 = 1) and H2. The established SOFC model considering MMR is a powerful tool to simulate the performance of internal reforming SOFC.

  9. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  10. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    NASA Astrophysics Data System (ADS)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  11. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    PubMed

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  12. High temperature reformation of aluminum and chlorine compounds behind the Mach disk of a solid-fuel rocket exhaust

    NASA Technical Reports Server (NTRS)

    Park, C.

    1976-01-01

    Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.

  13. Fuel Chemistry and Bed Performance in a Black Liquor Steam Reformer

    SciTech Connect

    2006-04-01

    The objective of this research is to address critical issues that inhibit successful commercialization of low-temperature BLG systems, including the steam reforming technology developed by Manufacturing and Technology Conversion International, Inc.

  14. Silicon-based miniaturized-reformer for portable fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Joong; Hwang, Sun-Mi; Ahn, Jin-Goo; Kim, Jae Jeong

    A micro-reformer was made by using silicon fabrication technology and a new catalyst loading method of 'fill-and-dry coating'. The techniques of silicon wet etching, bonding and thin-film deposition were applied in the micro-reformer process, and a commercial Cu-ZnO-Al 2O 3 catalyst served as the reforming catalyst. The volume of the single micro-reactor was 0.55 cm 3 and the micro-reformer stack, which consists of one vaporizer and two reformers, occupied 15 cm 3. Methanol solution was used as the reactant and the composition and feed rate were varied. The operating temperature of the reformer was in the range of 280-320 °C and was controlled by an electrical thin-film heater at a fixed vaporizer temperature of 150 °C. The product gas was composed of 75% H 2, 25% CO 2 and 2100 ppm CO. The maximum hydrogen production rate and conversion were about 200 cm 3 and 95% at 320 °C, respectively.

  15. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  16. Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Recknagle, Kurtis P.; Ryan, Emily M.; Koeppel, Brian J.; Mahoney, Lenna A.; Khaleel, Moe A.

    This paper examines the electrochemical and direct internal steam-methane reforming performance of the solid oxide fuel cell when subjected to pressurization. Pressurized operation boosts the Nernst potential and decreases the activation polarization, both of which serve to increase cell voltage and power while lowering the heat load and operating temperature. A model considering the activation polarization in both the fuel and the air electrodes was adopted to address this effect on the electrochemical performance. The pressurized methane conversion kinetics and the increase in equilibrium methane concentration are considered in a new rate expression. The models were then applied in simulations to predict how the distributions of direct internal reforming rate, temperature, and current density are effected within stacks operating at elevated pressure. A generic 10 cm counter-flow stack model was created and used for the simulations of pressurized operation. The predictions showed improved thermal and electrical performance with increased operating pressure. The average and maximum cell temperatures decreased by 3% (20 °C) while the cell voltage increased by 9% as the operating pressure was increased from 1 to 10 atm.

  17. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    NASA Astrophysics Data System (ADS)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  18. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  19. Canola Oil Fuel Cell Demonstration. Volume 1. Literature Review of Current Reformer Technologies

    DTIC Science & Technology

    2004-08-01

    into their base components. CH,,, -> nC + (t)H 2 This technique has a long history and has been used to convert relatively dirty fuels into clean fuels...can be converted to SI units as follows: Multiply By To Obtain acres 4,046.873 square meters cubic feet 0.02831685 cubic meters cubic inches...devices that convert chemical energy to electrical energy with very high efficiency. Due to their electrochemical conversion, fuel cell systems

  20. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    PubMed

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-06-09

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  1. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    PubMed Central

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  2. Emission Measurements of Ultracell XX25 Reformed Methanol Fuel Cell System

    DTIC Science & Technology

    2008-06-01

    combination of electrochemical devices such as fuel cell and battery. Polymer electrolyte membrane fuel cells ( PEMFC ) using hydrogen or liquid...communications and computers, sensors and night vision capabilities. High temperature PEMFC offers some advantages such as enhanced electrode kinetics and better...tolerance of carbon monoxide that will poison the conventional PEMFC . Ultracell Corporation, Livermore, California has developed a first

  3. Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Assabumrungrat, S.; Laosiripojana, N.; Piroonlerkgul, P.

    The boundary of carbon formation for the dry reforming of methane in direct internal reforming solid oxide fuel cells (DIR-SOFCs) with different types of electrolyte (i.e., an oxygen ion-conducting electrolyte (SOFC-O 2-) and a proton-conducting electrolyte (SOFC-H +)) was determined by employing detailed thermodynamic analysis. It was found that the required CO 2/CH 4 ratio decreased with increasing temperature. The type of electrolyte influenced the boundary of carbon formation because it determined the location of water formed by the electrochemical reaction. The extent of the electrochemical reaction also played an important role in the boundary of carbon formation. For SOFC-O 2-, the required CO 2/CH 4 ratio decreased with the increasing extent of the electrochemical reaction due to the presence of electrochemical water in the anode chamber. Although for SOFC-H + the required CO 2/CH 4 ratio increased with the increasing extent of the electrochemical reaction at high operating temperature (T > 1000 K) following the trend previously reported for the case of steam reforming of methane with addition of water as a carbon suppresser, an unusual opposite trend was observed at lower operating temperature. The study also considered the use of water or air as an alternative carbon suppresser for the system. The required H 2O/CH 4 ratio and air/CH 4 ratio were determined for various inlet CO 2/CH 4 ratios. Even air is a less attractive choice compared to water due to the higher required air/CH 4 ratio than the H 2O/CH 4 ratio; however, the integration of exothermic oxidation and the endothermic reforming reactions may make the use of air attractive. Water was found to be more effective than carbon dioxide in suppressing the carbon formation at low temperatures but their effect was comparable at high temperatures. Although the results from the study were based on calculations of the SOFCs with different electrolytes, they are also useful for selecting suitable feed

  4. Investigation of carbon-formation mechanisms and fuel-conversion rates in the adiabatic reformer. Annual report, March 19, 1980-March 19, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Fuel cell power plants may be required to use coal derived liquid fuels or heavy petroleum distillates as fuels. Among the fuel processor candidates, the adiabatic reformer is at the most advanced state of development. The objective of the present program is to establish a reactor model for the adiabatic reformer which will predict process stream compositions and include carbon formation processes. Four subordinate tasks were proposed to achieve the objective. These are: 1) to determine on selected catalysts rate expressions for catalytic reactions occurring in the entrance section of the adiabatic reformer; 2) to determine with microbalance experiments critical conditions for carbon formation on selected catalysts; 3) to establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for catalytic reactions and data from the literature for homogeneous gas phase reactions; and 4) to establish a model to predict carbon formation by combination of the model for process stream composition from Task 3 and data for carbon formation from Task 2. Progress is reported. (WHK)

  5. Demonstration test of a reformer employing thermal radiation media for multi-megawatt fuel cell applications

    SciTech Connect

    Morita, Y.; Horie, T.; Ogawa, M.; Mizumoto, Y.

    1996-12-31

    The authors made presentation of functions and roles of the thermal radiation media, extensive test results on the thermal radiation media sample and characteristics of an atmospheric 500kw PAFC model facility together with perspective to a 5MW class dispersed-use plant. This paper outlines the specifications and features of a prototype reformer having a capacity of 650kw class PAFC and configuration of atmospheric 500kw PAFC demonstration plant.

  6. Simulation of a fuel reforming system based on catalytic partial oxidation

    NASA Astrophysics Data System (ADS)

    Hohn, Keith L.; DuBois, Terry

    Catalytic partial oxidation (CPO) has potential for producing hydrogen that can be fed to a fuel cell for portable power generation. In order to be used for this purpose, catalytic partial oxidation must be combined with other processes, such as water-gas shift and preferential oxidation, to produce hydrogen with minimal carbon monoxide. This paper evaluates the use of catalytic partial oxidation in an integrated system for conversion of a military logistic fuel, JP-8, to high-purity hydrogen. A fuel processing system using CPO as the first processing step is simulated to understand the trade-offs involved in using CPO. The effects of water flow rate, CPO reactor temperature, carbon to oxygen ratio in the CPO reactor, temperature of preferential oxidation, oxygen to carbon ratio in the preferential oxidation reactor, and temperature for the water-gas shift reaction are evaluated. The possibility of recycling water from the fuel cell for use in fuel processing is evaluated. Finally, heat integration options are explored. A process efficiency, defined as the ratio of the lower heating value of hydrogen to that of JP-8, of around 53% is possible with a carbon to oxygen ratio of 0.7. Higher efficiencies are possible (up to 71%) when higher C/O ratios are used, provided that olefin production can be minimized in the CPO reactor.

  7. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, George; Papavasiliou, Joan; Ioannides, Theophilos; Neophytides, Stylianos

    2015-11-01

    Highly active Al-doped CuMnOx catalyst supported on metallic copper foam was prepared via the combustion method and placed adjacent to the anode electrocatalyst of a high temperature PEM fuel cell operating at 200-210 °C. The addition of aluminum oxide in the catalyst composition enhanced the specific surface area (19.1 vs. 8.6 m2 g-1) and the reducibility of the Cu-Mn spinel oxide. Accordingly, the catalytic performance of CuMnOx was also improved. The doped sample is up to 2.5 times more active than the undoped sample at 200 °C, depending on the methanol concentration at the inlet, while CO selectivity is less than 0.8% in all cases. A membrane-electrode assembly comprising the ADVENT cross-linked TPS® high-temperature polymer electrolyte was integrated with the Cu-based methanol reformer in an Internal Reforming Methanol Fuel Cell (IRMFC). In order to avoid extensive poisoning of the reforming catalyst by H3PO4, a thin separation plate was placed between the reforming catalyst and the electrooxidation catalyst. Preliminary results obtained from a single-cell laboratory prototype demonstrated the improved functionality of the unit. Indeed, promising electrochemical performance was obtained during the first 24 h, during which the required H2 for achieving 580 mV at 0.2 A cm-2, was supplied from the reformer.

  8. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro-fluidic carrier

    NASA Astrophysics Data System (ADS)

    Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.

    2014-07-01

    Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.

  9. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  10. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  11. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  13. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  14. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  15. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  16. Development of Partial Oxidizer/Reformer for PAFC(Phosphoric Acid Fuel Cell) Power Plants.

    DTIC Science & Technology

    1985-11-15

    FA-A162 781 DEVELOPMENT OF PARTIAIL OXIDIZERtEFORHERt FOR PAFC POgME V~I PLANTS(U) ENERGY RESEARCH CORP DANBURY CT L G CHRISTNER ET AL. IS NOV 85...V~ DAAK70-83-C-0035 4v" DEVELOPMENT OF PARTIAL OXIDIZER/REFORMER FOR PAFC POWER PLANTS L. CHRISTNER, G. STEINFELD ENERGY ...22060-5606 """ flc FILE COPY CONTRACT DAAK70-83-C-0035 6 Ug .9 .... , ENERGY RESEARCH CORPORATION0% NOTICE This report was prepared as an account of

  17. Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    To evaluate reaction rates for making hydrogen from methanol, kinetic studies of methanol decomposition, methanol steam reforming, the water gas shift reaction, and CO selective oxidation have been performed. These reactions were studied in a microreactor testing unit using a commercial Cu-ZnO/Al 2O 3 catalyst for the first three reactions and Pt-Fe/γ-alumina catalyst for the last reaction. The activity tests were performed between 120 and 325 °C at atmospheric pressure with a range of feed rates and compositions. For methanol decomposition, a simplified reaction network of five elementary reactions was proposed and parameters for all five rate expressions were obtained using non-linear least squares optimization, numerical integration of a one-dimensional PFR model, and extensive experimental data. Similar numerical analysis was carried out to obtain the rate expressions for methanol steam reaction, the water gas shift reaction, and CO selective oxidation. Combining the three reactors with several heat exchange options, an integrated methanol reformer system was designed and simulated using MATLAB. Using this simulation, the product distribution, the effects of reactor volume and temperature, and the options of water and air injection rates were studied. Also, a series of optimization tests were conducted to give maximum hydrogen yield and/or maximum economic profit.

  18. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    SciTech Connect

    1995-05-01

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  19. Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car

    NASA Astrophysics Data System (ADS)

    Peters, R.; Düsterwald, H. G.; Höhlein, B.

    A methanol reformer concept including a reformer, a catalytic burner, a gas cleaning unit, a PEMFC and an electric motor for use in fuel-cell-powered passenger cars was investigated. Special emphasis was placed on the dynamics and the long-term stability of the reformer. Experiments on a laboratory scale were performed in a methanol steam reformer consisting of four different reactor tubes, which were separately balanced. Due to the endothermy of the steam reforming reaction of methanol, a sharp drop in the reaction temperature of about 50 K occurs at the beginning of the catalyst bed. This agrees well with the high catalytic activity at the entrance of the catalyst bed. Forty-five percent of the methanol was converted within the first 10 cm of the catalyst bed where 12.6 g of the CuO/ZnO catalyst was located. Furthermore, CO formation during methanol steam reforming strongly depends on methanol conversion. Long-term measurements for more than 700 h show that the active reaction zone moved through the catalyst bed. Calculations, on the basis of these experiments, revealed that 63 g of reforming catalyst was necessary for mobile PEMFC applications, in this case for 400 W el at a system efficiency of 42% and a theoretical specific hydrogen production of 5.2 m 3n/(h kg Cat). This amount of catalyst was assumed to maintain a hydrogen production of at least 80% of the original amount over an operating range of 3864 h. Cycled start-up and shut-down processes of the methanol steam reformer under nitrogen and hydrogen atmospheres did not harm the catalytic activity. The simulation of the breakdown of the heating system, in which a liquid water/methanol mixture was in close contact with the catalyst, did not reveal any deactivation of the catalytic activity.

  20. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    SciTech Connect

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  1. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    SciTech Connect

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  2. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  3. Experimental characterization of meteoric material exposed to a high enthalpy flow in the Plasmatron

    NASA Astrophysics Data System (ADS)

    Zavalan, Luiza; Bariselli, Federico; Barros Dias, Bruno; Helber, Bernd; Magin, Thierry

    2017-04-01

    Meteoroids, disintegrated during their entry in the atmosphere, contribute massively to the input of cosmic metals to Earth. Yet, this phenomenon is not well understood. Experimental studies on meteor material degradation in high enthalpy facilities are scarce and often do not provide quantitative data which are necessary for the validation of the simulation tools. In this work, we tried to duplicate typical meteor flight conditions in a ground testing facility to analyze the thermo-chemical degradation mechanisms by reproducing the stagnation point region conditions. The VKI Plasmatron is one of the most powerful induction-coupled plasma wind-tunnels in the world. It represents an important tool for the characterization of ceramic and ablative materials employed in the fabrication of Thermal Protection Systems (TPS) of spacecraft. The testing methodology and measurement techniques used for TPS characterization were adapted for the investigation of evaporation and melting in samples of basalt (meteorite surrogate) and ordinary chondrite. The materials were exposed to stagnation point heat fluxes of 1 MW/m2 and 3 MW/m2. During the test, numerous local pockets were formed at the surface of the samples by the emergence of gas bubbles. Images recorded through a digital 14bit CCD camera system clearly revealed the frothing of the surface for both tested materials. This process appeared to be more heterogeneous for the basaltic samples than for the ordinary chondritic material. Surface temperature measurements obtained via a two-color pyrometer showed a maximum surface temperature in the range between 2160 and 2490 Kelvins. Some of the basaltic samples fractured during the tests. This is probably due to the strong thermal gradients experienced by the material in these harsh conditions. Therefore, the surface temperature measurements suffered sudden drops in correspondence with the fracturing time. Emission spectra of air and ablated species were collected with resolution

  4. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    Dynamic modeling and analysis of solid oxide fuel cell systems can provide insight towards meeting transient response application requirements and enabling an expansion of the operating envelope of these high temperature systems. SOFC modeling for system studies are accomplished with channel-level interface charge transfer models, which implement dynamic conservation equations coupled with additional submodels to capture the porous media mass transport and electrochemistry of the cell. Many of these models may contain simplifications in order to decouple the mass transport, fuel reforming, and electrochemical processes enabling the use of a 1-D model. The reforming reactions distort concentration profiles of the species within the anode, where hydrogen concentration at the triple-phase boundary may be higher or lower than that of the channel altering the local Nernst potential and exchange current density. In part one of this paper series, the modeling equations for the 1-D and 'quasi' 2-D models are presented, and verified against button cell electrochemical and channel-level reforming data. Steady-state channel-level modeling results indicate a 'quasi' 2-D SOFC model predicts a more uniform temperature distribution where differences in the peak cell temperature and maximum temperature gradient are experienced. The differences are most prominent for counter-flow cell with high levels of internal reforming. The transient modeling comparison is discussed in part two of this paper series.

  5. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    NASA Astrophysics Data System (ADS)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  6. Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Jang, Won-Jun; Hong, Young Jun; Kim, Hak-Min; Shim, Jae-Oh; Roh, Hyun-Seog; Kang, Yun Chan

    2017-06-01

    A facile and scalable spray pyrolysis process is applied to synthesize multi-shelled Ni-loaded yolk-shell catalysts on various supports (Al2O3, CeO2, ZrO2, and La(OH)3). The prepared catalysts are applied to direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Even on exposure to alkali hydroxide vapors, the Ni-loaded yolk-shell catalysts remain highly active for DIR-MCFCs. The Ni@Al2O3 microspheres show the highest conversion (92%) of CH4 and the best stability among the prepared Ni-loaded yolk-shell catalysts. Although the initial CH4 conversion of the Ni@ZrO2 microspheres is higher than that of the Ni@CeO2 microspheres, the Ni@CeO2 microspheres are more stable. The catalytic performance is strongly dependent on the surface area and acidity and also partly dependent on the reducibility. The acidic nature of Al2O3 combined with its high surface area and yolk-shell structure enhances the adsorption of CH4 and resistance against alkali poisoning, resulting in efficient DIR-MCFC reactions.

  7. Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels

    DOE PAGES

    Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; ...

    2017-01-07

    Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon presentmore » in this stream. Our work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). Furthermore, the MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.« less

  8. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    NASA Astrophysics Data System (ADS)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  9. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  10. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Hsiang; Hong, Wen-Tang; Huang, Wei-Ping; Tsai, Yu-Ching; Wang, Hung-Yu; Huang, Cheng-Nan; Lee, Chien-Hsiung

    An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of U f = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.

  11. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  12. Auto-Thermal Reforming of Jet-A Fuel over Commercial Monolith Catalysts: MicroReactor Evaluation and Screening Test Results

    NASA Technical Reports Server (NTRS)

    Yen, Judy C. H.; Tomsik, Thomas M.

    2004-01-01

    This paper describes the results of a series of catalyst screening tests conducted with Jet-A fuel under auto-thermal reforming (ATR) process conditions at the research laboratories of SOFCo-EFS Holdings LLC under Glenn Research Center Contract. The primary objective is to identify best available catalysts for future testing at the NASA GRC 10-kW(sub e) reformer test facility. The new GRC reformer-injector test rig construction is due to complete by March 2004. Six commercially available monolithic catalyst materials were initially selected by the NASA/SOFCo team for evaluation and bench scale screening in an existing 0.05 kW(sub e) microreactor test apparatus. The catalyst screening tests performed lasted 70 to 100 hours in duration in order to allow comparison between the different samples over a defined range of ATR process conditions. Aging tests were subsequently performed with the top two ranked catalysts as a more representative evaluation of performance in a commercial aerospace application. The two catalyst aging tests conducted lasting for approximately 600 hours and 1000 hours, respectively.

  13. Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst

    NASA Astrophysics Data System (ADS)

    Wan, Tingting; Zhu, Ankang; Guo, Youmin; Wang, Chunchang; Huang, Shouguo; Chen, Huili; Yang, Guangming; Wang, Wei; Shao, Zongping

    2017-04-01

    In this study, a proton conducting solid oxide fuel cell (layered H+-SOFC) is prepared by introducing a La2NiO4perovskite oxide with a Ruddlesden-Popper structure as a catalyst layer onto a conventional NiO + BaZr0.4Ce0.4Y0.2O3-δ (NiO + BZCY4) anode for in situ CO2 dry reforming of methane. The roles of the La2NiO4 catalyst layer on the reforming activity, coking tolerance, electrocatalytic activity and operational stability of the anodes are systematically studied. The La2NiO4 catalyst layer exhibits greater catalytic performance than the NiO + BZCY4 anode during the CO2 dry reforming of methane. An outstanding coking resistance capability is also demonstrated. The layered H+-SOFC consumes H2 produced in situ at the anode and delivers a much higher power output than the conventional cell with the NiO + BZCY4 anode. The improved coking resistance of the layered H+-SOFC results in a steady output voltage of ∼0.6 V under a constant current density of 200 mA cm-2. In summary, the H+-SOFC with La2NiO4 perovskite oxide is a potential energy conversion device for CO2 conversion and utilization with co-generation of electricity and syngas.

  14. Structural and chemical analysis by transmission electron microscopy of Pt-Ru membrane precipitates in proton exchange membrane fuel cell aged under reformate

    NASA Astrophysics Data System (ADS)

    Henry, Philémon A.; Guétaz, Laure; Pélissier, Nathalie; Jacques, Pierre-André; Escribano, Sylvie

    2015-02-01

    Carbon supported platinum-ruthenium (Pt-Ru/C) nanoparticles are used as anode catalysts in proton exchange membrane fuel cells (PEMFCs) operated under reformate owing to their good carbon monoxide tolerance. The stability of these catalysts during fuel cell operation is still not well known. In this work, we have studied by transmission electron microscopy (TEM) the microstructural evolution of a membrane/electrode assembly after a 1000 h ageing test under reformate (26 ppm CO). The analyses clearly show dissolution of Ru from the Pt-Ru/C anode catalysts, its diffusion and precipitation within the anode micro-porous layer and within the membrane. The structure and the chemistry of the membrane precipitates were accurately analysed. The high resolution TEM images and EDS (Energy Dispersive X-Ray Spectroscopy) Pt, Ru elemental maps show that the largest precipitates display a singular flower shape consisting of a Pt-rich face-centred cubic (fcc) crystallographic structure core and Ru-rich hexagonal close-packed (hcp) crystallographic structure shell. These results suggest that within the membrane the Ru reduction is catalysed by Pt. Moreover, the localization of the precipitation band near the cathode seems to indicate that the Pt in the precipitates comes from the dissolution of cathodic Pt/C and that both Pt and Ru ions are reduced by the hydrogen crossover.

  15. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    SciTech Connect

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V.; Kingma, H.; Van de Berg, R.

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  16. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    NASA Astrophysics Data System (ADS)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V.; Kingma, H.; Van de Berg, R.

    2016-04-01

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  17. Investigation of sulfur interactions on a conventional nickel-based solid oxide fuel cell anode during methane steam and dry reforming

    NASA Astrophysics Data System (ADS)

    Jablonski, Whitney S.

    Solid oxide fuel cells (SOFC) are an attractive energy source because they do not have undesirable emissions, are scalable, and are feedstock flexible, which means they can operate using a variety of fuel mixtures containing H2 and hydrocarbons. In terms of fuel flexibility, most potential fuel sources contain sulfur species, which severely poison the nickel-based anode. The main objective of this thesis is to systematically evaluate sulfur interactions on a conventional Ni/YSZ anode and compare sulfur poisoning during methane steam and dry reforming (SMR and DMR) to a conventional catalyst (Sud Chemie, Ni/K2O-CaAl2O4). Reforming experiments (SMR and DMR) were carried out in a packed bed reactor (PBR), and it was demonstrated that Ni/YSZ is much more sensitive to sulfur poisoning than Ni/K2O-CaAl2O4 as evidenced by the decline in activity to zero in under an hour for both SMR and DMR. Adsorption and desorption of H2S and SO2 on both catalysts was evaluated, and despite the low amount of accessible nickel on Ni/YSZ (14 times lower than Ni/K2O-CaAl2O4), it adsorbs 20 times more H2S and 50 times more SO2 than Ni/K 2O-CaAl2O4. A one-dimensional, steady state PBR model (DetchemPBED) was used to evaluate SMR and DMR under poisoning conditions using the Deutschmann mechanism and a recently published sulfur sub-mechanism. To fit the observed deactivation in the presence of 1 ppm H2S, the adsorption/desorption equilibrium constant was increased by a factor 16,000 for Ni/YSZ and 96 for Ni/K2O-CaAl2O4. A tubular SAE reactor was designed and fabricated for evaluating DMR in a reactor that mimics an SOFC. Evidence of hydrogen diffusion through a supposedly impermeable layer indicated that the tubular SAE reactor has a major flaw in which gases diffuse to unintended parts of the tube. It was also found to be extremely susceptible to coking which leads to cell failure even in operating regions that mimic real biogas. These problems made it impossible to validate the tubular SAE

  18. MPC improves reformer control

    SciTech Connect

    Jung, C.S.; Noh, K.K.; Yi, S.; Kim, J.S.; Song, H.K.; Hyun, J.C.

    1995-04-01

    A model predictive control strategy was applied to a synthesis gas reformer of Samsung-BP Chemicals in Korea that produces carbon monoxide and hydrogen from naphtha. A strongly endothermic reaction occurs in a catalytic reformer, and reformer outlet temperature is considered to have the most significant effect on product composition. The newly developed reformer is known to be a cost-effective process operating at high reaction temperatures and low steam-to-carbon ratio, but its drawback is temperature control difficulty due to the use of offgas as a part of the fuel. Without smooth control of the reformer outlet temperature, stable operation of the downstream separation units cannot be expected. Therefore, it is a great challenge to apply a model predictive control technique for tight control of reformer outlet temperature. The paper describes model predictive control, the process advanced control project, computer system architecture, analysis of operating condition, control structure, sampling rate, and disturbance estimation.

  19. Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells

    NASA Astrophysics Data System (ADS)

    Iulianelli, A.; Liguori, S.; Huang, Y.; Basile, A.

    2015-01-01

    Steam reforming of a model biogas mixture is studied for generating clean hydrogen by using an inorganic membrane reactor, in which a composite Pd/Al2O3 membrane separates part of the produced hydrogen through its selective permeation. The characteristics of H2 perm-selectivity of the fresh membrane is expressed in terms of H2/N2 ideal selectivity, in this case equal to 4300. Concerning biogas steam reforming reaction, at 380 °C, 2.0 bar H2O:CH4 = 3:1, GHSV = 9000 h-1 the permeate purity of the recovered hydrogen is around 96%, although the conversion (15%) and hydrogen recovery (>20%) are relatively low; on the contrary, at 450 °C, 3.5 bar H2O:CH4 = 4:1, GHSV = 11000 h-1 the conversion is increased up to more than 30% and the recovery of hydrogen to about 70%. This novel work constitutes a reference study for new developments on biogas steam reforming reaction in membrane reactors.

  20. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    SciTech Connect

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  1. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  2. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  3. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  4. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    NASA Astrophysics Data System (ADS)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  5. A new alkali-resistant Ni/Al2O3-MSU-1 core-shell catalyst for methane steam reforming in a direct internal reforming molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Xiongfu; Liu, Weifeng; Liu, Haiou; Qiu, Jieshan; Yeung, King Lun

    2014-01-01

    An alkali-resistant catalyst for direct internal reforming molten carbonate fuel cell (DIR-MCFC) is prepared by growing a thin shell of mesoporous MSU-1 membrane on Ni/Al2O3 catalyst beads. The MSU-1 shell is obtained by first depositing a monolayer of colloidal silicalite-1 (Sil-1) on the catalyst bead as linkers and then using NaF stored in the beads to catalyze the growth of the MSU-1 layer. The resulting core-shell catalysts display excellent alkali-resistance and deliver stable methane conversion and hydrogen yield in an out-of-cell test simulating the operating conditions of an operating DIR-MCFC. Higher conversion and yield (i.e., up to over 70%) are obtained from the new core-shell catalyst with MSU-1 shell compared to the catalyst with microporous Sil-1 shell. A mathematical model of the reaction and poisoning of the core-shell catalyst is used to predict the optimum shell thickness for its reliable use in a DIR-MCFC.

  6. Military Solid Waste Reformer: A Pilot Study to Convert Military Waste to Logistics Fuel in the Field

    DTIC Science & Technology

    2004-08-01

    liquid fuels from gasification products was to convert H2 and CO to methanol using Fischer-Trøpsch synthesis at ~250°C and 50-100 bar. An obstacle to...polypropylene (PP), and polystyrene (PS) Biopolymer: poly-hydroxybutyrate ( PHB ) The fluff was the remainder of the Ft. Benning waste after most...understand if biopolymers can be converted in the same process as the conventional petroleum-based polymers. The PHB was used as a surrogate for the poly

  7. Understanding the effect of reformate gas components and stack component impurities on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Gu, Tao

    The performance can be lost depending on the concentration and type of reformate components. Gas crossover in PEMFCs can also cause performance loss and these effects are also presented. Impurities such as acetone coming from composite stack components and sealants can also deteriorate the performance severely. Electrochemical impedance spectroscopy (EIS) is used as a diagnostic tool to study the impurity poisoning. Reformate contains N2 and CO2 and these components affect performance differently. These effects were quantified using anode overvoltage. Data for anode overvoltage shows that CO2 yields a significant poisoning effect (about 30 mV) on a Pt electrode. Cyclic voltammetry (CV) data showed that CO was produced in-situ from CO2 and H 2 (reverse water gas shift (RWGS) reaction) on both Pt and Pt/Ru electrodes. The coverage of CO achieved by RWGS can reach 5 x 10-7 mol/cm2 on an electrode with 0.4 mg/cm2 Pt under open circuit with normal operating conditions. This work also investigated how pressure, gas composition, and temperature affect the RWGS reaction in a PEMFC for both Pt and Pt/Ru alloy catalysts. The data are shown to be consistent with a kinetic catalytic model and not with an equilibrium model. Data was presented on H2 and O2 crossover in PEMFCs. Electrochemical techniques and mass balance measurements were used to quantify the crossover under typical working conditions. Mixed potential theory was applied to analyze the effect of gas crossover on open circuit voltage (OCV) of PEMFCs. Off-gassing from bipolar plates previously identified styrene, acetone, t-butyl alcohol, and dimethyl succinate as impurities. The effects of those impurities were quantified with both poisoning-recovery transient curves and steady state VI curves before, during, and after poisoning on anode and cathode side respectively. The poisoning effects of them to the anode side are smaller than to the cathode side. Cyclic voltammetry and electrochemical impedance spectroscopy

  8. Reforming Science: Structural Reforms

    PubMed Central

    2012-01-01

    Science has a critical role to play in addressing humanity's most important challenges in the twenty-first century. However, the contemporary scientific enterprise has developed in ways that prevent it from reaching maximum effectiveness and detract from the appeal of a research career. To be effective, the methodological and culture reforms discussed in the accompanying essay must be accompanied by fundamental structural reforms that include a renewed vigorous societal investment in science and scientists. PMID:22184420

  9. Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology

    NASA Astrophysics Data System (ADS)

    Shiratori, Y.; Sakamoto, M.

    2016-11-01

    Direct internal reforming (DIR) operation of a solid oxide fuel cell (SOFC) is a very attractive concept for downsizing and cost reduction of SOFC systems. This study aimed to develop stable operation of a DIR-SOFC fuelled by biogas. The current-voltage (I-V) curves of 2 × 2 cm2 planar SOFCs (anode- and electrolyte-supported cells, ASC and ESC, respectively.) were measured at 800 °C in the direct feed of a simulated biogas mixture (CH4/CO2 = 1), and the flexible structured catalyst material (paper-structured catalyst (PSC)) was applied on the anode material for performance enhancement. By applying a hydrotalcite (HT)-dispersed PSC (HT-PSC), the sulfur tolerance of the SOFC in the DIR operation was remarkably improved. By the effect of the HT-PSC, for both ASC and ESC, a stable cell voltage higher than 800 mV was obtained over 200 h at 0.2 A cm-2 in the direct feed of simulated biogas under 5 ppm H2S poisoning.

  10. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  11. Fuel processing requirements and techniques for fuel cell propulsion power

    SciTech Connect

    Kumar, R.; Ahmed, S.; Yu, M.

    1993-08-01

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  12. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    NASA Astrophysics Data System (ADS)

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-10-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min‑1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm‑2 and a high limiting current density of 2.83 A cm‑2 at 650 °C. It performs steadily for 96 h at 0.4 A cm‑2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode.

  13. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  14. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles.

    PubMed

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-10-24

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min(-1), the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm(-2) and a high limiting current density of 2.83 A cm(-2) at 650 °C. It performs steadily for 96 h at 0.4 A cm(-2) without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode.

  15. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  16. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  17. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    DTIC Science & Technology

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  18. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  19. Applications of solar reforming technology

    SciTech Connect

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  20. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    DTIC Science & Technology

    2007-10-01

    electrolyte membrane fuel cell ( PEMFC ). At the higher operating temperature, fuel reforming of natural gas can occur internally, eliminating the need...oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig

  1. Fuel Reforming Technologies (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    FL 32403-5323 Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public... reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204

  2. Autothermal Reforming of Renewable Fuels

    SciTech Connect

    Schmidt, Lanny D

    2009-05-01

    The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.

  3. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  4. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  5. Reforming catalysts

    SciTech Connect

    Givens, E.N.; Plank, C.J.; Rosinski, E.J.

    1980-03-04

    Crystalline aluminosilicate zeolites are mixed with conventional reforming catalysts to produce new catalytic compositions with high catalytic activity and selectivity and excellent aging characteristics. These new catalytic compositions may be utilized alone or in conjunction with conventional reforming catalysts. The acidic activity of the total catalyst system is controlled within defined limits. When so controlled the utility of these catalyst systems in reforming hydrocarbon mixtures is to reduce the C1 and C2 concentrations in reformer gas product, while increasing the C3 and C4 concentrations and maintaining high liquid yield at high octane numbers.

  6. Diesel reforming for SOFC auxiliary power units

    SciTech Connect

    Borup, R. L.; Parkinson, W. J. ,; Inbody, M. A.; Tafoya, J. I.; Guidry, D. R.

    2004-01-01

    The use of a solid-oxide fuel cell (SOFC) to provide auxiliary power for heavy duty trucks can increase fuel efficiency and reduce emissions by reducing engine idling time. The logical fuel of choice for a truck SOFC APU is diesel fuel, as diesel is the fuel of choice for these vehicles. SOFC's that directly oxidize hydrocarbon fuels have lower power densities than do SOFC's that operate from hydrocarbon reformate, and since the SOFC is a costly component, maximizing the fuel cell power density provides benefits in reducing the overall APU system cost. Thus current SOFC APU systems require the reformation of higher hydrocarbons for the most efficient and cost effect fuel cell system. The objective of this research is to develop the technology to enable diesel reforming for SOFC truck APU applications. Diesel fuel can be reformed into a H{sub 2} and CO-rich fuel feed stream for a SOFC by autothermal reforming (ATR), a combination of catalytic partial oxidation (CPOx), and steam reforming (SR). The typical autothermal reformer is an adiabatic, heterogeneous catalytic reactor and the challenges in its design, operation and durability on diesel fuel are manifold. These challenges begin with the vaporization and mixing of diesel fuel with air and steam where fuel pyrolysis can occur and improper mixing leads to hot and cold spots, which contribute to carbon formation and incomplete fuel conversion. The exotherm of the partial oxidation reaction can generate temperatures in excess of 800 C, a temperature at which catalysts rapidly sinter, thus reducing their lifetime. The temperature rise can be reduced by the steam reforming endotherm, but this requires the addition of water along with proper design to balance the kinetic rates. Carbon formation during operation and startup can lead to catalyst deactivation and fouling of downstream components, thus reducing durability of the fuel processor. Water addition helps to reduce carbon formation, but a key issue is the source

  7. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  8. Autothermal hydrodesulfurizing reforming method and catalyst

    DOEpatents

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  9. Hydrocarbon reforming catalyst material and configuration of the same

    DOEpatents

    Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  10. Hydrocarbon reforming catalyst material and configuration of the same

    DOEpatents

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  11. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  12. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  13. Improved fuel cell system for transportation applications

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, M.K.

    1991-12-31

    This invention is comprised of a propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  14. Educational Reform.

    ERIC Educational Resources Information Center

    Winter, Janet

    The need exists for educational reform. Student achievement scores are down, unemployment and dropout rates are up, social and welfare costs are up, economic productivity has declined, and shortages of qualified teachers are imminent. After Chapter 1 of this paper provides background and history for school reform, Chapter 2 reviews the literature,…

  15. Fuel Cell Introduction into a Class 8 Truck

    DTIC Science & Technology

    2003-09-11

    tractor and a plan for modeling was initiated. As prograas is made with Solid Oxide Fuel Cell ( SOFC ) technology, the reformer to mate with the SOFC ...made with Solid Oxide Fuel Cell ( SOFC ) technology, the reformer to mate with the SOFC will be markedly different from current reformers and remains the...zeolite based air conditioning system. Thl$ work is still in progress. As progress is made ’IIIith Solid Oxide Fuel Cell ( SOFC ) technology, the reformer

  16. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  17. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    SciTech Connect

    Kreutz, Thomas G; Ogden, Joan M

    2000-07-01

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

  18. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  19. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  20. Reforming process

    SciTech Connect

    Mitsche, R.T.; Pope, G.N.

    1981-01-06

    A process for reforming a naphtha feedstock is disclosed. The reforming process is effected at reforming conditions in contact with a catalyst comprising a platinum group metal component and a group iv-a metal component composited with an alumina support wherein said support is prepared by admixing an alpha alumina monohydrate with an aqueous ammoniacal solution having a ph of at least about 7.5 to form a stable suspension. A salt of a strong acid, e.g., aluminum nitrate, is commingled with the suspension to form an extrudable paste or dough. On extrusion, the extrudate is dried and calcined to form said alumina support.

  1. Sulfur Tolerance of Carbide Catalysts Under Hydrocarbon Reforming Conditions

    DTIC Science & Technology

    2007-11-02

    dry and steam reforming methane have been determined. In particular it has been found that these catalyst can be kept stable by either operating at...oxidation. The approach was to start with a simple hydrocarbon fuel ( methane ) and investigate catalyst stability in both dry and steam reforming and...the catalyst under dry and steam reforming conditions • Determination of the kinetics of dry methane reforming over bulk Mo2C catalysts

  2. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOEpatents

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  3. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  5. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  6. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  7. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  8. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  9. Performance of a Diesel, JP-8 Reformer

    DTIC Science & Technology

    2006-11-01

    reformate gas that can be directly used by the fuel cells. To reduce logistics problem, the Army has one logistic fuel ( Diesel or JP-8) policy. Diesel ...significantly higher fuel to electrons efficiency . More detailed results will be presented at the conference. 2. MICROLITH TECHNOLOGY The heat and mass...and H2O:C ratios was studied with both JP-8 and diesel . The reformate gas was analyzed by a GC at various S:C and O:C ratios, inlet temperatures and

  10. Tort reform: the pathologists' perspective.

    PubMed

    Foucar, Elliott; Wick, Mark R

    2007-05-01

    Physicians who become ensnarled in malpractice litigation often feel that the tort system has treated them unfairly. This negative perception has fueled physician efforts to enact "reforms" intended to mitigate the damage that allegations of medical negligence currently have on both individual physicians and on the practice of medicine itself. Although physicians are generally enthusiastic about "reform," there is currently no definition that allows tort "reform" to be separated from related initiatives. Some physicians largely restrict the term to defendant-friendly changes in the rules and procedures governing the workings of the tort system, whereas others take a somewhat broader view. In the present paper, we have favored the broader approach to the topic, leading to a discussion of 30 measures that have been presented in the context of tort "reform." Although most of these measures involve changes in the complex rules governing the malpractice tort system itself (eg, capping jury awarded damages), our broader view of "reform" also includes attempts to exert influence on the tort system from the outside (eg, peer review of expert testimony) and measures designed to keep patient dissatisfaction out of the tort system (eg, apology for error). Some would argue for an even broader view of tort "reform" that would including measures for reducing the pool of dissatisfied patients. For example, trial lawyers have claimed that physicians have put far too much effort into "reforms" that reduce the legal consequences of committing medical errors, and not enough effort into "reforms" that would reduce the errors themselves. The latter point may or may not have some validity, but there is a natural demarcation between measures designed to align medical outcomes with patient expectations (eg, error reduction, better diagnostic technology) and others designed to improve the processes that resolve patient dissatisfaction. Only the latter meet our definition of tort "reform."

  11. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  12. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  13. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  14. Naphtha reforming

    SciTech Connect

    Marschner, F.; Renner, H.J.

    1982-04-01

    Most synthesis gases - mixtures of CO and H/sub 2/ - are produced from natural gas. However, a considerable percentage is also produced from naphtha. Syngas via naphtha is economical when natural gas is unavailable and when low hydrogen content syngas is needed. The discussion covers the following topics - catalytic steam reforming; naphtha qualities; process description; desulfurization reactors; rich gas reactors; tubular reactors; fire box; burner and firing systems; reformer tubes; inlet header and outlet manifold systems; waste heat systems, heat exchangers, piping. 10 refs.

  15. Advanced Diesel Oil Fuel Processor Development

    DTIC Science & Technology

    1986-06-01

    Fuel Cell Power Plants ," EPRI Report EM-2686, Octobe: 1982. 4. R. G. Minet and D. Warren, "Evaluation of Hybrid TER-1,TR Fuel Processor," EPRI Report ...EM-2096, October 1981. 5. R. G. Minet and D. Warren, "Assessment of Fuel Processing aysiems for Dispersed Fuel Cell Power Plants ,’ EPRI Report EM...34Fuel Processor Development for !i.- MW Fuel Cell Power Plants ,4 EPRI Report EM-1123, July 1985. 9. M. HI. Hyman, "Simulate Methane Reformer

  16. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

    PubMed Central

    Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo

    2012-01-01

    Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548

  17. Reform Evaluation.

    ERIC Educational Resources Information Center

    Yoloye, E. Ayotunde

    1981-01-01

    Focuses on issues in evaluating educational change. Topics include what should be evaluated, management of reform and evaluation, evaluation as a threat, attitudes toward evaluation, factors in drawing up an evaluation plan, management information systems, evaluation techniques, financing evaluation, and indicators of success. (KC)

  18. Toothless Reform?

    ERIC Educational Resources Information Center

    Smarick, Andy

    2010-01-01

    To many education reformers, the passage of the federal government's massive stimulus plan, the American Recovery and Reinvestment Act (ARRA), appeared to be a final bright star falling into alignment. The ARRA seemed to complete the constellation: an astounding $100 billion of new federal funds--nearly twice the annual budget of the U.S.…

  19. Rethinking Reform

    ERIC Educational Resources Information Center

    Garland, James C.

    2010-01-01

    As president of Miami University of Ohio from 1996 until 2006, James C. Garland redefined the public institution as a "semi-private" university by implementing the same tuition for both in-state and out-of-state students. Students from Ohio with need received large scholarships--but those who could afford to pay more did so. The reform,…

  20. Toothless Reform?

    ERIC Educational Resources Information Center

    Smarick, Andy

    2010-01-01

    To many education reformers, the passage of the federal government's massive stimulus plan, the American Recovery and Reinvestment Act (ARRA), appeared to be a final bright star falling into alignment. The ARRA seemed to complete the constellation: an astounding $100 billion of new federal funds--nearly twice the annual budget of the U.S.…

  1. Hydrogen generation having CO2 removal with steam reforming

    DOEpatents

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  2. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  3. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    NASA Astrophysics Data System (ADS)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  4. One-Step Reforming of CO2 and CH4 into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Catalysis.

    PubMed

    Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen; Tu, Xin

    2017-08-25

    The conversion of CO2 with CH4 into liquid fuels and chemicals in a single-step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one-step process from CO2 and CH4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50-60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH4 and CO2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  6. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOEpatents

    Shockling, Larry A.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) to form a reformable mixture, where a reforming chamber (54) contains an outer portion containing reforming material (56), an inner portion preferably containing a mixer nozzle (50) and a mixer-diffuser (52), and a middle portion (64) for receiving spent fuel, where the mixer nozzle (50) and mixer-diffuser (52) are preferably both within the reforming chamber (54) and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material (56), and the mixer nozzle (50) can operate below 400.degree. C.

  7. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOEpatents

    Shockling, L.A.

    1991-09-10

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

  8. Reforming catalyst

    SciTech Connect

    Baird, W.C. Jr.; Swan, G.A.

    1991-11-19

    This patent describes a catalyst useful for reforming a naphtha feed at high severity reforming conditions. It comprises the metals, platinum, rhenium and iridium on a refractory porous inorganic oxide support, the support consisting essentially of alumina, wherein the concentration by weight of each of the metals platinum and rhenium is at least 0.1 percent and iridium at least 0.15 percent and at least one of the metals is present in a concentration of at least 0.3 percent, and the sum-total; concentration of the metals is greater than 0.9 percent, and wherein each catalyst particle contains all three of the metals platinum, rhenium and iridium. This patent also describes this composition wherein the catalyst contains from about 0.1 percent to about 3 percent of a halogen and from about 0.05 percent to about 0.02 percent sulfur.

  9. Reforming Science Education.

    ERIC Educational Resources Information Center

    Donmoyer, Robert, Ed.; Merryfield, Merry M., Ed.

    1995-01-01

    This theme issue highlights the diversity of reform initiatives in order to provide a deep understanding of the complexities associated with educational reform in general and the reform of science education in particular. Systemic reform initiatives at the national and state levels along with locally-inspired efforts at reform are outlined.…

  10. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  12. Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.

    DTIC Science & Technology

    1985-11-27

    report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No

  13. 500-WATT FUEL-CELL POWER PLANT.

    DTIC Science & Technology

    hydrogen and air, fuel - cell power plant. Two independent units are to be developed - a hydrogen-generator assembly and a fuel - cell assembly. The...hydrogen-generator assembly will convert the hydrocarbon fuel to hydrogen by steam reforming, and the fuel - cell assembly will electrochemically oxidize the...The report presents the technical approach to be used to establish the feasibility of a compact 500-watt, liquid-hydrocarbon and air, fuel - cell power

  14. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  15. Production of hydrogen-rich gas from methane by thermal plasma reform.

    PubMed

    Chun, Young N; Kim, Seong C

    2007-12-01

    This study investigated the reforming characteristics and optimum operating condition of the high-temperature plasma torch (so called plasmatron) for hydrogen-rich gas (syngas) production. At the optimum condition, the composition of produced syngas was 45.4% hydrogen (H2), 6.9% carbon monoxide (CO), 1.5% carbon dioxide (CO2), and 1.1% acetylene (C2H2). The H2/CO ratio was 6.6, hydrogen yield was 78.8%, and the energy conversion rate was 63.6%. To obtain the optimum operating condition, parametric studies were carried out examining the effects of O2/CH4 ratio, steam/CH4 ratio, and Ni catalyst addition in reactor. When the steam/CH4 ratio was 1.23, the production of hydrogen was maximized and the methane conversion rate was 99.7%. The syngas composition was determined to be 50.4% H2, 5.7% CO, 13.8% CO2, and 1.1% C2H2. The H2/CO ratio was 9.7, hydrogen yield was 93.7%, and the energy conversion rate was 78.8%. Hydrogen production with catalyst was effective, compared with no catalyst.

  16. Low Cost Autothermal Diesel Reforming Catalyst Development

    SciTech Connect

    Shihadeh, J.; Liu, D.

    2004-01-01

    Catalytic autothermal reforming (ATR) represents an important step of converting fossil fuel to hydrogen rich reformate for use in solid oxide fuel cell (SOFC) stacks. The state-of-the-art reforming catalyst, at present, is a Rh based material which is effective but costly. The objective of our current research is to reduce the catalyst cost by finding an efficient ATR catalyst containing no rhodium. A group of perovskite based catalysts have been synthesized and evaluated under the reforming condition of a diesel surrogate fuel. Hydrogen yield, reforming efficiency, and conversion selectivity to carbon oxides of the catalyst ATR reaction are calculated and compared with the benchmark Rh based material. Several catalyst synthesis improvements were carried out including: 1) selectively doping metals on the A-site and B-site of the perovskite structure, 2) changing the support from perovskite to alumina, 3) altering the method of metal addition, and 4) using transition metals instead of noble metals. It was found that the catalytic activity changed little with modification of the A-site metal, while it displayed considerable dependence on the B-site metal. Perovskite supports performed much better than alumina based supports.

  17. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether

    NASA Astrophysics Data System (ADS)

    Faungnawakij, Kajornsak; Kikuchi, Ryuji; Eguchi, Koichi

    Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0-5) and reforming temperature (25-1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO 2, CO, H 2, H 2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH 4 was favorable, production of coke and that of hydrogen were significantly suppressed.

  18. Dimensions of health system reform.

    PubMed

    Frenk, J

    1994-01-31

    During recent years there has been a growth of worldwide interest in health system reform. Countries at all levels of economic development are engaged in a creative search for better ways of organizing and financing health care, while promoting the goals of equity, effectiveness, and efficiency. Together with economic, political, and ideological reasons, this search has been fueled by the need to find answers to the complexities posed by the epidemiologic transition, whereby many nations are facing the simultaneous burdens of old, unresolved problems and new, emerging challenges. In order to better understand reform attempts, it is necessary to develop a clear conception of the object of reform: the health system. This paper presents the health system as a set of relationships among five major groups of actors: the health care providers, the population, the state as a collective mediator, the organizations that generate resources, and the other sectors that produce services with health effects. The relationships among providers, population, and the state form the basis for a typology of health care modalities. The type and number of modalities present in a country make it possible to characterize its health system. In the last part, the paper proposes that health system reform operates at four policy levels: systemic, which deals with the institutional arrangements for regulation, financing, and delivery of services; programmatic, which specifies the priorities of the system, by defining a universal package of health care interventions; organizational, which is concerned with the actual production of services by focusing on issues of quality assurance and technical efficiency; and instrumental, which generates the institutional intelligence for improving system performance through information, research, technological innovation, and human resource development. The dimensions of reform offer a repertoire of policy options, which need to be enriched by cross

  19. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  20. Global Competitives: Economic Imperatives for School Reform.

    ERIC Educational Resources Information Center

    Negroni, Peter J.

    This paper describes the need for systemic educational reform in view of the gap between students who are adequately prepared for tomorrow's jobs and the needs of business/industry. Rapid changes in the workplace--fueled by technological advances, altered family structures, expectations of varied and higher performance skills, and an increase of…

  1. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  2. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  3. Reforming Again: Now Teachers

    ERIC Educational Resources Information Center

    Marx, Ronald W.

    2014-01-01

    Background: Educational reform responds to local and national pressures to improve educational outcomes, and reform efforts cycle as similar pressures recur. Currently, reform efforts focus on teachers, even though confidence in a host of American social institutions is dropping. One of the most widespread reforms regarding teachers is the…

  4. Fuel cells for transportation R and D at Argonne National Laboratory

    SciTech Connect

    Kumar, R.; Ahmed, S.; Bloom, I.; Carter, J.D.; Doshi, R.; Kramarz, K.; Lee, S.H.D.; Krumpelt, M.; Myles, K.M.

    1997-10-01

    This paper describes the transportation fuel cell systems research at Argonne National Laboratory (ANL). Two areas of research are discussed: the development of a catalytic partial-oxidation reformer for conventional and alternative transportation fuels, and a novel approach for the removal of carbon monoxide from reformate for use in polymer electrolyte fuel cells. The objective of the first study is to develop reformers for converting liquid fuels (gasoline, ethanol, or methanol) to hydrogen gas for use with fuel cell systems in light-duty vehicles. The second study is investigating the use of acidic cuprous chloride (or other suitable sorbent) to chemically bind and thus remove the CO from the reformate.

  5. Catalysts for improved fuel processing

    SciTech Connect

    Borup, R.L.; Inbody, M.A.

    2000-09-01

    This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

  6. A reformer to generate hydrogen for distributed power applications

    SciTech Connect

    Cole, J.A.; Kumar, R.V.; West, J.; Lyon, R.K.

    1998-07-01

    The generation of power using fuel cells is a promising technology for distributed electric power generation applications. Steam reforming of fossil fuels remains the most thermodynamically efficient means for production of hydrogen. Unfortunately, current steam reforming technology achieves high efficiencies only at very large scales, and remains impractical at the small production rates needed for small- to medium-size distributed power applications. A novel reformer process, called unmixed reforming, or UMR, has been developed for the conversion of hydrocarbon fuels (natural gas, diesel, gasoline) to hydrogen. The reformer promises high thermodynamic efficiency as heat is generated right on the catalytic bed unlike conventional reforming. The controlled combustion on the reforming catalyst using a patented technology called unmixed combustion provides the heat for the endothermic reforming reaction. The reformer generates a high-purity hydrogen product stream, which can then be used by fuel cells with minimal processing. The unmixed reformer is a packed-bed consisting of finely divided nickel supported on a ceramic matrix mixed with a calcium oxide bearing matrix such as dolomite. UMR consists of three process steps. During the first step air is passed over the packed-bed reactor to oxidize the nickel. The heat released during the oxidation reaction raises the temperature of the bed and decomposes the dolomite releasing carbon dioxide into a vent gas stream. In the subsequent step fuel passed over the packed-bed reduces the NiO back to Ni and further increases the temperature. In the final step, fuel and steam react to produce hydrogen through conventional steam reforming chemistry. The calcium oxide captures some of the carbon dioxide formed during the reforming reaction and thus shifts the reforming reactions to higher conversions, hence improving the purity of the hydrogen product stream. Although product hydrogen concentrations may be 75--85%, the CO content

  7. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  8. Feasibility of Fuel Cell APUs for Automotive Applications

    DTIC Science & Technology

    2005-12-05

    Freightliner Class 8 semi- truck • Fuel cell APU • Ballard PEM w/ on-board methanol reforming (2.2 kW total) • On-board methanol storage 17 Clean...CELL DELPHI SOFC APU w/ REFORMER FREIGHTLINER TRACTOR WITH BALLARD PEM APU AND METHANOL REFORMER SUNLINE TRACTOR WITH HYDROGEN-FuELLED HYDROGENICS... Freightliner Class 8 tractor with the Ballard integrated APU. Figure 17 - APU installed on the side framerails of the tractor. The fuel tank is mounted

  9. Making Clean Gasoline: The Effect on Jet Fuels

    DTIC Science & Technology

    1992-09-01

    pressure, and platinum catalysts to " reform " straight-run and other naphtha compounds into higher octane aromatic compounds. Reforming improves gasoline...Gasoline and JP-4 compete indirectly for medium naphtha , which can be blended directly into JP-4 or sent to the reformer to improve gasoline octane...and 2, refineries still have sufficient naphtha for jet fuel blending and for the catalytic reformer . Even when crude runs are down (less straight-run

  10. Non-Catalytic Reforming with Applications to Portable Power

    DTIC Science & Technology

    2013-10-01

    catalysts which may have strict requirements on fuel purity and operating conditions. The 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 01-10-2013...Conventional reforming technologies utilize catalysts which may have strict requirements on fuel purity and operating conditions. The development of a...conditions and fuel quality need to meet stringent requirements to prevent catalyst degradation due to excessive temperatures and sulfur poisoning [Moon et

  11. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  12. Solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Ackerman, J. P.

    Solid-Oxide Fuel Cell (SOFC) systems offer significant advantages for a variety of fuels and applications. The simplicity and high efficiency of a direct reforming, contaminant-tolerant power system is advantageous for small natural gas or volatile liquid-fueled utility and industrial congeneration plants, as well as residential use. The further gain in efficiency from the incorporation of a bottoming cycle in large-scale plants is advantageous for coal-fueled utility baseload or industrial cogeneration facilities. Development of SOFC components is well advanced. The present effort focuses on improving cell life and performance as well as integration of cells into an array.

  13. Fueling Educational Reform: The HHMI Professors

    ERIC Educational Resources Information Center

    Barkanic, Stephen

    2002-01-01

    The Howard Hughes Medical Institute (HHMI) believes that fundamental change is possible in the tradition-bound world of college and university science education and recently announced new grants to empower individual scientist-educators--the HHMI Professors--to develop innovative approaches for changing the way they teach biology to…

  14. Information Fuels Support for School Reform

    ERIC Educational Resources Information Center

    Henderson, Michael B.; Howell, William G.; Peterson, Paul E.

    2014-01-01

    The Common Core State Standards initiative (CCSS) seeks to "provide a consistent, clear understanding of what students are expected to learn" at various grade levels. For some education observers, CCSS will finally clarify for students, parents, and educators what students need to know and be able to do if they are to be prepared for…

  15. Information Fuels Support for School Reform

    ERIC Educational Resources Information Center

    Henderson, Michael B.; Howell, William G.; Peterson, Paul E.

    2014-01-01

    The Common Core State Standards initiative (CCSS) seeks to "provide a consistent, clear understanding of what students are expected to learn" at various grade levels. For some education observers, CCSS will finally clarify for students, parents, and educators what students need to know and be able to do if they are to be prepared for…

  16. Steam Reforming of Methyl Fuel - Phase I

    DTIC Science & Technology

    1977-06-30

    1./CHR[ON ) M A-14 ....... FIGURE 11. REKRF5ThA OF~j ~ U MAIN PRODUCT MOLE FRACTIONS 1 C(S),2 COP3 C02 9 4 CH4,5 H2o6 H20 1.0 .8 *z __ _ _-_-_ __" o...c~.0 A- RU FIGU Rh "TR O 0F -ME7THY5LJ MRIN PRODUCT MOLE FRACTIONS IC(S) 2 COP3 C0294 CH4 .5 H2 G H20 Ld .4 .2- .00 (ST[RM/CRBfON)M A- 17 FICURE 14

  17. Steam reforming of commercial ultra-low sulphur diesel

    NASA Astrophysics Data System (ADS)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  18. China's Health Reform Update.

    PubMed

    Liu, Gordon G; Vortherms, Samantha A; Hong, Xuezhi

    2017-03-20

    China experienced both economic and epistemological transitions within the past few decades, greatly increasing demand for accessible and affordable health care. These shifts put significant pressure on the existing outdated, highly centralized bureaucratic system. Adjusting to growing demands, the government has pursued a new round of health reforms since the late 2000s; the main goals are to reform health care financing, essential drug policies, and public hospitals. Health care financing reform led to universal basic medical insurance, whereas the public hospital reform required more complex measures ranging from changes in regulatory, operational, and service delivery settings to personnel management. This article reviews these major policy changes and the literature-based evidence of the effects of reforms on cost, access, and quality of care. It then highlights the outlook for future reforms. We argue that a better understanding of the unintended consequences of reform policies and of how practitioners' and patients' interests can be better aligned is essential for reforms to succeed.

  19. SOFC cells and stacks for complex fuels

    SciTech Connect

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  20. Startup procedure for reforming catalysts

    SciTech Connect

    McHale, W.D.; Schoennagel, H.J.

    1984-08-14

    Process for reforming a hydrocarbon charge under reforming conditions in a reforming zone containing a sulfur-sensitive metal containing reforming catalyst wherein over-cracking of the charge stock and excessive temperature rise in the reforming zone is suppressed by pre-conditioning the catalyst, prior to contact with the charge, with a reformate of specified octane number and aromatics content.

  1. Fueling systems

    SciTech Connect

    Gorker, G.E.

    1987-01-01

    This report deals with concepts of the Tiber II tokamak reactor fueling systems. Contained in this report are the fuel injection requirement data, startup fueling requirements, intermediate range fueling requirements, power range fueling requirements and research and development considerations. (LSR)

  2. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  3. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  4. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  5. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  6. Time for Reform.

    ERIC Educational Resources Information Center

    Policy Brief, 1993

    1993-01-01

    Parents, teachers, and government officials agree that America's schools must be reformed. However, new research suggests that most reforms will not work without closer attention to one critical resource--time. This document presents findings of a study conducted by the Rand Institute on Education and Training, which found that any reform takes…

  7. History and Educational Reform.

    ERIC Educational Resources Information Center

    Hampel, Robert L.; And Others

    1996-01-01

    Features comments from Robert L. Hampel, William R. Johnson, Diane Ravitch, and David N. Plank on David Tyack and Larry Cuban's book, "Tinkering toward Utopia: A Century of Public School Reform." The book argues that educational reformers in the 20th century have attempted large-scale systemic reforms instituted from the top down. (MJP)

  8. School Reform Resource Manual.

    ERIC Educational Resources Information Center

    Mid-Continent Research for Education and Learning, Aurora, CO.

    This manual is designed to help schools make successful school reform a reality. It provides the background and perspectives necessary for a school constituency to understand the current climate of education reform in the United States and what is known about successful school reform. The manual also provides inquiry-based techniques for…

  9. History and Educational Reform.

    ERIC Educational Resources Information Center

    Hampel, Robert L.; And Others

    1996-01-01

    Features comments from Robert L. Hampel, William R. Johnson, Diane Ravitch, and David N. Plank on David Tyack and Larry Cuban's book, "Tinkering toward Utopia: A Century of Public School Reform." The book argues that educational reformers in the 20th century have attempted large-scale systemic reforms instituted from the top down. (MJP)

  10. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  11. Beyond Reform: Transformation

    ERIC Educational Resources Information Center

    Davidson, Jill

    2007-01-01

    The Coalition of Essential Schools (CES) is not a reform movement. To reform is to make a thing again; reformation implies a stasis that doesn't deliver enough for the educational future. This issue of Horace demonstrates that Essential schools and the districts and networks that support them are at various points in the journey of transformation,…

  12. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  13. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect

    Nuvera Fuel Cells

    2005-04-15

    subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  14. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  16. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    SciTech Connect

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  17. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  18. Demonstration of direct internal reforming for MCFC power plants

    SciTech Connect

    Aasberg-Petersen, K.; Christensen, P.S.; Winther, S.K.

    1996-12-31

    The conversion of methane into hydrogen for an MCFC by steam reforming is accomplished either externally or internally in the stack. In the case of external reforming the plant electrical efficiency is 5% abs. lower mainly because more parasitic power is required for air compression for stack cooling. Furthermore, heat produced in the stack must be transferred to the external reformer to drive the endothermic steam reforming reaction giving a more complex plant lay-out. A more suitable and cost effective approach is to use internal steam reforming of methane. Internal reforming may be accomplished either by Indirect Internal Reforming (DIR) and Direct Internal Reforming (DIR) in series or by DIR-only as illustrated. To avoid carbon formation in the anode compartment higher hydrocarbons in the feedstock are converted into hydrogen, methane and carbon oxides by reaction with steam in ail adiabatic prereformer upstream the fuel cell stack. This paper discusses key elements of the desire of both types of internal reforming and presents data from pilot plants with a combined total of more than 10,000 operating hours. The project is being carried out as part of the activities of the European MCFC Consortium ARGE.

  19. Performance of a Diesel, JP-8 Reformer

    DTIC Science & Technology

    2006-11-27

    cell powered systems have the opportunity for significantly higher fuel to electrons efficiency . More detailed results will be presented at the...and H2O:C ratios was studied with both JP-8 and diesel . The reformate gas was analyzed by a GC at various S:C and O:C ratios, inlet temperatures...could operate effectively. The desulfurizer bed lifetime will depend on the fuel-sulfur content. E.g. more than 1000 hours with either Tier 2 diesel or

  20. Comparative analysis of selected fuel cell vehicles

    SciTech Connect

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  1. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  2. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  3. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  4. Numerical analysis of helium-heated methane/steam reformer

    NASA Astrophysics Data System (ADS)

    Mozdzierz, M.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2016-09-01

    One of the most promising between many high temperature nuclear reactors applications is to produce hydrogen with heat gained. The simplest and the best examined method is steam reforming of methane. The fabricated hydrogen has wide range of use, for example can be electrochemically oxidized in fuel cells. However, heat management inside methane/steam reformer is extremely important because huge temperature gradients can cause catalyst deactivation. In this work the analysis of temperature field inside helium-heated methane/steam reformer is presented. The optimal system working conditions with respect to methane conversion rate are proposed.

  5. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

    1995-09-01

    Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

  6. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  7. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  8. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  10. Naphtha reforming process

    SciTech Connect

    Gibson, K.R.; Houston, R.J.; Hughes, T.R.; Jacobson, R.L.

    1984-07-17

    In a process for reforming light naphtha with a bimetallic or multimetallic reforming catalyst, such as a platinum-rhenium-halogen catalyst, at conventional reforming conditions, wherein the catalyst is used for an extended continuous on-stream period, the aromatics selectivity of the catalyst is rapidly increased by contacting the naphtha and hydrogen with the catalyst at increased severity operating conditions, such as a reduced pressure less than 90% of the normal reforming pressure, during an initial portion of the on-stream period.

  11. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  12. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  13. Development of TMI Logistic Fuel Solid Oxide Fuel Cell (SOFC) for Advanced Military Power Generation Systems

    DTIC Science & Technology

    2007-11-02

    Power generation systems based on the Technology Management, Inc. (TMI) solid oxide fuel cell (SOFC) are an optional modality for military...integrated system using TMI’s proprietary sulfur-tolerant planar solid oxide fuel cell (SOFC) and steam reformer, integrated into a compact unit which

  14. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Keunsoo; Jeong, Jihoon; Azad, Abul K.; Jin, Sang Beom; Kim, Jung Hyun

    2016-03-01

    Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln0.5Sr0.5Ti0.5Mn0.5O3±d were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln0.5Sr0.5Ti0.5Mn0.5O3±d; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln0.5Sr0.5Ti0.5Mn0.5O3±d, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln0.5Sr0.5Ti0.5Mn0.5O3±d from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM). In various respects, NSTM and SSTM will be desirable reforming catalysts and anode candidates for high temperature solid oxide fuel cell.

  15. Carbon oxides free fuel processing for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar V.

    Fuel processing represents a very important aspect of fuel cell technology. The widespread utilization of fuel cells will only be possible if CO x-free hydrogen producing technologies are developed. Towards this objective, step-wise reforming of hydrocarbons and catalytic decomposition of ammonia were investigated for hydrogen production. Also, novel Au-based catalysts were synthesized for preferentially eliminating CO in the presence of excess hydrogen. The step-wise reforming of hydrocarbons was investigated for production of CO-free hydrogen for proton exchange membrane fuel cells. Proof of concept pulse reactor experiments employing Ni-based catalysts clearly showed the feasibility of the cyclic step-wise reforming process for clean hydrogen production. Under optimum conditions the CO content in the hydrogen was found to be less than 20 ppm by this process (a large amount of CO is obtained as a by-product from conventional methods of hydrogen production). The step-wise reforming process thus greatly simplifies fuel reforming, as expensive and circuitous post-reforming hydrogen purification processes are eliminated. The process was profoundly influenced by the operating temperature, space velocity and nature of the catalyst support. Catalytic ammonia decomposition was investigated for COx-free hydrogen production for alkaline fuel cells. These studies revealed that Ru, Ir and Ni-based catalysts were active for the process with Ru being the most active and Ni the least. The catalyst supports played a decisive role in determining the ammonia decomposition activity. Partial pressure dependence studies of the reaction rate on model Ir (100) catalysts yielded a positive order (0.9 +/- 0.l) with respect to ammonia and negative order (-0.7 +/- 0.l) with respect to hydrogen. The negative order with respect to hydrogen was attributed to the enhancement in the reverse of the ammonia decomposition reaction in the presence of surface hydrogen atoms. Novel nano-Au catalysts

  16. Plasma promoted manufacturing of hydrogen and vehicular applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  17. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  18. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  19. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  20. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  1. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  2. Reforming with polymetallic catalysts

    SciTech Connect

    Baird, W.C. Jr.

    1988-11-29

    This patent describes a process for catalytically reforming, with hydrogen, a hydrocarbon naphtha feed at reforming conditions, the improvement comprising contacting the naphtha feed, and hydrogen, with a halogenated, supported platinum-rhenium catalyst promoted with iridium agglomerated to exhibit a crystallinity greater than 50 percent, as measured by X-ray.

  3. Overcoming Obstacles To Reform.

    ERIC Educational Resources Information Center

    Tierney, William G.

    2001-01-01

    Discusses five core reasons why reform efforts in institutions of higher education so often fail. Roadblocks to reform are identified as: 1) lack of agreement on problems to be solved; 2) unclear time frames and structures; 3) lack of evaluative criteria; 4) failure to articulate changes to the rest of the campus; 5) cultural exhaustion and system…

  4. School Reform. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue addresses school reform, focusing on accountability, attrition, public-supported private education, equitable education, and schoolwide reform. "School-Student Performance and Accountability" (Jose A. Cardenas) discusses what constitutes good performance in school; the shifting emphasis among the input, output, and…

  5. Educational Reform in Turkey

    ERIC Educational Resources Information Center

    Aksit, Necmi

    2007-01-01

    There are a number of reform initiatives underway in Turkey but some of these, which are concerned with curricular and structural changes, have encountered serious difficulties. This paper begins with a brief summary of school effectiveness and school improvement research guiding many educational reforms. It then gives some information about…

  6. Prison Reform and Indians

    ERIC Educational Resources Information Center

    Keller, Charles

    1976-01-01

    Briefly describing the history of prison reform and the American Indian, this article argues that the "professed" humanitarian philosophy of the reformers would not have been extended to "peoples languishing in prison or sequestered on reservations had it not been expedient for the business interests of the larger society". (JC)

  7. Reform Disconnection in China

    ERIC Educational Resources Information Center

    Walker, Allan; Qian, Haiyan

    2012-01-01

    This article examines many of the frustrations associated with implementing education reforms in mainland Chinese schools. Our basic argument is that when taken individually, many of the recent reforms are beneficial, but when parceled together and thrust hastily at schools, they are unwieldy and disconnected. We suggest that the inability of the…

  8. Thinking about Tax Reform.

    ERIC Educational Resources Information Center

    Boskin, Michael J.

    1985-01-01

    Providing pre-college teachers with an analysis of tax reform is the primary goal of this publication. The present tax system is both inefficient and inequitable. Three goals of tax reform proposals are detailed: (1) fairness--the dimensions of horizontal equity, or equal treatment of equals however defined, and vertical equity, reflecting the…

  9. Small Schools Reform Narratives

    ERIC Educational Resources Information Center

    Lehman, Beth M.; Berghoff, Beth

    2013-01-01

    This study explored complicated personal narratives of school reform generated by participants in response to a particular small schools reform initiative. Narrative data was dialogically generated in interviews with nine past participants of an urban high school conversion project planned and implemented over a span of five years toward the goal…

  10. Thinking about Tax Reform.

    ERIC Educational Resources Information Center

    Boskin, Michael J.

    1985-01-01

    Providing pre-college teachers with an analysis of tax reform is the primary goal of this publication. The present tax system is both inefficient and inequitable. Three goals of tax reform proposals are detailed: (1) fairness--the dimensions of horizontal equity, or equal treatment of equals however defined, and vertical equity, reflecting the…

  11. Small Schools Reform Narratives

    ERIC Educational Resources Information Center

    Lehman, Beth M.; Berghoff, Beth

    2013-01-01

    This study explored complicated personal narratives of school reform generated by participants in response to a particular small schools reform initiative. Narrative data was dialogically generated in interviews with nine past participants of an urban high school conversion project planned and implemented over a span of five years toward the goal…

  12. Solid oxide fuel cell power plant having a bootstrap start-up system

    DOEpatents

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  13. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

    SciTech Connect

    Szybist, James P; Steeper, Richard R.; Splitter, Derek A; Kalaskar, Vickey B; Pihl, Josh A; Daw, C Stuart

    2014-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed. The other experimental facility, located at Sandia National Laboratories, uses a dump valve to capture the exhaust from a single NVO event for analysis. Results from the two experiments are in excellent trend-wise agreement and indicate that the reforming process under low-O2 conditions produces substantial concentrations of H2, CO, methane, and other short-chain hydrocarbon species. The concentration of these species is found to be strongly dependent on fuel injection timing and injected fuel type, with weaker dependencies on NVO duration and initial temperature, indicating that NVO reforming is kinetically slow. Further, NVO reforming does not require a large energy input from the engine, meaning that it is not thermodynamically expensive. The implications of these results on HCCI and other forms of combustion are discussed in detail.

  14. Catalytic reforming process

    SciTech Connect

    Oyekau, S.O.; Swan, G.A.

    1984-03-13

    A process wherein, in a series of reforming zones, or reactors, each of which contains a bed, or beds of catalyst, the catalyst in the leading reforming zones is constituted of supported platinum and a relatively low concentration of rhenium, and the catalyst in the last reforming zone, or reactor of the series, is constituted of platinum and a relatively high concentration of rhenium. The amount of rhenium relative to the platinum in the last reforming zone, or reactor is present in an atomic or weight ratio of rhenium:platinum of at least about 1.5:1; preferably at least about 2:1, and more preferably ranges from about 2:1 to about 3:1. The beds of catalyst are contacted with a hydrocarbon or naphtha feed and hydrogen at reforming conditions to produce a hydrocarbon, or naphtha product of improved octane, and the product is withdrawn.

  15. Health reform through tax reform: a primer.

    PubMed

    Furman, Jason

    2008-01-01

    Tax incentives for employer-sponsored insurance and other medical spending cost about $200 billion annually and have pervasive effects on coverage and costs. This paper surveys a range of proposals to reform health care, either by adding new tax incentives or by limiting or replacing the existing tax incentives. Replacing the current tax preference for insurance with an income-related, refundable tax credit has the potential to expand coverage and reduce inefficient spending at no net federal cost. But such an approach by itself would entail substantial risks, so complementary reforms to the insurance market are essential to ensure success.

  16. Reforming Science: Methodological and Cultural Reforms

    PubMed Central

    Casadevall, Arturo; Fang, Ferric C.

    2012-01-01

    Contemporary science has brought about technological advances and an unprecedented understanding of the natural world. However, there are signs of dysfunction in the scientific community as well as threats from diverse antiscience and political forces. Incentives in the current system place scientists under tremendous stress, discourage cooperation, encourage poor scientific practices, and deter new talent from entering the field. It is time for a discussion of how the scientific enterprise can be reformed to become more effective and robust. Serious reform will require more consistent methodological rigor and a transformation of the current hypercompetitive scientific culture. PMID:22184414

  17. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Analysis of Natural Gas by Gas Chromatography.” For the purposes of this section, fuel ratings for the... methods set forth in ASTM D 1946-90, “Standard Practice for Analysis of Reformed Gas by Gas...

  18. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Analysis of Natural Gas by Gas Chromatography.” For the purposes of this section, fuel ratings for the... methods set forth in ASTM D 1946-90, “Standard Practice for Analysis of Reformed Gas by Gas...

  19. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Analysis of Natural Gas by Gas Chromatography.” For the purposes of this section, fuel ratings for the... methods set forth in ASTM D 1946-90, “Standard Practice for Analysis of Reformed Gas by Gas...

  20. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Analysis of Natural Gas by Gas Chromatography.” For the purposes of this section, fuel ratings for the... methods set forth in ASTM D 1946-90, “Standard Practice for Analysis of Reformed Gas by Gas...

  1. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Analysis of Natural Gas by Gas Chromatography.” For the purposes of this section, fuel ratings for the... methods set forth in ASTM D 1946-90, “Standard Practice for Analysis of Reformed Gas by Gas...

  2. Clean Gas Reformer - A Compact Fuel Reformer for Undersea Vehicle Fuel Cells, Progress Final Report

    DTIC Science & Technology

    2007-11-02

    prepared and sintered . A dense glass coating, applied to the clay using an air brush, showed no permeability to air at room temperature . Comparative...Increasing the temperature too quickly to 500C causes the clay to bloat, blister and crumble and can lead to poor sintering . After rice is burned off...uncoated clay samples showed permeability. Pre- and post sintering were performed in a tube furnace without producing cracks. In addition

  3. Clean Gas Reformer - A Compact Fuel Reformer for Undersea Vehicle Fuel Cells

    DTIC Science & Technology

    2007-11-02

    distilled water, works well to eliminate surface bumps and help spread the compound into the shallow mold . We suspect that the active surfactant in this...bubbles they cause craters and large holes, and prevent the compound from spreading in the mold . The addition of soap had the best result on surface...removal. A simple mold is created using silicone rubber cut to the shape desired. The silicone rubber is bonded to the polycarbonate with a spray

  4. USAF Shale Oil to Fuels. Volume 2. Phases 3 and 4.

    DTIC Science & Technology

    1982-07-01

    testing; the production of jet and diesel fuel samples using the hydrocracking process; naphtha hydrotreating and catalytic reforming arsenic mana ement...production of jet and diesel fuel samples using the hydrocracking process, naphtha hydrotreating and catalytic reforming , arsenic management studies, an...Aromatics, vol-% 25 8.7 25 9.3 Combustion, Btu/lb 18,400 18,700 18,400 18,600 Catalytic reforming of the naphtha produced in the hydrocracking

  5. Commercializing fuel cells: managing risks

    NASA Astrophysics Data System (ADS)

    Bos, Peter B.

    separation of functions between stack convention and fuel processing, i.e. external reforming using low-cost, non-catalytic under-oxidized burners. Even for fuel cell technologies capable of internal reforming, the separation of functions offers the advantage of separate optimization of the fuel cell stack and fuel processor, leading to fuel flexibility and lower systems costs. The combination of small size fuel cells, high market values, low development and demonstration costs, low market entry costs, and availability of off-the-shelf balance-of-system components, provides a low financial and technical risk scenario for fuel cell commercialization.

  6. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  7. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  8. PEM fuel cells for transportation and stationary power generation applications

    SciTech Connect

    Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1996-05-01

    We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

  9. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  10. Reforming Educational Reform: A Democratic Perspective

    NASA Astrophysics Data System (ADS)

    Green, J.

    2005-05-01

    This essay examines the status of educational reform in the United States as represented by the current Bush administration's program titled "No Child Left Behind" (NCLB). Employing the techniques of critical theory and logical analysis, contemporary reform efforts are compared with other, more progressive, educational reform movements in an effort to gain perspective and conceptual "traction" as it were, in differentiating such movements. Criteria are established for the assessment and evaluation of reform movements. These are employed in judging the efficacy of NCLB's aim, content, and methods, as well as the results of its program following four years of implementation. The merits of the centrality of standardized testing, pre-ordained curricular content, and exclusively didactic teaching methodologies are criticized, along with the extra-school societal forces which ordain these and determine their prominence in the NCLB program. The essentialism adopted by NCLB is, moreover, evaluated in the light of pragmatic, phenomenological, and postmodern educational theory. Arguing that the school is always and inevitably an instrument of societal forces, interests, and groups, it is contended that these not only be acknowledged, but that avenues be formalized for a thorough going and continuous educational "conversation," to borrow Rorty's term, for an amicable resolution of the issues of education's aim(s), content, and methods.

  11. Education Reforms: Lessons from History

    ERIC Educational Resources Information Center

    Hunt, Thomas C.

    2005-01-01

    Policy makers in education have long embraced reform. Unfortunately, education reforms have consistently been plagued by the reformers' lack of knowledge and appreciation of the history of education. Accordingly, the latest reform, touted as a panacea, meets with failure, and the search for the magic elixir begins anew. The ahistorical nature of…

  12. Education Reforms: Lessons from History

    ERIC Educational Resources Information Center

    Hunt, Thomas C.

    2005-01-01

    Policy makers in education have long embraced reform. Unfortunately, education reforms have consistently been plagued by the reformers' lack of knowledge and appreciation of the history of education. Accordingly, the latest reform, touted as a panacea, meets with failure, and the search for the magic elixir begins anew. The ahistorical nature of…

  13. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  14. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    NASA Technical Reports Server (NTRS)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  15. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  16. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  17. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  18. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Fuel pin

    SciTech Connect

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Hydrogen production from E85 fuel with ceria-based catalysts

    NASA Astrophysics Data System (ADS)

    Swartz, Scott L.; Matter, Paul H.; Arkenberg, Gene B.; Holcomb, Franklin H.; Josefik, Nicholas M.

    The use of renewable (crop-derived) fuels to produce hydrogen has considerable environmental advantages with respect to reducing net emissions of carbon dioxide into the atmosphere. Ethanol is an example of a renewable fuel from which hydrogen can be derived, and E85 is a commercially available ethanol-based fuel of increasing importance. The distributed production of hydrogen from E85 fuel is one potential way of assuring availability of hydrogen as PEM fuel cells are introduced into service. NexTech Materials is collaborating with the U.S. Army Construction Engineering Laboratory (CERL) on the development of a hydrogen reformation process for E85 fuel. This paper describes the technical status of E85 fuel reforming process development work using Rh/ceria catalysts. Reforming results are compared for steam reforming and oxidative steam reforming of ethanol (the primary constituent of E85 fuel), isooctane, ethanol/iso-octane fuel mixtures (as a surrogate to E85), and commercially available E85 fuel. Stable reforming of E85 at 800 °C and a space velocity of 58,000 scm 3 g cat -1 h -1 over a 200-h period is reported.

  3. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.

  4. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  5. Catalytic reforming process

    SciTech Connect

    Baird, W.C. Jr.

    1986-04-01

    This patent describes a process for reforming a paraffinic naphtha feed by introducing the feed, with hydrogen, into a reactor charged with a platinum-containing reforming catalyst, the paraffinic hydrocarbon naphtha feed containing from about 30 to about 100 wt. percent paraffinic hydrocarbons, from about 10 to about 70 wt. percent naphthenes, and from about 5 to about 30 wt. percent aromatics, of which less than about 5 wt. percent are C/sub 8/+ aromatics, and reacting the feed at reforming conditions. The improvement described here consists of: adding to the blend introduced to the reactor sufficient C/sub 8/+ aromatics to increase the C/sub 8/+ aromatics concentration of the feed introduced into the reactor to a level above about 5 wt. percent C/sub 8/+ aromatics; to increase C/sub 5/+ liquid vis-a-vis the paraffinic naphtha feed otherwise similar except that no C/sub 8/+ aromatics are added, similarly reformed.

  6. Catalytic reforming process

    SciTech Connect

    Swan, G.A.

    1982-09-07

    A process, or procedure, is disclosed for the start-up of reforming units, particularly those employing highly active sulfur-sensitive polymetallic, promoted noble metal containing catalysts. On start -up of a reforming unit, a sulfur-containing naphtha feed is fed at reforming conditions over a platinum-catalyst containing lead reactor of a series while bypassing subsequent reactors of the series, the product therefrom is separated into hydrogen-containing gas and C5+ liquid fractions, the hydrogen-containing gas fraction is desulfurized and dried and recycled to the platinum-catalyst containing lead reactor and, after sufficient hydrogen has been generated for operation of a hydrofiner which is used to hydrodesulfurize the naphtha feed for the reformer, product from the platinum-catalyst containing lead reactor is fed to subsequent reactors of the series which contain the more sulfur-sensitive catalysts.

  7. Defense Spending and Reform

    DTIC Science & Technology

    2012-04-02

    Background paper on SIPRI military expenditure data Public Notice, “ Spending and Defending Defense spending has become a highly......Budget; Finance Reform; Military Spending ; Defense Spending ; Budget Cuts 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  8. CNR-TAE`s activity on fuel cells

    SciTech Connect

    Staiti, P.; Freni, S.; Passalacqua, E.; Antonucci, V.

    1997-07-01

    The recognition of the advantages and efficiencies implicit in an economy based upon the electrochemical conversion of fuels has led to intensive efforts toward the development of the fuel cells technology. On phosphoric acid fuel cells (PAFC), the CNR-TAE owns a full capability in PAFC technology and has built and tested 1 kW power plant in an ENEA supported program. On molten carbonate fuel cells (MCFC), the CNR-TAE has matured a sound experience on the modeling of energy balances of MCFC with external or internal reforming, screening design and testing of reforming catalysts, on mechanisms of components aging, catalysts formulation and innovative methods to control catalyst poisoning by means of porous ceramic membranes. In solid oxide fuel cells (SOFC) research, a comparison between steam internal and external reforming, exhaust gas recycling reforming and use of partial oxidation has been performed. Basic researches on the mechanism of conduction in solids and search for novel electrolytes are on course. In the field of fuel cells operating at low temperatures, the activity is addressed to the development of low Pt loading electrodes for polymer electrolyte fuel cells (PEFC) and development of ternary catalysts supported on carbon black for electrochemical oxidation of methanol in direct methanol fuel cells (DMFC). Further research is on the fuel cell utilizing a new type of electrolyte; in this field, an heteropolyacid lab-scale monocell has been realized and successful tested.

  9. Multizone naphtha reforming process

    SciTech Connect

    Fleming, B.

    1987-05-05

    This patent describes a catalytic reforming process for conversion of a naphtha hydrocarbon at reforming conditions having at least two segregated catalyst zones. The improvement comprises contacting the hydrocarbon in a first zone with a first catalyst comprising tin and at least one platinum group metal deposited on a solid catalyst support followed by contacting in a second zone with a second catalyst comprising at least one metal selected from the group consisting of platinum group metals deposited on a solid catalyst support.

  10. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  11. Removal of CO from reformate for PEFC application.

    SciTech Connect

    Lee, S. H. D.

    1998-09-14

    Polymer electrolyte fuel cells (PEFCs) are being actively developed worldwide for transportation applications. The fuel gas generated from reforming hydrocarbon fuels contains small amounts of CO (0.5-1 vol%), even after the water-gas shift reaction. Carbon monoxide is preferentially adsorbed on the platinum electrocatalyst in the PEFC, thus blocking the access of H{sub 2} to the surface of the catalyst and resulting in the degradation of the cell performance. Therefore, the CO concentration in the PBFC reformate must be reduced to a tolerable level of {le} 100 ppm (1). Catalytic preferential oxidation (2), anode air bleed (3), or a combination of the two can be used to reduce CO to trace levels, but their use in a dynamically varying system is problematic. We are developing a sorption process based on the reversible complex-forming and dissociation reactions of CO with Cu(I). These reactions are well documented in patent and literature (4,5).

  12. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  13. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  14. On the road to reform: a sociocultural interpretation of reform

    NASA Astrophysics Data System (ADS)

    Mensah, Felicia Moore

    2011-09-01

    In this paper I discuss how reform in science education is interpreted by Barma as she recounts the story of Catherine, a grade 9 biology teacher, who reforms her teaching practices in response to a national curriculum reform in Quebec, Canada. Unlike some cases in response to reform, this case is hopeful and positive. Also in this paper, I address some familiar areas that must be considered when teachers undertake curriculum reform and how science educators may fulfill the role of facilitator and advocate in the support of teachers on the road to reform. The commentary focuses on how Barma retells the story through the lens of activity theory.

  15. Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Lin, Chien-Hen; Lo, Yi-Man

    2011-01-01

    Micro reformers still face obstacles in minimizing their size, decreasing the concentration of CO, conversion efficiency and the feasibility of integrated fabrication with fuel cells. By using a micro temperature sensor fabricated on a stainless steel-based micro reformer, this work attempts to measure the inner temperature and increase the conversion efficiency. Micro temperature sensors on a stainless steel substrate are fabricated using micro-electro-mechanical systems (MEMS) and then placed separately inside the micro reformer. Micro temperature sensors are characterized by their higher accuracy and sensitivity than those of a conventional thermocouple. To the best of our knowledge, micro temperature sensors have not been embedded before in micro reformers and commercial products, therefore, this work presents a novel approach to integrating micro temperature sensors in a stainless steel-based micro reformer in order to evaluate inner local temperature distributions and enhance reformer performance. PMID:22163817

  16. Automotive Fuels at Low Temperatures

    DTIC Science & Technology

    1991-03-01

    lower octane rating; reforming catalytically alters certain low-octane substances, 0 * resulting in a high-octane product. c Chemical There are four...turbine engines. They are 8 COLD REGIONS TECHNICAL DIGEST No. 91-2 essentially a 50:50 mixture of heavy naphtha fraction (like gasoline) and kerosene...adding to the fuel small proportions (0.3% or less) of low-molecular-weight alcohols. Heavier alcohols are less effective. In general, methanol is

  17. Beyond "health care reform".

    PubMed

    Heyssel, R M

    1993-03-01

    The author discusses the need to make corrections in the U.S. health care system, describes the simplistic and money-oriented definition that many persons have of "health care reform," and discusses the issues he thinks will and will not be dealt with in the coming reforms of the health care system. He maintains that true reform would deal with matters such as restraining expansion of the health care industry, setting reasonable fees, and confronting the harmful social and environmental conditions that result in high "medical" care costs and poor health statistics. The medical profession--including academic medical centers--has a large role to play in true health care reform, which will involve facing the major barriers (which he outlines) that are now impeding important reforms (e.g., increasing the number of generalist physicians; finding better ways to pay for medical students' and residents' education). The profession cannot make progress in true reform without developing a vision of what the U.S. health care system should be and becoming active in moving toward that vision, acting in the interests of both the individual patient and the community as a whole. The author outlines some of the barriers to finding that vision (such as the influence of third-party payers on the doctor-patient relationship and the fragmentation of medicine and medical education by specialties and subspecialties) and proposes the characteristics and values of the kind of medical education and community involvement of academic medical centers that can help create the needed vision, regain the trust of the public, and thereby reform health care in the interests of both the community and the profession.

  18. Steam reforming of methane over unsupported nickel catalysts

    NASA Astrophysics Data System (ADS)

    Rakass, S.; Oudghiri-Hassani, H.; Rowntree, P.; Abatzoglou, N.

    This paper describes a study of steam reforming of methane using unsupported nickel powder catalysts. The reaction yields were measured and the unsupported nickel powder surface was studied to explore its potential as a catalyst in internal or external reforming solid oxide fuel cells. The unsupported nickel catalyst used and presented in this paper is a pure micrometric nickel powder with an open filamentary structure, irregular 'fractal-like' surface and high external/internal surface ratio. CH 4 conversion increases and coke deposition decreases significantly with the decrease of CH 4:H 2O ratio. At a CH 4:H 2O ratio of 1:2 thermodynamic equilibrium is achieved, even with methane residence times of only ∼0.5 s. The CH 4 conversion is 98 ± 2% at 700 °C and no coke is generated during steam reforming which compares favorably with supported Ni catalyst systems. This ratio was used in further investigations to measure the hydrogen production, the CH 4 conversion, the H 2 yield and the selectivity of the CO, and CO 2 formation. Methane-rich fuel ratios cause significant deviations of the experimental results from the theoretical model, which has been partially correlated to the adsorption of carbon on the surface according to TEM, XPS and elemental analysis. At the fuel: water ratio of 1:2, the unsupported Ni catalyst exhibited high catalytic activity and stability during the steam reforming of methane at low-medium temperature range.

  19. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  20. Systems analysis of electricity production from coal using fuel cells

    NASA Technical Reports Server (NTRS)

    Fleming, D. K.

    1983-01-01

    Gasifiers, heat transfer, gas stability, quench, water-gas shift reaction, reforming-methanation, other catalytic reactions, compressors and expanders, acid-gas removal, the fuel cell, and catalytic combustors are described. System pressure drops, efficiency of rotating power equipment, heat exchangers, chemical reactions, steam systems, and the fuel cell subsystems are discussed.

  1. Evaluation of Partial Oxidation Reformer Emissions

    SciTech Connect

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  2. Ecuador's silent health reform.

    PubMed

    De Paepe, Pierre; Echeverría Tapia, Ramiro; Aguilar Santacruz, Edison; Unger, Jean-Pierre

    2012-01-01

    Health sector reform was implemented in many Latin American countries in the 1980s and 1990s, leading to reduced public expenditure on health, limitations on public provision for disease control, and a minimum package of services, with concomitant growth of the private sector. At first sight, Ecuador appeared to follow a different pattern: no formal reform was implemented, despite many plans to reform the Ministry of Health and social health insurance. The authors conducted an in-depth review and analysis of published and gray literature on the Ecuadorian health sector from 1990 onward. They found that although neoliberal reform of the health sector was not openly implemented, many of its typical elements are present: severe reduction of public budgets, "universal" health insurance with limited coverage for targeted groups, and contracting out to private providers. The health sector remains segmented and fragmented, explaining the population's poor health status. The leftist Correa government has prepared an excellent long-term plan to unite services of the Ministry of Health and social security, but implementation is extremely slow. In conclusion, the health sector in Ecuador suffered a "silent" neoliberal reform. President Correa's progressive government intends to reverse this, increasing public budgets for health, but hesitates to introduce needed radical changes.

  3. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  4. Radial Microchannel Reactor (RMR) used in Steam Reforming CH4

    DTIC Science & Technology

    2013-05-13

    of the steam reformer was operated at 11 bar (in test 1 and 2) of reformate pressure and a UPH of 6.1 psig in test 1, resulting in 153.4psi across...Table 1: PCI data on the run at the start of the test period. PCI calculated hydrogen separation efficiency of 74% with 16 slpm UPH flow. Calculating...the Fuel Conversion Efficiency from the GC data gives 73%, using: 100*(1 – CH4%/(CH4% + CO% + CO2%)) Figure 1: P&E expected UPH

  5. Use of biofuels to produce hydrogen (reformation processes).

    PubMed

    Ramírez de la Piscina, Pilar; Homs, Narcís

    2008-11-01

    This tutorial review deals with the catalytic reformation of ethanol and glycerol to produce hydrogen that can be used as an energy carrier in a fuel cell. Both the worldwide production of ethanol in large amounts to be used as a biofuel and that of glycerol as a by-product in biodiesel manufacture are presented. The catalytic reformation processes of both ethanol and glycerol are contemplated, including thermodynamic and kinetic aspects. Catalysts are analyzed as a function of operation conditions, selectivity and stability.

  6. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  7. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect

    Sullivan, Neal P.

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  8. Fuel cell technology for prototype logistic fuel cell mobile systems

    SciTech Connect

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  9. Catalytic reforming process

    SciTech Connect

    Baird Jr., W. C.; Mauldin, C. H.

    1985-09-17

    A start-up procedure wherein a halogenated rhenium-containing catalyst, to improve its performance in reforming naphtha feeds, is contacted with water, added with the hydrogen and said feed. During the start-up period, preferably on initiation of the start-up period after aromatics production has begun, a naphtha feed, hydrogen and water are passed cocurrently through the several reactors of a reforming unit and reacted over the halogenated rhenium-containing catalyst. Water is generally added with the naphtha and hydrogen, preferably to the initial reactor of the series of reactors of the reforming unit, in concentration ranging from about 100 vppm of hydrogen to about 10,000 vppm of hydrogen, preferably from about 100 vppm to about 5000 vppm of hydrogen.

  10. Catalyst reforming process

    SciTech Connect

    Swan, G.A. III

    1989-05-23

    This patent describes a process for catalytically reforming a gasoline boiling range naphtha, with hydrogen, in a semi-regenerative or semi-cyclic reforming process unit comprised of serially connected reactors, inclusive of a lead reactor and one or more downstream reactors, the last of which is the tail reactor, each of which contains a halogenated reforming catalyst comprised of a halide, a Group VIII noble metal, and an inorganic oxide support, the improvement which comprises continuously injecting into each downstream reactor a mixture of water and halide at a water to halide ratio from about 20:1 to about 60:1 wherein the specific ratio of water to halide for each individual downstream reactor is chosen so as to maintain the level of halide on catalyst in each downstream reactor from about 0.5 to 1.5 wt. % based on the total weight of the catalyst.

  11. Method for reforming hydrocarbons

    SciTech Connect

    Brinkmeyer, F.M.; Ewert, W.M.; Fox, H.M.; Rohr, D.F. Jr.

    1993-08-10

    A method is described for reforming a hydrocarbon feedstock using a steam-active reforming catalyst which includes a metal from Group VIII of the Periodic Table of Elements, said method comprising the steps of: (a) contacting a first fixed bed of said catalyst with a regeneration mixture consisting essentially of steam and a source of free oxygen in order to remove deactivating material from said catalyst in said first bed by combustion and produce a regeneration effluent gas stream consisting essentially of steam, inert gas, and free oxygen which is not consumed when said deactivating material is removed from said catalyst in said first bed; (b) removing from said regeneration effluent gas stream said free oxygen which is not consumed when said deactivating material is removed from said catalyst in said first bed; and (c) reforming said hydrocarbon feedstock in a second fixed bed of said catalyst and in the presence of said regeneration effluent gas stream.

  12. Health care reforms.

    PubMed

    Marušič, Dorjan; Prevolnik Rupel, Valentina

    2016-09-01

    In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country.

  13. Health care reforms

    PubMed Central

    Prevolnik Rupel, Valentina

    2016-01-01

    Abstract In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country. PMID:27703543

  14. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  15. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  16. Comprehensive Solutions for Urban Reform

    ERIC Educational Resources Information Center

    Kilgore, Sally

    2005-01-01

    The comprehensive school reform (CSR) models build consistency throughout a district while addressing the needs of individual schools. The high-quality CSR programs offer a most effective option for urban education reform.

  17. Comprehensive Solutions for Urban Reform

    ERIC Educational Resources Information Center

    Kilgore, Sally

    2005-01-01

    The comprehensive school reform (CSR) models build consistency throughout a district while addressing the needs of individual schools. The high-quality CSR programs offer a most effective option for urban education reform.

  18. Power generation using a mesoscale fuel cell integrated with a microscale fuel processor

    NASA Astrophysics Data System (ADS)

    Holladay, J. D.; Wainright, J. S.; Jones, E. O.; Gano, S. R.

    An integrated fuel reformer and fuel cell system for microscale (10-500 mW) power generation is being developed and demonstrated as an alternative to conventional batteries. In this system, thermal energy is transformed to electricity by stripping the hydrogen from the hydrocarbon fuel (reforming) and converting the hydrogen to electricity in a proton exchange membrane (PEM) fuel cell. The fabrication and operation of a mesoscale fuel cell based on phosphoric acid doped polybenzimidazole (PBI) technology is discussed, along with tests integrating the methanol processor with the fuel cell. The PBI membrane had high ionic conductivity at high temperatures (>150 °C), and sustained the high conductivity at low relative humidity at these temperatures. This high-temperature stability and high ionic conductivity enabled the membrane to tolerate extremely high levels of carbon monoxide up to 10% without significant degradation in performance. The combined fuel cell/reformer system was successfully operated to enable the production of 23 mW of electrical power.

  19. Solar-central-receiver fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Carling, R. W.; Fish, J. D.; Radosevich, L. G.; Vitko, J., Jr.

    1981-08-01

    Solar central receiver fuels and chemicals processes were studied. Ethane pyrolysis and steam reforming of methane were investigated in-depth in addition to coal gasification, oil shale retorting, and biomass flash pyrolysis. The study criteria, status of ongoing work, and future activities are described.

  20. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  1. Public Health Law Reform

    PubMed Central

    Gostin, Lawrence O.

    2001-01-01

    Public health law reform is necessary because existing statutes are outdated, contain multiple layers of regulation, and are inconsistent. A model law would define the mission and functions of public health agencies, provide a full range of flexible powers, specify clear criteria and procedures for activities, and provide protections for privacy and against discrimination. The law reform process provides an opportunity for public health agencies to draw attention to their resource needs and achievements and to form ties with constituency groups and enduring relations with the legislative branch of government. Ultimately, the law should become a catalyst, rather than an impediment, to reinvigorating the public health system. PMID:11527757

  2. Public health law reform.

    PubMed

    Gostin, L O

    2001-09-01

    Public health law reform is necessary because existing statutes are outdated, contain multiple layers of regulation, and are inconsistent. A model law would define the mission and functions of public health agen cies, provide a full range of flexible powers, specify clear criteria and procedures for activities, and provide protections for privacy and against discrimination. The law reform process provides an opportunity for public health agencies to draw attention to their resource needs and achievements and to form ties with constituency groups and enduring relations with the legislative branch of government. Ultimately, the law should become a catalyst, rather than an impediment, to reinvigorating the public health system.

  3. Internal combustion engine with thermochemical recuperation fed by ethanol steam reforming products - feasibility study

    NASA Astrophysics Data System (ADS)

    Cesana, O.; Gutman, M.; Shapiro, M.; Tartakovsky, L.

    2016-08-01

    This research analyses the performance of a spark ignition engine fueled by ethanol steam reforming products. The basic concept involves the use of the internal combustion engine's (ICE) waste heat to promote onboard reforming of ethanol. The reformer and the engine performance were simulated and analyzed using GT-Suite, Chem CAD and Matlab software. The engine performance with different compositions of ethanol reforming products was analyzed, in order to find the optimal working conditions of the ICE - reformer system. The analysis performed demonstrated the capability to sustain the endothermic reactions in the reformer and to reform the liquid ethanol to hydrogen-rich gaseous fuel using the heat of the exhaust gases. However, the required reformer's size is quite large: 39 x 89 x 73 cm, which makes a feasibility of its mounting on board a vehicle questionable. A comparison with ICE fed by gasoline or liquid ethanol doesn't show a potential of efficiency improvement, but can be considered as a tool of additional emissions reduction.

  4. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  5. The Effects of Educational Reform

    ERIC Educational Resources Information Center

    Vasquez-Martinez, Claudio-Rafael; Giron, Graciela; De-La-Luz-Arellano, Ivan; Ayon-Bañuelos, Antonio

    2013-01-01

    Educational reform implies questions of social production and of state regulation that are the key words in educational reform, education and educational policies. These reforms are always on the political agenda of countries and involve international organisms, since education is a vehicle of development for social progress. A point of departure…

  6. Women, Class, and School Reform.

    ERIC Educational Resources Information Center

    Mickelson, Roslyn Arlin; Wadsworth, Angela L.

    1996-01-01

    Analyzes ordinary women's role in shaping school reform in their community, highlighting interplay of class conflict, regionalism, and gender roles in reform efforts. The women protesting the Odyssey Project framed the debate as a juncture between a national, elitist reform movement and a local grassroots countermovement protecting children,…

  7. Kudzu, Rabbits, and School Reform.

    ERIC Educational Resources Information Center

    Goodlad, John I.

    2002-01-01

    Essay on school reform argues that quality teachers are key to successful reform, not reform rhetoric by state governors and U.S. Presidents. Asserts that primary mission of schooling is to provide students an educational apprenticeship in democracy. Qualified, caring, competent teachers are essential to accomplish this mission. (PKP)

  8. Prospects for Health Care Reform.

    ERIC Educational Resources Information Center

    Kastner, Theodore

    1992-01-01

    This editorial reviews areas of health care reform including managed health care, diagnosis-related groups, and the Resource-Based Relative Value Scale for physician services. Relevance of such reforms to people with developmental disabilities is considered. Much needed insurance reform is not thought to be likely, however. (DB)

  9. Globalization, Citizenship and Educational Reform

    ERIC Educational Resources Information Center

    Qi, Jie

    2009-01-01

    This paper explores the notions of globalization as embodied in Japanese educational reforms during the 1980s and 1990s. Modern institutional discourses of educational reform in Japan have shifted over time and all of these reform movements have been constructed by particular social and historical trajectories. Generally speaking, it has been…

  10. Materials issues in solid oxide fuel cell systems

    SciTech Connect

    Ziomek-Moroz, M.

    2007-03-02

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). The presence of carbon oxides in the fuel can cause significant performance problems resulting in decreasing the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC below ~800 ºC may allow less expensive metallic materials to be used for interconnects. This presentation provides insight on the material performance of ferritic steels in fuels containing carbon oxides and seeks to quantify the extent of possible degradation due to carbon species in the gas stream.

  11. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  12. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  13. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  14. Overview of fuel processing options for polymer electrolyte fuel cell systems

    SciTech Connect

    Kumar, R.

    1995-12-31

    The polymer electrolyte fuel cell (PEFC) is being developed for use in heavy- and light-duty transportation applications. While this fuel cell has been used successfully in buses and vans with compressed hydrogen as the on-board fuel [1,2], the fuel cell system must incorporate fuel processing (reforming) for any other on-board fuel to produce the hydrogen or hydrogen-rich fuel gas to be fed to the fuel cell stack. This is true even for alternative methods of storing hydrogen, such as use of a metal hydride or liquefied hydrogen. The ``fuel processing`` needed to recover the hydrogen includes providing the heat of dissociation of the hydride and cooling the hydrogen to the temperature of the fuel cell stack. Discussed below are some of the options being considered for processing of on-board fuels (other than compressed hydrogen) to generate the fuel cell anode gas, and the effects of fuel processing on system design, efficiency, steady-state and dynamic performance, and other factors.

  15. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  16. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    JP-8 BACK-UP SLIDES Unclassified 19 What Are Biofuels ? Cellulose “first generation”“second generation” C18:0 C16:1 Triglycerides (fats, oils ...equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils

  17. Engineering Assessment of TEG and TEG/FC Technology Growth Potential. Phase II. Thermoelectric Generator and Fuel Cell Technology Growth Potential.

    DTIC Science & Technology

    1981-10-01

    present, fuel cells operate on methanol or a low-distillate fuel, such as naphtha or JP-4, which is used to produce hydrogen for the fuel cell stack...Belvoir has been developing a low- temperature reforming process which is specifically designed around methanol as a fuel. This process uses a...although it has been used commercially for many years in ammonia plants (secondary reformer ) and with natural gas-based methanol plants. Through screening

  18. Catalytic reforming process

    SciTech Connect

    Markley, G.E.

    1984-04-03

    A process wherein, in a series of reforming zones, employing one or a series of reactors, each of which contains a bed, or beds of catalyst, the catalyst in the rearward most reforming zones is constituted of supported platinum and a relatively high concentration of rhenium, and the catalyst in the forward most reforming zone is constituted of platinum, or platinum and a relatively low concentration of a promoter metal, especially rhenium. In the rearward reaction zones, at least 40 percent, and preferably from 40 percent to about 90 percent, based on the total weight of catalyst in the reactor, or reactors of the unit, is constituted of a rhenium promoted platinum catalyst, the weight ratio of rhenium:platinum of which at least about 1.5:1, and preferably 2:1, or greater. The beds of catalyst are contacted at start-of-run temperatures ranging from about 875/sup 0/ F. to about 935/sup 0/ F. with a hydrocarbon or naphtha feed, and hydrogen, at reforming conditions to produce a hydrocarbon, or naphtha product of improved octane, and the product is withdrawn.

  19. Catalytic reforming process

    SciTech Connect

    Winter, W.E.; Markley, G.E.

    1984-04-03

    A process wherein, in a series of reforming zones, employing one or a series of reactors, each of which contains a bed, or beds of catalyst, the catalyst in the rearward most reforming zones is constituted of supported platinum and a relatively high concentration of rhenium, and the catalyst in the forward most reforming zone is constituted of platinum, or platinum and a relatively low concentration of a promoter metal, especially rhenium. In the rearward reaction zones, at least 40 percent, and preferably from 40 percent to about 90 percent, based on the total weight of catalyst in the reactor, or reactors of the unit, is constituted of a rhenium promoted platinum catalyst, the weight ratio of rhenium: plantinum of which at least about 1.5:1, a preferably 2:1, or greater. The beds of catalyst are contacted with a hydrocarbon or naphtha feed, and hydrogen, at reforming conditions to produce a hydrocarbon, or naphtha product of improved octane, and the product is withdrawn.

  20. Educational Reform: Who Benefits?

    ERIC Educational Resources Information Center

    Steffy, Betty E.

    1994-01-01

    Uses Blau and Scott concept of "cui bono" to describe who has benefited from 1990 Kentucky Education Reform Act. In eyes of legislators, everyone would benefit, and the economically depressed state would prosper. As implementation of KERA progresses, it is becoming increasingly clear that mandated changes may be structural and may…

  1. Computers and School Reform.

    ERIC Educational Resources Information Center

    McDaniel, Ernest; And Others

    1993-01-01

    Discusses ways in which computers can be used to help school reform by shifting the emphasis from information transmission to information processing. Highlights include creating learning communities that extend beyond the classroom; educationally oriented computer networks; Professional Development Schools for curriculum development; and new…

  2. Scaling up Education Reform

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.; Richards, Evan; Kustusch, Mary Bridget; Ding, Lin; Beichner, Robert J.

    2008-01-01

    The SCALE-UP (Student-Centered Activities for Large Enrollment for Undergraduate Programs) project was developed to implement reforms designed for small classes into large physics classes. Over 50 schools across the country, ranging from Wake Technical Community College to Massachusetts Institute of Technology (MIT), have adopted it for classes of…

  3. Teenagers and Welfare Reform.

    ERIC Educational Resources Information Center

    Offner, Paul

    This report examines the extent to which welfare reform is changing adolescent behaviors that lead to welfare dependency. It begins by discussing the provisions in the Personal Responsibility and Work Opportunity Reconciliation Act of 1996 that require teenagers to stay in school and live with a parent, concluding that relatively little can be…

  4. Educational Reforms in Yugoslavia

    ERIC Educational Resources Information Center

    Kintzer, Frederick C.

    1978-01-01

    Yugoslavia's educational system had to be completely rebuilt after World War II to ensure the nation's full and rapid competition in the postwar world. The reforms are discussed in light of the political, social, and economic structure of Yugoslavia. (Author/LBH)

  5. The buzz on reform.

    PubMed

    Bouchard, E A

    1994-01-01

    Mr. Bouchard bravely travels through the maze of lingo and anagrams spawned by recent attempts at healthcare reform. This comprehensive list of terminology and definitions, which provides considerable detail and analysis, will be invaluable to anyone trying to understand current trends.

  6. Prisons and Sentencing Reform.

    ERIC Educational Resources Information Center

    Galvin, Jim

    1983-01-01

    Reviews current themes in sentencing and prison policy. The eight articles of this special issue discuss selective incapacitation, prison bed allocation models, computer-scored classification systems, race and gender relations, commutation, parole, and a historical review of sentencing reform. (JAC)

  7. Mastering School Reform.

    ERIC Educational Resources Information Center

    Goens, George A.; Clover, Sharon I. R.

    School organizations must become responsive and flexible to address rapidly changing social, economic, and demographic conditions. Reform attempts to date have not worked because they were layered on old structures and perceptions in a fragmented, piecemeal fashion. The fundamental transformation of education that is required demands a paradigm…

  8. Reform on the Move

    ERIC Educational Resources Information Center

    Clark, Janet; Otte, Michelle; Fair, Lynn

    2006-01-01

    Aurora (Colorado) Public Schools responded to the Colorado State Model Content Standards for Reading and Writing and the accountability measures attached to the state assessments by implementing the Aurora Achievement Initiative in 2001. Originating from literature on best practices and large-scale school reform, the goal of the districtwide…

  9. Scaling up Education Reform

    ERIC Educational Resources Information Center

    Gaffney, Jon D. H.; Richards, Evan; Kustusch, Mary Bridget; Ding, Lin; Beichner, Robert J.

    2008-01-01

    The SCALE-UP (Student-Centered Activities for Large Enrollment for Undergraduate Programs) project was developed to implement reforms designed for small classes into large physics classes. Over 50 schools across the country, ranging from Wake Technical Community College to Massachusetts Institute of Technology (MIT), have adopted it for classes of…

  10. Children and Welfare Reform.

    ERIC Educational Resources Information Center

    Behrman, Richard E., Ed.

    2002-01-01

    This issue of "The Future of Children" examines whether programs implemented by the federal welfare reform law accomplished the goal of reducing the number of children growing up in poor, single-parent families and whether these programs benefited children. This examination coincides with debates in Congress on the reauthorization of the…

  11. The Reformation of Schooling.

    ERIC Educational Resources Information Center

    Rubin, Louis

    The necessity for reforming public education is evidenced in part by the failures of past programs and in part by the requirements of the future. The anti-school mood of the present is forcing a more realistic evaluation of the potentiality education possesses in counteracting the disintegrative forces of family breakdown, individual deprivation,…

  12. Educational Reform in Louisiana.

    ERIC Educational Resources Information Center

    Maxcy, Spencer J.; Maxcy, Doreen O.

    1993-01-01

    Although education has appealed to southern governors as a catapult to historical recognition, future governors should consider Louisiana Governor Buddy Roemer's ill-fated educational reform plan for Louisiana State University's College of Education, particularly its teacher evaluation and internship program. Public education seems a low-priority…

  13. Reforming Underperforming High Schools

    ERIC Educational Resources Information Center

    MDRC, 2013

    2013-01-01

    Urban high schools are in trouble--high dropout rates, low student academic achievement, and graduates who are unprepared for college are just some of the disappointing indicators. However, recent research points to a select number of approaches to improving student outcomes and reforming underperforming schools--from particular ways of creating…

  14. Examining Comprehensive School Reform

    ERIC Educational Resources Information Center

    Aladjem, Daniel K., Ed.; Borman, Kathryn M., Ed.

    2006-01-01

    Urban school reformers for decades have tried to improve educational outcomes for underserved and disadvantaged students, with the assistance of constantly evolving federal and state policies. In recent years, education policies have shifted from targeting individual students to developing universal standards for teaching and learning, and…

  15. Welfare Reform and Health

    ERIC Educational Resources Information Center

    Bitler, Marianne P.; Gelback, Jonah B.; Hoynes, Hilary W.

    2005-01-01

    A study of the effect of state and federal welfare reforms over the period 1990-2000 on health insurance coverage and healthcare utilization by single women aged between 20-45 is presented. It is observed that Personal Responsibility and Work Opportunity Act of 1996 which replaced the Aid to Families with Dependent Children program of 1990s with…

  16. Papers on Educational Reform.

    ERIC Educational Resources Information Center

    Open Court Publishing Co., La Salle, IL.

    The following papers collected in this publication were presented for discussion at the Open Court Editorial Advisory Board Meeting in 1970. "Testing, Grades, Standards" by Jacques Barzun discusses the relationship between these three elements and the process of education and of performance evaluation. In "The Limits of Reform in Education" James…

  17. Educational Reform in Turkey

    ERIC Educational Resources Information Center

    Lindquist, Cynthia

    2017-01-01

    As a country seeking admission to the European Union, this paper explores educational reforms in Turkey that enhance its possible entry into the European Union and changes still needed for it to be an equal partner. An overview of the school system in Turkey is provided including information on teacher training and preparation, special education…

  18. Reform on the Move

    ERIC Educational Resources Information Center

    Clark, Janet; Otte, Michelle; Fair, Lynn

    2006-01-01

    Aurora (Colorado) Public Schools responded to the Colorado State Model Content Standards for Reading and Writing and the accountability measures attached to the state assessments by implementing the Aurora Achievement Initiative in 2001. Originating from literature on best practices and large-scale school reform, the goal of the districtwide…

  19. Welfare Reform and Health

    ERIC Educational Resources Information Center

    Bitler, Marianne P.; Gelback, Jonah B.; Hoynes, Hilary W.

    2005-01-01

    A study of the effect of state and federal welfare reforms over the period 1990-2000 on health insurance coverage and healthcare utilization by single women aged between 20-45 is presented. It is observed that Personal Responsibility and Work Opportunity Act of 1996 which replaced the Aid to Families with Dependent Children program of 1990s with…

  20. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  2. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  3. Exploring strontium titanate as a reforming catalyst for dodecane

    NASA Astrophysics Data System (ADS)

    Hbaieb, K.

    2016-08-01

    Yttrium-doped strontium titanate (YST)-based perovskite has been explored as catalyst for reforming dodecane. Active metal elements such as ruthenium, nickel and cobalt were doped on the B-site of the perovskite to boost the catalyst activity. Commercial Ni-alumina catalyst has been used for benchmarking. Both steam and autothermal reforming schemes have been used at 800 and 850 °C. Irrespective of the doping elements, all catalysts performed well and had comparable activity and conversion as the commercial catalyst with slight advantage for ruthenium followed by nickel-based catalysts. Hydrogen and syngas yields fall into the range of 65-75 and 83-91 %, respectively. Conversion was consistently between 84 and 90 %. As such, the YST-based perovskite is a promising catalyst for reforming of heavy liquid hydrocarbon fuel.

  4. Modelling an experimental methane fuel processor

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Tin; Chen, Yih-Hang; Yu, Cheng-Ching; Liu, Yen-Chun; Lee, Chiou-Hwang

    Steady-state models are developed to describe an experimental methane fuel processor that is intended to provide hydrogen for a fuel cell system for power generation (2-3 kW). First-principle reactor models are constructed to describe a series of reactions, i.e., steam and autothermal reforming (SR/ATR), high- and low-temperature water-gas shift (HTS/LTS) reactions and preferential oxidation (PROX) reactions, at different sectors of the reactor system for methane reforming as well as gas cleaning. The pre-exponential factors of the rate constants are adjusted to fit the experimental data and the resultant reactor model provides a reasonably good description of steady-state behaviour. Next, sensitivity analyses are performed to locate the optimum operating point of the fuel processor. The objective function of the optimization is fuel processor efficiency. The dominating optimization variables include: the ratios of water and oxygen to the hydrocarbon feed to the autothermal reforming reactor and the inlet temperature of the reactor. The results indicate that further improvement in fuel processor efficiency can be made with a reliable process model.

  5. Dry reforming of hydrocarbon feedstocks

    SciTech Connect

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  6. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  7. Fuel compositions

    SciTech Connect

    Mekonen, K.

    1989-10-31

    This patent describes a hydrosol fuel. It comprises: from about 67% to 94% by weight of a hydrocarbon combustible fuel selected from the group consisting of the gasolines, diesel fuels and heavy fuel oils, from 5 to 25% by weight of water, at least one surfactant operable to create a hydrosol with the fuel and water present in the range of 0.1 up to about 3.4% by weight of an additive selected from the group consisting of alpha (mono) olefins and alkyl benzenes, each of the former having 7 to 15 recurring C{sub 2} monomers therein.

  8. A light hydrocarbon fuel processor producing high-purity hydrogen

    NASA Astrophysics Data System (ADS)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The

  9. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yanpeng; Nie, Yong; Wu, Angshan; Ji, Dengxiang; Yu, Fengwen; Ji, Jianbing

    2012-03-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  10. Cost reductions of fuel cells for transport applications: fuel processing options

    NASA Astrophysics Data System (ADS)

    Teagan, W. P.; Bentley, J.; Barnett, B.

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R&D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice, operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under 150/kW in stationary applications and 30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories.

  11. Catalytic reforming process

    SciTech Connect

    Swan, G.A.; Baird, W.C. Jr.

    1986-09-23

    In a process for improving the octane quality of a naphtha in a reforming unit comprised of a plurality of serially connected reactors, inclusive of one or more lead reactors and a tail reactor, each of which contains a platinum or platinum-rhenium catalyst, the naphtha flowing in sequence from one reactor of the series to another and contacting the catalyst at reforming conditions in the presence of hydrogen, the improvement is described which consists of: providing the tail reactor with a platinum-rhenium catalyst to which iridium has been added in amount sufficient to increase the C/sub 5/+ liquid yield via-a-vis a similar process utilizing in the tall reactor a platinum-rhenium catalyst to which no iridium has been added.

  12. Medical malpractice tort reform.

    PubMed

    Ottenwess, David M; Lamberti, Meagan A; Ottenwess, Stephanie P; Dresevic, Adrienne D

    2011-01-01

    A tort is generally defined as a civil wrong which causes an injury, for which a victim may seek damages, typically in the form of money damages, against the alleged wrongdoer. An overview of the tort system is detailed, specifically in the context of a medical malpractice lawsuit, in order to provide a better understanding of the practical evolution of medical malpractice litigation and its proposed reforms. Rising premiums and defensive medicine are also discussed as part of the tort reform dialogue. Because medical malpractice litigation will never disappear entirely, implementing sound risk management and compliance programs are critical to every radiology department in order to improve the safety and quality of the care that its radiologists and technologists provide.

  13. Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Chang, Chi-Chung; Lo, Yi-Man

    2010-01-01

    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100–300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection. PMID:22163494

  14. Routes for deactivation of different autothermal reforming catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  15. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis [Morgantown, WV; Bayless, David J [Athens, OH; Trembly, Jason P [Durham, NC

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  16. The Beida Reform

    ERIC Educational Resources Information Center

    Kewen, Shu

    2004-01-01

    Beida is always linked with a sort of fervor, a sort of moral behavior. Although it is not a world-class university, its connections with China's contemporary and modern history make it a great school. The direct motive behind the reform and the mapping out of its system is the pursuit of a sort of efficiency, but it is possible that what will be…

  17. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  18. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  19. Fuel Cells: Status and Technical/Economic Needs

    NASA Technical Reports Server (NTRS)

    Rambach, Glenn

    1996-01-01

    The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.

  20. Catalytic reforming process

    SciTech Connect

    Winter, W.E.; Markley, G.E.

    1984-04-03

    A process wherein, in a series of reforming zones, or reactors, each of which contains a bed, or beds of catalyst, the catalyst in the rearward most reforming zones is constituted of a high rhenium, platinum rhenium catalyst, viz., a catalyst comprising supported platinum and a relatively high concentration of rhenium relative to the platinum, and preferably the catalyst in the forwardmost reforming zone, or reactor of the series, is constituted of platinum, or platinum and a relatively low concentration of rhenium relative to the platinum. At least 30 percent, preferably from 40 percent to about 90 percent, of the rearward most reactors of the unit, or even 100 percent, based on the total weight of the catalyst in all of the reactors of the unit, contain a high rhenium, platinum rhenium catalyst, the weight ratio of rhenium:platinum being at least about 1.5:1. The beds of catalyst are contacted with a hydrocarbon or naphtha feed, and hydrogen, and the reaction continued for a period of at least 700 hours, preferably from about 700 hours to about 2750 hours, while conducting the reaction at temperatures ranging from about 850/sup 0/ F. to about 950/sup 0/ F. (E.I.T.), at pressures ranging from about 150 psig to about 350 psig, and at gas rates ranging from about 2500 SCF/B to about 4500 SCF/B.