Science.gov

Sample records for plasmid encoded antibiotic

  1. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria

    PubMed Central

    Bennett, P M

    2008-01-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes). The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  2. Plasmid encoded antibiotics inhibit protozoan predation of Escherichia coli K12.

    PubMed

    Ahmetagic, Adnan; Philip, Daniel S; Sarovich, Derek S; Kluver, Daniel W; Pemberton, John M

    2011-09-01

    Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to 'graze' on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan "plaque" formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.

  3. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  4. Thermosensitive antibiotic resistance plasmids in enterobacteria.

    PubMed

    Smith, H W; Parsell, Z; Green, P

    1978-11-01

    Of 775 conjugative plasmids found in enterobacteria mediating antibiotic resistance, 24 (3.1%) were thermosensitive (ts); they were most common in Klebsiella pneumoniae. Ts plasmids were also found in all the samples of sewage and river water examined. Over half of 73 ts plasmids from unrelated sources mediated resistance to chloramphenicol in addition to several other antibiotics. Many of them mediated resistance to mercury (53.4%), arsenite (38.4%) and tellurite (79.5%) but not to copper, cobalt and silver. Fifty-eight belonged to incompatibility group H2 and 12 belonged to the H1 group. Resistance to mercury, arsenite and tellurite was common in strains containing H2 plasmids but not in H1 plasmids. The 73 plasmids transferred at high rates at 22 and 28 degrees C and at lower rates at 15 degrees C; they transferred at very low rates or not at all at 37 degrees C. They could be divided into two sets according to whether they transferred at a high or at a low rate at 33 degrees C. Unlike the prototype plasmid, Rts 1, they were solely or mainly ts for transfer and not for replication and only one of them brought about a marked reduction in growth rate of its host organism at 42 degrees C. None of the 73 plasmids mediated colicin or haemolysin production. Three plasmids, all from K. pneumoniae, mediated utilization of lactose, two of sucrose and raffinose and three, all belonging to group H1, of citrate. None of the plasmids increased the pathogenicity of Salmonella typhimurium for chicks or Escherichia coli K12 for mice.

  5. Antibiotic trapping by plasmid-encoded CMY-2 β-lactamase combined with reduced outer membrane permeability as a mechanism of carbapenem resistance in Escherichia coli.

    PubMed

    Goessens, Wil H F; van der Bij, Akke K; van Boxtel, Ria; Pitout, Johann D D; van Ulsen, Peter; Melles, Damian C; Tommassen, Jan

    2013-08-01

    A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CR E. coli lacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CR E. coli possessed bla(CTX-M-15) and bla(OXA-1). The CR E. coli strain additionally harbored bla(CMY-2) and demonstrated a >15-fold increase in β-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation either in vitro or in vivo with meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into various E. coli strains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated β-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the β-lactamase. This study, therefore, provides evidence that the mechanism of "trapping" by CMY-2 β-lactamase plays a role in carbapenem resistance.

  6. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    PubMed

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  7. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    PubMed Central

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes. PMID:26441947

  8. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance.

    PubMed

    Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen; Simmons, Ryan S; Hughes, Julie M; Rogers, Linda M; Hunter, Samuel S; Settles, Matthew L; Forney, Larry J; Ponciano, José M; Top, Eva M

    2016-04-01

    The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance. PMID:26668183

  9. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance.

    PubMed

    Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen; Simmons, Ryan S; Hughes, Julie M; Rogers, Linda M; Hunter, Samuel S; Settles, Matthew L; Forney, Larry J; Ponciano, José M; Top, Eva M

    2016-04-01

    The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.

  10. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  11. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates

    PubMed Central

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3

  12. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates.

    PubMed

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like

  13. Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance.

    PubMed

    Vincent, Antony T; Tanaka, Katherine H; Trudel, Melanie V; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2015-02-01

    The bacterium Aeromonas salmonicida is the etiological agent of furunculosis, a widespread fish disease causing important economic losses to the fish farming industry. Antibiotic treatments in fish farms may be challenging given the existence of multidrug-resistant isolates of this bacterium. Here, we report the draft genome sequences of the 2004-05MF26 and 2009-144K3 isolates, which harbor plasmids conferring antibiotic resistance. Both isolates also carry the large plasmid pAsa5, which is known to encode a type three secretion system (TTSS) and the pAsal1 plasmid which has the aopP gene producing a TTSS effector. These two isolates are good representatives of the plasmid diversity in A. salmonicida subsp. salmonicida. PMID:25724776

  14. Invasion of E. coli biofilms by antibiotic resistance plasmids.

    PubMed

    Król, Jaroslaw E; Wojtowicz, Andrzej J; Rogers, Linda M; Heuer, Holger; Smalla, Kornelia; Krone, Stephen M; Top, Eva M

    2013-07-01

    In spite of the contribution of plasmids to the spread of antibiotic resistance in human pathogens, little is known about the transferability of various drug resistance plasmids in bacterial biofilms. The goal of this study was to compare the efficiency of transfer of 19 multidrug resistance plasmids into Escherichia coli recipient biofilms and determine the effects of biofilm age, biofilm-donor exposure time, and donor-to-biofilm attachment on this process. An E. coli recipient biofilm was exposed separately to 19 E. coli donors, each with a different plasmid, and transconjugants were determined by plate counting. With few exceptions, plasmids that transferred well in a liquid environment also showed the highest transferability in biofilms. The difference in transfer frequency between the most and least transferable plasmid was almost a million-fold. The 'invasibility' of the biofilm by plasmids, or the proportion of biofilm cells that acquired plasmids within a few hours, depended not only on the type of plasmid, but also on the time of biofilm exposure to the donor and on the ability of the plasmid donor to attach to the biofilm, yet not on biofilm age. The efficiency of donor strain attachment to the biofilm was not affected by the presence of plasmids. The most invasive plasmid was pHH2-227, which based on genome sequence analysis is a hybrid between IncU-like and IncW plasmids. The wide range in transferability in an E. coli biofilm among plasmids needs to be taken into account in our fight against the spread of drug resistance.

  15. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    PubMed Central

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samples were isolated and the Gram-negative bacteria were identified using phenotypic method and API 20E System. Antibiotic susceptibility and plasmid profile were determined by standard Agar disc diffusion and plasmid spin column extraction methods. Results: Totally 117 Gram-negative bacteria were isolated, the most common were Pseudomonas aerugionsa (37.6%), P. fluorescens (25.6%), Acinetobacter baumanii (20/5%) and Klebsiella pneumoniae (7.6%), respectively. The isolates showed high frequency of antibiotic resistance against ceftazidime and co-amoxiclave (100%) and low frequency of antibiotic resistance against amikacin with (70%).The results indicated that 60% of the isolates harboured plasmid. On the other hand, the patients infected with A. baumanii and P. aeruginosa were cured (with 60% frequency) whereas, those infected with P. fluorescens were not cured. Hence, probably antibiotic resistance markers of A. baumanii and P. aeruginosa are plasmid mediated; however, P. fluorescens is chromosomally mediated. Conclusions: Based on our findings, P. aerugionsa is a major causative agent of wound infections and amikacin could be considered as a more effective antibiotic for treatment of the burned patients. PMID:25789121

  16. The Gene Encoding the Low-Affinity Penicillin-Binding Protein 3r in Enterococcus hirae S185R Is Borne on a Plasmid Carrying Other Antibiotic Resistance Determinants

    PubMed Central

    Raze, Dominique; Dardenne, Olivier; Hallut, Séverine; Martinez-Bueno, Manuel; Coyette, Jacques; Ghuysen, Jean-Marie

    1998-01-01

    Two plasmid-derived NcoI DNA fragments of 14 and 4.5 kb, respectively, have been isolated from the multidrug-resistant strain Enterococcus hirae S185R and analyzed. The 14-kb fragment contains two inverted (L and R) IS1216 insertion modules of the ISS1 family. These modules define a Tn5466 transposon-like structure that contains one copy of the methylase-encoding ermAM conferring erythromycin resistance and one copy of the adenylyl-transferase-encoding aadE conferring streptomycin resistance. Immediately on the left side of IS1216L there occurs a copy of pbp3r encoding the low-affinity penicillin-binding protein (PBP) PBP3r, itself preceded by a psr-like gene (psr3r) that controls the synthesis of PBP3r. ermAM, aadE, and the transposase gene (tnp) of IS1216R have the same polarities, and these are opposite those of psr3r, pbp3r, and the tnp gene of IS1216L. The 4.5-kb fragment is a copy of the 4.5-kb sequence at the 5′ end of the 14-kb fragment, although it is not a restriction product of the 14-kb fragment. It contains three genes with the same polarity: psr3r, pbp3r, and tnp in an IS1216 element. Because of the very high degree of identity (99%) with the chromosomal psrfm and pbp5fm genes of Enterococcus faecium D63R, it is proposed that both the psr3r and pbp3r genes were transferred from an E. faecium strain and inserted in a plasmid of E. hirae. E. hirae is the first known bacterial species in which a low-affinity PBP-encoding gene has been found to be plasmid borne. PMID:9517928

  17. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids.

    PubMed

    Dobiasova, Hana; Kutilova, Iva; Piackova, Veronika; Vesely, Tomas; Cizek, Alois; Dolejska, Monika

    2014-07-16

    Growing ornamental fish industry is associated with public health concerns including extensive antibiotic use accompanied by increasing antibiotic resistance. The aim of this study was to analyze Aeromonas isolates from imported tropical ornamental fish and coldwater koi carps bred in the Czech Republic to assess the potential risk of ornamental fish as a source of plasmid-mediated quinolone resistance genes (PMQR) and antibiotic resistance plasmids. A collection of Aeromonas spp. with reduced susceptibility to ciprofloxacin (MIC ≥ 0.05 mg/L) was selected for the detection of PMQR genes. Isolates harbouring PMQR genes were further analyzed for the additional antibiotic resistance, integron content, clonality, biofilm production and transferability of PMQR genes by conjugation and transformation. Comparative analysis of plasmids carrying PMQR genes was performed. Fifteen (19%, n=80) isolates from koi carps and 18 (24%, n=76) isolates from imported ornamental fish were positive for qnrS2, aac(6')-Ib-cr or qnrB17 genes. PMQR-positive isolates from imported ornamental fish showed higher MIC levels to quinolones, multiresistance and diverse content of antibiotic resistance genes and integrons compared to the isolates from the carps. Related IncU plasmids harbouring qnrS2 and aac(6')-Ib-cr genes were found in Aeromonas spp. from imported ornamental fish and koi carps from various geographical areas. Ornamental fish may represent a potential source of multiresistant bacteria and mobile genetic elements for the environment and for humans.

  18. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.

    PubMed

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J; Yao, Fei; Jiang, Yong; Top, Eva M; Li, Hui

    2016-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history. PMID:26635412

  19. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.

    PubMed

    Li, Xiaobin; Wang, Yafei; Brown, Celeste J; Yao, Fei; Jiang, Yong; Top, Eva M; Li, Hui

    2016-01-01

    The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history.

  20. Tragedy of the commons among antibiotic resistance plasmids.

    PubMed

    Smith, Jeff

    2012-04-01

    As social interactions are increasingly recognized as important determinants of microbial fitness, sociobiology is being enlisted to better understand the evolution of clinically relevant microbes and, potentially, to influence their evolution to aid human health. Of special interest are situations in which there exists a "tragedy of the commons," where natural selection leads to a net reduction in fitness for all members of a population. Here, I demonstrate the existence of a tragedy of the commons among antibiotic resistance plasmids of bacteria. In serial transfer culture, plasmids evolved a greater ability to superinfect already-infected bacteria, increasing plasmid fitness when evolved genotypes were rare. Evolved plasmids, however, fell victim to their own success, reducing the density of their bacterial hosts when they became common and suffering reduced fitness through vertical transmission. Social interactions can thus be an important determinant of evolution for the molecular endosymbionts of bacteria. These results also identify an avenue of evolution that reduces proliferation of both antibiotic resistance genes and their bacterial hosts. PMID:22486703

  1. Tragedy of the commons among antibiotic resistance plasmids.

    PubMed

    Smith, Jeff

    2012-04-01

    As social interactions are increasingly recognized as important determinants of microbial fitness, sociobiology is being enlisted to better understand the evolution of clinically relevant microbes and, potentially, to influence their evolution to aid human health. Of special interest are situations in which there exists a "tragedy of the commons," where natural selection leads to a net reduction in fitness for all members of a population. Here, I demonstrate the existence of a tragedy of the commons among antibiotic resistance plasmids of bacteria. In serial transfer culture, plasmids evolved a greater ability to superinfect already-infected bacteria, increasing plasmid fitness when evolved genotypes were rare. Evolved plasmids, however, fell victim to their own success, reducing the density of their bacterial hosts when they became common and suffering reduced fitness through vertical transmission. Social interactions can thus be an important determinant of evolution for the molecular endosymbionts of bacteria. These results also identify an avenue of evolution that reduces proliferation of both antibiotic resistance genes and their bacterial hosts.

  2. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  3. Characterization of a multiple antibiotic resistance plasmid from Haemophilus ducreyi.

    PubMed Central

    Willson, P J; Albritton, W L; Slaney, L; Setlow, J K

    1989-01-01

    Plasmid pLS88 from a clinical isolate of Haemophilus ducreyi encoded resistance determinants for sulfonamides and streptomycin related to those of RSF1010 and for kanamycin related to Tn903 but lacked the inverted repeats of the transposon. Its host range included Haemophilus influenzae, Actinobacillus pleuropneumoniae, and Escherichia coli; and it was compatible with pDM2 and RSF1010. Images PMID:2684012

  4. Transfer of Plasmids to an Antibiotic-Sensitive Mutant of Zymomonas mobilis†

    PubMed Central

    Buchholz, Steven E.; Eveleigh, Douglas E.

    1986-01-01

    Wild-type strains of Zymomonas mobilis exhibit multiple antibiotic resistance and thus restrict the use of many broad-host-range plasmids in them as cloning vehicles. Antibiotic-sensitive mutants of Z. mobilis were isolated and used as hosts for the conjugal transfer of broad-host-range plasmids from Escherichia coli. Such antibiotic-sensitive strains can facilitate the application of broad-host-range plasmids to the study of Z. mobilis. Images PMID:16347136

  5. Transfer of plasmids to an antibiotic-sensitive mutant of Zymomonas mobilis

    SciTech Connect

    Buchholz, S.E.; Eveleigh, D.E.

    1986-08-01

    Wild-type strains of Zymomonas mobilis exhibit multiple antibiotic resistance and thus restrict the use of many broad-host-range plasmids in them as cloning vehicles. Antibiotic-sensitive mutants of Z. mobilis were isolated and used as hosts for the conjugal transfer of broad-host-range plasmids from Escherichia coli. Such antibiotic-sensitive strains can facilitate the application of broad-host-range plasmids to the study of Z. mobilis.

  6. Plasmids Carried by Antibiotic-Resistant Marine Bacteria

    PubMed Central

    Sizemore, Ronald K.; Colwell, R. R.

    1977-01-01

    Antibiotic-resistant bacteria were isolated from seawater samples collected in the Atlantic Ocean off the southeastern coast of the United States. Large numbers of antibiotic-resistant bacterial strains were found to be present in harbor and inshore waters; however, the percentage of resistant strains was higher for several seawater samples collected offshore than for those collected near shore. Bacteria resistant to tetracycline, chloramphenicol, and streptomycin were found in nearly all samples collected, including samples from 200 miles (about 522 km) offshore and at depths to 8,200 m. Sediment samples, in general, were found to contain smaller populations of resistant strains as compared with the seawater samples examined. Antibiotic-resistant bacteria exhibiting phenetic characteristics common to autochthonous marine bacterial species were examined in detail, and several of the isolates exhibited unstable antibiotic resistance, which was transferable to recipient Escherichia coli cells. Deoxyribonucleic acid preparations from 10 strains examined by ethidium bromide-cesium chloride density sedimentation revealed that 6 of the strains contained covalently closed circular plasmid deoxyribonucleic acid. PMID:334064

  7. Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat.

    PubMed

    Mujumdar, Shilpa S; Bashetti, Shradha P; Chopade, Balu A

    2014-02-01

    An Acinetobacter species identified as A. haemolyticus A19 produces an antibiotic and the enzyme chitinase. The antibiotic produced by A. haemolyticus A19 was extracellular and inducible by co-cultivation with Klebsiella pneumoniae in the optimum ratio 2:1, respectively. pH 7, temperature 28 °C, and addition of 2% (w/v) NaCl are the most suitable environmental conditions for production and activity of the antibiotic. The antibiotic was produced in the early stationary growth phase (48 h) of A. haemolyticus A19. It has a very broad spectrum of antimicrobial activity against plant and human pathogenic bacteria and fungi. The antibiotic was extracted with ethyl acetate and purified by column chromatography with further purification by preparative thin-layer chromatography. Yield of the antibiotic was 15 mg/l. The antibiotic was active at very low concentrations, for example 50 μg/ml, and was water-soluble. It was stable at room temperature for up to 7 days. (1)H NMR analysis revealed the antibiotic was a pyrrolnitrin. It was found that pyrrolnitrin production by A. haemolyticus A19 was encoded by plasmid pUPI126 of molecular weight 25.7 kb. Plasmid pUPI126 was transferred to E. coli HB101 at a frequency of 5 × 10(-5) per μg DNA. It was also conjugally transformed to E. coli HB101 rif (r) mutants at a frequency of 5.9 × 10(-8) per recipient cell. Plasmid pUPI126 was 100% stable in Acinetobacter and 95% stable in E. coli HB101. Transconjugants and transformants both produced the antibiotic. This is the first report of plasmid-mediated pyrrolnitrin production by A. haemolyticus A19 isolated from wheat rhizosphere.

  8. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections.

    PubMed Central

    Darfeuille-Michaud, A; Jallat, C; Aubel, D; Sirot, D; Rich, C; Sirot, J; Joly, B

    1992-01-01

    Klebsiella pneumoniae strains involved in hospital outbreaks of nosocomial infections, such as suppurative lesions, bacteremia, and septicemia, were resistant to multiple antibiotics including broad-spectrum cephalosporins. Epidemiologic investigations revealed that the reservoir for these K. pneumoniae strains was the gastrointestinal tracts of the patients. The study of the adherence ability of the strains reported here showed that these bacteria adhered to the microvilli of the Caco-2 cell line. This adhesion was mediated by a nonfimbrial protein with a molecular mass of 29,000 Da designated CF29K. Pretreatment of bacteria with antibodies raised against CF29K or Caco-2 cells with purified CF29K prevented the adhesion of K. pneumoniae strains to Caco-2 cells. CF29K immunologically cross-reacted with the CS31A surface protein of Escherichia coli strains involved in septicemia in calves. Genes encoding CF29K were located on a high-molecular-weight conjugative R plasmid, which transferred to E. coli K-12. Transconjugants expressed a large amount of CF29K protein and adhered to the brush border of Caco-2 cells. These findings show that K. pneumoniae strains were able to colonize the human intestinal tract through a plasmid-encoded 29,000-Da surface protein. Hybridization experiments indicated that the gene encoding resistance to broad-spectrum cephalosporins by the production of CAZ-1 enzyme and the gene encoding the adhesive property to intestinal cells were both located on a 20- to 22-kb EcoRI restriction DNA fragment. Genes encoding aerobactin and the ferric aerobactin receptor were also found on this R plasmid. Images PMID:1345909

  9. Plasmids in antibiotic susceptible and antibiotic resistant commensal Escherichia coli from healthy Australian adults.

    PubMed

    Moran, Robert A; Anantham, Sashindran; Pinyon, Jeremy L; Hall, Ruth M

    2015-07-01

    A collection of 111 commensal Escherichia coli isolated from 84 faecal samples from healthy Australian adults were screened using PCR-based replicon typing. Each isolate represented a distinct strain found in a particular faecal sample. Fifty-one isolates were resistant to one or more of 12 antibiotics tested. FII and FIB replicons were most common and usually found together. The FII replicon was detected in 63 isolates (35 susceptible, 28 resistant), the FIB replicon was present in 65 (32 susceptible, 33 resistant) and 54 (30 susceptible, 24 resistant) included both. Other replicon types were found infrequently (A/C, I1, K, L/M, P, R, Y, FIA and FIC) or not at all (HI1, HI2, N, T, U, W, X). Only the B/O amplicon, found in 21 resistant but only 4 susceptible isolates, was associated with antibiotic resistance. Detailed analysis of this group revealed that the B/O PCR also detected Z plasmids of several distinguishable types. PCR assays were developed to detect the two repA genes (repABKI and repAZ) found in members of the I-complex (I, B/O, K and Z plasmids). These assays distinguished the B/O and Z plasmids detected by the original "B/O" PCR. One isolate carried repABKI and the remainder carried repAZ. These genes were also detected in further isolates in the collection. Conjugative transfer of resistance genes was detected for the B/O plasmid and two Z groups. Evidence for transfer of repAZ plasmids in the human colon in the absence of antibiotic selection was also obtained.

  10. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance.

    PubMed

    Bottery, Michael J; Wood, A Jamie; Brockhurst, Michael A

    2016-04-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  11. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    PubMed Central

    Wood, A. Jamie; Brockhurst, Michael A.

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  12. Control of infection with multiple antibiotic resistant bacteria in a hospital renal unit: the value of plasmid characterization.

    PubMed Central

    Reed, C. S.; Barrett, S. P.; Threlfall, E. J.; Cheasty, T.

    1995-01-01

    An outbreak of infections due to multiple antibiotic-resistant bacteria took place over a period of approximately 18 months in a renal unit. Strains of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Citrobacter spp. and Pseudomonas spp. were involved, and a variety of antibiotic resistances was encountered. Closely related plasmids encoding resistance to aztreonam, ceftazidime and piperacillin, possibly derived from an archetypal plasmid of 105 kb were found in the majority of isolates examined. After limiting the use of aztreonam the incidence of new patient isolates of multiple-resistant organisms was greatly reduced. This study demonstrated how molecular studies can contribute to the control of an outbreak situation in a hospital unit by providing an impetus to reduce the use of specific antibiotics. Images Fig. 2 PMID:7641839

  13. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    PubMed

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-01-01

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  14. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids.

    PubMed

    Binh, Chu Thi Thanh; Heuer, Holger; Kaupenjohann, Martin; Smalla, Kornelia

    2008-10-01

    In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes. PMID:18557938

  15. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    PubMed Central

    Chen, Wenyao; Fang, Tingzi; Zhou, Xiujuan; Zhang, Daofeng; Shi, Xianming; Shi, Chunlei

    2016-01-01

    The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6′)-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid

  16. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  17. Selection of a Multidrug Resistance Plasmid by Sublethal Levels of Antibiotics and Heavy Metals

    PubMed Central

    Gullberg, Erik; Albrecht, Lisa M.; Karlsson, Christoffer; Sandegren, Linus

    2014-01-01

    ABSTRACT How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. PMID:25293762

  18. A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1.

    PubMed

    Tian, Q B; Ohnishi, M; Tabuchi, A; Terawaki, Y

    1996-03-18

    A new proteic killer gene system, hig, was identified on the plasmid Rts1. The hig locus consisting of a higA and higB is directly related to the temperature sensitive host cell growth conferred by Rts1. We proved that higB encoding presumably a 92-amino-acid polypeptide inhibited segregation of plasmid free cells, and higA encoding a 104-amino-acid polypeptide suppressed the higB function both in cis and in trans.

  19. Using promoter libraries to reduce metabolic burden due to plasmid-encoded proteins in recombinant Escherichia coli.

    PubMed

    Pasini, Martina; Fernández-Castané, Alfred; Jaramillo, Alfonso; de Mas, Carles; Caminal, Gloria; Ferrer, Pau

    2016-01-25

    The over-expression of proteins in recombinant host cells often requires a significant amount of resources causing an increase in the metabolic load for the host. This results in a variety of physiological responses leading to altered growth parameters, including growth inhibition or activation of secondary metabolism pathways. Moreover, the expression of other plasmid-encoded genes such as antibiotic resistance genes or repressor proteins may also alter growth kinetics. In this work, we have developed a second-generation system suitable for Escherichia coli expression with an antibiotic-free plasmid maintenance mechanism based on a glycine auxotrophic marker (glyA). Metabolic burden related to plasmid maintenance and heterologous protein expression was minimized by tuning the expression levels of the repressor protein (LacI) and glyA using a library of promoters and applying synthetic biology tools that allow the rapid construction of vectors. The engineered antibiotic-free expression system was applied to the L-fuculose phosphate aldolase (FucA) over-production, showing an increase in production up to 3.8-fold in terms of FucA yield (mg g(-1)DCW) and 4.5-fold in terms of FucA activity (AU g(-1)DCW) compared to previous expression. Moreover, acetic acid production was reduced to 50%, expressed as gAc gDCW(-1). Our results showed that the aforementioned approaches are of paramount importance in order to increment the protein production in terms of mass and activity.

  20. Exposing plasmids as the Achilles' heel of drug-resistant bacteria.

    PubMed

    Williams, Julia J; Hergenrother, Paul J

    2008-08-01

    Many multidrug-resistant bacterial pathogens harbor large plasmids that encode proteins conferring resistance to antibiotics. Although the acquisition of these plasmids often enables bacteria to survive in the presence of antibiotics, it is possible that plasmids also represent a vulnerability that can be exploited in tailored antibacterial therapy. This review highlights three recently described strategies designed to specifically combat bacteria harboring such plasmids: inhibition of plasmid conjugation, inhibition of plasmid replication, and exploitation of plasmid-encoded toxin-antitoxin systems.

  1. Mix and match of KPC-2 encoding plasmids in Enterobacteriaceae-comparative genomics.

    PubMed

    Chmelnitsky, Inna; Shklyar, Maya; Leavitt, Azita; Sadovsky, Evgeniya; Navon-Venezia, Shiri; Ben Dalak, Maayan; Edgar, Rotem; Carmeli, Yehuda

    2014-06-01

    We performed comparative sequence analysis of 3 blaKPC-2 encoding plasmids to examine evolution of these plasmids and their dissemination. We found that all of them have an IncN replicon with a newly determined IncN plasmid sequence type (ST), ST15. The 2 Klebsiella pneumoniae (KPN) plasmids also harbor an IncF2A1-B1- replicon. The blaKPC-2 is located in the Tn4401c transposon with a newly discovered mutation in the P2 promoter. Screening of the 27 additional blaKPC-2 carrying plasmids from Enterobacter cloacae, Escherichia coli (EC), and K. pneumoniae showed that: all KPN and EC plasmids are IncN plasmids belonging to ST15; 4/7 KPN and 1/6 EC plasmids contain an additional IncF2A1-B1- replicon; all Enterobacter plasmids belong to neither IncN nor IncF2A1-B1- replicon plasmids; 6/7 KPN and 2/5 EC plasmids carry the mutated P2 promoter. Study of the blaKPC-2 environment, transposon, pMLST, and Inc group suggests transposon and plasmid inter- and intra-species dissemination and evolution.

  2. Distribution of Genes Encoding Nucleoid-Associated Protein Homologs in Plasmids

    PubMed Central

    Takeda, Toshiharu; Yun, Choong-Soo; Shintani, Masaki; Yamane, Hisakazu; Nojiri, Hideaki

    2011-01-01

    Bacterial nucleoid-associated proteins (NAPs) form nucleoprotein complexes and influence the expression of genes. Recent studies have shown that some plasmids carry genes encoding NAP homologs, which play important roles in transcriptional regulation networks between plasmids and host chromosomes. In this study, we determined the distributions of the well-known NAPs Fis, H-NS, HU, IHF, and Lrp and the newly found NAPs MvaT and NdpA among the whole-sequenced 1382 plasmids found in Gram-negative bacteria. Comparisons between NAP distributions and plasmid features (size, G+C content, and putative transferability) were also performed. We found that larger plasmids frequently have NAP gene homologs. Plasmids with H-NS gene homologs had less G+C content. It should be noted that plasmids with the NAP gene homolog also carried the relaxase gene involved in the conjugative transfer of plasmids more frequently than did those without the NAP gene homolog, implying that plasmid-encoded NAP homologs positively contribute to transmissible plasmids. PMID:21350637

  3. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant

    PubMed Central

    Rahube, Teddie O.; Viana, Laia S.; Koraimann, Günther; Yost, Christopher K.

    2014-01-01

    A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ. PMID:25389419

  4. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying. PMID:27530840

  5. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    PubMed

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying.

  6. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  7. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae.

    PubMed

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.

  8. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  9. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function.

    PubMed

    Shintani, Masaki; Suzuki-Minakuchi, Chiho; Nojiri, Hideaki

    2015-07-01

    Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.

  10. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    PubMed

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  11. Intramuscular electroporation of a P1A-encoding plasmid vaccine delays P815 mastocytoma growth.

    PubMed

    Vandermeulen, Gaëlle; Uyttenhove, Catherine; De Plaen, Etienne; Van den Eynde, Benoît J; Préat, Véronique

    2014-12-01

    This study aimed to construct DNA vaccines encoding the mouse P1A tumor antigen and to generate a protective immune response against the P815 mastocytoma, as a model for vaccines against human MAGE-type tumor antigens. DNA vaccines were constructed and delivered to mice by intramuscular electroporation before tumor challenge. Immunization with a plasmid coding for the full-length P1A significantly delayed tumor growth and mice survived at least 10 days longer than untreated controls. 10% of the mice completely rejected the P815 tumors while 50% of them showed a regression phase followed by tumor regrowth. Mice immunized by electroporation of a P1A(35-43) minigene-encoding plasmid failed to reject tumor and even delay tumor growth. The P1A(35-43)-encoding plasmid was modified and helper epitope sequences were inserted. However, these modified plasmids were not able to improve the response against P815 mastocytoma. Consistent with these results, a 12-fold higher CTL activity was observed when the plasmid coding for full-length P1A was delivered as compared to the plasmid encoding the P1A(35-43) epitope. Our results demonstrated that electroporation is an efficient method to deliver DNA vaccines against P815 and suggested the superiority of full-length as compared to minigene constructs for DNA vaccines.

  12. Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation.

    PubMed

    Schneider, Jane C; Jenings, Annika F; Mun, Deborah M; McGovern, Patricia M; Chew, Lawrence C

    2005-01-01

    The use of antibiotic-resistance genes as selectable markers in transgenic organisms is coming under increased scrutiny, for fear that they may spread to human pathogens, thereby reducing the effectiveness of antibiotic therapy. A current Pseudomonas fluorescens protein expression system uses a tetracycline resistance gene (tetR/tetA) to maintain an expression plasmid under control of a repressible promoter and a kanamycin resistance gene (kanR) to maintain a plasmid carrying a repressor gene. We investigated using auxotrophic markers to replace these two antibiotic resistance genes: pyrF (encoding orotidine-5'-phosphate decarboxylase) in place of tetR/tetA and proC (encoding pyrroline-5-carboxylate reductase) in place of kanR, complementing their respective precise chromosomal deletions created by allele exchange using a suicide vector carrying pyrF as a counterselectable marker. The resulting strains, devoid of antibiotic-resistance genes, were shown to achieve high productivity of nitrilase and thermostable alpha-amylase equal to that of the former antibiotic-resistant production host. The production plasmids were stable. The pyrF (uracil-dependent) background of the production host strain also allows us to sequentially alter the genome to incorporate other desired genomic changes, deletions, or insertions using 5'-fluoroorotic acid counterselection, restoring the selectable marker after each step.

  13. Plasmid-Encoded ACC-4, an Extended-Spectrum Cephalosporinase Variant from Escherichia coli▿

    PubMed Central

    Papagiannitsis, Costas C.; Tzouvelekis, Leonidas S.; Tzelepi, Eva; Miriagou, Vivi

    2007-01-01

    ACC-4, an omega loop mutant (Val211→Gly) of the Hafnia alvei-derived cephalosporinase ACC-1, was encoded by an Escherichia coli plasmid. The genetic environment of blaACC-4 shared similarities with plasmidic regions carrying blaACC-1. Kinetics of β-lactam hydrolysis and levels of resistance to β-lactams showed that ACC-4 was more effective than ACC-1 against expanded-spectrum cephalosporins. PMID:17664321

  14. Role and specificity of plasmid RP4-encoded DNA primase in bacterial conjugation.

    PubMed Central

    Merryweather, A; Barth, P T; Wilkins, B M

    1986-01-01

    The role of the DNA primase of IncP plasmids was examined with a derivative of RP4 containing Tn7 in the primase gene (pri). The mutant was defective in mediating bacterial conjugation, with the deficiency varying according to the bacterial strains used as donors and recipients. Complementation tests involving recombinant plasmids carrying cloned fragments of RP4 indicated that the primase acts to promote some event in the recipient cell after DNA transfer and that this requirement can be satisfied by plasmid primase made in the donor cell. It is proposed that the enzyme or its products or both are transmitted to the recipient cell during conjugation, and the role of the enzyme in the conjugative processing of RP4 is discussed. Specificity of plasmid primases was assessed with derivatives of RP4 and the IncI1 plasmid ColIb-P9, which is known to encode a DNA primase active in conjugation. When supplied in the donor cell, neither of the primases encoded by these plasmids substituted effectively in the nonhomologous conjugation system. Since ColIb primase provided in the recipient cell acted weakly on transferred RP4 DNA, it is suggested that the specificity of these enzymes reflects their inability to be transmitted via the conjugation apparatus of the nonhomologous plasmid. PMID:3522540

  15. Sustaining protein synthesis in the absence of rapid cell division: an investigation of plasmid-encoded protein expression in Escherichia coli during very slow growth.

    PubMed

    Flickinger, M C; Rouse, M P

    1993-01-01

    The minimum growth rate capable of supporting plasmid-encoded gene expression is determined using continuous cultures of Escherichia coli MZ9387 at dilution rates (D) as low as 5% of the maximum specific growth rate. Expression from a low copy number plasmid, pMPR166, encoding cyanase under the control of P(lac) is investigated in order to study plasmid-encoded gene expression under conditions approaching starvation. Plasmid copy number was stabilized by selection in the presence of 500 micrograms/mL chloramphenicol by constitutive expression of chloramphenicol acetyl transferase (CAT). Plasmid retention was determined by dot-blot hybridization and chloramphenicol resistance. The contribution of plasmid maintenance and cyanase expression to the maximum cell yield (Y'x/s) and the maintenance coefficient (ms) was determined for MZ9387 and MZ9387:pMPR166 under uninduced and IPTG-induced conditions. The values of Y'x/s and ms for non-plasmid-bearing cultures were 0.56 g of cell dry mass (DCM)/g of glucose and 0.26 g of glucose/g of DCM.h, respectively. The cell yield for plasmid-bearing cultures under uninduced conditions (Y 0'x/s) was 0.28 g of DCM/g of glucose, with m0s = 0.08 g of glucose/g of DCM.h. These values decreased following induction of cyanase expression. Glucose consumption in the presence of IPTG was linearly related to the growth rate at D < 0.28 h-1 but nonlinear at dilution rates greater than 50% of the maximum specific growth rate, indicating that cyanase expression alters metabolism and glucose consumption. The fraction of plasmid-free cells decreased with decreasing Damköhler number (Da). These data confirm the usefulness of Da for predicting the relationship between plasmid-free and plasmid-bearing cells where plasmids are stabilized by concentrations of antibiotic greater than the minimum plasmid-free host cell growth inhibitory concentration. Specific cyanase expression increased as the dilution rate decreased to D = 0.15 h-1. Between D = 0

  16. TEM-1-encoding small plasmids impose dissimilar fitness costs on Haemophilus influenzae and Haemophilus parainfluenzae.

    PubMed

    Søndergaard, Annette; Lund, Marianne; Nørskov-Lauritsen, Niels

    2015-12-01

    Only two beta-lactamases, TEM-1 and ROB-1, have been observed in Haemophilus influenzae, while four different TEM but no ROB enzymes have been found in Haemophilus parainfluenzae. In order to investigate the mechanisms behind the dissemination of small beta-lactamase-encoding plasmids in H. influenzae and H. parainfluenzae, we assessed the fitness cost of three TEM-1- (pPN223, pA1209, pA1606), one TEM-15- (pSF3) and one ROB-1-bearing (pB1000) plasmid when expressed in either bacterial species. All plasmids were stable in H. influenzae and H. parainfluenzae except pB1000, which showed on average (sample mean) 76% curing in H. parainfluenzae after 5  days of subculture. Competition assays between isogenic strains with and without plasmid showed no competitive disadvantage of pPN223 and pA1606 in H. influenzae, or of pA1209 in H. parainfluenzae. In contrast, pSF3 and pB1000 were associated with significant competitive disadvantages in both species. Some of the competitive disadvantages may be related to differences in plasmid copy number and mRNA expression of the beta-lactamase genes, as revealed by quantitative PCR analysis. In conclusion, plasmids encoding TEM beta-lactamases isolated from H. influenzae and H. parainfluenzae can be stably transferred between species. The fast curing of pB1000 in H. parainfluenzae observed in this study correlates to the fact that ROB-1 has never been reported for this species. TEM-1-encoding plasmids are associated with the lowest level of fitness cost, but different TEM-1 plasmids confer different levels of fitness cost on the two hosts.

  17. Plasmid incidence, antibiotic and metal resistance among enterobacteriaceae isolated from Algerian streams.

    PubMed

    Habi, S; Daba, H

    2009-11-15

    Enterobacteriaceae isolates from surface water were examined to assess impact of feacal and/or metal pollution on heavy metal, antibiotics resistance and plasmid incidence. A bi-modal CMI distribution was noted for cadmium and mercury. On the other hand, modal distribution was observed for Pb. Critical metal concentration were >8, >32, > or =4096 microg mL(-1) for mercury, cadmium and lead, respectively. High resistance to Pb and low resistance to Cd were remarked in stream water polluted with heavy metal. Resistance to antibiotics was most frequent to erythromycin (45.45-68.8%), tetracyclin family (14-61.11%), streptomycin (16-24%) and furan (8.16-24.1%). Bacterial resistance to some antibiotics (kanamycin, tetracyclin, doxycyclin, furan and chloramphenicol) was significantly different (p < 0.05) between streams water. Analysis of antibiotic resistance by principal component analysis showed a clear difference between fresh water and urban waste water for two principal components (1, 2) and the difference between principal component scores of antibiotic could not be related to the faecal pollution level. No difference was found between stream water subjected or not to contamination from metallic or poultry waste. The frequency of strains carrying plasmids was higher in urban waste water than metal and/or low faecal polluted stream water. No correlation was observed between plasmid and metal resistance. PMID:20180322

  18. EcoR124I: from Plasmid-Encoded Restriction-Modification System to Nanodevice

    PubMed Central

    Youell, James; Firman, Keith

    2008-01-01

    Plasmid R124 was first described in 1972 as being a new member of incompatibility group IncFIV, yet early physical investigations of plasmid DNA showed that this type of classification was more complex than first imagined. Throughout the history of the study of this plasmid, there have been many unexpected observations. Therefore, in this review, we describe the history of our understanding of this plasmid and the type I restriction-modification (R-M) system that it encodes, which will allow an opportunity to correct errors, or misunderstandings, that have arisen in the literature. We also describe the characterization of the R-M enzyme EcoR124I and describe the unusual properties of both type I R-M enzymes and EcoR124I in particular. As we approached the 21st century, we began to see the potential of the EcoR124I R-M enzyme as a useful molecular motor, and this leads to a description of recent work that has shown that the R-M enzyme can be used as a nanoactuator. Therefore, this is a history that takes us from a plasmid isolated from (presumably) an infected source to the potential use of the plasmid-encoded R-M enzyme in bionanotechnology. PMID:18535150

  19. The Multidrug Resistance IncA/C Transferable Plasmid Encodes a Novel Domain-swapped Dimeric Protein-disulfide Isomerase*

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A.; Martin, Jennifer L.

    2014-01-01

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (−161 mV) is more reducing than EcDsbC (−130 mV) and EcDsbG (−126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer. PMID:24311786

  20. New plasmid-mediated nucleotidylation of aminoglycoside antibiotics in Staphlococcus aureus.

    PubMed

    Le Goffic, F; Martel, A; Capmau, M L; Baca, B; Goebel, P; Chardon, H; Soussy, C J; Duval, J; Bouanchaud, D H

    1976-08-01

    A wild-type strain of Staphylococcus aureus, which inactivates a wide variety of aminoglycosides (except the gentamicin components), has been found to harbor a plasmid (RAp01) that mediates the biosynthesis of a nucleotidyltransferase. This enzyme modifies the 4'-hydroxy function of these antibiotics. The plasmid has been studied, the enzyme responsible for this resistance pattern has been isolated by affinity chromatography, and its kinetics and physicochemistry have been characterized. The target of this enzyme has also been located by demonstrating the structure of one inactivated compound, 4'-(O)-adenylyltobramycin.

  1. Plasmid-Encoded Metallo-β-Lactamase (IMP-6) Conferring Resistance to Carbapenems, Especially Meropenem

    PubMed Central

    Yano, Hisakazu; Kuga, Akio; Okamoto, Ryoichi; Kitasato, Hidero; Kobayashi, Toshimitsu; Inoue, Matsuhisa

    2001-01-01

    In 1996, Serratia marcescens KU3838 was isolated from the urine of a patient with a urinary tract infection at a hospital in northern Japan and was found to contain the plasmid pKU501. Previously, we determined that pKU501 carries blaIMP and the genes for TEM-1-type β-lactamases as well as producing both types of β-lactamases (H. Yano, A. Kuga, K. Irinoda, R. Okamoto, T. Kobayashi, and M. Inoue, J. Antibiot. 52:1135–1139, 1999). pKU502 is a recombinant plasmid that contains a 1.5-kb DNA fragment, including the metallo-β-lactamase gene, and is obtained by PCR amplification of pKU501. The sequence of the metallo-β-lactamase gene in pKU502 was determined and revealed that this metallo-β-lactamase gene differed from the gene encoding IMP-1 by one point mutation, leading to one amino acid substitution: 640-A in the base sequence of the IMP-1 gene was replaced by G, and Ser-196 was replaced by Gly in the mature enzyme. This enzyme was designated IMP-6. The strains that produced IMP-6 were resistant to carbapenems. The MICs of panipenem and especially meropenem were higher than the MIC of imipenem for these strains. The kcat/Km value of IMP-6 was about sevenfold higher against meropenem than against imipenem, although the MIC of meropenem for KU1917, which produced IMP-1, was lower than that of imipenem, and the MIC of panipenem was equal to that of imipenem. These results support the hypothesis that IMP-6 has extended substrate profiles against carbapenems. However, the activity of IMP-6 was very low against penicillin G and piperacillin. These results suggest that IMP-6 acquired high activity against carbapenems, especially meropenem, via the point mutation but in the process lost activity against penicillins. Although IMP-6 has reduced activity against penicillins due to this point mutation, pKU501 confers resistance to a variety of antimicrobial agents because it also produces TEM-1-type enzyme. PMID:11302793

  2. Conjugal Transfer of Plasmid-Borne Multiple Antibiotic Resistance in Streptococcus faecalis var. zymogenes

    PubMed Central

    Jacob, Alan E.; Hobbs, Susan J.

    1974-01-01

    A strain of Streptococcus faecalis var. zymogenes, designated JH1, had high-level resistance to the antibiotics streptomycin, kanamycin, neomycin, erythromycin, and tetracycline. These resistances were lost en bloc from approximately 0.1% of cells grown in nutrient broth at 45 C. The frequency of resistance loss was not increased by growth in the presence of the “curing” agents acriflavine or acridine orange, but after prolonged storage in nutrient agar 17% of cells became antibiotic sensitive. Covalently closed circular deoxyribonucleic acid (DNA) molecules were isolated from the parental strain and from antibiotic-sensitive segregants by using cesium chloride-ethidium bromide gradients. DNA molecular species were identified by using neutral sucrose gradients. Strain JH1 contained two covalently closed circular DNA species of molecular weights 50 × 106 and 38 × 106. An antibiotic-sensitive segregant, strain JH1-9, had lost the larger molecular species. A second sensitive segregant, strain JH1-5, had also lost the larger molecular species but a new molecular species of approximate molecular weight 6 × 106 was present. The antibiotic resistances that were curable from the parental strain were transferred to antibiotic-sensitive strains of S. faecalis and to strain JH1-9, during mixed incubation in nutrient broth at 37 C. Data to be described are interpreted to suggest that the transfer is by a conjugal mechanism. Analysis of the plasmid species in recipient clones showed that all had received the plasmid of molecular weight 50 × 106. Strain JH1-5 was not a good recipient. Analysis of one successful recipient clone of JH1-5 revealed that it had gained the 50 × 106 molecular weight plasmid but lost the 6 × 106 molecular weight species. These data are interpreted to mean that the multiple antibiotic resistance is borne by a transferable plasmid of 50 × 106 molecular weight, and that in clone JH1-5 this plasmid suffered a large deletion leaving only a 6

  3. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    PubMed

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance.

  4. Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli.

    PubMed

    Cranenburgh, Rocky M; Lewis, Kathryn S; Hanak, Julian A J

    2004-01-01

    The Escherichia coli strain DH1lacdapD enables plasmid selection and maintenance that is free from antibiotics and selectable marker genes. This is achieved by using only the lac operator sequence as a selectable element. This strain is currently used to generate high copy number plasmids with no antibiotic resistance genes for use as DNA vaccines and for expression of recombinant proteins. Until now these have been limited to pUC-based plasmids containing a high copy number pMB1-derived origin of replication, and the principle lacO(1) and auxiliary lacO(3) operators. In this study we have shown that this system can also be used to select and maintain pBR322-based plasmids with the lower copy number pMB1 origin of replication, and that lacO(1) alone or a palindromic version of lacO(1) can provide a sufficient level of repressor titration for plasmid selection. This is advantageous for recombinant protein production, where low copy number plasmids are often used and plasmid maintenance is important. The degree of repressor titration due to these plasmids was measured using the natural lactose operon in E. coli DH1 as a model. PMID:15383717

  5. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles.

    PubMed

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R

    2014-12-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  6. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  7. Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens.

    PubMed

    Adams, Vicki; Watts, Thomas D; Bulach, Dieter M; Lyras, Dena; Rood, Julian I

    2015-07-01

    Many pathogenic strains of Clostridium perfringens carry several highly similar toxin or antibiotic resistance plasmids that have 35 to 40 kb of very closely related syntenous sequences, including regions that carry the genes encoding conjugative transfer, plasmid replication and plasmid maintenance functions. Key questions are how are these closely related plasmids stably maintained in the same cell and what is the basis for plasmid incompatibility in C. perfringens. Comparative analysis of the Rep proteins encoded by these plasmids suggested that this protein was not the basis for plasmid incompatibility since plasmids carried in a single strain often encoded an almost identical Rep protein. These plasmids all carried a similar, but not identical, parMRC plasmid partitioning locus. Phylogenetic analysis of the deduced ParM proteins revealed that these proteins could be divided into ten separate groups. Importantly, in every strain that carried more than one of these plasmids, the respective ParM proteins were from different phylogenetic groups. Similar observations were made from the analysis of phylogenetic trees of the ParR proteins and the parC loci. These findings provide evidence that the basis for plasmid incompatibility in the conjugative toxin and resistance plasmid family from C. perfringens resides in subtle differences in the parMRC plasmid partitioning loci carried by these plasmids.

  8. Tn6026 and Tn6029 are found in complex resistance regions mobilised by diverse plasmids and chromosomal islands in multiple antibiotic resistant Enterobacteriaceae.

    PubMed

    Reid, Cameron J; Roy Chowdhury, Piklu; Djordjevic, Steven P

    2015-07-01

    Transposons flanked by direct copies of IS26 are important contributors to the evolution of multiple antibiotic resistance. Tn6029 and Tn6026 are examples of composite transposons that have become widely disseminated on small and large plasmids with different incompatibility markers in pathogenic and commensal Escherichia coli and various serovars of Salmonella enterica. Some of the plasmids that harbour these transposons also carry combinations of virulence genes. Recently, Tn6029 and Tn6026 and derivatives thereof have been found on chromosomal islands in both established and recently emerged pathogens. While Tn6029 and Tn6026 carry genes encoding resistance to older generation antibiotics, they also provide a scaffold for the introduction of genes encoding resistance to a wide variety of clinically relevant antibiotics that are mobilised by IS26. As a consequence, Tn6029 and Tn6026 or variants are likely to increasingly feature in complex resistance regions in multiple antibiotic resistant Enterobacteriaceae that threaten the health of humans and food production animals.

  9. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  10. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention. PMID:27088393

  11. The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates.

    PubMed

    Wibberg, Daniel; Szczepanowski, Rafael; Eikmeyer, Felix; Pühler, Alfred; Schlüter, Andreas

    2013-03-01

    The IncF antibiotic resistance and virulence plasmid pRSB225, isolated from an unknown bacterium released with the purified wastewater from a municipal sewage treatment plant into the environment has been analysed at the genomic level by pyrosequencing. The 164,550bp plasmid comprises 210 coding sequences (cds). It is composed of three replicons (RepFIA, RepFIB, and RepFII) and encodes further plasmid-specific functions for stable maintenance and inheritance and conjugative plasmid transfer. The plasmid is self-transmissible and shows a narrow host range limited to the family Enterobacteriaceae. The accessory modules of the plasmid mainly comprise genes conferring resistance to ampicillin (bla(TEM-1b)), chloramphenicol (catA1), erythromycin (mphA), kanamycin and neomycin (aphA1), streptomycin (strAB), sulphonamides (sul2), tetracycline (tetA(B)) and trimethoprim (dfrA14), as well as mercuric ions (mer genes). In addition, putative virulence-associated genes coding for iron uptake (iutA/iucABCD, sitABCD, and a putative high-affinity Fe²⁺ uptake system) and for a toxin/antitoxin system (vagCD) were identified on the plasmid. All antibiotic and heavy metal resistance genes are located either on class 1 (Tn10-remnant, Tn4352B) and class 2 transposons (Tn2-remnant, Tn21, Tn402-remnant) or a class 1 integron, whereas almost all putative virulence genes are associated with IS elements (IS1, IS26), indicating that transposition and/or recombination events were responsible for acquisition of the accessory pRSB225 modules. Particular modules of plasmid pRSB225 are related to corresponding segments of different virulence plasmids harboured by pathogenic Escherichia coli strains. Moreover, pRSB225 modules were also detected in entero-aggregative-haemorrhagic E. coli (EAHEC) draft genome sequences suggesting that IncF plasmids related to pRSB225 mediated gene transfer into pathogenic E. coli derivatives. PMID:23212116

  12. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China

    PubMed Central

    Sun, Fengjun; Yin, Zhe; Feng, Jiao; Qiu, Yefeng; Zhang, Defu; Luo, Wenbo; Yang, Huiying; Yang, Wenhui; Wang, Jie; Chen, Weijun; Xia, Peiyuan; Zhou, Dongsheng

    2015-01-01

    Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of blaNDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY blaNDM-1-carrying plasmid pKOX_NDM1. The blaNDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of blaNDM-1 gene contexts. PMID:26052314

  13. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China.

    PubMed

    Sun, Fengjun; Yin, Zhe; Feng, Jiao; Qiu, Yefeng; Zhang, Defu; Luo, Wenbo; Yang, Huiying; Yang, Wenhui; Wang, Jie; Chen, Weijun; Xia, Peiyuan; Zhou, Dongsheng

    2015-01-01

    Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of bla NDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY bla NDM-1-carrying plasmid pKOX_NDM1. The bla NDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of bla NDM-1 gene contexts.

  14. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706T

    PubMed Central

    Iiyama, Kazuhiro; Mon, Hiroaki; Mori, Kazuki; Mitsudome, Takumi; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-ichiro; Yasunaga-Aoki, Chisa

    2015-01-01

    A scaffold obtained from whole-genome shotgun sequencing of Paenibacillus popilliae ATCC 14706T shares partial homology with plasmids found in other strains of P. popilliae. PCR and sequencing for gap enclosure indicated that the scaffold originated from a 15,929-bp circular DNA. The restriction patterns of a plasmid isolated from P. popilliae ATCC 14706T were identical to those expected from the sequence; thus, this circular DNA was identified as a plasmid of ATCC 14706T and designated pPOP15.9. The plasmid encodes 17 putative open reading frames. Orfs 1, 5, 7, 8, and 9 are homologous to Orfs 11, 12, 15, 16, and 17, respectively. Orf1 and Orf11 are annotated as replication initiation proteins. Orf8 and Orf16 are homologs of KfrA, a plasmid-stabilizing protein in Gram-negative bacteria. Recombinant Orf8 and Orf16 proteins were assessed for the properties of KfrA. Indeed, they formed multimers and bound to inverted repeat sequences in upstream regions of both orf8 and orf16. A phylogenetic tree based on amino acid sequences of Orf8, Orf16 and Kfr proteins did not correlate with species lineage. PMID:25853059

  15. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer.

    PubMed

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107

  16. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    PubMed Central

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107

  17. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  18. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  19. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium.

    PubMed

    Kubasova, Tereza; Cejkova, Darina; Matiasovicova, Jitka; Sekelova, Zuzana; Polansky, Ondrej; Medvecky, Matej; Rychlik, Ivan; Juricova, Helena

    2016-01-01

    Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment. PMID:27189997

  20. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium.

    PubMed

    Kubasova, Tereza; Cejkova, Darina; Matiasovicova, Jitka; Sekelova, Zuzana; Polansky, Ondrej; Medvecky, Matej; Rychlik, Ivan; Juricova, Helena

    2016-06-13

    Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment.

  1. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection.

    PubMed

    Ma, Hongyan; Bryers, James D

    2013-01-01

    Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kan(R+) gene was not enhanced. These preliminary results suggest biofilm bacteria "sense" antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters.

  2. Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts

    PubMed Central

    Venturini, Carola; Hassan, Karl A.; Roy Chowdhury, Piklu; Paulsen, Ian T.; Walker, Mark J.; Djordjevic, Steven P.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance

  3. Chromosomal and Plasmid-Encoded Factors of Shigella flexneri Induce Secretogenic Activity Ex Vivo

    PubMed Central

    Shea-Donohue, Terez; Barry, Eileen M.; Kaper, James B.; Fasano, Alessio; Nataro, James P.

    2012-01-01

    Shigella flexneri is a Gram-negative, facultative intracellular pathogen that causes millions of cases of watery or bloody diarrhea annually, resulting in significant global mortality. Watery diarrhea is thought to arise in the jejunum, and subsequent bloody diarrhea occurs as a result of invasion of the colonic epithelium. Previous literature has demonstrated that Shigella encodes enterotoxins, both chromosomally and on the 220 kilobase virulence plasmid. The Shigella Enterotoxins 1 and 2 (ShET1 and ShET2) have been shown to increase water accumulation in the rabbit ileal loop model. In addition, these toxins increase the short circuit current in rabbit tissue mounted in Ussing chambers, which is a model for the ion exchange that occurs during watery diarrhea. In this study, we sought to validate the use of mouse jejunum in Ussing chamber as an alternative, more versatile model to study bacterial pathogenesis. In the process, we also identified enterotoxins in addition to ShET1 and ShET2 encoded by S. flexneri. Through analysis of proteins secreted from wildtype bacteria and various deletion mutants, we have identified four factors responsible for enterotoxin activity: ShET1 and Pic, which are encoded on the chromosome; ShET2 (encoded by sen or ospD3), which requires the type-III secretion system for secretion; and SepA, an additional factor encoded on the virulence plasmid. The use of mouse jejunum serves as a reliable and reproducible model to identify the enterotoxins elaborated by enteric bacteria. Moreover, the identification of all Shigella proteins responsible for enterotoxin activity is vital to our understanding of Shigella pathogenicity and to our success in developing safe and effective vaccine candidates. PMID:23166804

  4. Toxin plasmids of Clostridium perfringens.

    PubMed

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.

  5. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.

    PubMed

    Chauhan, A; Samanta, S K; Jain, R K

    2000-05-01

    Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.

  6. Concordance of heavy metal and antibiotic resistance on plasmids of Chesapeake Bay bacteria. Technical report

    SciTech Connect

    McNicol, L.A.

    1980-10-01

    Antibiotic-resistant and heavy metal-resistant phenotypic frequency was measured in Chesapeake Bay bacterial strains obtained from Bay sites differing significantly in water quality. The phenotypes were estimated from dose-response curves using direct plating, replica plating, and minimal inhibitory concentration (MIC). Resistant and sensitive organisms could be distinguished by concentrations of twenty micrograms per milliliter for various antibiotics (ampicillin, chloramphenicol, nalidixic acid, penicillin, streptomycin, and tetracycline), and of 0.05 millimolar for the heavy metals tested (cadmium, mercury, nickel, and lead). Individual resistance phenotypes of 1816 isolates were determined with the replica technique, with 85% resistant to at least one antibiotic and a surprising 2% resistant to all six drugs tested. Occurrence of resistant organisms did not correlate with water quality, sampling location, season, sample type, or physical parameters of the site. Ninety-two percent of organisms examined were resistant to at least one metal studied, with 43% resistant to all metals, but resistance did not correlate with any station or sample parameters. Metal and drug resistant phenotypes did correlate positively with one another, but these two traits were not appreciably linked on plasmid DNA.

  7. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  8. Characterization of multiple-antibiotic-resistant Salmonella typhimurium stains: molecular epidemiology of PER-1-producing isolates and evidence for nosocomial plasmid exchange by a clone.

    PubMed Central

    Vahaboglu, H; Dodanli, S; Eroglu, C; Oztürk, R; Soyletir, G; Yildirim, I; Avkan, V

    1996-01-01

    We characterized epidemiologic and genetic features of nosocomially originated multiple-antibiotic-resistant Salmonella typhimurium isolates from two hospitals. A total of 32 multiply resistant strains, isolated during a 28-month period, were studied. Four resistance phenotypes were distinguished on the basis of the results of disc diffusion tests. Group 1 was resistant to chloramphenicol, gentamicin, tobramycin, amikacin, and the newer cephalosporins because of the production of an extended-spectrum beta-lactamase (PER-1). Group 2 exhibited the same pattern plus resistance to sulfamethoxazole-trimethoprim (Sxt). Except for Sxt resistance, dominant phenotypes of both groups were transferred on an identical plasmid, pSTI1 (81 MDa). Group 3 was resistant to ampicillin, chloramphenicol, gentamicin, tobramycin, and Sxt. This pattern was also transferred on an 81-MDa plasmid (pSTI2) which differed from pSTI1 on the basis of EcoRI and HindIII restriction fragments. Group 4 was resistant to ampicillin, chloramphenicol, and tetracycline, and a 74-MDa nonconjugative plasmid was detected. Restriction fragment length polymorphism of RNA-encoding DNA and arbitrarily primed PCR tests revealed that bacteria from groups 1, 2, and 3 were clonally related. Epidemiologic data also supported the clonal-dissemination hypothesis. We concluded that S. typhimurium isolates acquire and exchange multiple-resistance plasmids in hospital microflora. PMID:8940427

  9. DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria.

    PubMed

    Gadelle, Danièle; Krupovic, Mart; Raymann, Kasie; Mayer, Claudine; Forterre, Patrick

    2014-07-01

    Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.

  10. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  11. Emergence of Staphylococcus aureus Carrying Multiple Drug Resistance Genes on a Plasmid Encoding Exfoliative Toxin B

    PubMed Central

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo

    2013-01-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6′)/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6′)/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6′)/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6′)/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  12. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment.

  13. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    PubMed

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  14. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    PubMed Central

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  15. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    PubMed

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people.

  16. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid.

    PubMed

    Qiu, Zhigang; Shen, Zhiqiang; Qian, Di; Jin, Min; Yang, Dong; Wang, Jingfeng; Zhang, Bin; Yang, Zhongwei; Chen, Zhaoli; Wang, Xinwei; Ding, Chengshi; Wang, Daning; Li, Jun-Wen

    2015-01-01

    The potential risks of nano-materials and the spread of antibiotic resistance genes (ARGs) have become two major global public concerns. Studies have confirmed that nano-alumina can promote the spread of ARGs mediated by plasmids. Nano-titanium dioxide (TiO(2)), an excellent photocatalytic nano-material, has been widely used and is often present in aqueous environments. At various nano-material concentrations, bacterial density, matting time, and matting temperature, nano-TiO(2) can significantly promote the conjugation of RP4 plasmid in Escherichia coli. We developed a mathematical model to quantitatively describe the conjugation process and used this model to evaluate the effects of nano-TiO(2) on the spread of ARGs. We obtained analytical solutions for total and resistant bacteria, which were enumerated by the abundance of genetic loci unique to the plasmid and the chromosome using qPCR. Our results showed that the mathematic model was able to fit the experimental data well and can be used to quantitatively evaluate the effects of nano-TiO(2). According to our model, the presence of nano-TiO(2) decreased the bacterial growth rate from 0.0360 to 0.0323 min(-1) and increased the conjugative transfer rate from 6.69 × 10(-12) to 3.93 × 10(-10 )mL cell(-1) min(-1). These results indicate that nano-TiO(2) inhibited bacterial growth and promoted conjugation simultaneously. The data for morphology and mRNA expression also demonstrated this phenomenon. Our results confirm that environmental nano-TiO(2) may cause the spread of ARGs and thus poses an environmental risk. In addition, we provide a potential method for monitoring changes in ARGs that result from conjugation and evaluating the effects of antimicrobial substances on ARG expression.

  17. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia.

    PubMed

    You, K G; Bong, C W; Lee, C W

    2016-03-01

    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia. PMID:26884358

  18. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia.

    PubMed

    You, K G; Bong, C W; Lee, C W

    2016-03-01

    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.

  19. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2).

    PubMed

    Wright, L F; Hopwood, D A

    1976-07-01

    The antibiotic whose biosynthesis is determined by the SCP1 plasmid of Streptomyces coelicolor A3(2) has been characterized as the recently described methylenomycin A (2-methylene-cyclopentan-3-one-4,5-epoxy-4,5-dimethyl-1-carboxylic acid).

  20. Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.

    PubMed

    Kuwahara, S

    1978-09-01

    Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.

  1. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium -Copy Number Plasmids in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli. PMID:26057251

  2. Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae.

    PubMed

    Chauhan, A; Chakraborti, A K; Jain, R K

    2000-04-21

    Arthrobacter protophormiae strain RKJ100 is capable of utilizing p-nitrophenol (PNP) as well as 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy. The degradation of PNP and NC by this microorganism takes place through an oxidative route, as stoichiometry of nitrite molecules was observed when the strain was grown on PNP or NC as sole carbon and energy sources. The degradative pathways of PNP and NC were elucidated on the basis of enzyme assays and chemical characterization of the intermediates by TLC, GC, (1)H NMR, GC-MS, UV spectroscopy, and HPLC analyses. Our studies clearly indicate that the degradation of PNP proceeds with the formation of p-benzoquinone (BQ) and hydroquinone (HQ) and is further degraded via the beta-ketoadipate pathway. Degradation of NC involved initial oxidation to generate 1,2,4-benzenetriol (BT) and 2-hydroxy-1,4-benzoquinone; the latter intermediate is then reductively dehydroxylated, forming BQ and HQ, and is further cleaved via beta-ketoadipate to TCA intermediates. It is likely, therefore, that the same set of genes encode the further metabolism of HQ in PNP and NC degradation. A plasmid of approximately 65 kb was found to be responsible for harboring genes for PNP and NC degradation in this strain. This was based on the fact that PNP(-) NC(-) derivatives were devoid of the plasmid and had simultaneously lost their capability to grow at the expense of these nitroaromatic compounds.

  3. Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein.

    PubMed Central

    Doran, T J; Loh, S M; Firth, N; Skurray, R A

    1994-01-01

    The nucleotide sequences of the conjugative F plasmid transfer region genes, traV and traR, have been determined. The deduced amino acid sequence of TraV indicated that it may be a lipoprotein; this was confirmed by examining the effect of globomycin on traV-encoded polypeptides synthesized in minicells. An open reading frame that may represent a previously undetected transfer gene, now designated trbG, was identified immediately upstream of traV. The deduced product of traR was found to share amino acid similarity with proteins from the bacteriophages 186 and P2 and with the dosage-dependent dnaK suppressor DksA. Images PMID:8021201

  4. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  5. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    PubMed

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  6. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids.

    PubMed

    San Millan, A; Peña-Miller, R; Toll-Riera, M; Halbert, Z V; McLean, A R; Cooper, B S; MacLean, R C

    2014-10-10

    Plasmids are important drivers of bacterial evolution, but it is challenging to understand how plasmids persist over the long term because plasmid carriage is costly. Classical models predict that horizontal transfer is necessary for plasmid persistence, but recent work shows that almost half of plasmids are non-transmissible. Here we use a combination of mathematical modelling and experimental evolution to investigate how a costly, non-transmissible plasmid, pNUK73, can be maintained in populations of Pseudomonas aeruginosa. Compensatory adaptation increases plasmid stability by eliminating the cost of plasmid carriage. However, positive selection for plasmid-encoded antibiotic resistance is required to maintain the plasmid by offsetting reductions in plasmid frequency due to segregational loss. Crucially, we show that compensatory adaptation and positive selection reinforce each other's effects. Our study provides a new understanding of how plasmids persist in bacterial populations, and it helps to explain why resistance can be maintained after antibiotic use is stopped.

  7. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids

    PubMed Central

    Millan, A. San; Peña-Miller, R.; Toll-Riera, M.; Halbert, Z. V.; McLean, A. R.; Cooper, B. S.; MacLean, R. C.

    2014-01-01

    Plasmids are important drivers of bacterial evolution, but it is challenging to understand how plasmids persist over the long term because plasmid carriage is costly. Classical models predict that horizontal transfer is necessary for plasmid persistence, but recent work shows that almost half of plasmids are non-transmissible. Here we use a combination of mathematical modelling and experimental evolution to investigate how a costly, non-transmissible plasmid, pNUK73, can be maintained in populations of Pseudomonas aeruginosa. Compensatory adaptation increases plasmid stability by eliminating the cost of plasmid carriage. However, positive selection for plasmid-encoded antibiotic resistance is required to maintain the plasmid by offsetting reductions in plasmid frequency due to segregational loss. Crucially, we show that compensatory adaptation and positive selection reinforce each other’s effects. Our study provides a new understanding of how plasmids persist in bacterial populations, and it helps to explain why resistance can be maintained after antibiotic use is stopped. PMID:25302567

  8. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources.

    PubMed

    Odumosu, Bamidele Tolulope; Ajetunmobi, Olabayo; Dada-Adegbola, Hannah; Odutayo, Idowu

    2016-01-01

    Multidrug resistant organisms (MDROs) constitute a major public health threat globally. Clinical isolates of Pseudomonas aeruginosa remains one of the most studied MDROs however there is paucity of information regarding the susceptibility of its animal and plants isolates to antipseudomonas drug in Nigeria. From a total of 252 samples consisting of plants, animals and clinical samples, 54, 24 and 22 P. aeruginosa were isolated from vegetables, animals and clinical sources respectively. All the isolates were identified by standard biochemical methods. Antimicrobial susceptibility testing (AST) of the 100 P. aeruginosa isolates against 7 antipseudomonal drugs was carried out by disk diffusion method, the phenotypic detection of ESBL was done by double disk synergy test (DDST) while plasmid extraction on 20 selected isolates based on their resistance to 2 or more classes of antibiotics was carried out by alkaline lysis method and analysed with Lambda DNA/Hind lll marker respectively. The AST results revealed highest resistance of 91 and 55 % to ceftazidime and carbenicillin respectively while highest susceptibilities of 99 % for piperacillin-tazobactam and imipenem were recorded in overall assay. Fifteen out of 100 isolates specifically (10) from vegetables, (3) clinical and (2) poultry isolates showed synergy towards the beta-lactamase inhibitor indicating production of ESBL by DDST method. Detection of plasmids was among vegetable (n = 4), poultry (n = 4), cow (n = 3) and clinical isolates (n = 1). Plasmid profile for the selected isolates revealed 6 of the strains had one plasmids each while 5 strains possessed 2-4 plasmids and 1 strain had 5 plasmids. The sizes of the plasmid range from <1 to ≥23kbp. Detection of ESBL and Plasmids among the investigated isolates is suggestive of multiple interplay of resistance mechanism among the isolates. Plants and animal isolates of P. aeruginosa harbouring multiple mechanisms of resistance is of concern due to the

  9. Gene electro transfer of plasmid encoding vascular endothelial growth factor for enhanced expression and perfusion in the ischemic swine heart.

    PubMed

    Hargrave, Barbara; Strange, Robert; Navare, Sagar; Stratton, Michael; Burcus, Nina; Murray, Len; Lundberg, Cathryn; Bulysheva, Anna; Li, Fanying; Heller, Richard

    2014-01-01

    Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p<0.03), 40 Volts (p<0.05), and 90 Volts (p<0.05), but not with 60 Volts (p<0.09) while maintaining a pulse width of 20 milliseconds. The group with gene electro transfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.

  10. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences

    PubMed Central

    Grier, Alexandra E; Burleigh, Stephen; Sahni, Jaya; Clough, Courtnee A; Cardot, Victoire; Choe, Dongwook C; Krutein, Michelle C; Rawlings, David J; Jensen, Michael C; Scharenberg, Andrew M; Jacoby, Kyle

    2016-01-01

    Increasing demand for large-scale synthesis of in vitro transcribed (IVT) mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3′ polyadenosine (poly(A)) tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A) tail lengths to ~120 base pairs (bp). Here, we have developed a novel method for generation of extended poly(A) tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A) tracts up to ~500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A) tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A) tracts and 3′ termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s). PMID:27093168

  11. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus

    PubMed Central

    Greve, Bo; Jensen, Susanne; Phan, Hoa; Brügger, Kim; Zillig, Wolfram; She, Qunxin; Garrett, Roger A.

    2005-01-01

    Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase–primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins. PMID:15876565

  12. Preparation and characterization of chitosan/β-cyclodextrin nanoparticles containing plasmid DNA encoding interleukin-12.

    PubMed

    Nahaei, M; Valizadeh, H; Baradaran, B; Nahaei, M R; Asgari, D; Hallaj-Nezhadi, S; Dastmalchi, S; Lotfipour, F

    2013-01-01

    Interleukin-12 (IL-12) as a cytokine has been proved to possess antitumor effects via stimulating the immune system. Non-viral gene delivery systems offer several advantages, including easiness in production, low cost, safety; low immunogenicity and can carry higher amounts of genetic material without limitation on their sizes.pUMVC3-hIL12 loaded Low Molecular Weight chitosan/β-cyclodextrin (LMW CS/CD) nanoparticles were prepared using ionotropic gelation method and characterized in terms of size, zeta potential, polydispersity index, morphology, loading efficiency and cytotoxicity against the CT-26 colon carcinoma cell line.All prepared particles were spherical in shape and nano-sized (171.3±2.165 nm, PdI: 0.231±0.014) and exhibited a positive zeta potential (34.3±1.55). The nanoparticles demonstrated good DNA encapsulation efficiencies (83.315%±2.067). Prepared pUMVC3-hIL12 loaded LMW CS/CD nanoparticles showed no cell toxicity in murine CT-26 colon carcinoma cells. At the concentration of 0.1 µg/ml of nanoparticles, the transfection ability was obviously higher than that of the naked DNA.LMW CS/CD-plasmid DNA nanoparticles encoding IL-12 prepared using ionotropic gelation method with no toxic effect on the tested cells can be considered as a basis for further gene delivery studies both in vitro and in vivo to enhance the expression of IL-12.

  13. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys.

    PubMed

    Alippi, Adriana M; León, Ignacio E; López, Ana C

    2014-03-01

    Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae.

  14. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys.

    PubMed

    Alippi, Adriana M; León, Ignacio E; López, Ana C

    2014-03-01

    Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae. PMID:25296446

  15. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes.

    PubMed

    Lajnef, Rim; Snoussi, Mejdi; Romalde, Jesús López; Nozha, Cohen; Hassen, Abdennaceur

    2012-12-01

    The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI = 0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI = 0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48 % of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45 kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater. PMID:22918722

  16. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions.

    PubMed Central

    Belogurov, A A; Delver, E P; Rodzevich, O V

    1992-01-01

    The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating. Images PMID:1321121

  17. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp).

    PubMed

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  18. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp)

    PubMed Central

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J.; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located. PMID:27054573

  19. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp).

    PubMed

    Tobias, Joshua; Von Mentzer, Astrid; Loayza Frykberg, Patricia; Aslett, Martin; Page, Andrew J; Sjöling, Åsa; Svennerholm, Ann-Mari

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located.

  20. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  1. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.

  2. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  3. The mosaic architecture of Aeromonas salmonicida subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance

    PubMed Central

    Tanaka, Katherine H.; Vincent, Antony T.; Trudel, Mélanie V.; Paquet, Valérie E.; Frenette, Michel

    2016-01-01

    Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in salmonids, is an issue especially because many isolates of this bacterium display antibiotic resistances, which limit treatments against the disease. Recent results suggested the possible existence of alternative forms of pAsa4, a large plasmid found in A. salmonicida subsp. salmonicida and bearing multiple antibiotic resistance genes. The present study reveals the existence of two newly detected pAsa4 variants, pAsa4b and pAsa4c. We present the extensive characterization of the genomic architecture, the mobile genetic elements and the antimicrobial resistance genes of these plasmids in addition to the reference pAsa4 from the strain A449. The analysis showed differences between the three architectures with consequences on the content of resistance genes. The genomic plasticity of the three pAsa4 variants could be partially explained by the action of mobile genetic elements like insertion sequences. Eight additional isolates from Canada and Europe that bore similar antibiotic resistance patterns as pAsa4-bearing strains were genotyped and specific pAsa4 variants could be attributed to phenotypic profiles. pAsa4 and pAsa4c were found in Europe, while pAsa4b was found in Canada. In accordance with their content in conjugative transfer genes, only pAsa4b and pAsa4c can be transferred by conjugation in Escherichia coli. The plasticity of pAsa4 variants related to the acquisition of antibiotic resistance indicates that these plasmids may pose a threat in terms of the dissemination of antimicrobial-resistant A. salmonicida subsp. salmonicida bacteria. PMID:27812409

  4. Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker.

    PubMed Central

    Russell, C B; Dahlquist, F W

    1989-01-01

    Transfer of an allele from a donor DNA to a recipient DNA molecule was selected by the loss of a dominant conditional lethal mutation previously incorporated ito the gene of interest in the recipient DNA. Both the Escherichia coli chromosome and plasmids carrying E. coli genes were used successfully as donor molecules. Recipient molecules for these exchanges were constructed in vitro by using the rpsL gene, which confers sensitivity to streptomycin, to replace segments of specific E. coli genes located either on multicopy plasmids or in the E. coli chromosome. Plasmids carrying such replacements were capable of acquiring chromosomal alleles of the gene(s) of interest, and strains carrying rpsL replacements in the chromosome were capable of acquiring plasmid-encoded alleles at the sight of the rpsL replacement. In both situations, these allele transfers resulted in loss of the rpsL gene from the recipient DNA molecule. The desired transfer events constituted a large percentage of these events, which gave rise to viable colonies when appropriate donor-recipient pairs were subjected to streptomycin selection. Thus, this is a useful approach for transferring alleles of interest from plasmids to the E. coli chromosome and vice versa. PMID:2651409

  5. High and prolonged sulfamidase secretion by the liver of MPS-IIIA mice following hydrodynamic tail vein delivery of antibiotic-free pFAR4 plasmid vector.

    PubMed

    Quiviger, M; Arfi, A; Mansard, D; Delacotte, L; Pastor, M; Scherman, D; Marie, C

    2014-12-01

    Mucopolysaccharidosis type IIIA (MPS-IIIA) or Sanfilippo A syndrome is a lysosomal storage genetic disease that results from the deficiency of the N-sulfoglucosamine sulfohydrolase (SGSH) protein, a sulfamidase required for the degradation of heparan sulfate glycosaminoglycans (GAGs). The accumulation of these macromolecules leads to somatic organ pathologies, severe neurodegeneration and death. To assess a novel gene therapy approach based on prolonged secretion of the missing enzyme by the liver, mediated by hydrodynamic gene delivery, we first compared a kanamycin and an antibiotic-free expression plasmid vector, called pFAR4. Thanks to the reduced vector size, pFAR4 derivatives containing either a ubiquitous or a liver-specific promoter mediated a higher reporter gene expression level than the control plasmid. Hydrodynamic delivery of SGSH-encoding pFAR4 into MPS-IIIA diseased mice led to high serum levels of sulfamidase protein that was efficiently taken up by neighboring organs, as shown by the correction of GAG accumulation. A similar reduction in GAG content was also observed in the brain, at early stages of the disease. Thus, this study contributes to the effort towards the development of novel biosafe non-viral gene vectors for therapeutic protein expression in the liver, and represents a first step towards an alternative gene therapy approach for the MPS-IIIA disease.

  6. Chlamydial plasmids and bacteriophages.

    PubMed

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  7. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96.

    PubMed

    Xiong, Jianhui; Alexander, David C; Ma, Jennifer H; Déraspe, Maxime; Low, Donald E; Jamieson, Frances B; Roy, Paul H

    2013-08-01

    Pseudomonas aeruginosa 96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 of Pseudomonas fluorescens SBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. The blaIMP-9-carrying integron contained aacA4 → bla(IMP-9) → aacA4, flanked upstream by Tn21 tnpMRA and downstream by a complete tni operon of Tn402 and a mer module, named Tn6016. The second integron carried aacA4 → catB8a → bla(OXA-10) and was flanked by Tn1403-like tnpRA and a sul1-type 3' conserved sequence (3'-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and two pil operons. The replication and maintenance systems exhibit similarity to a genomic island of Ralstonia solanacearum GM1000. Codon usage analysis suggests the recent acquisition of bla(IMP-9). The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.

  8. Prevalence and mapping of a plasmid encoding a type IV secretion system in Acinetobacter baumannii.

    PubMed

    Liu, Chih-Chin; Kuo, Han-Yueh; Tang, Chuan Yi; Chang, Kai-Chih; Liou, Ming-Li

    2014-09-01

    We investigated the prevalence of a type IV secretion system (T4SS)-bearing plasmid among clinical isolates of carbapenem-resistant Acinetobacter baumannii (CRAB) using plasmid replicon typing. The complete sequence of a T4SS-bearing plasmid, pAB_CC, isolated from A. baumannii TYTH-1 was determined, and a comparative analysis of the T4SS gene modules was performed. Of the 129 isolates studied, GR6 (repAci6) was the most common (45 of 96 isolates) and was strongly linked with the T4SS. A comparative analysis of the T4SS locus in seven plasmid genomes, including pAB_CC, pACICU2, pABKp1, pABTJ1, p1BJAB0714, p2BJAB0868, and p2ABTCDC0715, indicated that fourteen genes on these plasmids were highly conserved compared to those of the F plasmid. Additionally, the chromosomes in the seven representative isolates may be evolutionarily distinct from their intrinsic T4SS-bearing plasmids, suggesting that the two T4SS lineages emerged long before the appearance of EC II. These two lineages are now widespread in A. baumannii strains.

  9. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  10. Trimethoprim resistance in urinary pathogens in northern Scotland: epidemic spread of a resistance plasmid encoding the type Ib trimethoprim-resistant dihydrofolate reductase.

    PubMed

    Young, H K; Hillyear, J K

    1994-11-01

    The prevalence of trimethoprim resistance in enterobacterial urinary pathogens from hospitalised patients in the Angus district of northern Scotland (22.8%) was twice that found in similar isolates from patients attending general practitioners (11.2%). Thirty-three of the 143 trimethoprim-resistant strains were shown to harbour transferable plasmids conferring high-level trimethoprim resistance. In total, 17 different plasmid types were distinguished. Two plasmids, pUK1184 and pUK1185, accounted for 36% of the trimethoprim resistance plasmids and were shown by restriction endonuclease digestion fingerprints to be closely related to plasmid pUK28, previously demonstrated to be endemic in urinary pathogens in the Edinburgh area. Only 21% of the plasmids were shown to encode the type Ia trimethoprim-resistant dihydrofolate reductase, whereas 70% of the trimethoprim resistance plasmids were found to encode the type Ib dihydrofolate reductase. Hybridisation of the trimethoprim resistance plasmids identified in this study with gene probes specific for the integrase genes of transposons Tn7 and Tn21 indicates that the dhfrIa is rarely present within Tn7 or related transposons in these plasmids and may be more prevalent within Tn21-like transposons. In contrast, with the exception of the two endemic plasmids that harboured the dhfrIb gene within a Tn7-like transposon, the majority of dhfrIb genes were not found to be associated with either Tn7- or Tn21-like structures.

  11. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene.

    PubMed Central

    Crespi, M; Messens, E; Caplan, A B; van Montagu, M; Desomer, J

    1992-01-01

    Rhodococcus fascians is a nocardiform bacteria that induces leafy galls (fasciation) on dicotyledonous and several monocotyledonous plants. The wild-type strain D188 contained a conjugative, 200 kb linear extrachromosomal element, pFiD188. Linear plasmid-cured strains were avirulent and reintroduction of this linear element restored virulence. Pulsed field electrophoresis indicated that the chromosome might also be a linear molecule of 4 megabases. Three loci involved in phytopathogenicity have been identified by insertion mutagenesis of this Fi plasmid. Inactivation of the fas locus resulted in avirulent strains, whereas insertions in the two other loci affected the degree of virulence, yielding attenuated (att) and hypervirulent (hyp) bacteria. One of the genes within the fas locus encoded an isopentenyltranferase (IPT) with low homology to analogous proteins from Gram-negative phytopathogenic bacteria. IPT activity was detected after expression of this protein in Escherichia coli cells. In R.fascians, ipt expression could only be detected in bacteria induced with extracts from fasciated tissue. R.fascians strains without the linear plasmid but containing this fas locus alone could not provoke any phenotype on plants, indicating additional genes from the linear plasmid were also essential for virulence. These studies, the first genetic analysis of the interaction of a Gram-positive bacterium with plants, suggest that a novel mechanism for plant tumour induction has evolved in R.fascians independently from the other branches of the eubacteria. Images PMID:1547783

  12. Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing

    PubMed Central

    Steinstraesser, Lars; Lam, Martin C; Jacobsen, Frank; Porporato, Paolo E; Chereddy, Kiran Kumar; Becerikli, Mustafa; Stricker, Ingo; Hancock, Robert EW; Lehnhardt, Marcus; Sonveaux, Pierre; Préat, Véronique; Vandermeulen, Gaëlle

    2014-01-01

    Host defense peptides, in particular LL-37, are emerging as potential therapeutics for promoting wound healing and inhibiting bacterial growth. However, effective delivery of the LL-37 peptide remains limiting. We hypothesized that skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 would promote the healing of wounds. The plasmid was efficiently delivered to full-thickness skin wounds by electroporation and it induced expression of LL-37 in the epithelium. It significantly accelerated reepithelialization of nondiabetic and diabetic wounds and caused a significant VEGFa and interleukin (IL)-6 induction. IL-6 was involved in LL-37–mediated keratinocyte migration in vitro and IL-6 neutralizing antibodies delivered to mice were able to suppress the wound healing activity of the hCAP-18/LL-37 plasmid. In a hindlimb ischemia model, electroporation of the hCAP-18/LL-37 plasmid increased blood perfusion, reduced muscular atrophy, and upregulated the angiogenic chemokines VEGFa and SDF-1a, and their receptors VEGF-R and CXCR-4. These findings demonstrate that a localized gene therapy with LL-37 is a promising approach for the treatment of wounds. PMID:24394186

  13. Diversity within Serogroups of Rhizobium leguminosarum biovar viceae in the Palouse Region of Eastern Washington as Indicated by Plasmid Profiles, Intrinsic Antibiotic Resistance, and Topography.

    PubMed

    Brockman, F J; Bezdicek, D F

    1989-01-01

    Serology, plasmid profiles, and intrinsic antibiotic resistance (IAR) were determined for 192 isolates of Rhizobium leguminosarum biovar viceae from nodules of peas (Pisum sativum L.) grown on the south slope and bottomland topographic positions in eastern Washington State. A total of 3 serogroups and 18 plasmid profile groups were identified. Nearly all isolates within each plasmid profile group were specific for one of the three serogroups. Cluster analysis of IAR data showed that individual clusters were dominated by one serogroup and by one or two plasmid profile groups. Plasmid profile analysis and IAR analysis grouped 72% of the isolates similarly. Most plasmid profile groups and several IAR clusters favored either the south slope or the bottomland topographic position. These findings show that certain intraserogroup strains possess a greater competitiveness for nodulation and/or possess a greater ability to survive in adjacent soil environments.

  14. Protection of the liver against CCl4-induced injury by intramuscular electrotransfer of a kallistatin-encoding plasmid

    PubMed Central

    Diao, Yong; Zhao, Xiao-Feng; Lin, Jun-Sheng; Wang, Qi-Zhao; Xu, Rui-An

    2011-01-01

    AIM: To investigate the effect of transgenic expression of kallistatin (Kal) on carbon tetrachloride (CCl4)-induced liver injury by intramuscular (im) electrotransfer of a Kal-encoding plasmid formulated with poly-L-glutamate (PLG). METHODS: The pKal plasmid encoding Kal gene was formulated with PLG and electrotransferred into mice skeletal muscle before the administration of CCl4. The expression level of Kal was measured. The serum biomarker levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonyldialdehyde (MDA), and tumor necrosis factor (TNF)-α were monitored. The extent of CCl4-induced liver injury was analyzed histopathologically. RESULTS: The transgene of Kal was sufficiently expressed after an im injection of plasmid formulated with PLG followed by electroporation. In the Kal gene-transferred mice, protection against CCl4-induced liver injury was reflected by significantly decreased serum ALT, AST, MDA and TNF-α levels compared to those in control mice (P < 0.01 to 0.05 in a dose-dependent manner). Histological observations also revealed that hepatocyte necrosis, hemorrhage, vacuolar change and hydropic degeneration were apparent in mice after CCl4 administration. In contrast, the damage was markedly attenuated in the Kal gene-transferred mice. The expression of hepatic fibrogenesis marker transforming growth factor-β1 was also reduced in the pKal transferred mice. CONCLUSION: Intramuscular electrotransfer of plasmid pKal which was formulated with PLG significantly alleviated the CCl4-induced oxidative stress and inflammatory response, and reduced the liver damage in a mouse model. PMID:21218091

  15. Mapping Type IV Secretion Signals on the Primase Encoded by the Broad-Host-Range Plasmid R1162 (RSF1010)

    PubMed Central

    2015-01-01

    ABSTRACT The plasmid R1162 (RSF1010) encodes a primase essential for its replication. This primase makes up the C-terminal part of MobA, a multifunctional protein with the relaxase as a separate N-terminal domain. The primase is also translated separately as the protein RepB′. Here, we map two signals for type IV secretion onto the recently solved structure of RepB′. One signal is located internally within RepB′ and consists of a long α-helix and an adjacent disordered region rich in arginines. The second signal is made up of the same α-helix and a second, arginine-rich region at the C-terminal end of the protein. Successive arginine-to-alanine substitutions revealed that either signal can be utilized by the type IV secretion complex of the plasmid R751. The internal signal also enables conjugal transfer when linked to the relaxase part of MobA. Both signals are similar to those previously identified for type IV secretion substrates in the Vir system of Agrobacterium tumefaciens. Moreover, the C-terminal arginine-rich segment of RepB′ has been shown to be secreted by Vir. However, with R751, the signals require MobB, an R1162-encoded accessory protein active in conjugal transfer. The results of two-hybrid assays revealed that MobB interacts, via its membrane-associated domain, with the R751 plasmid coupling protein TraG. In addition, MobB interacts with a region of MobA just outside the RepB′ domain. Therefore, MobB is likely an adaptor that is essential for recognition of the primase-associated signals by the R751 secretion machinery. IMPORTANCE For most plasmids, type IV secretion is an intrinsic part of the mechanism for conjugal transfer. Protein relaxases, bound to the 5′ end of the transferring strand, are mobilized into recipient cells by the type IV pathway. In this work, we identify and characterize two signals for secretion in the primase domain of MobA, the relaxase of the IncQ plasmid R1162 (RSF1010). We also show that the adaptor protein

  16. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae.

    PubMed

    Wang, Li; Fang, Haihong; Feng, Jiao; Yin, Zhe; Xie, Xiaofang; Zhu, Xueming; Wang, Jie; Chen, Weijun; Yang, Ruisheng; Du, Hong; Zhou, Dongsheng

    2015-01-01

    A carbapenem-resistant Klebsiella pneumoniae strain 628 was isolated from a human case of intracranial infection in a Chinese teaching hospital. Strain 628 produces KPC-2 and CTX-M-55 encoded by two different conjugative plasmids, i.e., the IncFIIK plasmid p628-KPC and the IncI1 plasmid p628-CTXM respectively. bla KPC-2 is captured by a Tn1722-based unit transposon with a linear structure. ΔTn3-ISKpn27-bla KPC-2-ΔISKpn6-ΔTn1722 and this transposon together with a mercury resistance (mer) gene locus constitutes a 34 kb acquired drug-resistance region. bla KPC-2 has two transcription starts (nucleotides G and C located at 39 and 250 bp upstream of its coding region respectively) which correspond to two promoters, i.e., the intrinsic P1 and the upstream ISKpn27/Tn3-provided P2 with the core -35/-10 elements TAATCC/TTACAT and TTGACA/AATAAT respectively. bla CTX-M-55 is mobilized in an ISEcp1-bla CTX-M-55-Δorf477 transposition unit and appears to be the sole drug-resistant determinant in p628-CTXM. bla CTX-M-55 possesses a single transcription start (nucleotides G located at 116 bp upstream of its coding region) corresponding to the ISEcp1-provided P1 promoter with the core -35/-10 element TTGAAA/TACAAT. All the above detected promoters display a characteristic of constitutive expression. Coexistence of bla KPC and bla CTX-M in K. pneumoniae has been reported many times but this is the first report to gain deep insights into genetic platforms, promoters, and expression of the two coexisting bla genes with determination of entire nucleotide sequences of the two corresponding plasmids. PMID:26347725

  17. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae

    PubMed Central

    Wang, Li; Fang, Haihong; Feng, Jiao; Yin, Zhe; Xie, Xiaofang; Zhu, Xueming; Wang, Jie; Chen, Weijun; Yang, Ruisheng; Du, Hong; Zhou, Dongsheng

    2015-01-01

    A carbapenem-resistant Klebsiella pneumoniae strain 628 was isolated from a human case of intracranial infection in a Chinese teaching hospital. Strain 628 produces KPC-2 and CTX-M-55 encoded by two different conjugative plasmids, i.e., the IncFIIK plasmid p628-KPC and the IncI1 plasmid p628-CTXM respectively. blaKPC−2 is captured by a Tn1722-based unit transposon with a linear structure. ΔTn3-ISKpn27-blaKPC−2-ΔISKpn6-ΔTn1722 and this transposon together with a mercury resistance (mer) gene locus constitutes a 34 kb acquired drug-resistance region. blaKPC−2 has two transcription starts (nucleotides G and C located at 39 and 250 bp upstream of its coding region respectively) which correspond to two promoters, i.e., the intrinsic P1 and the upstream ISKpn27/Tn3-provided P2 with the core −35/−10 elements TAATCC/TTACAT and TTGACA/AATAAT respectively. blaCTX−M−55 is mobilized in an ISEcp1-blaCTX−M−55-Δorf477 transposition unit and appears to be the sole drug-resistant determinant in p628-CTXM. blaCTX−M−55 possesses a single transcription start (nucleotides G located at 116 bp upstream of its coding region) corresponding to the ISEcp1-provided P1 promoter with the core −35/−10 element TTGAAA/TACAAT. All the above detected promoters display a characteristic of constitutive expression. Coexistence of blaKPC and blaCTX−M in K. pneumoniae has been reported many times but this is the first report to gain deep insights into genetic platforms, promoters, and expression of the two coexisting bla genes with determination of entire nucleotide sequences of the two corresponding plasmids. PMID:26347725

  18. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...

  19. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544.

    PubMed

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol

    2015-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage.

  20. Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae).

    PubMed

    Crippen, Tawni L; Poole, Toni L

    2009-09-01

    The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities, was determined. Lesser mealworm larvae were exposed to a negative bacterial control, a donor Salmonella enterica serotype Newport strain, a recipient Escherichia coli, or both donor and recipient to examine horizontal gene transfer of plasmids. Horizontal gene transfer was validated post external disinfection, via a combination of selective culturing, testing of indole production by spot test, characterization of incompatibility plasmids by polymerase chain reaction, and profiling antibiotic susceptibility by a minimum inhibitory concentration (MIC) assay. Transconjugants were produced in all larvae exposed to both donor and recipient bacteria at frequencies comparable to control in vitro filter mating conjugation studies run concurrently. Transconjugants displayed resistance to seven antibiotics in our MIC panel and, when characterized for incompatibility plasmids, were positive for the N replicon and negative for the A/C replicon. The transconjugants did not display resistance to expanded-spectrum cephalosporins, which were associated with the A/C plasmid. This study demonstrates that lesser mealworm larvae, which infest poultry litter, are capable of supporting the horizontal transfer of antibiotic resistance genes and that this exchange can occur within their gastrointestinal tract and between different species of bacteria under laboratory conditions. This information is essential to science-based risk assessments of industrial antibiotic usage and its impact on animal and human health. PMID:19425825

  1. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics.

    PubMed

    Szczepanowski, Rafael; Linke, Burkhard; Krahn, Irene; Gartemann, Karl-Heinz; Gützkow, Tim; Eichler, Wolfgang; Pühler, Alfred; Schlüter, Andreas

    2009-07-01

    To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.

  2. Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 of Streptomyces coelicolor A3(2).

    PubMed

    Zhang, Ran; Xia, Haiyang; Xu, Qingyu; Dang, Fujun; Qin, Zhongjun

    2013-08-01

    The model organism Streptomyces coelicolor A3(2) harbors a 356-kb linear plasmid, SCP1. We report here development of a recombinational cloning method for deleting large segment from one telomere of SCP1 followed by replacing with the telomere of pSLA2 and sequentially inserting with the overlapping cosmids in vivo. The procedure depends on homologous recombination coupled with cleavage at telomere termini by telomere terminal protein. Using this procedure, we cloned the 81-kb avermectin and the 76-kb spinosad biosynthetic gene clusters into SCP1. Heterologous expression of avermectin production in S. coelicolor was detected. These results demonstrate the utility of SCP1 for cloning large DNA segments such as antibiotic biosynthetic gene clusters.

  3. Impact of plasmids, including those encodingVirB4/D4 type IV secretion systems, on Salmonella enterica serovar Heidelberg virulence in macrophages and epithelial cells.

    PubMed

    Gokulan, Kuppan; Khare, Sangeeta; Rooney, Anthony W; Han, Jing; Lynne, Aaron M; Foley, Steven L

    2013-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) can cause foodborne illness in humans following the consumption of contaminated meat and poultry products. Recent studies from our laboratory have demonstrated that certain S. Heidelberg isolated from food-animal sources harbor multiple transmissible plasmids with genes that encode antimicrobial resistance, virulence and a VirB4/D4 type-IV secretion system. This study examines the potential role of these transmissible plasmids in bacterial uptake and survival in intestinal epithelial cells and macrophages, and the molecular basis of host immune system modulation that may be associated with disease progression. A series of transconjugant and transformant strains were developed with different combinations of the plasmids to determine the roles of the individual and combinations of plasmids on virulence. Overall the Salmonella strains containing the VirB/D4 T4SS plasmids entered and survived in epithelial cells and macrophages to a greater degree than those without the plasmid, even though they carried other plasmid types. During entry in macrophages, the VirB/D4 T4SS encoding genes are up-regulated in a time-dependent fashion. When the potential mechanisms for increased virulence were examined using an antibacterial Response PCR Array, the strain containing the T4SS down regulated several host innate immune response genes which likely contributed to the increased uptake and survival within macrophages and epithelial cells.

  4. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein

    PubMed Central

    Lacroix, Benoît; Citovsky, Vitaly

    2015-01-01

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF. PMID:26586289

  5. Distribution, gene sequence and expression in vivo of the plasmid encoded fimbrial antigen of Salmonella serotype Enteritidis.

    PubMed Central

    Woodward, M. J.; Allen-Vercoe, E.; Redstone, J. S.

    1996-01-01

    The pefA gene which encoded the serotype associated plasmid (SAP) mediated fimbrial major subunit antigen of Salmonella enterica serotype Typhimurium shared genetic identity with 128 of 706 salmonella isolates as demonstrated by dot (colony) hybridization. Seventy-seven of 113 isolates of Typhimurium and individual isolates of serotypes Bovis-morbificans, Cholerae-suis and Enteritidis phage type 9b hybridized pefA strongly, whereas 48 isolates of Enteritidis hybridized pefA weakly and one Enteritidis isolate of phage type 14b failed to hybridize. Individual isolates of 294 serotypes and 247 individual isolates of serotype Dublin did not hybridize pefA. Southern hybridization of plasmids extracted from Enteritidis demonstrated that the pefA gene probe hybridized strongly an atypical SAP of 80 kb in size harboured by one Enteritidis isolate of phage-type 9b, whereas the typical SAP of 58 kb in size harboured by 48 Enteritidis isolates hybridized weakly. One Enteritidis isolate of phage type 14b which failed to hybridize pefA in dot (colony) hybridization experiments was demonstrated to be plasmid free. A cosmid library of Enteritidis phage type 4 expressed in Escherichia coli K12 was screened by hybridization for the presence of pef sequences. Recombinant clones which were deduced to harbour the entire pef operon elaborated a PEF-like fimbrial structure at the cell surface. The PEF-like fimbrial antigen was purified from one cosmid clone and used in western blot experiments with sera from chickens infected with Enteritidis phage-type 4. Seroconversion to the fimbrial antigen was observed which indicated that the Enteritidis PEF-like fimbrial structure was expressed at some stage during infection. Nucleotide sequence analysis demonstrated that the pefA alleles of Typhimurium and Enteritidis phage-type 4 shared 76% DNA nucleotide and 82% deduced amino acid sequence identity. Images Fig. 1 Fig. 4 Fig. 5 PMID:8760946

  6. FabV/Triclosan Is an Antibiotic-Free and Cost-Effective Selection System for Efficient Maintenance of High and Medium-Copy Number Plasmids in Escherichia coli.

    PubMed

    Ali, Syed A; Chew, Yik Wei

    2015-01-01

    Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium-copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium-copy number plasmid vectors in E. coli.

  7. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37

    PubMed Central

    Hou, Shuping; Dong, Xiaohua; Yang, Zhangsheng; Li, Zhongyu; Liu, Quanzhong

    2015-01-01

    Chlamydia trachomatis infection in the lower genital tract can ascend to and cause pathologies in the upper genital tract, potentially leading to severe complications, such as tubal infertility. However, chlamydial organisms depleted of plasmid or deficient in the plasmid-encoded Pgp3 are attenuated in ascending infection and no longer are able to induce the upper genital tract pathologies, indicating a significant role of Pgp3 in chlamydial pathogenesis. We now report that C. trachomatis Pgp3 can neutralize the antichlamydial activity of human cathelicidin LL-37, a host antimicrobial peptide secreted by both genital tract epithelial cells and infiltrating neutrophils. Pgp3 bound to and formed stable complexes with LL-37. We further showed that the middle region of Pgp3 (Pgp3m) was responsible for both the binding to and neutralization of LL-37, suggesting that Pgp3m can be targeted for attenuating chlamydial pathogenicity or developed for blocking LL-37-involved non-genital-tract pathologies, such as rosacea and psoriasis. Thus, the current study has provided significant information for both understanding the mechanisms of chlamydial pathogenesis and developing novel therapeutic agents. PMID:26416907

  8. Intramuscular delivery of a naked DNA plasmid encoding proinsulin and pancreatic regenerating III protein ameliorates type 1 diabetes mellitus.

    PubMed

    Hou, Wen-Rui; Xie, Sheng-Nan; Wang, Hong-Jie; Su, Yu-Yong; Lu, Jing-Li; Li, Lu-Lu; Zhang, Sha-Sha; Xiang, Ming

    2011-04-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by inflammation of pancreatic islets and destruction of β cells. Up to now, there is still no cure for this devastating disease and alternative approach should be developed. To explore a novel gene therapy strategy combining immunotherapy and β cell regeneration, we constructed a non-viral plasmid encoding proinsulin (PI) and pancreatic regenerating (Reg) III protein (pReg/PI). Therapeutic potentials of this plasmid for T1DM were investigated. Intramuscular delivery of pReg/PI resulted in a significant reduction in hyperglycemia and diabetes incidence, with an increased insulin contents in the serum of T1DM mice model induced by STZ. Treatment with pReg/PI also restored the balance of Th1/Th2 cytokines and expanded CD4(+)CD25(+)Foxp3(+) T regulatory cells, which may attribute to the establishment of self-immune tolerance. Additionally, in comparison to the mice treated with empty vector pBudCE4.1 (pBud), attenuated insulitis and apoptosis achieved by inhibiting activation of NF-κB in the pancreas of pReg/PI treated mice were observed. In summary, these results indicate that intramuscular delivery of pReg/PI distinctly ameliorated STZ-induced T1DM by reconstructing the immunological self-tolerance and promoting the regeneration of β cells, which might be served as a promising candidate for the gene therapy of T1DM.

  9. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice.

    PubMed Central

    Holmström, A; Rosqvist, R; Wolf-Watz, H; Forsberg, A

    1995-01-01

    The virulence plasmid common to pathogenic Yersinia species encodes a number of secreted proteins denoted Yops (Yersinia outer proteins). Here, we identify and characterize a novel plasmid-encoded virulence determinant of Yersinia pseudotuberculosis, YopK. The yopK gene was found to be conserved among the three pathogenic Yersinia species and to be homologous to the previously described yopQ and yopK genes of Y. enterocolitica and Y. pestis, respectively. Similar to the other Yops, YopK expression and secretion were shown to be regulated by temperature and by the extracellular Ca2+ concentration; thus, yopK is part of the yop regulon. In addition, YopK secretion was mediated by the specific Yop secretion system. In Y. pseudotuberculosis, YopK was shown neither to have a role in this bacterium's ability to resist phagocytosis by macrophages nor to cause cytotoxicity in HeLa cells. YopK was, however, shown to be required for the bacterium to cause a systemic infection in both intraperitoneally and orally infected mice. Characterization of the infection kinetics showed that, similarly to the wild-type strain, the yopK mutant strain colonized and persisted in the Peyer's patches of orally infected mice. A yopE mutant which is impaired in cytotoxicity and in antiphagocytosis was, however, found to be rapidly cleared from these lymphoid organs. Neither the yopK nor the yopE mutant strain could overcome the primary host defense and reach the spleen. This finding implies that YopK acts at a different level during the infections process than the antiphagocytic YopE cytotoxin does. PMID:7768608

  10. Dissemination of plasmid-encoded AmpC β-lactamases in antimicrobial resistant Salmonella serotypes originating from humans, pigs and the swine environment.

    PubMed

    Keelara, Shivaramu; Thakur, Siddhartha

    2014-09-17

    The aim of this study was to characterize and determine the inter-serovar exchange of AmpC β-lactamase conferring plasmids isolated from humans, pigs and the swine environment. Plasmids isolated from a total of 21 antimicrobial resistant (AMR) Salmonella isolates representing human clinical cases (n=6), pigs (n=6) and the swine farm environment (n=9) were characterized by replicon typing and restriction digestion, inter-serovar transferability by conjugation, and presence of AmpC β-lactamase enzyme encoding gene blaCMY-2 by southern hybridization. Based on replicon typing, the majority (17/21, 81%) of the plasmids belonged to the I1-Iγ Inc group and were between 70 and 103kb. The potential for inter-serovar plasmid transfer was further confirmed by the PCR detection of AMR genes on the plasmids isolated from trans-conjugants. Plasmids from Salmonella serovars Anatum, Ouakam, Johannesburg and Typhimurium isolated from the same cohort of pigs and their environment and S. Heidelberg from a single human clinical isolate had identical plasmids based on digestion with multiple restriction enzymes (EcoRI, HindIII and PstI) and southern blotting. We demonstrated likely horizontal inter-serovar exchange of plasmid-encoding AmpC β-lactamases resistance among MDR Salmonella serotypes isolated from pigs, swine farm environment and clinical human cases. This study provides valuable information on the role of the swine farm environment and by extension other livestock farm environments, as a potential reservoir of resistant bacterial strains that potentially transmit resistance determinants to livestock, in this case, swine, humans and possibly other hosts by horizontal exchange of plasmids.

  11. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE

  12. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE

  13. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis

    PubMed Central

    Price, Valerie J.; Huo, Wenwen; Sharifi, Ardalan

    2016-01-01

    ABSTRACT Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E

  14. Diverse broad-host-range plasmids from freshwater carry few accessory genes.

    PubMed

    Brown, Celeste J; Sen, Diya; Yano, Hirokazu; Bauer, Matthew L; Rogers, Linda M; Van der Auwera, Geraldine A; Top, Eva M

    2013-12-01

    Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities.

  15. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

    PubMed

    Zhai, Yao; He, Zilong; Kang, Yu; Yu, Haiying; Wang, Jianfeng; Du, Pengcheng; Zhang, Zhao; Hu, Songnian; Gao, Zhancheng

    2016-07-01

    The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6')-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6')-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. PMID:27101788

  16. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates. PMID:23933356

  17. Determinants for thermoinducible cell binding and plasmid-encoded cellular penetration detected in the absence of the Yersinia pseudotuberculosis invasin protein.

    PubMed Central

    Isberg, R R

    1989-01-01

    Yersinia pseudotuberculosis inv mutants were analyzed for their ability to bind and penetrate mammalian cell lines. Strains defective for the production of invasin and cured of the Yersinia virulence plasmid pIB1 were extremely defective for entry into the HEp-2 cell line. inv strains harboring the virulence plasmid partially overcame this defect, indicating that the virulence plasmid mediates an invasin-independent pathway for low-level entry into cultured cells. Plasmid-cured inv mutants were able to attach efficiently to mammalian cells after bacterial culture at 37 degrees C but not after culture at a lower temperature. The enhanced cellular binding of inv mutants grown at 37 degrees C did not result in efficient cellular penetration, indicating that invasin-mediated entry is the primary chromosomally encoded pathway responsible for Y. pseudotuberculosis penetration into both HEp-2 and Chinese hamster ovary cells under the assay conditions described here. Images PMID:2543628

  18. Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3.

    PubMed

    Chaturvedi, Navaneet; Kajsik, Michal; Forsythe, Stephen; Pandey, Paras Nath

    2015-12-01

    The recently annotated genome of the bacterium Cronobacter sakazakii BAA-894 suggests that the organism has the ability to bind heavy metals. This study demonstrates heavy metal tolerance in C. sakazakii, in which proteins with the heavy metal interaction were recognized by computational and experimental study. As the result, approximately one-fourth of proteins encoded on the plasmid pESA3 are proposed to have potential interaction with heavy metals. Interaction between heavy metals and predicted proteins was further corroborated using protein crystal structures from protein data bank database and comparison of metal-binding ligands. In addition, a phylogenetic study was undertaken for the toxic heavy metals, arsenic, cadmium, lead and mercury, which generated relatedness clustering for lead, cadmium and arsenic. Laboratory studies confirmed the organism's tolerance to tellurite, copper and silver. These experimental and computational study data extend our understanding of the genes encoding for proteins of this important neonatal pathogen and provide further insights into the genotypes associated with features that can contribute to its persistence in the environment. The information will be of value for future environmental protection from heavy toxic metals. PMID:26384977

  19. Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle

    PubMed Central

    Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2015-01-01

    Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256

  20. Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3.

    PubMed

    Chaturvedi, Navaneet; Kajsik, Michal; Forsythe, Stephen; Pandey, Paras Nath

    2015-12-01

    The recently annotated genome of the bacterium Cronobacter sakazakii BAA-894 suggests that the organism has the ability to bind heavy metals. This study demonstrates heavy metal tolerance in C. sakazakii, in which proteins with the heavy metal interaction were recognized by computational and experimental study. As the result, approximately one-fourth of proteins encoded on the plasmid pESA3 are proposed to have potential interaction with heavy metals. Interaction between heavy metals and predicted proteins was further corroborated using protein crystal structures from protein data bank database and comparison of metal-binding ligands. In addition, a phylogenetic study was undertaken for the toxic heavy metals, arsenic, cadmium, lead and mercury, which generated relatedness clustering for lead, cadmium and arsenic. Laboratory studies confirmed the organism's tolerance to tellurite, copper and silver. These experimental and computational study data extend our understanding of the genes encoding for proteins of this important neonatal pathogen and provide further insights into the genotypes associated with features that can contribute to its persistence in the environment. The information will be of value for future environmental protection from heavy toxic metals.

  1. Plasmid genes required for microcin B17 production.

    PubMed Central

    San Millán, J L; Kolter, R; Moreno, F

    1985-01-01

    The production of the antibiotic substance microcin B17 (Mcc) is determined by a 3.5-kilobase DNA fragment from plasmid pMccB17. Several Mcc- mutations on plasmid pMccB17 were obtained by both transposon insertion and nitrosoguanidine mutagenesis. Plasmids carrying these mutations were tested for their ability to complement Mcc- insertion or deletion mutations on pMM102 (pMM102 is a pBR322 derivative carrying the region encoding microcin B17). Results from these experiments indicate that at least four plasmid genes are required for microcin production. PMID:2993228

  2. Plasmid genes required for microcin B17 production.

    PubMed

    San Millán, J L; Kolter, R; Moreno, F

    1985-09-01

    The production of the antibiotic substance microcin B17 (Mcc) is determined by a 3.5-kilobase DNA fragment from plasmid pMccB17. Several Mcc- mutations on plasmid pMccB17 were obtained by both transposon insertion and nitrosoguanidine mutagenesis. Plasmids carrying these mutations were tested for their ability to complement Mcc- insertion or deletion mutations on pMM102 (pMM102 is a pBR322 derivative carrying the region encoding microcin B17). Results from these experiments indicate that at least four plasmid genes are required for microcin production.

  3. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  4. Diversity of Plasmids Encoding Virulence and Resistance Functions in Salmonella enterica subsp. enterica Serovar Typhimurium Monophasic Variant 4,[5],12:i:- Strains Circulating in Europe

    PubMed Central

    García, Patricia; Hopkins, Katie L.; García, Vanesa; Beutlich, Janine; Mendoza, M. Carmen; Threlfall, John; Mevius, Dik; Helmuth, Reiner; Rodicio, M. Rosario; Guerra, Beatriz

    2014-01-01

    Plasmids encoding resistance and virulence properties in multidrug resistant (MDR) Salmonella enterica (S.) serovar Typhimurium monophasic variant 4,[5],12:i:- isolates recovered from pigs and humans (2006-2008) in Europe were characterised. The isolates were selected based on the detection by PCR-amplification of S. Typhimurium virulence plasmid pSLT genes and were analysed by multi-locus sequence typing (MLST). The resistance genes present in the isolates and the association of these genes with integrons, transposons and insertion sequences were characterised by PCR-sequencing, and their plasmid location was determined by alkaline lysis and by S1-nuclease pulsed-field gel electrophoresis (PFGE) Southern-blot hybridisation. Plasmids were further analysed by replicon typing, plasmid MLST and conjugation experiments. The 10 S. 4,[5],12,i:- selected isolates belonged to ST19. Each isolate carried a large plasmid in which MDR with pSLT-associated virulence genes were located. After analysis, eight different plasmids of three incompatibility groups (IncA/C, IncR and IncF) were detected. Two IncA/C plasmids represented novel variants within the plasmid family of the S. 4,[5],12:i:- Spanish clone, and carried an empty class 1 integron with a conventional qacEΔ1-sul1 3′ conserved segment or an In-sul3 type III with estX-psp-aadA2-cmlA1-aadA1-qacH variable region linked to tnpA440-sul3, part of Tn2, Tn21 and Tn1721 transposons, and ISCR2. Four newly described IncR plasmids contained the resistance genes within In-sul3 type I (dfrA12-orfF-aadA2-cmlA1-aadA1-qacH/tnpA440-sul3) and part of Tn10 [tet(B)]. Two pSLT-derivatives with FIIs-ST1+FIB-ST17 replicons carried cmlA1-[aadA1-aadA2]-sul3-dfrA12 and blaTEM-1 genes linked to an In-sul3 type I integron and to Tn2, respectively. In conclusion, three emerging European clones of S. 4,[5],12:i:- harboured MDR plasmids encoding additional virulence functions that could contribute significantly to their evolutionary success. PMID

  5. Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar Typhimurium monophasic variant 4,[5],12:i:- strains circulating in Europe.

    PubMed

    García, Patricia; Hopkins, Katie L; García, Vanesa; Beutlich, Janine; Mendoza, M Carmen; Threlfall, John; Mevius, Dik; Helmuth, Reiner; Rodicio, M Rosario; Guerra, Beatriz

    2014-01-01

    Plasmids encoding resistance and virulence properties in multidrug resistant (MDR) Salmonella enterica (S.) serovar Typhimurium monophasic variant 4,[5],12:i:- isolates recovered from pigs and humans (2006-2008) in Europe were characterised. The isolates were selected based on the detection by PCR-amplification of S. Typhimurium virulence plasmid pSLT genes and were analysed by multi-locus sequence typing (MLST). The resistance genes present in the isolates and the association of these genes with integrons, transposons and insertion sequences were characterised by PCR-sequencing, and their plasmid location was determined by alkaline lysis and by S1-nuclease pulsed-field gel electrophoresis (PFGE) Southern-blot hybridisation. Plasmids were further analysed by replicon typing, plasmid MLST and conjugation experiments. The 10 S. 4,[5],12,i:- selected isolates belonged to ST19. Each isolate carried a large plasmid in which MDR with pSLT-associated virulence genes were located. After analysis, eight different plasmids of three incompatibility groups (IncA/C, IncR and IncF) were detected. Two IncA/C plasmids represented novel variants within the plasmid family of the S. 4,[5],12:i:- Spanish clone, and carried an empty class 1 integron with a conventional qacEΔ1-sul1 3' conserved segment or an In-sul3 type III with estX-psp-aadA2-cmlA1-aadA1-qacH variable region linked to tnpA440-sul3, part of Tn2, Tn21 and Tn1721 transposons, and ISCR2. Four newly described IncR plasmids contained the resistance genes within In-sul3 type I (dfrA12-orfF-aadA2-cmlA1-aadA1-qacH/tnpA440-sul3) and part of Tn10 [tet(B)]. Two pSLT-derivatives with FIIs-ST1+FIB-ST17 replicons carried cmlA1-[aadA1-aadA2]-sul3-dfrA12 and blaTEM-1 genes linked to an In-sul3 type I integron and to Tn2, respectively. In conclusion, three emerging European clones of S. 4,[5],12:i:- harboured MDR plasmids encoding additional virulence functions that could contribute significantly to their evolutionary success.

  6. Development of a biosafety enhanced and immunogenic Salmonella enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2013-01-01

    In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective

  7. Translocation of antibiotic resistance determinants including an extended-spectrum beta-lactamase between conjugative plasmids of Klebsiella pneumoniae and Escherichia coli.

    PubMed Central

    Sirot, D; De Champs, C; Chanal, C; Labia, R; Darfeuille-Michaud, A; Perroux, R; Sirot, J

    1991-01-01

    The extended-spectrum beta-lactamase CAZ-7, derived from TEMs, was produced by two different strains of the family Enterobacteriaceae, Klebsiella pneumoniae and Escherichia coli, isolated from the same patient. Both isolates were resistant to amikacin. In addition, the K. pneumoniae strain was TEM-1 producing and resistant to gentamicin. An E. coli HB101 transconjugant obtained from K. pneumoniae, selected on ceftazidime, showed that CAZ-7 and amikacin resistance were encoded by an 85-kb Inc7 or M plasmid, while an E. coli HB101 transconjugant obtained from E. coli under the same conditions showed that CAZ-7 and amikacin resistance were encoded by a greater than 150-kb Inc6 or C plasmid. Two other E. coli HB101 transconjugants obtained from K. pneumoniae, selected on gentamicin or chloramphenicol, showed that TEM-1 and gentamicin resistance could be encoded either by a greater than 150-kb Inc6 or C plasmid or by an 85-kb Inc7 or M plasmid. It was hypothesized that the genes for beta-lactam and aminoglycoside resistances were located on translocatable sequences. EcoRI digestion and hybridizations obtained with blatem, aacA4, and IS15 probes demonstrated that the CAZ-7 gene, amikacin resistance gene, and IS15 element were clustered on an approximately 20-kb fragment common to 85- and greater than 150-kb plasmids. E. coli HB101 transconjugants from K. pneumoniae and E. coli isolates were used to obtain translocations of CAZ-7 and amikacin resistance and of TEM-1 and gentamicin resistance between the 85- and greater than 150-kb plasmids. This study shows a typical example of in vivo gene dissemination involving transposable elements which translocate multiresistance genes, including an extended-spectrum beta-lactamase. Images PMID:1929328

  8. Translocation of antibiotic resistance determinants including an extended-spectrum beta-lactamase between conjugative plasmids of Klebsiella pneumoniae and Escherichia coli.

    PubMed

    Sirot, D; De Champs, C; Chanal, C; Labia, R; Darfeuille-Michaud, A; Perroux, R; Sirot, J

    1991-08-01

    The extended-spectrum beta-lactamase CAZ-7, derived from TEMs, was produced by two different strains of the family Enterobacteriaceae, Klebsiella pneumoniae and Escherichia coli, isolated from the same patient. Both isolates were resistant to amikacin. In addition, the K. pneumoniae strain was TEM-1 producing and resistant to gentamicin. An E. coli HB101 transconjugant obtained from K. pneumoniae, selected on ceftazidime, showed that CAZ-7 and amikacin resistance were encoded by an 85-kb Inc7 or M plasmid, while an E. coli HB101 transconjugant obtained from E. coli under the same conditions showed that CAZ-7 and amikacin resistance were encoded by a greater than 150-kb Inc6 or C plasmid. Two other E. coli HB101 transconjugants obtained from K. pneumoniae, selected on gentamicin or chloramphenicol, showed that TEM-1 and gentamicin resistance could be encoded either by a greater than 150-kb Inc6 or C plasmid or by an 85-kb Inc7 or M plasmid. It was hypothesized that the genes for beta-lactam and aminoglycoside resistances were located on translocatable sequences. EcoRI digestion and hybridizations obtained with blatem, aacA4, and IS15 probes demonstrated that the CAZ-7 gene, amikacin resistance gene, and IS15 element were clustered on an approximately 20-kb fragment common to 85- and greater than 150-kb plasmids. E. coli HB101 transconjugants from K. pneumoniae and E. coli isolates were used to obtain translocations of CAZ-7 and amikacin resistance and of TEM-1 and gentamicin resistance between the 85- and greater than 150-kb plasmids. This study shows a typical example of in vivo gene dissemination involving transposable elements which translocate multiresistance genes, including an extended-spectrum beta-lactamase.

  9. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M.

    PubMed Central

    Morgan, S; Ross, R P; Hill, C

    1995-01-01

    Lactococcus lactis subsp. lactis biovar diacetylactis DPC938 was identified as a bacteriocin-producing strain which exhibited a bacteriolytic effect on other lactococci. Lysis of such target strains was associated with decreases in optical density and release of the intracellular enzyme lactate dehydrogenase. DPC938 exhibits cross-immunity to L. lactis subsp. cremoris 9B4 (M.J. van Belkum, B.J. Hayema, A. Geis, J. Kok, and G. Venema, Appl. Environ. Microbiol. 55:1187-1191, 1989), a strain which produces the bacteriocins lactococcins A, B, and M. Genetic analyses revealed that a 15.5-kb region of DNA encoding these bacteriocins is highly conserved in 9B4, DPC938, and DPC3286, an overproducing derivative of DPC938. This region is located on a 72- and a 78-kb nonmobilizable plasmid in DPC938 and DPC3286, respectively. The bacteriolytic effect exhibited by DPC938 and DPC3286 on sensitive cultures is most probably due to the concerted action of all three bacteriocins. Since these cultures exhibit a lytic effect on lactococci, they have a potential application in the dairy industry as accelerators of starter lysis and hence accelerators of cheese ripening. PMID:7487031

  10. Plasmid maintenance systems suitable for GMO-based bacterial vaccines.

    PubMed

    Spreng, Simone; Viret, Jean-François

    2005-03-18

    Live carrier-based bacterial vaccines represent a vaccine strategy that offers exceptional flexibility. Commensal or attenuated strains of pathogenic bacteria can be used as live carriers to present foreign antigens from unrelated pathogens to the immune system, with the aim of eliciting protective immune responses. As for oral immunisation, such an approach obviates the usual loss of antigen integrity observed during gastrointestinal passage and allows the delivery of a sufficient antigen dose to the mucosal immune system. Antibiotic and antibiotic-resistance genes have traditionally been used for the maintenance of recombinant plasmid vectors in bacteria used for biotechnological purposes. However, their continued use may appear undesirable in the field of live carrier-based vaccine development. This review focuses on strategies to omit antibiotic resistance determinants in live bacterial vaccines and discusses several balanced lethal-plasmid stabilisation systems with respect to maintenance of plasmid inheritance and antigenicity of plasmid-encoded antigen in vivo.

  11. Antibiotics

    MedlinePlus

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  12. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity.

    PubMed

    Heller, L; Pottinger, C; Jaroszeski, M J; Gilbert, R; Heller, R

    2000-12-01

    When cancer cells, including melanoma cells, are genetically altered to secrete cytokines, irradiated and injected into subjects, long-term antitumour immunity is induced. Optimally, existing melanomas induced to produce cytokines in vivo could stimulate this same immune response. Although in vivo electroporation enhances plasmid expression, electroporation of plasmids encoding granulocyte-monocyte colony stimulating factor (GM-CSF) and interleukin-2 (IL2) into B16 mouse melanomas did not significantly alter tumour growth at the concentration tested. Electrochemotherapy, which causes short-term, complete regressions of treated tumour but no resistance to challenge, was combined with plasmid delivery. The combination treatment resulted in the induction of long-term immunity to recurrence and resistance to challenge in up to 25% of mice. PMID:11198480

  13. Plasmid-encoded production of coli surface-associated antigen 1 (CS1) in a strain of Escherichia coli serotype O139.H28.

    PubMed

    Willshaw, G A; Smith, H R; McConnell, M M; Gaastra, W; Thomas, A; Hibberd, M; Rowe, B

    1990-07-01

    Production of coli surface-associated antigen 1 (CS1) by Escherichia coli strain E24377 of serotype O139.H28 was controlled by a plasmid that also encoded heat stable and heat labile enterotoxins and CS3. The presence of a regulatory sequence was detected on this plasmid by hybridization with the cfaD gene that regulates expression of colonization factor antigen I fimbriae and is at least 96% homologous with the rns sequence controlling production of CS1 or CS2 fimbriae by strains of serotype O6.H16 of appropriate biotype. A separate plasmid, pDEP20, carrying the structural genes for CS1 synthesis was identified and transformed into E. coli strain HB101 or a derivative of strain E24377 without large plasmids. Transformants carrying pDEP20 did not produce CS1 fimbrial antigen, but antigen expression was obtained when a cloned cfaD gene or a wild-type plasmid carrying the rns sequence was introduced. Transposon mutagenesis with Tn1000 identified a 3.7 kbp region of pDEP20 essential for production of CS1 fimbriae. Genes encoding production of CS1 fimbriae were cloned on a 9.9 kbp BamHI fragment and were expressed in the presence of the cfaD sequence. A strain producing both CS1 and CS2 antigens was constructed by introduction of the cloned cfaD gene into a strain of serotype O6.H16 biotype C carrying plasmid pDEP20.

  14. CFE-1, a novel plasmid-encoded AmpC beta-lactamase with an ampR gene originating from Citrobacter freundii.

    PubMed

    Nakano, Ryuichi; Okamoto, Ryoichi; Nakano, Yumiko; Kaneko, Kenichi; Okitsu, Naohiro; Hosaka, Yoshio; Inoue, Matsuhisa

    2004-04-01

    A clinical isolate of Escherichia coli from a patient in Japan, isolate KU6400, was found to produce a plasmid-encoded beta-lactamase that conferred resistance to extended-spectrum cephalosporins and cephamycins. Resistance arising from production of a beta-lactamase could be transferred by either conjugation or transformation with plasmid pKU601 into E. coli ML4947. The substrate and inhibition profiles of this enzyme resembled those of the AmpC beta-lactamase. The resistance gene of pKU601, which was cloned and expressed in E. coli, proved to contain an open reading frame showing 99.8% DNA sequence identity with the ampC gene of Citrobacter freundii GC3. DNA sequence analysis also identified a gene upstream of ampC whose sequence was 99.0% identical to the ampR gene from C. freundii GC3. In addition, a fumarate operon (frdABCD) and an outer membrane lipoprotein (blc) surrounding the ampR-ampC genes in C. freundii were identified, and insertion sequence (IS26) elements were observed on both sides of the sequences identified (forming an IS26 composite transposon); these results confirm the evidence of the translocation of a beta-lactamase-associated gene region from the chromosome to a plasmid. Finally, we describe a novel plasmid-encoded AmpC beta-lactamase, CFE-1, with an ampR gene derived from C. freundii.

  15. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals.

    PubMed

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6')-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  16. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals

    PubMed Central

    Fang, Liangxing; Li, Xingping; Li, Liang; Li, Shumin; Liao, Xiaoping; Sun, Jian; Liu, Yahong

    2016-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to heavy metals, particularly copper and zinc, used as growth promoters for some livestock species. In this study, 25 IncHI2 plasmids harboring oqxAB (20/25)/blaCTX-M (18/25) were found with sizes ranging from ∼260 to ∼350 kb and 22 belonged to the ST3-IncHI2 group. In addition to blaCTX-M and oqxAB, pcoA-E (5/25) and silE-P (5/25), as well as aac(6′)-Ib-cr (18/25), floR (16/25), rmtB (6/25), qnrS1(3/25) and fosA3 (2/25), were also identified on these IncHI2 plasmids. The plasmids carried pco and sil contributed to increasing in the MICs of CuSO4 and AgNO3. The genetic context surrounding the two operons was well conserved except some variations within the pco operon. The ~32 kb region containing the two operons identified in the IncHI2 plasmids was also found in chromosomes of different Enterobacteriaceae species. Further, phylogenetic analysis of this structure showed that Tn7-like transposon might play an important role in cross-genus transfer of the sil and pco operons among Enterobacteriaceae. In conclusion, co-existence of the pco and sil operons, and oqxAB/blaCTX-M as well as other antibiotic resistance genes on IncHI2 plasmids may promote the development of multidrug-resistant bacteria. PMID:27143648

  17. Novel, plasmid-encoded, TEM-derived extended-spectrum beta-lactamase in Klebsiella pneumoniae conferring higher resistance to aztreonam than to extended-spectrum cephalosporins.

    PubMed Central

    Arlet, G; Rouveau, M; Fournier, G; Lagrange, P H; Philippon, A

    1993-01-01

    A clinical isolate of Klebsiella pneumoniae was more resistant to aztreonam than to cefotaxime and ceftazidime. It produced a clavulanate-susceptible beta-lactamase with an isoelectric point of 6.3 which readily hydrolyzed penicillins, cefotaxime, and ceftazidime, but which hydrolyzed aztreonam poorly. The enzyme was encoded by a gene on a 15-kb plasmid; the gene hybridized with an intragenic DNA probe of blaTEM. Images PMID:8239625

  18. Expression profile and subcellular location of the plasmid-encoded virulence (Spv) proteins in wild-type Salmonella dublin.

    PubMed

    El-Gedaily, A; Paesold, G; Krause, M

    1997-08-01

    The plasmid-encoded virulence genes (spvABCD) in nontyphoid Salmonella strains mediate lethal infections in a variety of animals. Previous studies have shown that these genes are transcriptionally regulated by stationary-phase growth. We studied the expression profile and the subcellular locations of the SpvABCD proteins in wild-type S. dublin by using polyclonal antibodies against SpvA, SpvB, SpvC, and SpvD. The cellular levels of the individual proteins were determined during growth by quantitative immunoblotting. As expected, SpvA, SpvB, SpvC, and SpvD were not detectable before the late logarithmic growth phase and appeared in the sequence SpvA, SpvB, SpvC, and SpvD. In contrast to the transcriptional regulation, however, SpvA and SpvB reached their maximal expression shortly after induction and declined during further growth whereas SpvC and SpvD expression remained high throughout the stationary phase, indicating that the Spv proteins are individually regulated at a posttranscriptional level. To localize SpvABCD within the bacteria, the cells were fractionated into the periplasmic, cytoplasmic, inner membrane, and outer membrane components. The cell fractions and the culture supernatant were analyzed by immunoblotting. SpvA was present in the outer membrane, SpvB was present in the cytoplasm and the inner membrane, and SpvC was present in the cytoplasm. SpvD was secreted into the supernatant; however, a substantial portion of this protein was also detected in the cytoplasm and membranes. The molecular weights of SpvD in the supernatant and in the cytoplasm appeared to be equal, suggesting that SpvD is not cleaved upon secretion.

  19. pBMSa1, a plasmid from a dairy cow isolate of Staphylococcus aureus, encodes a lincomycin resistance determinant and replicates by the rolling-circle mechanism.

    PubMed

    Loeza-Lara, Pedro D; Soto-Huipe, Morelia; Baizabal-Aguirre, Victor M; Ochoa-Zarzosa, Alejandra; Valdez-Alarcón, Juan J; Cano-Camacho, Horacio; López-Meza, Joel E

    2004-07-01

    This work describes a novel plasmid encoding resistance to lincomycin in a staphylococcal isolate associated with mastitis infection from dairy cows. The cryptic plasmid pBMSa1 (2750 bp) of Staphylococcus aureus SA35 was subcloned and sequenced. Two ORFs (ORF1 and ORF2) were identified, and their putative transcription initiation and Shine-Dalgarno sequence were localized. ORF1 encodes a 334-residue protein almost identical to the putative Rep proteins of previously sequenced S. aureus rolling-circle-replicating plasmids. ORF2 encodes a 162-amino acid protein sharing a high degree of homology with LinA proteins (lincosamide O-nucleotidyltransferases) described in a variety of S. aureus strains. Intracellular single-stranded pBMSa1 DNA replicating intermediaries were detected, suggesting replication via the rolling-circle mechanism. A putative double-strand origin with significant homology to that of pC194 and a ssoA-type single-strand origin homologous sequence were also identified. PMID:15212891

  20. A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress.

    PubMed

    Tark, Mariliis; Tover, Andres; Tarassova, Kairi; Tegova, Radi; Kivi, Gaily; Hõrak, Rita; Kivisaar, Maia

    2005-08-01

    Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P. putida. When rulAB-carrying cells from an 8-day-old culture were mixed with Pol V-negative cells from a 1-day-old culture, cells derived from the aged culture out-competed cells from the nonaged culture and overtook the whole culture. At the same time, bacteria from an aged culture lacking the rulAB genes were only partially able to out-compete cells from a fresh overnight culture of the parental P. putida strain. Thus, in addition to conferring resistance to DNA damage, the plasmid-encoded Pol V genes significantly increase the evolutionary fitness of bacteria during prolonged nutritional starvation of a P. putida population. The results of our study indicate that RecA is involved in the control of expression of the pWW0-encoded Pol V. PMID:16030214

  1. Composite IS1 elements encoding hydroxamate-mediated iron uptake in FIme plasmids from epidemic Salmonella spp.

    PubMed Central

    Colonna, B; Nicoletti, M; Visca, P; Casalino, M; Valenti, P; Maimone, F

    1985-01-01

    Eleven FIme plasmids representative of those identified in epidemic strains of Salmonella wien and Salmonella typhimurium isolated in North Africa, Europe, and the Middle East have been examined for the presence of determinants of toxigenicity, adherence, and iron-sequestering mechanisms. Chemical and genetic data indicated that all plasmids code for a hydroxamate-mediated iron assimilation system. Detailed analysis of derivative plasmids and cloned fragments of FIme plasmid pZM61 demonstrated that the general genetic and structural organization of the DNA region containing the genes for hydroxamate biosynthesis and cloacin DF13 receptor was virtually identical to that described for the aerobactin-mediated iron uptake system of pColV-K30. This DNA region is part of a composite element that is 16.7 kilobases long and carries its IS1 modules as inverted repeats. A very similar element is present in either orientation in all nine FIme plasmids analyzed. Images PMID:2984176

  2. A simple classification method for residual antibiotics using E. coli cells transformed by the calcium chloride method and drug resistance plasmid DNA.

    PubMed

    Lin, S Y; Kondo, F

    2001-01-01

    Using three different plasmid DNA codings for kanamycin (KM), chloramphenicol (CP), and ampicillin- (AMP) and tetracycline- (TC) resistance, four different competent Escherichia coli strains were transformed by the calcium chloride method to produce KM-, CP- and AMP- and TC-resistant strains. Evaluation of minimum inhibitory concentrations (MIC) of 22 antibiotics, showed KM-resistant E. coli to be cross resistant only to fradiomycin (FRM); CP-resistant E. coli, especially HB101 and JM109 strains, exhibited cross-resistance only to thiamphenicol (TP). On the other hand, AMP- and TC-resistant E. coli showed cross resistance to several penicillins, tetracyclines and erythromycin. E. coli ATCC-27166, the strain most sensitive to all drugs in this experiment, was employed for disc diffusion experiments and from the pattern of appearance of the inhibition zone, eight major antibiotics were divided into three groups depending on their activity against containing each of the three plasmids. Only gentamicin (GM) activity was not affected by any of the drug resistant strains. Assay techniques utilizing three resistant strains may be the technique for screening foods for antibiotic residues in the future.

  3. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    PubMed

    Kim, K S; Chilton, W S; Farrand, S K

    1996-06-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.

  4. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid.

    PubMed

    Jawale, Chetan V; Chaudhari, Atul A; Lee, John Hwa

    2014-02-19

    A safety enhanced Salmonella Gallinarum (SG) ghost was constructed using an antibiotic resistance gene free plasmid and evaluated its potential as fowl typhoid (FT) vaccine candidate. The antibiotic resistance free pYA3342 plasmid possesses aspartate semialdehyde dehydrogenase gene which is complimentary to the deletion of the chromosomal asd gene in the bacterial host. This plasmid was incorporated with a ghost cassette containing the bacteriophage PhiX174 lysis gene E, designated as pJHL101. The plasmid pJHL101 was transformed into a two virulence genes-deleted SG. The SG ghosts with tunnel formation and loss of cytoplasmic contents were observed by scanning electron microscopy and transmission electron microscopy. The cell viability of the culture solution was decreased to 0% at 24h after the induction of gene E expression by an increase in temperature from 37°C to 42°C. The safety and protective efficacy of the SG ghost vaccine was further examined in chickens which were divided into three groups: group A (non-immunized control), group B (orally immunized), and group C (intramuscularly immunized). The birds were immunized at 7d of age. No clinical symptoms associated with FT such as anorexia, depression and greenish diarrhea were observed in the immunized chickens. Upon challenge with a virulent SG strain at 3 week post-immunization, the chickens immunized with the SG ghost via various routes were efficiently protected, as shown by significantly lower mortality and post-mortem lesions in comparison with control group. In addition, all the immunized chickens showed significantly higher antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response along with significantly increased numbers of CD4⁺ and CD8⁺ T lymphocytes. Overall, our results provide a promising approach of generating SG ghosts using the antibiotic resistance free plasmid in order to prepare a non-living bacterial vaccine candidate which could be

  5. Plasmids from Euryarchaeota.

    PubMed

    Forterre, Patrick; Krupovic, Mart; Raymann, Kasie; Soler, Nicolas

    2014-12-01

    Many plasmids have been described in Euryarchaeota, one of the three major archaeal phyla, most of them in salt-loving haloarchaea and hyperthermophilic Thermococcales. These plasmids resemble bacterial plasmids in terms of size (from small plasmids encoding only one gene up to large megaplasmids) and replication mechanisms (rolling circle or theta). Some of them are related to viral genomes and form a more or less continuous sequence space including many integrated elements. Plasmids from Euryarchaeota have been useful for designing efficient genetic tools for these microorganisms. In addition, they have also been used to probe the topological state of plasmids in species with or without DNA gyrase and/or reverse gyrase. Plasmids from Euryarchaeota encode both DNA replication proteins recruited from their hosts and novel families of DNA replication proteins. Euryarchaeota form an interesting playground to test evolutionary hypotheses on the origin and evolution of viruses and plasmids, since a robust phylogeny is available for this phylum. Preliminary studies have shown that for different plasmid families, plasmids share a common gene pool and coevolve with their hosts. They are involved in gene transfer, mostly between plasmids and viruses present in closely related species, but rarely between cells from distantly related archaeal lineages. With few exceptions (e.g., plasmids carrying gas vesicle genes), most archaeal plasmids seem to be cryptic. Interestingly, plasmids and viral genomes have been detected in extracellular membrane vesicles produced by Thermococcales, suggesting that these vesicles could be involved in the transfer of viruses and plasmids between cells.

  6. Limited Dissemination of Extended-Spectrum β-Lactamase- and Plasmid-Encoded AmpC-Producing Escherichia coli from Food and Farm Animals, Sweden.

    PubMed

    Börjesson, Stefan; Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-04-01

    Extended-spectrum β-lactamase (ESBL)- and plasmid-encoded ampC (pAmpC)-producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans. PMID:26982890

  7. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    SciTech Connect

    Domingo Meza-Aguilar, J.; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Arreguin-Espinosa de los Monteros, Roberto A.; and others

    2014-03-07

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.

  8. Limited Dissemination of Extended-Spectrum β-Lactamase– and Plasmid-Encoded AmpC–Producing Escherichia coli from Food and Farm Animals, Sweden

    PubMed Central

    Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-01-01

    Extended-spectrum β-lactamase (ESBL)– and plasmid-encoded ampC (pAmpC)–producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans. PMID:26982890

  9. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.

  10. The gene therapy of collagen-induced arthritis in rats by intramuscular administration of the plasmid encoding TNF-binding domain of variola virus CrmB protein.

    PubMed

    Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V

    2016-07-01

    Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins. PMID:27599513

  11. Dissemination of IMP-4-encoding pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital.

    PubMed

    Feng, Wei; Zhou, Dongsheng; Wang, Qian; Luo, Wenbo; Zhang, Defu; Sun, Qiang; Tong, Yigang; Chen, Weijun; Sun, Fengjun; Xia, Peiyuan

    2016-01-01

    A total of 26 blaIMP-4-carrying strains of Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from 2009 to 2013 in a Chinese teaching hospital, and these strains can be assigned into multiple sequence types or allelic profiles as determined by multilocus sequence typing. Of these strains, P. aeruginosa P378 and K. pneumoniae 1220 harbor the IMP-4-encoding plasmids pP378-IMP and p1220-IMP, respectively, whose complete nucleotide sequences are determined to be genetically closely related to the IncN1-type plasmid pIMP-HZ1. pP378-IMP/p1220-IMP-like plasmids are hinted to be present in all the other blaIMP-4-carrying strains, indicating the dissemination of pIMP-HZ1-related plasmids among K. pneumoniae or P. aeruginosa of different genotypes in this hospital. pP378-IMP carries two distinct accessory resistance regions, a blaIMP-4-carrying class 1 integron In823b, and a truncated Tn3-family unit transposon ΔTn6292-3' harboring the quinolone resistance gene qnrS1. Massive fragmentation and rearrangement of these accessory genetic contents occur among p1220-IMP and IMP-HZ1 relative to pP378-IMP. blaIMP-4 is also present in the In823b remnants from p1220-IMP and IMP-HZ1, while qnrS1 is located in a Tn6292-derive fragment from pIMP-HZ1 but not found in p1220-IMP. pP378-IMP represents the first fully sequenced IncN-type plasmid from P. aeruginosa. PMID:27641711

  12. Evaluation of Immunogenicity of Cocktail DNA Vaccine Containing Plasmids Encoding Complete GRA5, SAG1, and ROP2 Antigens of Toxoplasma gondii in BALB/C Mice

    PubMed Central

    NASERIFAR, Razi; GHAFFARIFAR, Fatemeh; DALIMI, Abdolhosein; SHARIFI, Zohreh; SOLHJOO, Kavous; HOSSEINIAN KHOSROSHAHI, Kami

    2015-01-01

    Background: Severe and fatal complications of toxoplasmosis urge development of effective vaccines against the disease. The current study was performed to evaluate cocktail DNA vaccine containing plasmids encoding GRA5, SAG1, and ROP2 genes of Toxoplasma gondii in BALB/c mice in Tarbiat Modares University in 2012. Methods: The plasmids containing complete GRA5, SAG1, and ROP2 genes were mass extracted and then the recombinant plasmids were administered via intramuscular injections according to immunized mice three times with three-week intervals. Then splenocytes were cultured, and proliferation as well as cytokine assays were carried out. The other mice in each group were inoculated by the parasite and mortality of the mice was evaluated on a daily basis. Results: The results of cytokine assay for INF-γ were higher in the mice that received the cocktail DNA containing recombinant plasmids. Evaluation of proliferation of splenocytes using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay indicated induction of cellular response. Measurement of total IgG and the isotypes of IgG1 and IgG2a showed that the cocktail DNA stimulated IgG and IgG2a production in comparison with the control groups (P<0.05). Furthermore, the survival rate of mice in the groups that received the cocktail DNA was significantly higher than that in the control groups (P<0.05). Conclusion: Administration of the cocktail DNA vaccine led to production of higher levels of IFN-γ, confirmed by secretion of IgG2a, and the immune response was shifted toward Th1. Thus, the cocktail DNA containing the recombinant plasmids can be an appropriate candidate for immunization against toxoplasmosis. PMID:26811726

  13. Dissemination of IMP-4-encoding pIMP-HZ1-related plasmids among Klebsiella pneumoniae and Pseudomonas aeruginosa in a Chinese teaching hospital

    PubMed Central

    Feng, Wei; Zhou, Dongsheng; Wang, Qian; Luo, Wenbo; Zhang, Defu; Sun, Qiang; Tong, Yigang; Chen, Weijun; Sun, Fengjun; Xia, Peiyuan

    2016-01-01

    A total of 26 blaIMP-4-carrying strains of Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from 2009 to 2013 in a Chinese teaching hospital, and these strains can be assigned into multiple sequence types or allelic profiles as determined by multilocus sequence typing. Of these strains, P. aeruginosa P378 and K. pneumoniae 1220 harbor the IMP-4-encoding plasmids pP378-IMP and p1220-IMP, respectively, whose complete nucleotide sequences are determined to be genetically closely related to the IncN1-type plasmid pIMP-HZ1. pP378-IMP/p1220-IMP-like plasmids are hinted to be present in all the other blaIMP-4-carrying strains, indicating the dissemination of pIMP-HZ1-related plasmids among K. pneumoniae or P. aeruginosa of different genotypes in this hospital. pP378-IMP carries two distinct accessory resistance regions, a blaIMP-4-carrying class 1 integron In823b, and a truncated Tn3-family unit transposon ΔTn6292-3′ harboring the quinolone resistance gene qnrS1. Massive fragmentation and rearrangement of these accessory genetic contents occur among p1220-IMP and IMP-HZ1 relative to pP378-IMP. blaIMP-4 is also present in the In823b remnants from p1220-IMP and IMP-HZ1, while qnrS1 is located in a Tn6292-derive fragment from pIMP-HZ1 but not found in p1220-IMP. pP378-IMP represents the first fully sequenced IncN-type plasmid from P. aeruginosa. PMID:27641711

  14. Control of carbon flux to glutamate excretion in Klebsiella pneumoniae: the role of the indigenous plasmid and its encoded isocitrate dehydrogenase.

    PubMed

    El-Mansi, Mansi; Trappey, Francois; Clark, Ewan; Campbell, Malcolm

    2015-11-01

    Klebsiella pneumoniae (NCTC, CL687/80) harbors a large indigenous plasmid (p(C3)), which in addition to encoding for citrate utilization, proline synthesis and glutamate excretion, it uniquely carries the structural gene (icd); encoding isocitrate dehydrogenase (ICDH). Flux analysis revealed that ICDH, despite its role in the generation of NADPH required for glutamate dehydrogenase, is not rate-limiting (controlling) in central metabolism as evidenced by a negative flux control coefficient and an adverse effect of overexpression (14-fold) on glutamate excretion. More significantly, however, this paper presents, for the first time, clear evidence that the accumulation of glutamate and its subsequent excretion is associated with the C3 plasmid-encoded regulatory elements, which trigger a shift-down in the activity of α-ketoglutarate dehydrogenase, both in the K. pneumoniae parental strain as well as in the E. coli exconjugants strains. This finding opens the door for the exploitation of regulatory elements as a tool for manipulating flux in microbial cell factories.

  15. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    PubMed Central

    Rolain, Jean-Marc

    2013-01-01

    The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. PMID:23805136

  16. Plasmid DNA encoding transforming growth factor-beta1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model.

    PubMed Central

    Song, X Y; Gu, M; Jin, W W; Klinman, D M; Wahl, S M

    1998-01-01

    Transforming growth factor beta is a potent immunomodulator with both pro- and antiinflammatory activities. Based on its immunosuppressive actions, exogenous TGF-beta has been shown to inhibit autoimmune and chronic inflammatory diseases. To further explore the potential therapeutic role of TGF-beta, we administered a plasmid DNA encoding human TGF-beta1 intramuscularly to rats with streptococcal cell wall-induced arthritis. A single dose of 300 microg plasmid DNA encoding TGF-beta1, but not vector DNA, administered at the peak of the acute phase profoundly suppressed the subsequent evolution of chronic erosive disease typified by disabling joint swelling and deformity (articular index = 8.17+/-0. 17 vs. 1.25+/-0.76, n = 6, day 26, P < 0.01). Moreover, delivery of the TGF-beta1 DNA even as the chronic phase commenced virtually eliminated subsequent inflammation and arthritis. Both radiologic and histopathologic as well as molecular evidence supported the marked inhibitory effect of TGF-beta1 DNA on synovial pathology, with decreases in the inflammatory cell infiltration, pannus formation, cartilage and bone destruction, and the expression of proinflammatory cytokines that characterize this model. Increases in TGF-beta1 protein were detected in the circulation of TGF-beta1 DNA-treated animals, consistent with the observed therapeutic effects being TGF-beta1 dependent. These observations provide the first evidence that gene transfer of plasmid DNA encoding TGF-beta1 provides a mechanism to deliver this potent cytokine that effectively suppresses ongoing inflammatory pathology in arthritis. PMID:9637694

  17. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism.

    PubMed

    Dillon, Shane C; Cameron, Andrew D S; Hokamp, Karsten; Lucchini, Sacha; Hinton, Jay C D; Dorman, Charles J

    2010-06-01

    The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.

  18. Molecular typing of Salmonella typhi strains from Dhaka (Bangladesh) and development of DNA probes identifying plasmid-encoded multidrug-resistant isolates.

    PubMed Central

    Hermans, P W; Saha, S K; van Leeuwen, W J; Verbrugh, H A; van Belkum, A; Goessens, W H

    1996-01-01

    Seventy-eight Salmonella typhi strains isolated in 1994 and 1995 from patients living in Dhaka, Bangladesh, were subjected to phage typing, ribotyping, IS200 fingerprinting, and PCR fingerprinting. The collection displayed a high degree of genetic homogeneity, because restricted numbers of phage types and DNA fingerprints were observed. A significant number of the S. typhi strains (67%) were demonstrated to be multiple drug resistant (MDR). The vast majority of the MDR strains were resistant to chloramphenicol, ampicillin, trimethoprim, streptomycin, sulfamethoxazole, and tetracycline (R type CATmSSuT), a resistance phenotype that has also frequently been observed in India. Only two strains displayed a distinct MDR phenotype, R type AT-mSSuT. Pulsed-field gel electrophoresis demonstrated the presence of large plasmids exclusively in the MDR strains of both R types. The plasmids present in the S. typhi strains of R type CATmSSuT could be conjugated to Escherichia coli and resulted in the complete transfer of the MDR phenotype. PCR fingerprinting allowed discrimination of MDR and susceptible strains. The DNA fragments enabling discrimination of MDR and susceptible S. typhi strains by PCR were useful genetic markers for identifying MDR encoded by large plasmids of the H1 incompatibility group. PMID:8735083

  19. Investigating the impact of bisphosphonates and structurally related compounds on bacteria containing conjugative plasmids.

    PubMed

    Nash, Rebekah P; McNamara, Dan E; Ballentine, W Keith; Matson, Steven W; Redinbo, Matthew R

    2012-08-10

    Bacterial plasmids propagate through microbial populations via the directed process of conjugative plasmid transfer (CPT). Because conjugative plasmids often encode antibiotic resistance genes and virulence factors, several approaches to inhibit CPT have been described. Bisphosphonates and structurally related compounds (BSRCs) were previously reported to disrupt conjugative transfer of the F (fertility) plasmid in Escherichia coli. We have further investigated the effect of these compounds on the transfer of two additional conjugative plasmids, pCU1 and R100, between E. coli cells. The impact of BSRCs on E. coli survival and plasmid transfer was found to be dependent on the plasmid type, the length of time the E. coli were exposed to the compounds, and the ratio of plasmid donor to plasmid recipient cells. Therefore, these data indicate that BSRCs produce a range of effects on the conjugative transfer of bacterial plasmids in E. coli. Since their impact appears to be plasmid type-dependent, BSRCs are unlikely to be applicable as broad inhibitors of antibiotic resistance propagation.

  20. Enhanced efficacy of DNA vaccination against botulinum neurotoxin serotype A by co-administration of plasmids encoding DC-stimulating Flt3L and MIP-3α cytokines.

    PubMed

    Xu, Qing; Zhu, Yu-Feng; Wang, Hai-Chao; Gong, Zheng-Wei; Yu, Yun-Zhou

    2016-09-01

    Targeting antigens encoded by DNA vaccines to the key antigen-presenting cells by chemotactic or growth factors, is an effective strategy for enhancing the potency of DNA vaccinations. Here, we report the effects of chemotactic or growth factors on a DNA vaccine against botulinum neurotoxin serotype A (BoNT/A) in a mouse model. We demonstrated that mice immunized with DNA constructs encoding the Hc domain of BoNT/A (AHc) fused with DC-stimulating Flt3L or MIP-3α cytokines failed to elicit an enhanced or efficacious AHc-specific humoral or protective response in mice. However, the potency of DNA vaccination was significantly modulated and enhanced by co-administration of AHc-expressing DNA with pFlt3L or pMIP-3α, which generated strong immune and protective responses against BoNT/A. Moreover, the enhanced potency was further boosted by co-administration of AHc-expressing DNA with the combination of pFlt3L and pMIP-3α in mice, but not with the Flt3L-MIP-3α fusion molecule, which indicated that co-immunization with both pFlt3L and pMIP-3α could synergistically enhance AHc-specific immune and protective responses against BoNT/A. In summary, our findings indicate that co-administration of plasmids encoding antigen and cytokine rather than administration of plasmids encoding cytokine-antigen fusion is effective to enhance the potency of AHc-expressing DNA vaccine.

  1. Diversity of plasmid replicons encoding the bla(CMY-2) gene in broad-spectrum cephalosporin-resistant Escherichia coli from livestock animals in Japan.

    PubMed

    Hiki, Mototaka; Usui, Masaru; Kojima, Akemi; Ozawa, Manao; Ishii, Yoshikazu; Asai, Tetsuo

    2013-03-01

    Broad-spectrum cephalosporin (BSC) resistance has increased in Escherichia coli isolates from broiler chickens in Japan since 2004. The purpose of this study was to understand the epidemiology of BSC-resistant E. coli in livestock animals. Among 3274 E. coli isolates from 1767 feces of apparently healthy animals on 1767 farms between 2004 and 2009, 118 ceftiofur (CTF)-resistant isolates (CTF MIC ≥4 μg/mL) were identified on 74 farms. After elimination of apparently clonal isolates from a single animal, 75 selected CTF-resistant isolates (62 isolates from 61 broiler chickens, 10 isolates from 10 layer chickens, two isolates from two cows, and one isolate from a pig) were characterized. The bla(CMY-2) gene was most frequently detected in 50 isolates, followed by bla(CTX-M) (CTX-M-2: six isolates; CTX-M-14: four isolates; CTX-M-25: two isolates; CTX-M-1: one isolate) and bla(SHV) (SHV-12: seven isolates; SHV-2, SHV-2a, SHV-5: one isolate each). In particular, 42 of 62 broiler chicken isolates harbored bla(CMY-2). Pulsed-field gel electrophoresis analyses using XbaI revealed divergent profiles among the BSC-resistant isolates. The incompatibility groups of bla(CMY-2) plasmids from 34 of the 42 broiler chicken isolates belonged to IncIγ (10 isolates), IncA/C (nine isolates), IncB/O (seven isolates) and IncI1 (six isolates), or were nontypeable (two isolates). Co-transmission of resistance to non-β-lactam antibiotics was observed in transconjugants with IncA/C plasmids, but not with IncI1, IncIγ, and IncB/O plasmids except for one isolate with IncB/O. Our findings suggest that the bla(CMY-2) gene is a key player in BSC-resistant E. coli isolates and that coselection is unlikely to be associated with the abundance of bla(CMY-2) plasmids, except for IncA/C plasmids.

  2. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

    PubMed

    Conlan, Sean; Thomas, Pamela J; Deming, Clayton; Park, Morgan; Lau, Anna F; Dekker, John P; Snitkin, Evan S; Clark, Tyson A; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Dayal, Jyoti; Brooks, Shelise Y; Schmidt, Brian; Young, Alice C; Thomas, James W; Bouffard, Gerard G; Blakesley, Robert W; Mullikin, James C; Korlach, Jonas; Henderson, David K; Frank, Karen M; Palmore, Tara N; Segre, Julia A

    2014-09-17

    Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment. PMID:25232178

  3. Methylotrophic Bacillus methanolicus Encodes Two Chromosomal and One Plasmid Born NAD+ Dependent Methanol Dehydrogenase Paralogs with Different Catalytic and Biochemical Properties

    PubMed Central

    Müller, Jonas E. N.; Kupper, Christiane E.; Schneider, Olha; Vorholt, Julia A.; Ellingsen, Trond E.; Brautaset, Trygve

    2013-01-01

    Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD+-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation. PMID:23527128

  4. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator

    PubMed Central

    Rajasekar, Karthik V.; Lovering, Andrew L.; Dancea, Felician; Scott, David J.; Harris, Sarah A.; Bingle, Lewis E.H.; Roessle, Manfred; Thomas, Christopher M.; Hyde, Eva I.; White, Scott A.

    2016-01-01

    The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  5. Plasmid-Mediated Quinolone Resistance Genes and Antibiotic Residues in Wastewater and Soil Adjacent to Swine Feedlots: Potential Transfer to Agricultural Lands

    PubMed Central

    Li, Juan; Wang, Thanh; Shao, Bing; Shen, Jianzhong; Wang, Shaochen

    2012-01-01

    Background: Inappropriate use of antibiotics in swine feed could cause accelerated emergence of antibiotic resistance genes, and agricultural application of swine waste could spread antibiotic resistance genes to the surrounding environment. Objectives: We investigated the distribution of plasmid-mediated quinolone resistance (PMQR) genes from swine feedlots and their surrounding environment. Methods: We used a culture-independent method to identify PMQR genes and estimate their levels in wastewater from seven swine feedlot operations and corresponding wastewater-irrigated farm fields. Concentrations of (fluoro)quinolones in wastewater and soil samples were determined by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Results: The predominant PMQR genes in both the wastewater and soil samples were qnrD, qepA, and oqxB, whereas qnrS and oqxA were present only in wastewater samples. Absolute concentrations of all PMQR genes combined ranged from 1.66 × 107 to 4.06 × 108 copies/mL in wastewater and 4.06 × 106 to 9.52 × 107 copies/g in soil. Concentrations of (fluoro)quinolones ranged from 4.57 to 321 ng/mL in wastewater and below detection limit to 23.4 ng/g in soil. Significant correlations were found between the relative abundance of PMQR genes and (fluoro)quinolone concentrations (r = 0.71, p = 0.005) and the relative abundance of PMQR genes in paired wastewater and agricultural soil samples (r = 0.91, p = 0.005). Conclusions: Swine feedlot wastewater may be a source of PMQR genes that could facilitate the spread of antibiotic resistance. To our knowledge, this is the first study to examine the occurrence of PMQR genes in animal husbandry environments using a culture-independent method. PMID:22569244

  6. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil.

  7. Vaccination with Plasmid DNA Encoding TSA/LmSTI1 Leishmanial Fusion Proteins Confers Protection against Leishmania major Infection in Susceptible BALB/c Mice

    PubMed Central

    Campos-Neto, A.; Webb, J. R.; Greeson, K.; Coler, R. N.; Skeiky, Y. A. W.; Reed, S. G.

    2002-01-01

    the two genes was also tested. Similarly to the plasmids encoding individual proteins, the fusion construct induced both specific immune responses to the individual antigens and protection against challenge with L. major. These results confirm previous observations about the possibility of DNA immunization against leishmaniasis and lend support to the idea of using a single polygenic plasmid DNA construct to achieve polyspecific immune responses to several distinct parasite antigens. PMID:12010969

  8. Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey.

    PubMed

    Ozgumus, Osman Birol; Sandalli, Cemal; Sevim, Ali; Celik-Sevim, Elif; Sivri, Nuket

    2009-02-01

    We aimed to determine the molecular mechanisms of antibiotic resistance in coliforms isolated from ten rivers in northern region of Turkey. A total of 183 isolates were tested for antimicrobial susceptibility by disk diffusion and agar dilution methods. Resistance to ampicillin, streptomycin, trimethoprim, tetracycline, and chloramphenicol was detected in 58%, 51.9%, 24%, 28.4%, and 12.5%, respectively. Twelve (6.5%) phylogenetically distant organisms were detected to harbor self-transmissible plasmids ranging 52 to >147 kb in sizes. Resistances to ampicillin, tetracycline, trimethoprim, streptomycin, and nalidixic acid were commonly transferable traits. Transferable nalidixic acid-resistant strains harbored qnrS gene, which was the first report of plasmid-mediated quinolone resistance in bacteria of environmental origin in Turkey. Fourteen and five coliforms harbored class 1 and class 2 integrons, respectively, and some of them were located on transferable plasmids. Sequence analyses of variable regions of the class 1 and 2 integrons harbored various gene cassettes, dfrA1, dfr2d, dfrA7, dfrA16, dfrA17, aadA1, aadA5, bla(oxA-30), and sat1. A gene cassette array, dfrA16 has been demonstrated for the first time in a Citrobacter koseri isolate. Class 1 and class 2-bearing strains were clustered in different groups by BOX-PCR fingerprinting. Rivers in the northern Turkey may act as receptacle for the multi-drug resistant enterobacteria and can serve as reservoirs of the antimicrobial resistance determinants in the environment. The actual risk to public health is the transfer of resistance genes from the environmental bacteria to human pathogens.

  9. Small plasmids in Streptococcus dysgalactiae subsp. equisimilis isolated from human infections in southern India and sequence analysis of two novel plasmids.

    PubMed

    Bergmann, René; Nitsche-Schmitz, D Patric

    2015-05-01

    Small plasmids are frequently found in S. pyogenes isolates from human infections in India. Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a streptococcal subspecies that is genetically similar to S. pyogenes and has a similar ecology. Therefore, we determined the distribution of small plasmids in a collection of 254 SDSE isolates, comprising 44 different emm-types and emm non-typable strains, from southern India, utilizing an established PCR based method. Briefly, 1.2% (n=3) of the isolates were positive for repA (encoding the replication initiation protein A) and 1.6% (n=4) were repB positive (encoding the replication initiation protein B). One isolate (G315) showed a co-detection of repB and dysA (encoding the bacteriocin dysgalacticin) which is characteristic for previously described pDN281/pW2580-like plasmids, observed in SDSE and S. pyogenes. The remaining plasmid bearing isolates showed no characteristic co-detection of known plasmid-associated genes. Thus, plasmids pG271 and pG279, representatives for repB and repA harboring plasmids, respectively, were analyzed. The plasmids pG271 and pG279 could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. Like the characterized small native plasmids of S. pyogenes from India, the SDSE plasmids discovered and described in this study did not carry any of the known antibiotic resistance genes. SDSE bore less of the investigated small native plasmids that were distinct from the small native plasmids of S. pyogenes of the same geographic region. This indicates a low rate of lateral transfer of these genetic elements between these two related streptococcal species.

  10. Genetic analysis of the agrocinopine catabolic region of Agrobacterium tumefaciens Ti plasmid pTiC58, which encodes genes required for opine and agrocin 84 transport.

    PubMed Central

    Hayman, G T; Beck von Bodman, S; Kim, H; Jiang, P; Farrand, S K

    1993-01-01

    The acc region, subcloned from pTiC58 of classical nopaline and agrocinopine A and B Agrobacterium tumefaciens C58, allowed agrobacteria to grow using agrocinopine B as the sole source of carbon and energy. acc is approximately 6 kb in size. It consists of at least five genes, accA through accE, as defined by complementation analysis using subcloned fragments and transposon insertion mutations of acc carried on different plasmids within the same cell. All five regions are required for agrocin 84 sensitivity, and at least four are required for agrocinopine and agrocin 84 uptake. The complementation results are consistent with the hypothesis that each of the five regions is separately transcribed. Maxicell experiments showed that the first of these genes, accA, encodes a 60-kDa protein. Analysis of osmotic shock fractions showed this protein to be located in the periplasm. The DNA sequence of the accA region revealed an open reading frame encoding a predicted polypeptide of 59,147 Da. The amino acid sequence encoded by this open reading frame is similar to the periplasmic binding proteins OppA and DppA of Escherichia coli and Salmonella typhimurium and OppA of Bacillus subtilis. Images PMID:8366042

  11. Increased B and T Cell Responses in M. bovis Bacille Calmette-Guérin Vaccinated Pigs Co-Immunized with Plasmid DNA Encoding a Prototype Tuberculosis Antigen

    PubMed Central

    Bruffaerts, Nicolas; Pedersen, Lasse E.; Vandermeulen, Gaëlle; Préat, Véronique; Stockhofe-Zurwieden, Norbert; Huygen, Kris; Romano, Marta

    2015-01-01

    The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8+ T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration. PMID:26172261

  12. Photobacterium damselae subsp. damselae Major Virulence Factors Dly, Plasmid-Encoded HlyA, and Chromosome-Encoded HlyA Are Secreted via the Type II Secretion System

    PubMed Central

    Rivas, Amable J.; Vences, Ana; Husmann, Matthias; Lemos, Manuel L.

    2015-01-01

    Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyApl) and the chromosome-encoded HlyA (HlyAch) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL, a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyAch secretion. In addition, mutation of epsL in a pPHDD1-harboring strain caused an almost complete abolition of hemolytic activity against sheep erythrocytes, indicating that epsL plays a major role in secretion of the plasmid-encoded HlyApl and Dly. This was further demonstrated by analysis of different combinations of hemolysin gene mutants and by strain-strain complementation assays. We also found that mutation of the putative prepilin peptidase gene pilD severely affected hemolysis, which dropped at levels inferior to those of epsL mutants. Promoter expression analyses suggested that impairment of hemolysin secretion in epsL and pilD mutants might constitute a signal that affects hemolysin and T2SS gene expression at the transcriptional level. In addition, single epsL and pilD mutations caused a drastic decrease in virulence for mice, demonstrating a major role of T2SS and pilD in P. damselae subsp. damselae virulence. PMID:25583529

  13. X-Ray Crystal Structure of the passenger domain of Plasmid encoded toxin(Pet), an Autotransporter Enterotoxin from enteroaggregative Escherichia coli (EAEC)

    PubMed Central

    Meza-Aguilar, J. Domingo; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Monteros, Roberto A. Arreguin-Espinosa de los; Campos, Carlos A. Eslava; Fromme, Raimund

    2014-01-01

    Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50 % compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181-190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135-143 compared to the structure of EspP. PMID:24530907

  14. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution.

    PubMed

    Murayama, K; Orth, P; de la Hoz, A B; Alonso, J C; Saenger, W

    2001-12-01

    The 71 amino acid residue omega protein encoded by the Streptococcus pyogenes non-conjugative plasmid pSM19035 is a transcriptional repressor that regulates expression of genes for copy number control and stable maintenance of plasmids. The crystal structure of omega protein has been determined by multiple isomorphous replacement, including anomalous scattering and refined to an R-factor of 21.1 % (R(free)=23.2 %) at 1.5 A resolution. Two monomers related by a non-crystallographic 2-fold axis form a homodimer that occupies the asymmetric unit. Each polypeptide chain is folded into two alpha-helices and one beta-strand forming an antiparallel beta-ribbon in the homodimer. The N-terminal regions (1-23 and 1-22 in subunits I and II, respectively) are not defined in the electron density due to proteolysis of the N-terminal 20 amino acid residues during crystallisation and partial disorder. The omega protein belongs to the structural superfamily of MetJ/Arc repressors featuring a ribbon-helix-helix DNA-binding motif with the beta-ribbon located in and recognizing the major groove of operator DNA; according to a modelled omega protein-DNA complex, residues Arg31 and Arg31' on the beta-ribbon are in positions to interact with a nucleobase, especially guanine. PMID:11733997

  15. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution.

    PubMed

    Murayama, K; Orth, P; de la Hoz, A B; Alonso, J C; Saenger, W

    2001-12-01

    The 71 amino acid residue omega protein encoded by the Streptococcus pyogenes non-conjugative plasmid pSM19035 is a transcriptional repressor that regulates expression of genes for copy number control and stable maintenance of plasmids. The crystal structure of omega protein has been determined by multiple isomorphous replacement, including anomalous scattering and refined to an R-factor of 21.1 % (R(free)=23.2 %) at 1.5 A resolution. Two monomers related by a non-crystallographic 2-fold axis form a homodimer that occupies the asymmetric unit. Each polypeptide chain is folded into two alpha-helices and one beta-strand forming an antiparallel beta-ribbon in the homodimer. The N-terminal regions (1-23 and 1-22 in subunits I and II, respectively) are not defined in the electron density due to proteolysis of the N-terminal 20 amino acid residues during crystallisation and partial disorder. The omega protein belongs to the structural superfamily of MetJ/Arc repressors featuring a ribbon-helix-helix DNA-binding motif with the beta-ribbon located in and recognizing the major groove of operator DNA; according to a modelled omega protein-DNA complex, residues Arg31 and Arg31' on the beta-ribbon are in positions to interact with a nucleobase, especially guanine.

  16. Crystallization and preliminary X-ray diffraction studies of the epsilonzeta addiction system encoded by Streptococcus pyogenes plasmid pSM19035.

    PubMed

    Meinhart, A; Alings, C; Sträter, N; Camacho, A G; Alonso, J C; Saenger, W

    2001-05-01

    The proteins encoded by the Streptococcus pyogenes broad-host range and low copy-number plasmid pSM19035 form a toxin-antitoxin module that secures stable maintenance by causing the death of plasmid-free segregants. The epsilonzeta protein complex was crystallized in four different forms at pH 5.0 and pH 7.0 using the vapour-diffusion method with PEG 3350 and ethylene glycol as precipitants. Three of the crystal forms were obtained in the same droplet under identical conditions at pH 5.0. One form belongs to the enantiomorphic space groups P4(3)2(1)2 or P4(1)2(1)2. For the other two, the X-ray reflection conditions match those of space group P2(1)2(1)2(1), one representing a superlattice of the other. A crystal form growing at pH 7.0 also belongs to space group P2(1)2(1)2(1), but there is no indication of a structural relationship to the other orthorhombic forms. Initially, the crystals diffracted to 2.9 A resolution and diffracted to 1.95 A after soaking at pH 7.0. A preparation of selenomethionyl epsilonzeta protein complex yielded single crystals suitable for X-ray diffraction experiments using synchrotron sources.

  17. arsRBOCT Arsenic Resistance System Encoded by Linear Plasmid pHZ227 in Streptomyces sp. Strain FR-008

    PubMed Central

    Wang, Lianrong; Chen, Shi; Xiao, Xiang; Huang, Xi; You, Delin; Zhou, Xiufen; Deng, Zixin

    2006-01-01

    In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in sensitivity to arsenic, and heterologous expression of the ars gene cluster in the arsenic-sensitive Streptomyces strains conferred resistance on the new hosts. The pHZ227 ArsB protein showed homology to the yeast arsenite transporter Acr3p. The pHZ227 ArsC appears to be a bacterial thioredoxin-dependent ArsC-type arsenate reductase with four conserved cysteine thioredoxin-requiring motifs. PMID:16672525

  18. A novel quorum sensing system co-regulated by chromosome- and plasmid-encoded genes in Serratia marcescens H30.

    PubMed

    Zhu, Hu; Shen, Ya-Ling; Wei, Dong-Zhi; Zhu, Jia-Wen

    2008-12-01

    The key genes, SpnI and SpnR, involved in AI-1-quorum sensing system of Serratia marcescens strain H30 were cloned and localized using specific primers (5'-CTTGAACTGTTTGACGTCAGC-3' and 5'-AGCGGCCAGGTAATAACTGA-3', 5'-GCCTTCAATGAAAATCAGACC-3' and 5'-TGTCGCTGTGATAAGCTCCA-3') designed according to the nucleic acid sequences published at NCBI (accession no. AB234869). The PCR result demonstrated that the genes SpnI and SpnR were located on the bacterial chromosome and plasmid, respectively. This was also confirmed by Southern blotting using an internal fragment (379 bp) from SpnR gene as a probe. These results imply a new type quorum sensing regulation system that had never been reported previously.

  19. Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84.

    PubMed

    Kim, H; Farrand, S K

    1997-12-01

    The acc locus from the Ti plasmid pTiC58 confers utilization of and chemotaxis toward agrocinopines A and B (A+B), as well as susceptibility to a highly specific antiagrobacterial antibiotic, agrocin 84. DNA sequence analyses revealed that acc is composed of eight open reading frames, accR and accA through accG. Previous work showed that accR encodes the repressor which regulates this locus, and accA codes for the periplasmic binding protein of the agrocinopine transport system (S. Beck Von Bodman, G. T. Hayman, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 89:643-647, 1992; G. T. Hayman, S. Beck Von Bodman, H. Kim, P. Jiang, and S. K. Farrand, J. Bacteriol. 175:5575-5584, 1993). The predicted proteins from accA through accE, as a group, have homology to proteins that belong to the ABC-type transport system superfamily. The predicted product of accF is related to UgpQ of Escherichia coli, which is a glycerophosphoryl diester phosphodiesterase, and also to agrocinopine synthase coded for by acs located on the T-DNA. The translated product of accG is related to myoinositol 1 (or 4) monophosphatases from various eucaryotes. Analyses of insertion mutations showed that accA through accE are required for transport of both agrocin 84 and agrocinopines A+B, while accF and accG are required for utilization of the opines as the sole source of carbon. Mutations in accF or accG did not abolish transport of agrocin 84, although we observed slower removal of the antibiotic from the medium by the accF mutant compared to the wild type. However, the insertion mutation in accF abolished detectable uptake of agrocinopines A+B. A mutation in accG had no effect on transport of the opines. The accF mutant was not susceptible to agrocin 84 although it took up the antibiotic. This finding suggests that agrocin 84 is activated by AccF after being transported into the bacterial cell. PMID:9393724

  20. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium.

    PubMed Central

    Tepfer, D; Goldmann, A; Pamboukdjian, N; Maille, M; Lepingle, A; Chevalier, D; Dénarié, J; Rosenberg, C

    1988-01-01

    Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology. Images PMID:2981046

  1. Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFIIk Mosaic Plasmid Hosting Tn1 (blaTEM-4) in Isolates from 1990 to 2004

    PubMed Central

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael

    2015-01-01

    We describe the genetic background of blaTEM-4 and the complete sequence of pRYC11::blaTEM-4, a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins. PMID:25691645

  2. Antibiotic-resistant Klebsiella pneumoniae and Escherichia coli high-risk clones and an IncFII(k) mosaic plasmid hosting Tn1 (blaTEM-4) in isolates from 1990 to 2004.

    PubMed

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael; Coque, Teresa M

    2015-05-01

    We describe the genetic background of bla(TEM-4) and the complete sequence of pRYC11::bla(TEM-4), a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins.

  3. Characterization and Comparative Overview of Complete Sequences of the First Plasmids of Pandoraea across Clinical and Non-clinical Strains

    PubMed Central

    Yong, Delicia; Tee, Kok Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572T (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570T (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535T (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens. PMID:27790203

  4. Mutagenesis of SNM1, Which Encodes a Protein Component of the Yeast RNase MRP, Reveals a Role for This Ribonucleoprotein Endoribonuclease in Plasmid Segregation

    PubMed Central

    Cai, Ti; Reilly, Tracey R.; Cerio, Michael; Schmitt, Mark E.

    1999-01-01

    RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to have roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 encodes an essential 22.5-kDa protein that is a component of yeast RNase MRP. It is an RNA binding protein that binds the MRP RNA specifically. This 198-amino-acid protein can be divided into three structural regions: a potential leucine zipper near the amino terminus, a binuclear zinc cluster in the middle region, and a serine- and lysine-rich region near the carboxy terminus. We have performed PCR mutagenesis of the SNM1 gene to produce 17 mutants that have a conditional phenotype for growth at different temperatures. Yeast strains carrying any of these mutations as the only copy of snm1 display an rRNA processing defect identical to that in MRP RNA mutants. We have characterized these mutant proteins for RNase MRP function by examining 5.8S rRNA processing, MRP RNA binding in vivo, and the stability of the RNase MRP RNA. The results indicate two separate functional domains of the protein, one responsible for binding the MRP RNA and a second that promotes substrate cleavage. The Snm1 protein appears not to be required for the stability of the MRP RNA, but very low levels of the protein are required for processing of the 5.8S rRNA. Surprisingly, a large number of conditional mutations that resulted from nonsense and frameshift mutations throughout the coding regions were identified. The most severe of these was a frameshift at amino acid 7. These mutations were found to be undergoing translational suppression, resulting in a small amount of full-length Snm1 protein. This small amount of Snm1 protein was sufficient to maintain enough RNase MRP activity to support viability. Translational suppression was accomplished in two ways. First, CEN plasmid missegregation leads to plasmid amplification, which in turn leads to SNM1 mRNA overexpression. Translational suppression of a small amount of the superabundant

  5. Frequency of conjugative transfer of plasmid-encoded ISEcp1 - blaCTX-M-15 and aac(6')-lb-cr genes in Enterobacteriaceae at a tertiary care center in Lebanon - role of transferases

    PubMed Central

    2010-01-01

    Background The frequency of transfer of genes encoding resistance to antimicrobial agents was determined by conjugation in ESBL-producing and/or fluoroquinolone or aminoglycoside resistant Enterobacteriaceae clinical isolates at a tertiary care center in Lebanon. In addition, the role of tra genes encoding transferases in mediating conjugation was assessed. Methods Conjugation experiments were done on 53 ESBL-producing and/or fluoroquinolone resistant E. coli and K. pneumoniae and ESBL-producing S. sonnei isolates. Antimicrobial susceptibility testing on parent and transconjugant isolates, and PCR amplifications on plasmid extracts of the resistance-encoding genes: blaCTX-M-15 with the ISEcp1 insertion sequence, the aac(6')-lb-cr and qnrS genes, as well as tra encoding transferases genes were done. Random amplified polymorphic DNA (RAPD) analysis was performed to demonstrate whether conjugative isolates are clonal and whether they are linked epidemiologically to a particular source. Results Antimicrobial susceptibility testing on transconjugants revealed that 26 out of 53 (49%) ESBL-producing Enterobacteriaceae were able to transfer antimicrobial resistance to the recipients. Transfer of high-level resistance to the transconjugants encoded by the blaCTX-M-15 gene downstream the ISEcp1 insertion sequence against 3rd generation cephalosporins, and of low-level resistance against ciprofloxacin, and variable levels of resistance against aminoglycosides encoded by aac(6')-lb-cr gene, were observed in transconjugants. tra encoding transferase genes were detected exclusively in conjugative isolates. Conclusion In conclusion, the frequency of transfer of antimicrobial resistance in non clonal Enterobacteriaceae at the tertiary care center by conjugation was 49%. Conjugation occurred in isolates expressing the tra encoding transferase genes. Multiple conjugative strains harboring the plasmid encoded antimicrobial resistant genes were circulating in the medical center

  6. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  7. Typing of methicillin-resistant Staphylococcus aureus by antibiotic resistance phenotypes.

    PubMed

    Gillespie, M T; Lyon, B R; Skurray, R A

    1990-01-01

    The identification of new epidemic strains of methicillin-resistant Staphylococcus aureus is essential for rapid, effective infection control. We have developed a typing method which uses antibiotic sensitivity patterns to differentiate methicillin-resistant S. aureus and which is faster and more cost-effective than biochemical analysis or bacteriophage typing. Characterisation of phenotypes which are chromosomally-encoded, plasmid- or chromosomally-encoded or exclusively plasmid-mediated has enabled us to separate Australian strains of methicillin-resistant S. aureus into 11 classes, representatives of which were indistinguishable by bacteriophage type, or plasmid profile alone. The value of this procedure is thus clearly shown.

  8. Conjugative plasmid transfer in gram-positive bacteria.

    PubMed

    Grohmann, Elisabeth; Muth, Günther; Espinosa, Manuel

    2003-06-01

    Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer. PMID:12794193

  9. Detection of chromosomal and plasmid--encoded virulence determinants in Yersinia enterocolitica and other Yersinia spp. isolated from food animals in Greece.

    PubMed

    Kechagia, Nektaria; Nicolaou, Chryssoula; Ioannidou, Vasiliki; Kourti, Erieta; Ioannidis, Anastassios; Legakis, Nicolaos John; Chatzipanagiotou, Stylianos

    2007-09-30

    The distribution of Yersinia strains in animal reservoirs was examined in 835 food animals (pigs, chickens, sheep, cows) from different Greek departments (Attica, Fthiotida, Viotia and Evia) over a one year period. The isolated strains were characterized with respect to the presence of chromosomal (yst) and plasmid-encoded virulence determinants (virF, yadA) and their antimicrobial susceptibility was tested. In total, Yersiniaspp. were obtained from 9.94% of the 835 food animals at slaughter that were sampled in this study. There was no statistically significant seasonal distribution, nor was any significant departmental distribution observed. From the 83 isolated Yersinia strains, 76 (91,57%) belonged to Y. enterocolitica (58 were of serotype O:3/biotype 4 and 18 strains were non O:3, non O:9), 3 belonged to Y. pseudotuberculosis, 2 to Y. kristensenii and 2 to Y. intermedia. Y. enterocolitica O:3/4 was mainly isolated from the pigs, while Y. enterocolitica non O:3, non O:9 was from the chickens. The strains were grouped into 5 genotypes, with respect to the presence or absence of the virulence genes. A significant predominance of genotype V, the one carrying all the three virulence genes, was observed in the strains isolated from the pigs. Complete susceptibility to most of the 3rd and to the 4th generation cephalosporins and to ciprofloxacin, was observed among the isolates. Remarkable was the association between the presence of each virulence gene separately and resistance to some antimicrobials, a matter of further investigation.

  10. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors.

    PubMed

    Wasukira, Arthur; Coulter, Max; Al-Sowayeh, Noorah; Thwaites, Richard; Paszkiewicz, Konrad; Kubiriba, Jerome; Smith, Julian; Grant, Murray; Studholme, David J

    2014-01-01

    Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens. PMID:25437615

  11. The A to Z of A/C plasmids.

    PubMed

    Harmer, Christopher J; Hall, Ruth M

    2015-07-01

    Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future.

  12. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors

    PubMed Central

    López-Fuentes, Eunice; Torres-Tejerizo, Gonzalo; Cervantes, Laura; Brom, Susana

    2015-01-01

    Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer

  13. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding blaIMI-3-Mediated Carbapenem Resistance, from River Sediment

    PubMed Central

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one blaIMI-3-containing region and one type VI secretion system region. The blaIMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the blaIMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of blaIMI carbapenemase genes. PMID:26941718

  14. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment.

    PubMed

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes.

  15. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment.

    PubMed

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. PMID:26941718

  16. Degradative plasmids from sphingomonads.

    PubMed

    Stolz, Andreas

    2014-01-01

    Large plasmids ('megaplasmids') are commonly found in members of the Alphaproteobacterial family Sphingomonadaceae ('sphingomonads'). These plasmids contribute to the extraordinary catabolic flexibility of this group of organisms, which degrade a broad range of recalcitrant xenobiotic compounds. The genomes of several sphingomonads have been sequenced during the last years. In the course of these studies, also the sequences of several plasmids have been determined. The analysis of the published information and the sequences deposited in the public databases allowed a first classification of these plasmids into a restricted number of groups according to the proteins involved in the initiation of replication, plasmid partition and conjugation. The sequence comparisons demonstrated that the plasmids from sphingomonads encode for four main groups of replication initiation (Rep) proteins. These Rep proteins belong to the protein superfamilies RepA_C (Pfam 04796), Rep_3 (Pfam 01051), RPA (Pfam 10134) and HTH-36 (Pfam 13730). The 'degradative megaplasmids' pNL2, pCAR3, pSWIT02, pCHQ1, pISP0, and pISP1, which code for genes involved in the degradation of aromatic hydrocarbons, carbazole, dibenzo-p-dioxin and γ-hexachlorocyclohexane, carry Rep proteins which either belong to the RepA_C- (plasmids pNL2, pCAR3, pSWIT02), Rep-3- (plasmids pCHQ1, pISP0) or RPA-superfamily (pISP1). The classification of these 'degradative megaplasmids' into three groups is also supported by sequence comparisons of the proteins involved in plasmid partition (ParAB) and the organization of the three genes on the respective plasmids. All analysed 'degradative megaplasmids' carry genes, which might allow a conjugative transfer of the plasmids. Sequence comparisons of these genes suggest the presence of at least two types of transfer functions, which either are closer related to the tra- or vir-genes previously described for plasmids from other sources.

  17. Molecular analysis of the bacteriocin-encoding plasmid pDGL1 from Enterococcus durans and genetic characterization of the durancin locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterococci constitute a significant component of lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in Enterococcus durans 41D were identified on the 8,347 bp plasmid pDGL1 by plasmid curing exp...

  18. Chlamydial plasmid-encoded protein pORF5 induces production of IL-1β and IL-18 via NALP3 inflammasome activation and p38 MAPK pathway

    PubMed Central

    Cao, Wenjuan; Zou, Yan; Su, Shengmei; He, Zhansheng; Liu, Yan; Huang, Qiulin; Li, Zhongyu

    2015-01-01

    The pathogenesis of Chlamydia-induced inflammation is poorly understood. pORF5 is the only secreted protein encoded by Chlamydial plasmid. This study aims to investigate the effects of pORF5 on the production of interleukin-1β (IL-1β) and interleukin-18 (IL-18) and the underlying mechanisms of these effects. THP-1 (a human acute monocytic leukemia cell line) cells were stimulated by pORF5 with or without pretreatment with Natch domain, Leucine-rich repeat and PYD-containing protein 3 (NALP3) siRNA, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) siRNA, cysteine aspartate-specific protease-1 (caspase-1) specific inhibitor and p38 mitogen-activated protein kinase (p38 MAPK) inhibitor. IL-1β, IL-18 and caspase-1 expression was detected through both ELISA and qRT-PCR. NALP3 and ASC expression was detected by qRT-PCR. The expression of caspase-1 and phosphorylated-p38 MAPK was detected by western blot analysis. pORF5 induced IL-1β, IL-18, caspase-1 and NALP3 inflammasome expression in THP-1 cells. Caspase-1 inhibitor significantly reduced pORF5-induced IL-1β and IL-18 expression. The siRNAs for NALP3 inflammasome significantly reduced pORF5-induced IL-1β, IL-18 and caspase-1 expression. Furthermore, p38 MAPK inhibitor significantly reduced pORF5-induced IL-1β, IL-18, caspase-1 and NALP3 inflammasome expression. pORF5 could induce production of IL-1β and IL-18 via NALP3 inflammasome activation and p38MAPK pathway. pORF5 protein might play an important role in Chlamydia pathogenesis. This study provides a new insight into the molecular pathogenesis of Chlamydial diseases. PMID:26884953

  19. Salmonella enterica Serovar Typhimurium blaPER-1-Carrying Plasmid pSTI1 Encodes an Extended-Spectrum Aminoglycoside 6′-N-Acetyltransferase of Type Ib

    PubMed Central

    Casin, Isabelle; Hanau-Berçot, Beatrice; Podglajen, Isabelle; Vahaboglu, Haluk; Collatz, Ekkehard

    2003-01-01

    We have studied the aminoglycoside resistance gene, which confers high levels of resistance to both amikacin and gentamicin, that is carried by plasmid pSTI1 in the PER-1 β-lactamase-producing strain of Salmonella enterica serovar Typhimurium previously isolated in Turkey. This gene, called aac(6′)-Ib11, was found in a class 1 integron and codes for a protein of 188 amino acids, a fusion product between the N-terminal moiety (8 amino acids) of the signal peptide of the β-lactamase OXA-1 and the acetyltransferase. The gene lacked a plausible Shine-Dalgarno (SD) sequence and was located 45 nucleotides downstream from a small open reading frame, ORF-18, with a coding capacity of 18 amino acids and a properly spaced SD sequence likely to direct the initiation of aac(6′)-Ib11 translation. AAC(6′)-Ib11 had Leu118 and Ser119 as opposed to Gln and Leu or Gln and Ser, respectively, which were observed in all previously described enzymes of this type. We have evaluated the effect of Leu or Gln at position 118 by site-directed mutagenesis of aac(6′)-Ib11 and two other acetyltransferase gene variants, aac(6′)-Ib7 and -Ib8, which naturally encode Gln118. Our results show that the combination of Leu118 and Ser119 confers an extended-spectrum aminoglycoside resistance, with the MICs of all aminoglycosides in clinical use, including gentamicin, being two to eight times higher for strains with Leu118 and Ser119 than for those with Gln118 and Ser119. PMID:12543680

  20. Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-gamma on protective immunity by a DNA vaccine against IBDV in chickens.

    PubMed

    Roh, Ha Jung; Sung, Haan Woo; Kwon, Hyuk Moo

    2006-12-01

    This study examined the adjuvant effects of dimethyl dioctadecyl ammonium bromide (DDA), CpG oligodeoxynucleotides (CpG-ODN), and chicken interferon-gamma (ChIFN-gamma) on a DNA vaccine (pcDNA-VP243) against the infectious bursal disease virus (IBDV). A plasmid encoding chicken IFN-ã was constructed. Twice at 2-week intervals, two-week-old chickens were injected intramuscularly and intraperitoneally with either a DNA vaccine alone or a DNA vaccine together with the respective adjuvants. On week 2 after the second immunization, the chickens were orally challenged with the highly virulent IBDV. The groups that received the DNA vaccines plus either DDA or CpG-ODN showed significantly lower survival rates than the group that received the DNA vaccine alone. However, the survival rates for the DNA vaccine alone and for the DNA vaccine plus ChIFN-gamma were similar. The chickens had no detectable antibodies to the IBDV before the challenge but all the surviving chickens in all groups except for the normal control group showed the induction of antibodies to the IBDV at day 10 after the challenge. As judged by the lymphocyte proliferation assays using the a WST-8 solution performed on the peripheral blood and splenic lymphocytes, the stimulation indices (SI) of the peripheral blood lymphocytes in all groups except for the normal control group were similar immediately before the challenge. At 10 days post-challenge, the SI for DNA vaccine plus either CpG-ODN or ChIFN-gamma was similar to that of the DNA vaccine control group. For splenic lymphocytes, the SI in the DNA vaccine plus CpG-ODN and DNA vaccine plus ChIFN-gamma groups were higher than for the DNA vaccine control. These results suggest that DDA actually compromises the protection against the IBDV by DNA vaccine, and CpG-ODN and IFN-gamma had no significant effect. PMID:17106228

  1. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid.

    PubMed Central

    Thomashow, L S; Reeves, S; Thomashow, M F

    1984-01-01

    Stable incorporation of tumor-inducing (Ti) plasmid sequences, the T-DNA, into the genomes of dicotyledonous plants results in the formation of crown gall tumors. Previous genetic studies have suggested that the products of the genes encoding transcripts 1 and 2, which are encoded by the TL-DNA region of pTiA6, are responsible for inducing the auxin-independent phenotype of crown gall tissues. Here we report the construction of a plasmid, pMTlacT2, which directs the synthesis of the Mr 49,800 polypeptide encoded by the transcript 2 gene. Cell-free extracts prepared from Escherichia coli harboring this plasmid converted indoleacetamide to indoleacetic acid, the natural auxin of plants; extracts prepared from plasmidless strains of E. coli or strains harboring the cloning vehicle pBR322 did not carry out this reaction. We conclude that the transcript 2 gene of pTiA6 codes for an enzyme that participates in auxin biosynthesis, probably an indoleacetamide hydrolase. Images PMID:6089175

  2. The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene.

    PubMed

    Loeza-Lara, Pedro D; Benintende, Graciela; Cozzi, Jorge; Ochoa-Zarzosa, Alejandra; Baizabal-Aguirre, Victor M; Valdez-Alarcón, Juan J; López-Meza, Joel E

    2005-11-01

    This work describes a novel rolling-circle replicating (RCR) plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) encoding an insecticidal crystal protein-like gene. pBMBt1 (6700 bp) contains three ORFs and their putative transcription initiation sites and Shine-Dalgarno sequences were localized. ORF1 encodes a 34.6 kDa protein which showed identity with the protein CryC53 from B. thuringiensis subsp. cameroun (24.6%), the Cry15Aa insecticidal crystal protein from B. thuringiensis subsp. thompsoni (21.9%) and the Mtx3 protein from Bacillus sphaericus (27.8%). The ORF2 (52.3 kDa) showed a 74% identity with the Mob protein coded by pUIBI-1 from B. thuringiensis subsp. entomocidus and 64% identity with the Mob protein of pBMY1 from Bacillus mycoides; both Mob proteins belong to the pMV158 superfamily. To evaluate the Mob protein, the plasmid pHTMob14-4 was constructed. This plasmid shows transfer frequencies of 9.1x10(-6) in B. thuringiensis subsp. israelensis (4Q7Gm(R)). The ORF3 (23.6 kDa) gene product is homologous to the Rep protein from the plasmid pBMYdx of B. mycoides (37.6%). A putative double-strand origin with significant homology to that of B. thuringiensis plasmids, and an ssoA-type single-strand origin were also identified. Detection of single-stranded pBMBt1 DNA replicating intermediaries suggests that replication occurs via the rolling-circle mechanism. PMID:15970328

  3. Intraepithelial DNA immunisation with a plasmid encoding a codon optimised COPV E1 gene sequence, but not the wild-type gene sequence completely protects against mucosal challenge with infectious COPV in beagles.

    PubMed

    Moore, Richard A; Santos, Elmer B; Nicholls, Philip K; White, Kate L; Anderson, Davina M; Lloyd, Andrew; Topley, Peter; Romanos, Michael; Thomsen, Lindy; Parmar, Vanita; Walcott, Sarah; Gough, Gerald W; Stanley, Margaret A

    2002-12-20

    DNA plasmids encoding the open reading frames of canine oral papillomavirus (COPV) nonstructural early genes E1, E2, or E7 protein were delivered into both oral mucosal and cutaneous epithelial sites in beagle dogs using particle-mediated immunotherapeutic delivery (PMID) technology. Control dogs were vaccinated with plasmid encoding either hepatitis B virus surface antigen (HBVs) or COPV L1. Using a prophylactic immunisation protocol, a priming dose of plasmid DNA was followed by a booster dose 6 weeks later. Four weeks after boost, all dogs were challenged with infectious COPV particles. Following viral challenge, as shown previously (M. A. Stanley et al., 2001, Vaccine 19, 2783-2792), mucosal papillomas developed in the negative-control HBVs vaccinated dogs, but all animals in the COPV L1 group were fully protected from disease development. In the early gene-vaccinated groups five of six in the E1-vaccinated dogs, two of six in E2-vaccinated dogs, and three of six in the E7-vaccinated beagles developed oral papillomas. Compared to the HBVs negative-control group the oral papillomas that did develop in the early-gene vaccinated beagles were significantly smaller, shorter in duration, and fewer in number. Taken together the disease burden was markedly reduced and this was statistically significant. In a second experiment one group of animals was vaccinated with plasmid encoding the wild-type COPV E1 gene, and a separate group was vaccinated with plasmid encoding a synthetic codon-optimised COPV E1 gene sequence. None of the codon-optimised E1-vaccinated animals developed papillomas at any challenge site. However, all animals vaccinated with wild-type E1 had papillomas. These data suggest that immunisation by PMID with papillomavirus early genes can significantly impact upon subsequent disease development and that full protection can be achieved using improved vectors encoding codon-optimised gene sequences perhaps emphasizing the importance of antigen load in the

  4. Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution.

    PubMed Central

    Rådström, P; Swedberg, G; Sköld, O

    1991-01-01

    In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. Images PMID:1952855

  5. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene

    PubMed Central

    Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M.; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  6. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae

    PubMed Central

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure. PMID:26236726

  7. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae.

    PubMed

    Adamczuk, Marcin; Zaleski, Piotr; Dziewit, Lukasz; Wolinowska, Renata; Nieckarz, Marta; Wawrzyniak, Pawel; Kieryl, Piotr; Plucienniczak, Andrzej; Bartosik, Dariusz

    2015-01-01

    Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure.

  8. PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...

  9. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked?

    PubMed

    Million-Weaver, Samuel; Camps, Manel

    2014-09-01

    Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.

  10. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

    PubMed Central

    2014-01-01

    Background Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. Results Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. Conclusions Inserting the Lcn972 cluster into

  11. Ammonia Inhibition of Plasmid pRmeGR4a Conjugal Transfer between Rhizobium meliloti Strains

    PubMed Central

    Herrera-Cervera, J. A.; Olivares, J.; Sanjuan, J.

    1996-01-01

    We have examined nutritional factors influencing conjugal transfer of the two nonsymbiotic large plasmids, pRmeGR4a and pRmeGR4b, of Rhizobium meliloti GR4. To monitor transfer, each plasmid was tagged with a different antibiotic resistance marker. Transfer of plasmid pRmeGR4b was dependent upon the presence of plasmid pRmeGR4a on the same donor cell. Transconjugants for pRmeGR4b were obtained at frequencies 5-to 10-fold higher than transconjugants carrying both plasmids, indicating that mobilization of pRmeGR4b by pRmeGR4a probably occurred in trans. Conjugal transfer of the tagged plasmids between R. meliloti strains was tested on minimal medium supplemented with single amino acids, nitrate, or ammonium as the single nitrogen source. A higher number of transconjugants was obtained when glutamate was the only nitrogen source, whereas conjugation was virtually undetectable on ammonium. No relationship was found between donor or recipient growth rate and plasmid transfer rate on a given nitrogen source. Furthermore, in media containing both glutamate and ammonium as nitrogen sources, transfer was reduced almost 100-fold compared with that in media containing glutamate alone. Inhibition was readily detected at 2.5 mM or higher concentrations of either ammonium chloride or ammonium sulfate and appeared to be specific for exogenously supplied ammonium. Inhibition of conjugal transfer between R. meliloti strains by ammonium was only observed for rhizobial plasmids, not for a heterologous plasmid such as RP4. Apparently, ammonium did not affect the plasmid-encoded transfer machinery, as it had no influence on rhizobial plasmid transfer from R. meliloti to Agrobacterium tumefaciens. The effect of ammonium seemed to take place on R. meliloti recipient cells, thereby reducing the efficiency of plasmid conjugation, probably by affecting mating pair formation or stabilization. PMID:16535284

  12. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent.

    PubMed

    Duggan, P S; Chambers, P A; Heritage, J; Forbes, J M

    2000-10-01

    To assess the likelihood that the bla gene present in a transgenic maize line may transfer from plant material to the microflora associated with animal feeds, we have examined the survival of free DNA in maize silage effluent, ovine rumen fluid and ovine saliva. Plasmid DNA that had previously been exposed to freshly sampled ovine saliva was capable of transforming competent Escherichia coli cells to ampicillin resistance even after 24 h, implying that DNA released from the diet could provide a source of transforming DNA in the oral cavity of sheep. Although target DNA sequences could be amplified by polymerase chain reaction from plasmid DNA after a 30-min incubation in silage effluent and rumen contents, only short term biological activity, lasting less than 1 min, was observed in these environments, as shown by transformation to antibiotic resistance. These experiments were performed under in vitro conditions; therefore further studies are needed to elucidate the biological significance of free DNA in the rumen and oral cavities of sheep and in silage effluent.

  13. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis.

    PubMed Central

    Kao, S M; Olmsted, S B; Viksnins, A S; Gallo, J C; Dunny, G M

    1991-01-01

    Exposure of Enterococcus faecalis cells carrying the tetracycline resistance plasmid pCF10 to the heptapeptide pheromone cCF10 results in an increase in conjugal transfer frequency by as much as 10(6)-fold. Pheromone-induced donor cells also express at least two plasmid-encoded surface proteins, the 130-kDa Sec 10 protein, which is involved in surface exclusion, and the 150-kDa Asc10 protein, which has been associated with the formation of mating aggregates. Previous subcloning and transposon mutagenesis studies indicated that the adjacent EcoRI c (7.5 kb) and e (4.5 kb) fragments of pCF10 encode the structural genes for these proteins and that the EcoRI c fragment also encodes at least two regulatory genes involved in activation of the expression of the genes encoding Asc10 and Sec10. In this paper, the results of physical and genetic analysis of this region of pCF10, along with the complete DNA sequences of the EcoRI c and e fragments, are reported. The results of the genetic studies indicate the location of the structural genes for the surface proteins and reveal important features of their transcription. In addition, we provide evidence here and in the accompanying paper (S. B. Olmsted, S.-M. Kao, L. J. van Putte, J. C. Gallo, and G. M. Dunny, J. Bacteriol. 173:7665-7672, 1991) for a role of Asc10 in mating aggregate formation. The data also reveal a complex positive control system that acts at distances of at least 3 to 6 kb to activate expression of Asc10. DNA sequence analysis presented here reveals the positions of a number of specific genes, termed prg (pheromone-responsive genes) in this region of pCF10. The genes mapped include prgA (encoding Sec10) and prgB (encoding Asc10), as well as four putative regulatory genes, prgX, -R, -S, and -T. Although the predicted amino acid sequences of Sec10 and Asc10 have some structural features in common with a number of surface proteins of gram-positive cocci, and the Asc10 sequence is highly similar to that of a

  14. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria.

    PubMed

    Sengupta, Manjistha; Austin, Stuart

    2011-07-01

    Virulence functions of pathogenic bacteria are often encoded on large extrachromosomal plasmids. These plasmids are maintained at low copy number to reduce the metabolic burden on their host. Low-copy-number plasmids risk loss during cell division. This is countered by plasmid-encoded systems that ensure that each cell receives at least one plasmid copy. Plasmid replication and recombination can produce plasmid multimers that hinder plasmid segregation. These are removed by multimer resolution systems. Equitable distribution of the resulting monomers to daughter cells is ensured by plasmid partition systems that actively segregate plasmid copies to daughter cells in a process akin to mitosis in higher organisms. Any plasmid-free cells that still arise due to occasional failures of replication, multimer resolution, or partition are eliminated by plasmid-encoded postsegregational killing systems. Here we argue that all of these three systems are essential for the stable maintenance of large low-copy-number plasmids. Thus, they should be found on all large virulence plasmids. Where available, well-annotated sequences of virulence plasmids confirm this. Indeed, virulence plasmids often appear to contain more than one example conforming to each of the three system classes. Since these systems are essential for virulence, they can be regarded as ubiquitous virulence factors. As such, they should be informative in the search for new antibacterial agents and drug targets.

  15. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes.

    PubMed

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, bla NDM-1, ble MBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The bla NDM-1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.

  16. The 380 kb pCMU01 Plasmid Encodes Chloromethane Utilization Genes and Redundant Genes for Vitamin B12- and Tetrahydrofolate-Dependent Chloromethane Metabolism in Methylobacterium extorquens CM4: A Proteomic and Bioinformatics Study

    PubMed Central

    Roselli, Sandro; Nadalig, Thierry; Vuilleumier, Stéphane; Bringel, Françoise

    2013-01-01

    Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate

  17. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    PubMed

    Roselli, Sandro; Nadalig, Thierry; Vuilleumier, Stéphane; Bringel, Françoise

    2013-01-01

    Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate

  18. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    PubMed Central

    2012-01-01

    Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1) of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS). A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS), conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse environments. PMID:23151240

  19. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  20. Comparative Genomic Analysis of KPC-Encoding pKpQIL-Like Plasmids and Their Distribution in New Jersey and New York Hospitals

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Melano, Roberto G.; Jacobs, Michael R.; Koll, Brian; Hong, Tao; Rojtman, Albert D.; Levi, Michael H.; Bonomo, Robert A.

    2014-01-01

    The global spread of Klebsiella pneumoniae carbapenemase (KPC) is predominately associated with K. pneumoniae strains genotyped as sequence type 258 (ST258). The first ST258-associated plasmid, pKpQIL, was described in Israel in 2006, but its history in the northeastern United States remains unknown. Six pKpQIL-like plasmids from four K. pneumoniae isolates (three ST258 and one ST234), one Escherichia coli isolate, and one Enterobacter aerogenes isolate, collected from 2003 to 2010 in New York (NY) and New Jersey (NJ) hospitals, were completely sequenced. The sequences and overall sizes of the six plasmids are highly similar to those of pKpQIL; the major difference is that five of six NJ/NY strains harbor blaKPC-2, while pKpQIL contains blaKPC-3. Moreover, a 26.7-kb fragment was inverted in pKpQIL-234 (from ST234 K. pneumoniae), while a 14.5-kb region was deleted in pKpQIL-Ec (from ST131 E. coli). PCR screening of 284 other clinical K. pneumoniae isolates identified 101 (35.6%) harboring pKpQIL-like plasmids from 9 of 10 surveyed hospitals, demonstrating the wide dissemination of pKpQIL in this region of endemicity. Among the positive isolates, 87.1% were typed as ST258 and 88.1% carried blaKPC-2. The finding of pKpQIL-like plasmid in this study from strains that predate the initial report of KPC in Israel provides evidence that pKpQIL may have originated in the United States. Our findings demonstrate that pKpQIL plasmids are both spreading clonally in ST258 strains and spreading horizontally to different sequence types and species, further highlighting the clinical and public health concerns associated with carbapenem resistance. PMID:24614371

  1. Complete Nucleotide Sequence of the IncN Plasmid Encoding IMP-6 and CTX-M-2 from Emerging Carbapenem-Resistant Enterobacteriaceae in Japan

    PubMed Central

    Kayama, Shizuo; Shigemoto, Norifumi; Kuwahara, Ryuichi; Oshima, Kenshiro; Hirakawa, Hideki; Hisatsune, Junzo; Jové, Thomas; Nishio, Hisaaki; Yamasaki, Katsutoshi; Wada, Yasunao; Ueshimo, Takeshi; Miura, Tetsuya; Sueda, Taijiro; Onodera, Makoto; Yokozaki, Michiya; Hattori, Masahira; Ohge, Hiroki

    2014-01-01

    We have determined the DNA sequence of Klebsiella pneumoniae multidrug resistance plasmid pKPI-6, which is a self-transmissible IncN-type plasmid. pKPI-6 harboring blaIMP-6 and blaCTX-M-2 confers a stealth-type carbapenem resistance phenotype on members of the family Enterobacteriaceae that is not detectable with imipenem. pKPI-6 is already epidemic in Japan, favoring the dissemination of IMP-6 and CTX-M-2 in members of the family Enterobacteriaceae. PMID:25487806

  2. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids.

    PubMed

    Losada, Liliana; DebRoy, Chitrita; Radune, Diana; Kim, Maria; Sanka, Ravi; Brinkac, Lauren; Kariyawasam, Subhashinie; Shelton, Daniel; Fratamico, Pina M; Kapur, Vivek; Feng, Peter C H

    2016-01-01

    The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli.

  3. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids.

    PubMed

    Losada, Liliana; DebRoy, Chitrita; Radune, Diana; Kim, Maria; Sanka, Ravi; Brinkac, Lauren; Kariyawasam, Subhashinie; Shelton, Daniel; Fratamico, Pina M; Kapur, Vivek; Feng, Peter C H

    2016-01-01

    The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli. PMID:26746359

  4. IncM Plasmid R1215 Is the Source of Chromosomally Located Regions Containing Multiple Antibiotic Resistance Genes in the Globally Disseminated Acinetobacter baumannii GC1 and GC2 Clones

    PubMed Central

    Blackwell, Grace A.

    2016-01-01

    ABSTRACT Clear similarities between antibiotic resistance islands in the chromosomes of extensively antibiotic-resistant isolates from the two dominant, globally distributed Acinetobacter baumannii clones, GC1 and GC2, suggest a common origin. A close relative of the likely progenitor of both of these regions was found in R1215, a conjugative IncM plasmid from a Serratia marcescens strain isolated prior to 1980. The 37.8-kb resistance region in R1215 lies within the mucB gene and includes aacC1, aadA1, aphA1b, blaTEM, catA1, sul1, and tetA(A), genes that confer resistance to gentamicin, streptomycin and spectinomycin, kanamycin and neomycin, ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline, respectively. The backbone of this region is derived from Tn1721 and is interrupted by a hybrid Tn2670 (Tn21)-Tn1696-type transposon, Tn6020, and an incomplete Tn1. After minor rearrangements, this R1215 resistance island can generate AbGRI2-0*, the predicted earliest form of the IS26-bounded AbGRI2-type resistance island of GC2 isolates, and to the multiple antibiotic resistance region (MARR) of AbaR0, the precursor of this region in AbaR-type resistance islands in the GC1 group. A 29.9-kb circle excised by IS26 has been inserted into the A. baumannii chromosome to generate AbGRI2-0*. To create the MARR of AbaR0, a different circular form, again generated by IS26 from an R1215 resistance region variant, has been opened at a different point by recombination with a copy of the sul1 gene already present in the AbaR precursor. Recent IncM plasmids related to R1215 have a variant resistance island containing a blaSHV gene in the same location. IMPORTANCE Two lineages of extensively antibiotic-resistant A. baumannii currently plaguing modern medicine each acquired resistance to all of the original antibiotics (ampicillin, tetracycline, kanamycin, and sulfonamides) by the end of the 1970s and then became resistant to antibiotics from newer families after they were

  5. Replicon typing of plasmids carrying blaCTX-M-15 among Enterobacteriaceae isolated at the environment, livestock and human interface.

    PubMed

    Zurfluh, Katrin; Glier, Melinda; Hächler, Herbert; Stephan, Roger

    2015-07-15

    One of the currently most important antibiotic resistance mechanisms in Enterobacteriaceae is based on the production of ESBL enzymes that inactivate β-lactam antibiotics including cephalosporins and monobactams by hydrolyzing their β-lactam ring. In humans, the most prevalent ESBL enzyme type is encoded by blaCTX-M-15. CTX-M-15 producing enterobacterial strains were also frequently isolated from environmental samples including surface water and freshwater fish. Plasmids, which can be grouped in different plasmid incompatibility types, play a key role in the horizontal spread of these multidrug resistance genes. The purpose of this study was to investigate the diversity of plasmids that carry blaCTX-M-15 genes among Enterobacteriaceae isolated at the environment, livestock and human interface. In total, 81 blaCTX-M-15-harboring isolates collected between 2009 and 2014 were tested for its ability to transfer blaCTX-M-15 by conjugation. These plasmids were further typed. Transfer of a single blaCTX-M-15-harboring plasmid was observed in 32 (39.5%) of the isolates. The most frequent replicon types detected among these plasmids are IncF-type plasmids (n=12) (mostly multi replicon plasmids with a combination of following replicons: IncFII, IncFIA and IncFIB), followed by IncI1 (n=8), IncK (n=3) and IncR (n=1). A noticeable number of plasmids (n=8) could not be assigned to any of the tested replicon types. Knowledge about the plasmid types circulating in bacterial populations is indispensable for understanding epidemiological dynamics and for establishing intervention strategies to stop further dissemination of particular plasmids.

  6. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis.

    PubMed

    Solem, Christian; Defoor, Els; Jensen, Peter Ruhdal; Martinussen, Jan

    2008-08-01

    In this paper we describe the new selection/counterselection vector pCS1966, which is suitable for both sequence-specific integration based on homologous recombination and integration in a bacteriophage attachment site. This plasmid harbors oroP, which encodes a dedicated orotate transporter, and can replicate only in Escherichia coli. Selection for integration is performed primarily by resistance to erythromycin; alternatively, the ability to utilize orotate as a pyrimidine source in a pyrimidine auxotrophic mutant could be utilized. Besides allowing the cell to utilize orotate, the transporter renders the cell sensitive to 5-fluoroorotate. This sensitivity is used to select for loss of the plasmid. When expressed from its own promoter, oroP was toxic to E. coli, whereas in Lactococcus lactis the level of expression of oroP from a chromosomal copy was too low to confer 5-fluoroorotate sensitivity. In order to obtain a plasmid that confers 5-fluoroorotate sensitivity when it is integrated into the chromosome of L. lactis and at the same time can be stably maintained in E. coli, the expression of the oroP gene was controlled from a synthetic promoter conferring these traits. To demonstrate its use, a number of L. lactis strains expressing triosephosphate isomerase (tpiA) at different levels were constructed.

  7. Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of conjugative transfer of antimicrobial resistance plasmids between bacteria within the gastrointestinal tract of lesser mealworm larvae, a prevalent pest in poultry production facilities was determined. Lesser mealworm larvae were exposed to a negative bacterial control (PBS), a don...

  8. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  9. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption. PMID:27277701

  10. Plasmid Biopharmaceuticals.

    PubMed

    Prazeres, Duarte Miguel F; Monteiro, Gabriel A

    2014-12-01

    Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.

  11. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance

    PubMed Central

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations. PMID:26448648

  12. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance.

    PubMed

    Lee, Jong-Hoon; Jeong, Do-Won

    2015-01-01

    The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1-3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations.

  13. The Standard European Vector Architecture (SEVA) plasmid toolkit.

    PubMed

    Durante-Rodríguez, Gonzalo; de Lorenzo, Víctor; Martínez-García, Esteban

    2014-01-01

    The Standard European Vector Architecture (SEVA) toolkit is a simple and powerful resource for constructing optimal plasmid vectors based on a backbone and three interchangeable modules flanked by uncommon restriction sites. Functional modules encode several origins of replication, diverse antibiotic selection markers, and a variety of cargoes with different applications. The backbone and DNA modules have been minimized and edited for flaws in their sequence and/or functionality. A protocol for the utilization of the SEVA platform to construct transcriptional and translational fusions between a promoter under study (the arsenic-responsive Pars of Pseudomonas putida KT2440) and the reporter lacZ gene is described. The resulting plasmid collection was instrumental to measure and compare the β-galactosidase activity that report gene expression (i.e., transcription and translation) in different genetic backgrounds.

  14. Transformation of Azotobacter vinelandii OP with a broad host range plasmid containing a cloned chromosomal nif-DNA marker.

    PubMed

    Bingle, W H

    1988-05-01

    The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.

  15. Comparative Genomics of an IncA/C Multidrug Resistance Plasmid from Escherichia coli and Klebsiella Isolates from Intensive Care Unit Patients and the Utility of Whole-Genome Sequencing in Health Care Settings

    PubMed Central

    Hazen, Tracy H.; Zhao, LiCheng; Boutin, Mallory A.; Stancil, Angela; Robinson, Gwen; Harris, Anthony D.; Rasko, David A.

    2014-01-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A blaFOX-5 gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing blaFOX-5 were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. PMID:24914121

  16. A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection.

    PubMed

    Galen, James E; Wang, Jin Yuan; Carrasco, Jose A; Lloyd, Scott A; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D; Nataro, James P; Pasetti, Marcela F

    2015-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity.

  17. Expansive spread of IncI1 plasmids carrying blaCMY-2 amongst Escherichia coli.

    PubMed

    Sidjabat, Hanna E; Seah, Kwee Yong; Coleman, Lyndall; Sartor, Anna; Derrington, Petra; Heney, Claire; Faoagali, Joan; Nimmo, Graeme R; Paterson, David L

    2014-09-01

    Escherichia coli is a leading cause of urinary tract infections. One of the most common antibiotic classes used to treat such infections is the β-lactams, including cephalosporins. Resistance to the third-generation cephalosporins can be caused by production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases. The most commonly reported AmpC β-lactamase in E. coli is CMY-2. Plasmid-mediated CMY-2 has been frequently reported in E. coli and Salmonella sp. from food-producing animals. This study aimed to elucidate the molecular characteristics of clinical E. coli isolates carrying plasmids encoding CMY-2. A total of 67 CMY-2-producing E. coli were characterised by clonal analysis and phylogenetic typing. Characterisation of the plasmids carrying blaCMY-2 included replicon typing, plasmid profiling, plasmid transferability and sequencing of the blaCMY-2 genetic environment. As a result, E. coli producing CMY-2 was found to be highly polyclonal. The majority of CMY-2-producing E. coli belonged to phylogenetic group D. IncI1 plasmids were predominant among those carrying blaCMY-2 (96%). Restriction analysis revealed a single IncI1 plasmid carrying blaCMY-2 to be predominant and present in different clones of E. coli. IS1294-ISEcp1 complex or ISEcp1 that was truncated by IS1294 was the predominant insertion sequence upstream of blaCMY-2. The homogeneous genetic environment of blaCMY-2 observed among different strains of E. coli strongly suggests horizontal transfer of this IncI1, blaCMY-2-carrying plasmid. In summary, horizontal plasmid transfer plays a major role in the spread of blaCMY-2 in E. coli. PMID:25052868

  18. pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506.

    PubMed

    Stockwell, Virginia O; Davis, Edward W; Carey, Alyssa; Shaffer, Brenda T; Mavrodi, Dmitri V; Hassan, Karl A; Hockett, Kevin; Thomashow, Linda S; Paulsen, Ian T; Loper, Joyce E

    2013-09-01

    Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.

  19. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids

    PubMed Central

    Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin

    2016-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM−1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical

  20. Sequencing of IncX-Plasmids Suggests Ubiquity of Mobile Forms of a Biofilm-Promoting Gene Cassette Recruited from Klebsiella pneumoniae

    PubMed Central

    Burmølle, Mette; Norman, Anders; Sørensen, Søren J.; Hansen, Lars Hestbjerg

    2012-01-01

    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer. PMID:22844447

  1. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii

    PubMed Central

    Weber, Brent S.; Ly, Pek Man; Irwin, Joshua N.; Pukatzki, Stefan; Feldman, Mario F.

    2015-01-01

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria. PMID:26170289

  2. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

    PubMed

    Weber, Brent S; Ly, Pek Man; Irwin, Joshua N; Pukatzki, Stefan; Feldman, Mario F

    2015-07-28

    Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.

  3. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1

    SciTech Connect

    Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan; Lujan, Scott A.; Redinbo, Matthew

    2010-11-15

    Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.

  4. Characterization of a putative periplasmic transport system for octopine accumulation encoded by Agrobacterium tumefaciens Ti plasmid pTiA6.

    PubMed Central

    Valdivia, R H; Wang, L; Winans, S C

    1991-01-01

    Neoplastic crown gall tumors incited by Agrobacterium tumefaciens release novel amino acid or sugar derivatives known as opines, whose synthesis is directed by genes transferred to plant cells. Agrobacterium cells can transport and catabolize these compounds as sources of carbon and nitrogen. This article describes a region of the pTiA6 plasmid which is required for catabolism of the opine octopine and whose transcription is induced by octopine. This region of the plasmid contains four open reading frames, occQ, occM, occP, and occJ, which show homology to the family of so-called shock-sensitive permeases. TnphoA mutagenesis demonstrated that the OccJ and OccM proteins lie fully or partly in the periplasmic space. The OccJ protein was identified by electrophoresis and found to be fully localized in the periplasmic space. When these proteins were expressed in Escherichia coli, radiolabeled octopine became cell-associated. Images FIG. 6 PMID:1655707

  5. Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli.

    PubMed

    Wada, Takaomi; Noda, Masafumi; Kashiwabara, Fumi; Jeon, Hyung Joon; Shirakawa, Ayano; Yabu, Hironori; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2009-05-01

    In this study we isolated over 250 lactic acid bacteria (LAB) candidates from fruit, flowers, vegetables and a fermented food to generate an LAB library. One strain, designated 925A, isolated from kimchi (a traditional Korean fermented dish made from Chinese cabbage) produced a novel type of bacteriocin, brevicin 925A, which is effective against certain LAB, including strains of Lactobacillus, Enterococcus, Streptococcus, Bacillus and Listeria. Strain 925A, identified as Lactobacillus brevis, harboured at least four plasmids and we determined the entire nucleotide sequence of each one. The four plasmids were designated pLB925A01-04, and have molecular sizes of 1815, 3524, 8881 and 65 037 bp, respectively. We obtained bacteriocin non-producing derivatives by treatment of strain 925A with novobiocin. All of these derivatives, which were susceptible to their own antibacterial product, lost the largest plasmid, pLB925A04, suggesting that the genes for bacteriocin biosynthesis (breB and breC) and immunity (breE) are located on pLB925A04. The partial amino acid sequence of purified brevicin 925A and sequence analysis of pLB925A04 showed that breB is the structural gene for brevicin 925A. We constructed a shuttle vector (pLES003, 6134 bp) that can replicate in both Escherichia coli and LAB such as Lactobacillus plantarum, Lb. brevis, Lactobacillus helveticus, Lactobacillus hilgardii and Enterococcus hirae. To determine the function of gene breE, which displays no significant similarity to any other sequences in the blast search database, the gene was inserted into pLES003. A pLB925A04-cured derivative transformed with pLES003 carrying breE acquired immunity to brevicin 925A, suggesting that breE encodes an immunity protein.

  6. Apramycin resistance plasmids in Escherichia coli: possible transfer to Salmonella typhimurium in calves.

    PubMed Central

    Hunter, J. E.; Shelley, J. C.; Walton, J. R.; Hart, C. A.; Bennett, M.

    1992-01-01

    An outbreak of salmonellosis in calves was monitored for persistence of Salmonella typhimurium excretion in faeces and the effect of treatment with apramycin. Prior to treatment apramycin-resistant Escherichia coli were present but all S. typhimurium isolates were sensitive. Following the treatment of six calves with apramycin, apramycin-resistant S. typhimurium were isolated from two treated calves and one untreated calf. Plasmid profiles of E. coli and S. typhimurium were compared and plasmids conferring resistance to apramycin and several other antibiotics were transferred by conjugation in vitro from calf E. coli and S. typhimurium isolates to E. coli K-12 and from E. coli to S. typhimurium. The plasmids conjugated with high frequency in vitro from E. coli to S. typhimurium, and hybridized to a DNA probe specific for the gene encoding aminoglycoside acetyltransferase 3-IV (AAC(3)-IV) which confers resistance to apramycin, gentamicin, netilmicin and tobramycin. Images Fig. 1 PMID:1582469

  7. Simple method for identification of plasmid-coded proteins.

    PubMed

    Sancar, A; Hack, A M; Rupp, W D

    1979-01-01

    Proteins encoded by plasmid DNA are specifically labeled in UV-irradiated cells of Escherichia coli carrying recA and uvrA mutations because extensive degradation of the chromosome DNA occurs concurrently with amplification of plasmid DNA.

  8. Presence of pathogenicity island related and plasmid encoded virulence genes in cytolethal distending toxin producing Escherichia coli isolates from diarrheal cases

    PubMed Central

    Oloomi, Mana; Javadi, Maryam; Bouzari, Saeid

    2015-01-01

    Context: Mobile genetic elements such as plasmids, bacteriophages, insertion elements, and genomic islands play a critical role in virulence of bacterial pathogens. These elements transfer horizontally and could play an important role in the evolution and virulence of many pathogens. A broad spectrum of gram-negative bacterial species has been shown to produce a cytolethal distending toxin (CDT). On the other hand, Shiga toxin producing Escherichia coli are the one carry virulence genes such as stx 1 and stx 2 (Shiga toxin) and these genes can be acquired by horizontal gene transfer. Aim: The aim of this study was to investigate the presence of other virulence associated genes among CDT producing E. coli strains. Materials and Methods: Thirty CDT positive strains isolated from patients with diarrhea were characterized. Thereafter, the association with virulent genetic elements in known pathogenicity islands (PAIs) was assessed by polymerase chain reaction. Results: In this study, it was shown that the most CDT producing E. coli isolates express Shiga toxin. Moreover, the presence of prophages framing cdt genes (like P2 phage) was also identified in each cdt-type genomic group. Flanked regions of cdt-I, cdt-IV, and cdt-V-type was similar to plasmid sequences while cdt-II and cdt-III-type regions similarity with hypothetical protein (orf3) was observed. Conclusion: The occurrence of each cdt-type groups with specific virulence genes and PAI genetic elements is indicative of horizontal gene transfer by these mobile genetic elements, which could lead to diversity among the isolates. PMID:26539367

  9. [The relationship of plasmids from environmental Yersinia isolates and the virulence plasmid of enteropathogenic Yersinia strains].

    PubMed

    Hoffmann, B; Strauch, E; Appel, B; Nattermann, H

    2002-01-01

    The human pathogenic strains of Yersinia harbour a conserved plasmid carrying the Yop virulon. The virulence plasmid of Yersinia enterocolitica strains belonging to the serogroups O:3 and O:9 were used as probes to detect homologous sequences in plasmids of "avirulent" Yersinia strains. "Avirulent" Yersinia strains (Y. enterocolitica biogroup 1A, Y. intermedia, Y. kristensenii and Y. frederiksenii) lack the virulence plasmid. They are widely distributed in the environment and can frequently be isolated from clinical samples. Hybridisation experiments revealed a number of common genetic elements of the virulence plasmid and the plasmids of "avirulent" Yersinia strains. These elements were identified as genes involved in plasmid replication, as an endonuclease gene and as mobile genetic elements. However, none of the plasmid encoded virulence genes was present in the plasmids of "avirulent" Yersinia strains. The frequent occurrence and the possible etiological relevance of "avirulent" isolates will be discussed.

  10. Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes.

    PubMed

    Sen, Diya; Van der Auwera, Geraldine A; Rogers, Linda M; Thomas, Christopher M; Brown, Celeste J; Top, Eva M

    2011-11-01

    Broad-host-range plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to antibiotics and heavy metals or degradation of pollutants. Although some broad-host-range plasmids have been extensively studied, their evolutionary history and genetic diversity remain largely unknown. The goal of this study was to analyze and compare the genomes of 12 broad-host-range plasmids that were previously isolated from Norwegian soils by exogenous plasmid isolation and that encode mercury resistance. Complete nucleotide sequencing followed by phylogenetic analyses based on the relaxase gene traI showed that all the plasmids belong to one of two subgroups (β and ε) of the well-studied incompatibility group IncP-1. A diverse array of accessory genes was found to be involved in resistance to antimicrobials (streptomycin, spectinomycin, and sulfonamides), degradation of herbicides (2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenoxypropionic acid), and a putative new catabolic pathway. Intramolecular transposition of insertion sequences followed by deletion was found to contribute to the diversity of some of these plasmids. The previous observation that the insertion sites of a Tn501-related element are identical in four IncP-1β plasmids (pJP4, pB10, R906, and R772) was further extended to three more IncP-1β plasmids (pAKD15, pAKD18, and pAKD29). We proposed a hypothesis for the evolution of these Tn501-bearing IncP-1β plasmids that predicts recent diversification followed by worldwide spread. Our study increases the available collection of complete IncP-1 plasmid genome sequences by 50% and will aid future studies to enhance our understanding of the evolution and function of this important plasmid family.

  11. Virulence Plasmids of Spore-Forming Bacteria.

    PubMed

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.

  12. Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene.

    PubMed

    Mosley, Yung-Yi C; Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long

    2015-01-01

    DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.

  13. Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study.

    PubMed

    Henry, T D; Hirsch, A T; Goldman, J; Wang, Y L; Lips, D L; McMillan, W D; Duval, S; Biggs, T A; Keo, H H

    2011-08-01

    We aimed to evaluate in a phase I dose-escalation study, the safety of intramuscular injections of a novel non-viral plasmid DNA expressing two isoforms of human hepatocyte growth factor (HGF) (VM202) in patients with critical limb ischemia (CLI). In total, 12 patients with CLI and unsuitable for revascularization were consecutively assigned to increasing doses (2 to 16 mg) of VM202 administered into the ischemic calf muscle at days 1 and 15. Patients were evaluated for safety and tolerability, changes in ankle- and toe brachial index (ABI and TBI), and pain severity score using a visual analog scale (VAS) throughout a 12-month follow-up period. Median age was 72 years and 53% of the patients were male. VM202 was safe and well tolerated with no death during the 12-month follow-up. Median ABI and TBI significantly increased from 0.35 to 0.52 (P=0.005) and from 0.15 to 0.24 (P=0.01) at 12 months follow-up. Median VAS decreased from 57.5 to 16.0 mm at 6 months follow-up (P=0.03). In this first human clinical trial, VM202, which expresses two isoforms of human HGF, appear to be safe and well tolerated with encouraging clinical results and thus supports the performance of a phase II randomized controlled trial. PMID:21430785

  14. Bacterial Genome Partitioning: N-Terminal Domain of IncC Protein Encoded by Broad-Host-Range Plasmid RK2 Modulates Oligomerisation and DNA Binding

    PubMed Central

    Batt, Sarah M.; Bingle, Lewis E.H.; Dafforn, Tim R.; Thomas, Christopher M.

    2009-01-01

    ParA Walker ATPases form part of the machinery that promotes better-than-random segregation of bacterial genomes. ParA proteins normally occur in one of two forms, differing by their N-terminal domain (NTD) of approximately 100 aa, which is generally associated with site-specific DNA binding. Unusually, and for as yet unknown reasons, parA (incC) of IncP-1 plasmids is translated from alternative start codons producing two forms, IncC1 (364 aa) and IncC2 (259 aa), whose ratio varies between hosts. IncC2 could be detected as an oligomeric form containing dimers, tetramers and octamers, but the N-terminal extension present in IncC1 favours nucleotide-stimulated dimerisation as well as high-affinity and ATP-dependent non-specific DNA binding. The IncC1 NTD does not dimerise or bind DNA alone, but it does bind IncC2 in the presence of nucleotides. Mixing IncC1 and IncC2 improved polymerisation and DNA binding. Thus, the NTD may modulate the polymerisation interface, facilitating polymerisation/depolymerisation and DNA binding, to promote the cycle that drives partitioning. PMID:19109978

  15. Novel Class of Mutations of pilS Mutants, Encoding Plasmid R64 Type IV Prepilin: Interface of PilS-PilV Interactions▿

    PubMed Central

    Shimoda, Eriko; Muto, Tatsuya; Horiuchi, Takayuki; Furuya, Nobuhisa; Komano, Teruya

    2008-01-01

    The type IV pili of plasmid R64 belonging to the type IVB group are required only for liquid mating. They consist of the major and minor components PilS pilin and PilV adhesin, respectively. PilS pilin is first synthesized as a 22-kDa prepilin from the pilS gene and is then processed to a 19-kDa mature pilin by PilU prepilin peptidase. In a previous genetic analysis, we identified four classes of the pilS mutants (T. Horiuchi and T. Komano, J. Bacteriol. 180:4613-4620, 1998). The products of the class I pilS mutants were not processed by prepilin peptidase; the products of the class II mutants were not secreted; in the class III mutants type IV pili with reduced activities in liquid mating were produced; and in the class IV mutants type IV pili with normal activities were produced. Here, we describe a novel class, class V, of pilS mutants. Mutations in the pilS gene at Gly-56 or Tyr-57 produced type IV pili lacking PilV adhesin, which were inactive in liquid mating. Residues 56 and 57 of PilS pilin are suggested to function as an interface of PilS-PilV interactions. PMID:18065540

  16. Conjugation is necessary for a bacterial plasmid to survive under protozoan predation.

    PubMed

    Cairns, Johannes; Jalasvuori, Matti; Ojala, Ville; Brockhurst, Michael; Hiltunen, Teppo

    2016-02-01

    Horizontal gene transfer by conjugative plasmids plays a critical role in the evolution of antibiotic resistance. Interactions between bacteria and other organisms can affect the persistence and spread of conjugative plasmids. Here we show that protozoan predation increased the persistence and spread of the antibiotic resistance plasmid RP4 in populations of the opportunist bacterial pathogen Serratia marcescens. A conjugation-defective mutant plasmid was unable to survive under predation, suggesting that conjugative transfer is required for plasmid persistence under the realistic condition of predation. These results indicate that multi-trophic interactions can affect the maintenance of conjugative plasmids with implications for bacterial evolution and the spread of antibiotic resistance genes.

  17. Complete Sequence of the Enterocin Q-Encoding Plasmid pCIZ2 from the Multiple Bacteriocin Producer Enterococcus faecium L50 and Genetic Characterization of Enterocin Q Production and Immunity

    PubMed Central

    Criado, Raquel; Diep, Dzung B.; Aakra, Ågot; Gutiérrez, Jorge; Nes, Ingolf F.; Hernández, Pablo E.; Cintas, Luis M.

    2006-01-01

    The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin. PMID:17021217

  18. Clostridium perfringens type A-E toxin plasmids.

    PubMed

    Freedman, John C; Theoret, James R; Wisniewski, Jessica A; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2015-05-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell.

  19. cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2)

    PubMed Central

    2009-01-01

    Background Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes). Results A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including formation of aberrant branches, and abnormalities in chromosome segregation and spore septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also showed defective sporulation, implying that the role of these genes is similar among Streptomyces. Transcription of cmdB, and therefore presumably of the whole operon, was regulated developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-ATPase domain shown here to be essential for its function, was also located on the cell membrane. These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of the pathway-specific regulatory gene actII-orf4 of actinorhodin biosynthesis. Conclusion In this study, six co-transcribed genes cmdABCDEF were identified by their effects on differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-located proteins are possibly assembled into a complex to

  20. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  1. Identification of plasmid-encoded mannose-resistant hemagglutinin and HEp-2 and HeLa cell adherence factors of two diarrheagenic Escherichia coli strains belonging to an enteropathogenic serogroup.

    PubMed Central

    Pal, R; Ghose, A C

    1990-01-01

    Two Escherichia coli strains (B/M 369 and C-35) belonging to enteropathogenic serogroup O86 were isolated from patients with infantile diarrhea and studied with respect to their cellular adherence properties. Both strains exhibited adherence (Ad+) to HEp-2 and HeLa cell monolayers in vitro and expressed mannose-resistant hemagglutinating (MRHA+) activity towards human, chicken, and sheep (but not mouse, rabbit, or guinea pig) erythrocytes. Cellular adherence properties of both strains could be substantially reduced by pronase treatment and by heat treatment (100 degrees C for 5 min) of bacteria. Electron microscopic examination failed to reveal fimbria- or pilus-like structures on the bacterial cell surface. Conjugation experiments conducted with these strains suggested that both MRHA and HEp-2 and HeLa cell adherence factors were encoded by the same plasmid, with a size of 55 to 57 megadaltons (MDa). Further biochemical studies indicated that the cellular adherence factors were associated with cell surface structures of bacteria that were proteinaceous in nature. An antiserum, rendered specific for the 57-MDa plasmid (pRP201) products of B/M 369 by adsorption, reacted with both MRHA+ Ad+ strains, B/M 369 and C-35, but not with their 57- or 55-MDa plasmidless MRHA- Ad- transconjugants or with other MRHA- Ad- E. coli strains. Immunological studies showed that the absorbed antiserum recognized two proteins with subunit molecular sizes of 18 and 14.5 kDa that were present on the cell surfaces of both strains. Furthermore, the absorbed antiserum at subagglutinating dilutions did inhibit, although only partially, the MRHA and HEp-2 and HeLa cell adherence activities of both E. coli strains. All these results would indicate that some of the E. coli strains belonging to enteropathogenic serogroups express their adherence potential through factors that were hitherto unrecognized. Images PMID:1969390

  2. Detection of an IncA/C plasmid encoding VIM-4 and CMY-4 β-lactamases in Klebsiella oxytoca and Citrobacter koseri from an inpatient in a cardiac rehabilitation unit.

    PubMed

    Caltagirone, Mariasofia; Bitar, Ibrahim; Piazza, Aurora; Spalla, Melissa; Nucleo, Elisabetta; Navarra, Antonella; Migliavacca, Roberta

    2015-07-01

    A 62-year-old patient was transferred to the cardiac rehabilitation unit of the I.R.C.C.S. Fondazione S. Maugeri after undergoing a heart transplantation at the Acute Care Hospital I.R.C.C.S. S. Matteo of Pavia. On 1 August 2013 and during hospitalization in the rehabilitation unit, Klebsiella oxytoca and Citrobacter koseri clinical isolates were simultaneously recovered from the patient's preputial swab. Both the K. oxytoca and C. koseri strains were carbapenem- resistant by MicroScan System (Beckman Coulter). Carbapenem-resistant K. pneumoniae had previously been reported in the same rehabilitation facility. The aim of the study was to identify the carbapenem resistance mechanisms among the enterobacterial species recovered. Phenotypic screening tests useful to detect the β-lactamases/carbapenemases were performed. Carbapenem MICs were obtained by Etest. AmpC and MBL encoding genes were identified by PCR and sequencing. Conjugation assays and plasmid characterization were performed. Both of the K. oxytoca and C. koseri isolates were multi drug resistant, showing resistance to amoxicillin-clavulanic acid, three generation cephalosporins, ertapenem (K. oxytoca MIC, >32 mg/L; C. koseri MIC, 4 mg/L), imipenem (K. oxytoca MIC, 4 mg/L; C. koseri MIC, 12 mg/L), thrimethoprim sulphamethoxazole and gentamicin. Susceptibility was retained to fluoroquinolones, colistin and tigecycline. Molecular characterization confirmed the co-presence of blaCMY-4 and blaVIM-4 determinants in a 150 Kb transferable plasmid of IncA/C group. This case is the first detection in Italy of the K. oxytoca and C. koseri clinical isolates co-producing the CMY-4 and VIM-4 enzymes.

  3. A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants.

    PubMed

    Agaras, Betina; Sobrero, Patricio; Valverde, Claudio

    2013-02-01

    Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The csrA/rsmA genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a csrA/rsmA-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium Sinorhizobium meliloti. This rsmA-like allele (rsmA(Sm)) is 58 % identical to Xanthomonas axonopodis pv. citri chromosomal rsmA and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA(Sm) suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the rsmA(Sm) locus restored rsmA/E-dependent phenotypes of rsmA/E gacS Pseudomonas fluorescens mutants. The functionality of RsmA(Sm) was confirmed by the gain of control over target aprA'-'lacZ and hcnA'-'lacZ translational fusions in the same mutant background. The RsmA(Sm) activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from rsmA/E P. fluorescens mutants expressing RsmX/Y/Z RNAs indicated that RsmA(Sm) is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA(Sm). Deletion of the C-terminal extra α-helix of RsmA(Sm) affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional csrA/rsmA homologue in a mobile genetic element. PMID:23175505

  4. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids

    PubMed Central

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica. PMID:26347724

  5. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    PubMed

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica. PMID:26347724

  6. Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli.

    PubMed

    Suhartono, Suhartono; Savin, Mary; Gbur, Edward E

    2016-10-15

    Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear. PMID:27455416

  7. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4

    PubMed Central

    Yamaichi, Yoshiharu; Chao, Michael C.; Sasabe, Jumpei; Clark, Lars; Davis, Brigid M.; Yamamoto, Nozomi; Mori, Hiroshi; Kurokawa, Ken; Waldor, Matthew K.

    2015-01-01

    Horizontal dissemination of the genes encoding extended spectrum beta-lactamases (ESBLs) via conjugative plasmids is facilitating the increasingly widespread resistance of pathogens to beta-lactam antibiotics. However, there is relatively little known about the regulatory factors and mechanisms that govern the spread of these plasmids. Here, we carried out a high-throughput, transposon insertion site sequencing analysis (TnSeq) to identify genes that enable the maintenance and transmission of pESBL, an R64 (IncI1)-related resistance plasmid that was isolated from Escherichia coli O104:H4 linked to a recent large outbreak of gastroenteritis. With a few exceptions, the majority of the genes identified as required for maintenance and transmission of pESBL matched those of their previously defined R64 counterparts. However, our analyses of the high-density transposon insertion library in pESBL also revealed two very short and linked regions that constitute a previously unrecognized regulatory system controlling spread of IncI1 plasmids. In addition, we investigated the function of the pESBL-encoded M.EcoGIX methyltransferase, which is also encoded by many other IncI1 and IncF plasmids. This enzyme proved to protect pESBL from restriction in new hosts, suggesting it aids in expanding the plasmid's host range. Collectively, our work illustrates the power of the TnSeq approach to enable rapid and comprehensive analyses of plasmid genes and sequences that facilitate the dissemination of determinants of antibiotic resistance. PMID:25477379

  8. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].

    PubMed

    Lazăr, Veronica; Cernat, Ramona; Balotescu, Carmen; Cotar, Ani; Coipan, Elena; Cojocaru, Cristina

    2002-01-01

    Self-transmissible plasmids conferring multiple antibiotic resistance are wide-spread in coliforms populations. In soil and water, multiple antibiotic resistance is clearly associated with resistance/tolerance to heavy-metals (Hg2+, Cu2+, Pb2+, Zn2+, Ca2+). For different genera the genes for heavy-metals resistance are often plasmid encoded. Since these genes are clustered on the same plasmids, heavy-metals and drugs are environmental factors which exert a selective pressure for the populations of these plasmid-harboring bacteria. The aim of this preliminary study was to find possible correlation between resistance genotype determined by genetic analysis and antibiotic and heavy-metal resistance patterns of 12 E. coli strains isolated from chronically polluted waters. Antimicrobial susceptibility testing was performed for ampicillin, tetracycline, gentamycin, kanamycin, chloramphenicol, ceftazidime and cefotaxime by standard disk diffusion Kirby-Bauer method following NCCLS recommendations. These antibiotics were chosen because of their wide-spread use and importance in the treatment of Gram-negative bacterial infections. MICs values of antibiotics and heavy-metals were determined by dilution method in Mueller-Hinton broth using an inoculum of about 1-2 x 10(8) CFU/ml. The concentration range for antimicrobials and heavy-metals salts (CuSO4, CdCl2, Co(NO3)2, Cr(NO3)3, HgCl2, NiCl2 and ZnSO4) was 0.06-64 [symbol: see text] g/ml, 0.5-256 [symbol: see text] g/ml respectively. Plasmid DNA was isolated from E. coli strains by an alkaline lysis. Genetic characterization was performed by agarose gel electrophoresis and spectrophotometric analysis. All strains are multiple antibiotic resistant, 16% of them being resistant to 3, 4 and 6 antibiotics, 32% to 5 and 8% to all 7 antibiotics, respectively. Multiple tolerance to high levels of Cd2+, Cu2+, Cr3+ and Ni2+ was common among multiple antibioresistant strains. Screening for plasmids relieved the presence of several

  9. Dynamics of a Class 1 Integron Located on Plasmid or Chromosome in Two Aeromonas spp. Strains

    PubMed Central

    Pérez-Valdespino, Abigail; Lazarini-Martínez, Alfredo; Rivera-González, Alejandro X.; García-Hernández, Normand; Curiel-Quesada, Everardo

    2016-01-01

    Integrons are non-mobile bacterial genetic elements that carry different cassettes conferring antibiotic resistance. Cassettes can excise or integrate by action of an integron-encoded integrase, enabling bacteria to face environmental challenges. In this work, the functionality and dynamics of two integrons carrying the same cassette arrangement (dfrA12–orfF–aadA2), but located on plasmid or chromosome in two different strains were studied. In order to demonstrate the functionality of the Class 1 integrase, circular cassette integration intermediaries were PCR amplified by PCR using extrachromosomal DNA extracted from bacteria grown in the presence or absence of cassette-encoded antibiotics. Circular aadA2 and dfrA12–orfF–aadA2 cassettes were detected in cultures grown either in the presence or absence of antibiotics in both strains. No dfrA12–orfF circular intermediates could be detected under any culture conditions. These results show that both integrons are functional. However, these elements show different dynamics and functionality since the presence of streptomycin led to detectable gene rearrangements in the variable region only in the strain with the plasmid-born integron. In addition, complete integration products were demonstrated using a receptor molecule carrying an empty integron. In this case, integration products were observed in both strains even in the absence of antibiotics, but they were more evident in the strain with the plasmid-located integron when streptomycin was present in the culture medium. This suggests that integrons in the two strains respond differently to streptomycin even though DNA sequences upstream the intI1 gene, including the lexA boxes of both integrons are identical. PMID:27733851

  10. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects

    PubMed Central

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  11. Plasmid-Mediated Dimethoate Degradation by Bacillus licheniformis Isolated From a Fresh Water Fish Labeo rohita

    PubMed Central

    2005-01-01

    The Bacillus licheniformis strain isolated from the intestine of Labeo rohita by an enrichment technique showed capability of utilizing dimethoate as the sole source of carbon. The bacterium rapidly utilized dimethoate beyond 0.6 mg/mL and showed prolific growth in a mineral salts medium containing 0.45 mg/mL dimethoate. The isolated B licheniformis exhibited high level of tolerance of dimethoate (3.5 mg/mL) in nutrient broth, while its cured mutant did not tolerate dimethoate beyond 0.45 mg/mL and it was unable to utilize dimethoate. The wild B licheniformis strain transferred dimethoate degradation property to E coli C600 (Nar, F−) strain. The transconjugant harbored a plasmid of the same molecular size (approximately 54 kb) as that of the donor plasmid; the cured strain was plasmid less. Thus a single plasmid of approximately 54 kb was involved in dimethoate degradation. Genes encoding resistance to antibiotic and heavy metal were also located on the plasmid. PMID:16192686

  12. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations.

    PubMed

    San Millan, Alvaro; Heilbron, Karl; MacLean, R Craig

    2014-03-01

    Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the 'plasmid paradox'). This paradox is especially perplexing in the case of 'small' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-infecting plasmids influence plasmid persistence. Using an experimental model system based on interactions between a diverse assemblage of 'large' plasmids and a single small plasmid, pNI105, in the pathogenic bacterium Pseudomonas aeruginosa, we demonstrate that positive epistasis minimizes the cost associated with carrying multiple plasmids over the short term and increases the stability of the small plasmid over a longer time scale. In support of these experimental data, bioinformatic analysis showed that associations between small and large plasmids are more common than would be expected owing to chance alone across a range of families of bacteria; more generally, we find that co-infection with multiple plasmids is more common than would be expected owing to chance across a wide range of bacterial phyla. Collectively, these results suggest that positive epistasis promotes plasmid stability in bacterial populations. These findings pave the way for future mechanistic studies aimed at elucidating the molecular mechanisms of plasmid-plasmid interaction, and evolutionary studies aimed at understanding how the coevolution of plasmids drives the spread of plasmid-encoded traits.

  13. Use of the "blue halo" assay in the identification of genes encoding exported proteins with cleavable signal peptides: cloning of a Borrelia burgdorferi plasmid gene with a signal peptide.

    PubMed Central

    Giladi, M; Champion, C I; Haake, D A; Blanco, D R; Miller, J F; Miller, J N; Lovett, M A

    1993-01-01

    We have recently reported a phoA expression vector, termed pMG, which, like TnphoA, is useful in identifying genes encoding membrane-spanning sequences or signal peptides. This cloning system has been modified to facilitate the distinction of outer membrane and periplasmic alkaline phosphatase (AP) fusion proteins from inner membrane AP fusion proteins by transforming pMG recombinants into Escherichia coli KS330, the strain utilized in the "blue halo" assay first described by Strauch and Beckwith (Proc. Natl. Acad. Sci. USA 85:1576-1580, 1988). The lipoprotein mutation lpp-5508 of KS330 results in an outer membrane that is leaky to macromolecules, and its degP4 mutation greatly reduces periplasmic proteolytic degradation of AP fusion proteins. pMG AP fusions containing cleavable signal peptides, including the E. coli periplasmic protein beta-lactamase, the E. coli and Chlamydia trachomatis outer membrane proteins OmpA and MOMP, respectively, and Tp 9, a Treponema pallidum AP recombinant, diffused through the leaky outer membrane of KS330 and resulted in blue colonies with blue halos. In contrast, inner membrane AP fusions derived from E. coli proteins, including leader peptidase, SecY, and the tetracycline resistance gene product, as well as Tp 70, a T. pallidum AP recombinant which does not contain a signal peptide, resulted in blue colonies without blue halos. Lipoprotein-AP fusions, including the Borrelia burgdorferi OspA and T. pallidum Tp 75 and TmpA showed halo formation, although there was significantly less halo formation than that produced by either periplasmic or outer membrane AP fusions. In addition, we applied this approach to screen recombinants constructed from a 9.0-kb plasmid isolated from the B31 virulent strain of B. burgdorferi. One of the blue halo colonies identified produced an AP fusion protein which contained a signal peptide with a leader peptidase I cleavage recognition site. The pMG/KS330r- cloning and screening approach can identify

  14. Characterization and plasmid elimination of NDM-1-producing Acinetobacter calcoaceticus from China.

    PubMed

    Sun, Yang; Liu, Qi; Chen, Shuo; Song, Yang; Liu, Jun; Guo, Xuejun; Zhu, Lingwei; Ji, Xue; Xu, Lizhi; Zhou, Wei; Qian, Jun; Feng, Shuzhang

    2014-01-01

    The presence of multidrug-resistant bacterial pathogens in the environment poses a serious threat to public health. The opportunistic Acinetobacter spp. are among the most prevalent causes of nosocomial infections. Here, we performed complete genome sequencing of the Acinetobacter calcoaceticus strain XM1570, which was originally cultivated from the sputum of a patient diagnosed with pneumonia in Xiamen in 2010. We identified carbapenem resistance associated gene bla(NDM-1) located on a 47.3-kb plasmid. Three methods--natural reproduction, sodium dodecyl sulfate treatment and nalidixic acid treatment--were used to eliminate the bla(NDM-1)-encoding plasmid, which achieved elimination rates of 3.32% (10/301), 83.78% (278/332), and 84.17% (298/354), respectively. Plasmid elimination dramatically increased antibiotic sensitivity, reducing the minimum bacteriostatic concentration of meropenem from 256 µg/ml in the clinical strain to 0.125 µg/ml in the plasmid-eliminated strain. Conjugation transfer assays showed that the bla(NDM-1)-containing plasmid could be transferred into Escherichia coli DH5α:pBR322 in vitro as well as in vivo in mice. The bla(NDM-1) genetic environment was in accordance with that of other bla(NDM-1) genes identified from India, Japan, and Hong-Kong. The multilocus sequence type of the isolate was identified as ST-70. Two novel genes encoding intrinsic OXA and ADC were identified and named as OXA-417 and ADC-72. The finding of bla(NDM-1) in species like A. calcoaceticus demonstrates the wide spread of this gene in gram-negative bacteria which is possible by conjugative plasmid transfer. The results of this study may help in the development of a treatment strategy for controlling NDM-1 bacterial infection and transmission.

  15. Mining Environmental Plasmids for Synthetic Biology Parts and Devices.

    PubMed

    Martínez-García, Esteban; Benedetti, Ilaria; Hueso, Angeles; De Lorenzo, Víctor

    2015-02-01

    The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include inter alia origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties. PMID:26104565

  16. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China.

    PubMed

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei; Hu, Guang

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.

  17. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China

    PubMed Central

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6′)-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6′)-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388–16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6′)-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids. PMID:27427763

  18. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China.

    PubMed

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei; Hu, Guang

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids. PMID:27427763

  19. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments.

    PubMed

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.

  20. Nonselective Persistence of a Rickettsia conorii Extrachromosomal Plasmid during Mammalian Infection

    PubMed Central

    Riley, Sean P.; Fish, Abigail I.; Garza, Daniel A.; Banajee, Kaikhushroo H.; Harris, Emma K.; del Piero, Fabio

    2016-01-01

    Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models of infection, namely, the potential for virulence changes associated with the presence of extrachromosomal DNA and nonselective persistence of plasmids in mammalian models of infection. Here, we describe the transformation of Rickettsia conorii Malish 7 with the plasmid pRam18dRGA[AmTrCh]. Transformed R. conorii stably maintains this plasmid in infected cell cultures, expresses the encoded fluorescent proteins, and exhibits growth kinetics in cell culture similar to those of nontransformed R. conorii. Using a well-established murine model of fatal Mediterranean spotted fever, we demonstrate that R. conorii(pRam18dRGA[AmTrCh]) elicits the same fatal outcomes in animals as its untransformed counterpart and, importantly, maintains the plasmid throughout infection in the absence of selective antibiotic pressure. Interestingly, plasmid-transformed R. conorii was readily observed both in endothelial cells and within circulating leukocytes. Together, our data demonstrate that the presence of an extrachromosomal DNA element in a pathogenic rickettsial species does not affect either in vitro proliferation or in vivo infectivity in models of disease and that plasmids such as pRam18dRGA[AmTrCh] are valuable tools for the further genetic manipulation of pathogenic rickettsiae. PMID:26755154

  1. Plasmids spread very fast in heterogeneous bacterial communities.

    PubMed Central

    Dionisio, Francisco; Matic, Ivan; Radman, Miroslav; Rodrigues, Olivia R; Taddei, François

    2002-01-01

    Conjugative plasmids can mediate gene transfer between bacterial taxa in diverse environments. The ability to donate the F-type conjugative plasmid R1 greatly varies among enteric bacteria due to the interaction of the system that represses sex-pili formations (products of finOP) of plasmids already harbored by a bacterial strain with those of the R1 plasmid. The presence of efficient donors in heterogeneous bacterial populations can accelerate plasmid transfer and can spread by several orders of magnitude. Such donors allow millions of other bacteria to acquire the plasmid in a matter of days whereas, in the absence of such strains, plasmid dissemination would take years. This "amplification effect" could have an impact on the evolution of bacterial pathogens that exist in heterogeneous bacterial communities because conjugative plasmids can carry virulence or antibiotic-resistance genes. PMID:12524329

  2. Molecular analysis of plasmid encoded multi-drug resistance (MDR) in Salmonella enterica animal isolates by PFGE, replicon typing, and DNA microarray screening followed by high-throughput DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The development of Multi-Drug Resistant (MDR) Salmonella is of global concern. MDR Salmonella genes can be transmitted in a number of ways including transfer of plasmids. To understand how MDR plasmids develop and are transmitted, their genetics must be thoroughly described. To achieve t...

  3. Complex integrons containing qnrB4-ampC (bla(DHA-1)) in plasmids of multidrug-resistant Citrobacter freundii from wastewater.

    PubMed

    Yim, Grace; Kwong, Waldan; Davies, Julian; Miao, Vivian

    2013-02-01

    Microbial populations in wastewater treatment plants (WWTPs) are increasingly being recognized as environmental reservoirs of antibiotic resistance genes. PCR amplicons for plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS were recorded in samples from a WWTP in Vancouver, British Columbia. Six strains of ciprofloxacin-resistant Citrobacter freundii were isolated and found to carry mutations in gyrA and parC, as well as multiple plasmid-borne resistance genes, collectively including qnrB; aac(6')-Ib-cr; β-lactamase-encoding genes from molecular classes A (blaTEM-1), C (ampC), D (blaOXA-1, blaOXA-10); and genes for resistance to 5 other types of antibiotics. In 3 strains, large (>60 kb) plasmids carried qnrB4 and ampC as part of a complex integron in a 14 kb arrangement that has been reported worldwide but, until recently, only among pathogenic strains of Klebsiella. Analysis of single-nucleotide polymorphisms in the qnrB4-ampC regions infers 2 introductions into the WWTP environment. These results suggest recent passage of plasmid-borne fluoroquinolone and β-lactam resistance genes from pathogens to bacteria that may be indigenous inhabitants of WWTPs, thus contributing to an environmental pool of antibiotic resistance.

  4. Distribution of small native plasmids in Streptococcus pyogenes in India.

    PubMed

    Bergmann, René; Nerlich, Andreas; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric

    2014-05-01

    Complete characterization of a Streptococcus pyogenes population from a defined geographic region comprises information on the plasmids that circulate in these bacteria. Therefore, we determined the distribution of small plasmids (<5kb) in a collection of 279 S. pyogenes isolates from India, where diversity of strains and incidence rates of S. pyogenes infections are high. The collection comprised 77 emm-types. For plasmid detection and discrimination, we developed PCRs for different plasmid replication initiation protein genes, the putative repressor gene copG and bacteriocin genes dysA and scnM57. Plasmid distribution was limited to 13 emm-types. Co-detection analysis using aforementioned PCRs revealed four distinct plasmid sub-types, two of which were previously unknown. Representative plasmids pA852 and pA996 of the two uncharacterized plasmid sub-types were sequenced. These two plasmids could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. The majority of small plasmids found in India belonged to the two newly characterized sub-types, with pA852- and pA996-like plasmids amounting to 42% and 22% of all detected plasmids, respectively. None of the detected plasmids coded for a known antibiotic resistance gene. Instead, all of the four plasmid sub-types carried known or potential bacteriocin genes. These genes may have influence on the evolutionary success of certain S. pyogenes genotypes. Notably, pA852-like plasmids were found in all isolates of the most prevalent emm-type 11.0. Together, a priori fitness of this genotype and increased fitness due to the acquired plasmids may have rendered type emm11.0 successful and caused the prevalence of pA852-like plasmids in India.

  5. Crystal structure of the plasmid maintenance system ɛ/ζ: Functional mechanism of toxin ζ and inactivation by ɛ2ζ2 complex formation

    PubMed Central

    Meinhart, Anton; Alonso, Juan C.; Sträter, Norbert; Saenger, Wolfram

    2003-01-01

    Programmed cell death in prokaryotes is frequently found as postsegregational killing. It relies on antitoxin/toxin systems that secure stable inheritance of low and medium copy number plasmids during cell division and kill cells that have lost the plasmid. The broad-host-range, low-copy-number plasmid pSM19035 from Streptococcus pyogenes carries the genes encoding the antitoxin/toxin system ɛ/ζ and antibiotic resistance proteins, among others. The crystal structure of the biologically nontoxic ɛ2ζ2 protein complex at a 1.95-Å resolution and site-directed mutagenesis showed that free ζ acts as phosphotransferase by using ATP/GTP. In ɛ2ζ2, the toxin ζ is inactivated because the N-terminal helix of the antitoxin ɛ blocks the ATP/GTP-binding site. To our knowledge, this is the first prokaryotic postsegregational killing system that has been entirely structurally characterized. PMID:12571357

  6. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues

    PubMed Central

    Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru

    2015-01-01

    The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205

  7. Protein Aggregation Formed by Recombinant cp19k Homologue of Balanus albicostatus Combined with an 18 kDa N-Terminus Encoded by pET-32a(+) Plasmid Having Adhesion Strength Comparable to Several Commercial Glues.

    PubMed

    Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru

    2015-01-01

    The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed "barnacle cement". In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as "Trx-Balcp19k gel", and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205

  8. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments

    PubMed Central

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species

  9. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  10. Transcriptome Mapping of pAR060302, a blaCMY-2-Positive Broad-Host-Range IncA/C Plasmid

    PubMed Central

    Lang, Kevin S.; Danzeisen, Jessica L.; Xu, Wayne

    2012-01-01

    The multidrug resistance-encoding plasmids belonging to the IncA/C incompatibility group have recently emerged among Escherichia coli and Salmonella enterica strains in the United States. These plasmids have a unique genetic structure compared to other enterobacterial plasmid types, a broad host range, and a propensity to acquire large numbers of antimicrobial resistance genes via their accessory regions. Using E. coli strain DH5α harboring the prototype IncA/C plasmid pAR060302, we sought to define the baseline transcriptome of IncA/C plasmids under laboratory growth and in the face of selective pressure. The effects of ampicillin, florfenicol, or streptomycin exposure were compared to those on cells left untreated at logarithmic phase using Illumina platform-based RNA sequencing (RNA-Seq). Under growth in Luria-Bertani broth lacking antibiotics, much of the backbone of pAR060302 was transcriptionally inactive, including its putative transfer regions. A few plasmid backbone genes of interest were highly transcribed, including genes of a putative toxin-antitoxin system and an H-NS-like transcriptional regulator. In contrast, numerous genes within the accessory regions of pAR060302 were highly transcribed, including the resistance genes floR, blaCMY-2, aadA, and aacA. Treatment with ampicillin or streptomycin resulted in no genes being differentially expressed compared to controls lacking antibiotics, suggesting that many of the resistance-associated genes are not differentially expressed due to exposure to these antibiotics. In contrast, florfenicol treatment resulted in the upregulation of floR and numerous chromosomal genes. Overall, the transcriptome mapping of pAR060302 suggests that it mitigates the fitness costs of carrying resistance-associated genes through global regulation with its transcriptional regulators. PMID:22344651

  11. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10.

    PubMed Central

    Hill, K E; Weightman, A J; Fry, J C

    1992-01-01

    This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species. Images PMID:1599248

  12. pKBuS13, a KPC-2-encoding plasmid from Klebsiella pneumoniae sequence type 833, carrying Tn4401b inserted into an Xer site-specific recombination locus.

    PubMed

    Garbari, Luigi; Busetti, Marina; Dolzani, Lucilla; Petix, Vincenzo; Knezevich, Anna; Bressan, Raffaela; Gionechetti, Fabrizia; Tonin, Enrico A; Lagatolla, Cristina

    2015-09-01

    Here, we report the first detection of a Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing Klebsiella pneumoniae strain belonging to sequence type 833 (ST833), collected in an Italian hospital from a patient coming from South America. Its bla KPC determinant was carried by a ColE1 plasmid, pKBuS13, that showed the Tn4401b::bla KPC-2 transposon inserted into the regulatory region of an Xer site-specific recombination locus. This interfered with the correct resolution of plasmid multimers into monomers, lowering plasmid stability and leading to overestimation of the number of plasmids harbored by a single host cell. Sequencing of the fragments adjacent to Tn4401b detected a region that did not have significant matches in databases other than the genome of a carbapenem-resistant Escherichia coli strain collected during the same year at a hospital in Boston. This is interesting in an epidemiologic context, as it suggests that despite the absence of tra genes and the instability under nonselective conditions, the circulation of pKBuS13 or of analogous plasmids might be wider than reported. PMID:26077252

  13. Antibiotic-resistant bacteria associated with retail aquaculture products from Guangzhou, China.

    PubMed

    Ye, Lei; Lu, Zhang; Li, Xinhui; Shi, Lei; Huang, Ying; Wang, Hua H

    2013-02-01

    This study examined the prevalence of antibiotic-resistant (ART) bacteria and representative antibiotic resistance (AR)-encoding genes associated with several aquaculture products from retail markets in Guangzhou, China. ART commensal bacteria were found in 100% of the products examined. Among 505 multidrug-resistant isolates examined, close to one-fourth contained intI and sul1 genes: 15% contained sul2 and 5% contained tet (E). Incidences of β-lactamase-encoding genes bla(TEM), bla(CMY) and erythromycin resistance determinants ermB and ermC were 4.5, 1.7, 1.3, and 0.3%, respectively. Most of the ART isolates identified from the rinse water were Aeromonas spp.; those from intestines belonged to the Enterobacteriaceae. Plasmid-associated intI and AR-encoding genes were identified in several ART isolates by Southern hybridization. Three multidrug resistance-encoding plasmids were transferred into Escherichia coli DH5 a by chemical transformation and led to acquired AR in the transformants. In addition, the AR traits in many isolates were quite stable, even in the absence of selective pressure. Further studies are needed to reveal risk factors associated with the aquaculture production chain for targeted AR mitigation.

  14. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages.

    PubMed

    Schaufler, Katharina; Semmler, Torsten; Pickard, Derek J; de Toro, María; de la Cruz, Fernando; Wieler, Lothar H; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-"cured" variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages. PMID:27014251

  15. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages

    PubMed Central

    Schaufler, Katharina; Semmler, Torsten; Pickard, Derek J.; de Toro, María; de la Cruz, Fernando; Wieler, Lothar H.; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-“cured” variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages. PMID:27014251

  16. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages.

    PubMed

    Schaufler, Katharina; Semmler, Torsten; Pickard, Derek J; de Toro, María; de la Cruz, Fernando; Wieler, Lothar H; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-"cured" variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages.

  17. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  18. Rolling-circle replication of bacterial plasmids.

    PubMed Central

    Khan, S A

    1997-01-01

    Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication. PMID:9409148

  19. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  20. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  1. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate

    PubMed Central

    Dolejska, Monika; Izdebski, Radoslaw; Dobiasova, Hana; Studentova, Vendula; Esteves, Francisco J.; Derde, Lennie P. G.; Bonten, Marc J. M.; Hrabák, Jaroslav; Gniadkowski, Marek

    2015-01-01

    IMP-8 metallo-β-lactamase was identified in Klebsiella pneumoniae sequence type 252 (ST252), isolated in a Portuguese hospital in 2009. blaIMP-8 was the first gene cassette of a novel class 3 integron, In1144, also carrying the blaGES-5, blaBEL-1, and aacA4 cassettes. In1144 was located on a ColE1-like plasmid, pKP-M1144 (12,029 bp), with a replication region of limited nucleotide similarity to those of other RNA-priming plasmids, such as pJHCMW1. In1144 and pKP-M1144 represent an interesting case of evolution of resistance determinants in Gram-negative bacteria. PMID:26033721

  2. Replication and Control of Circular Bacterial Plasmids

    PubMed Central

    del Solar, Gloria; Giraldo, Rafael; Ruiz-Echevarría, María Jesús; Espinosa, Manuel; Díaz-Orejas, Ramón

    1998-01-01

    An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3′-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population

  3. IncP-1β plasmids of Comamonas sp. and Delftia sp. strains isolated from a wastewater treatment plant mediate resistance to and decolorization of the triphenylmethane dye crystal violet.

    PubMed

    Stolze, Yvonne; Eikmeyer, Felix; Wibberg, Daniel; Brandis, Gerrit; Karsten, Christina; Krahn, Irene; Schneiker-Bekel, Susanne; Viehöver, Prisca; Barsch, Aiko; Keck, Matthias; Top, Eva M; Niehaus, Karsten; Schlüter, Andreas

    2012-08-01

    The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1β plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1β backbone modules that are highly similar to those of previously sequenced IncP-1β plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV

  4. Chromosome and Plasmids of the Tick-Borne Relapsing Fever Agent Borrelia hermsii

    PubMed Central

    2016-01-01

    The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome. PMID:27284141

  5. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene.

    PubMed Central

    Sanseverino, J; Applegate, B M; King, J M; Sayler, G S

    1993-01-01

    The well-characterized plasmid-encoded naphthalene degradation pathway in Pseudomonas putida PpG7(NAH7) was used to investigate the role of the NAH plasmid-encoded pathway in mineralizing phenanthrene and anthracene. Three Pseudomonas strains, designated 5R, DFC49, and DFC50, were recovered from a polynuclear aromatic hydrocarbon-degrading inoculum developed from a manufactured gas plant soil slurry reactor. Plasmids pKA1, pKA2, and pKA3, approximately 100 kb in size, were isolated from these strains and characterized. These plasmids have homologous regions of upper and lower NAH7 plasmid catabolic genes. By conjugation experiments, these plasmids, including NAH7, have been shown to encode the genotype for mineralization of [9-14C]phenanthrene and [U-14C]anthracene, as well as [1-14C]naphthalene. One strain, Pseudomonas fluorescens 5RL, which has the complete lower pathway inactivated by transposon insertion in nahG, accumulated a metabolite from phenanthrene and anthracene degradation. This is the first direct evidence to indicate that the NAH plasmid-encoded catabolic genes are involved in degradation of polynuclear aromatic hydrocarbons other than naphthalene. Images PMID:8328809

  6. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  7. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    PubMed Central

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  8. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  9. Inhibitory effect of UvrD and DinG on the replication of ColE1-derived plasmids in Escherichia coli.

    PubMed

    Kang, Nalae; Choi, Eunsil; Kim, Sung-Gun; Hwang, Jihwan

    2015-09-01

    CspA has been identified as a major cold-shock protein in Escherichia coli. CspA binds to RNAs which are abnormally folded at low temperature and then acts as an RNA chaperone unfolding those RNAs. The dramatic expression of cspA at low temperature is contributed by posttranscriptional stability and robust translatability. Interestingly, when cspA mRNA encoding a premature nonsense codon was overexpressed at low temperature, cell growth was completely inhibited. This phenotype was termed LACE (the low temperature-dependent antibiotic effect of truncated cspA expression), and this lethality resulted from exclusive stalling of most ribosomes on mutant cspA mRNAs. In a previous study, we demonstrated that overexpression of the ATP-dependent DNA helicases, UvrD and DinG, suppressed the lethality and ribosome stalling caused by mutant cspA mRNA. In the present study, we attempted to elucidate how these two DNA helicases help recover normal growth under LACE condition. Interestingly, we found that UvrD and DinG appeared to have an ability to down-regulate the replication of pUC-based high copy plasmid. In plasmid copy number tests, the amount of pUC-based plasmid encoding mutant cspA was reduced by 3-10-fold when either UvrD or DinG was expressed. Through a β-galactosidase activity assay, we also confirmed that expression of the lacZα gene inserted into the pUC-based plasmid was significantly reduced due to down-regulation of plasmid replication. Our findings imply that UvrD and DinG, known as non-replicative helicases, play a novel role in the regulation of ColE1-like plasmid replication.

  10. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing options ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets and ...

  11. Novel Conserved Genotypes Correspond to Antibiotic Resistance Phenotypes of E. coli Clinical Isolates

    PubMed Central

    Swick, Michelle C.; Easton-Marks, Jeremy R.; Barth, Patrick; Shah, Minita J.; Bormann Chung, Christina A.; Stanley, Sarah; McLaughlin, Stephen F.; Lee, Clarence C.; Sheth, Vrunda; Doan, Quynh; Hamill, Richard J.; Steffen, David; Becnel, Lauren B.; Sucgang, Richard; Zechiedrich, Lynn

    2013-01-01

    Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for

  12. A survey of drug resistance bla genes originating from synthetic plasmid vectors in six Chinese rivers.

    PubMed

    Chen, Jian; Jin, Min; Qiu, Zhi-Gang; Guo, Cong; Chen, Zhao-Li; Shen, Zhi-Qiang; Wang, Xin-Wei; Li, Jun-Wen

    2012-12-18

    Antibiotic resistance poses a significant challenge to human health and its rate continues to rise globally. While antibiotic-selectable synthetic plasmid vectors have proved invaluable tools of genetic engineering, this class of artificial recombinant DNA sequences with high expression of antibiotic resistance genes presents an unknown risk beyond the laboratory setting. Contamination of environmental microbes with synthetic plasmid vector-sourced antibiotic resistance genes may represent a yet unrecognized source of antibiotic resistance. In this study, PCR and real-time quantitative PCR were used to investigate the synthetic plasmid vector-originated ampicillin resistance gene, β-lactam antibiotic (blá), in microbes from six Chinese rivers with significant human interactions. Various levels of blá were detected in all six rivers, with the highest levels in the Pearl and Haihe rivers. To validate the blá pollution, environmental plasmids in the river samples were captured by the E. coli transformants from the community plasmid metagenome. The resultant plasmid library of 205 ampicillin-resistant E. coli (transformants) showed a blá-positive rate of 27.3% by PCR. Sequencing results confirmed the synthetic plasmid vector sources. In addition, results of the Kirby-Bauer disc-diffusion test reinforced the ampicillin-resistant functions of the environmental plasmids. The resistance spectrum of transformants from the Pearl and Haihe rivers, in particular, had expanded to the third- and fourth-generation of cephalosporin drugs, while that of other transformants mainly involved first- and second-generation cephalosporins. This study not only reveals environmental contamination of synthetic plasmid vector-sourced blá drug resistance genes in Chinese rivers, but also suggests that synthetic plasmid vectors may represent a source of antibiotic resistance in humans.

  13. Large linear plasmids of Borrelia species that cause relapsing fever.

    PubMed

    Miller, Shelley Campeau; Porcella, Stephen F; Raffel, Sandra J; Schwan, Tom G; Barbour, Alan G

    2013-08-01

    Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.

  14. Protein diversity confers specificity in plasmid segregation.

    PubMed

    Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2005-04-01

    The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation. PMID:15805511

  15. SPP1-mediated plasmid transduction.

    PubMed Central

    Canosi, U; Lüder, G; Trautner, T A

    1982-01-01

    The virulent Bacillus subtilis phage SPP1 transduces plasmid DNA. Plasmid-transducing phages contain only plasmid DNA. Such DNA represents a concatemer of monomeric plasmid molecules with the molecular weight of mature SPP1 DNA. Biological parameters of plasmid transduction are described. Images PMID:6292508

  16. Molecular Characterization of Plasmids Encoding CTX-M β-Lactamases and their Associated Addiction Systems Circulating Among Escherichia coli from Retail Chickens, Chicken Farms, and Slaughterhouses in Korea.

    PubMed

    Jo, Su-Jin; Woo, Gun-Jo

    2016-02-01

    Extended-spectrum β-lactamases (ESBLs), particularly those of the CTX-M types, are the predominant resistance determinants of Escherichia coli that are rapidly spreading worldwide. To determine CTX-M types, E. coli isolates were collected from retail chickens (n = 390) and environmental samples from chicken farms (n = 32) and slaughterhouses (n = 67) in Korea. Fifteen strains harboring blaCTX-M genes were isolated from 358 E. coli isolates. The most common CTX-M type was eight of CTX-M-15, followed by six of CTX-M-1 and one of CTX-M- 14. The blaCTX-M genes were identified in the isolates from retail chickens (n = 9), followed by feces, water pipes, floors, and walls. Conjugations confirmed the transferability of the plasmids carrying blaCTX-M genes to the recipient E. coli J53 strain. Furthermore, eight addiction systems carried by the replicons in CTX-M types were confirmed. The dominant system was identified as ccdAB, vagCD, and pndAC in donor strains and transconjugants. The clonal relationship between the two strains carrying blaCTX-M genes indicates that E. coli may transmit from the farm to retail chickens, suggesting a possible public health risk. Our findings demonstrate that the detection of CTX-M types in E. coli isolates is important for tracking ESBL production in animals, and suggest linkage of multiple addiction systems in plasmids bearing blaCTX-M genes.

  17. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain.

    PubMed

    Quesada, Alberto; Ugarte-Ruiz, María; Iglesias, M Rocío; Porrero, M Concepción; Martínez, Remigio; Florez-Cuadrado, Diego; Campos, María J; García, María; Píriz, Segundo; Sáez, José Luis; Domínguez, Lucas

    2016-04-01

    Recent findings suggest that use of colistin as a last resort antibiotic is seriously threatened by the rise of a new plasmid mediated mechanism of resistance (MCR-1). This work identifies, for the first time in Southern Europe, the gene mcr-1 in nine strains from farm animals (poultry and swine) corresponding to five Escherichia coli and four Salmonella enterica, among which three belong to serovar Typhimurium and one to Rissen. The MCR-1 was found encoded by a plasmid highly mobilizable by conjugation to the E. coli J53 strain. Two E. coli strains carried two determinants, mcr-1 plus pmrA or pmrB mutations, known to confer colistin resistance.

  18. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain.

    PubMed

    Quesada, Alberto; Ugarte-Ruiz, María; Iglesias, M Rocío; Porrero, M Concepción; Martínez, Remigio; Florez-Cuadrado, Diego; Campos, María J; García, María; Píriz, Segundo; Sáez, José Luis; Domínguez, Lucas

    2016-04-01

    Recent findings suggest that use of colistin as a last resort antibiotic is seriously threatened by the rise of a new plasmid mediated mechanism of resistance (MCR-1). This work identifies, for the first time in Southern Europe, the gene mcr-1 in nine strains from farm animals (poultry and swine) corresponding to five Escherichia coli and four Salmonella enterica, among which three belong to serovar Typhimurium and one to Rissen. The MCR-1 was found encoded by a plasmid highly mobilizable by conjugation to the E. coli J53 strain. Two E. coli strains carried two determinants, mcr-1 plus pmrA or pmrB mutations, known to confer colistin resistance. PMID:27033921

  19. Community-wide plasmid gene mobilization and selection

    PubMed Central

    Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R

    2013-01-01

    Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308

  20. Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response.

    PubMed

    Smets, Barth F; Morrow, Jayne B; Arango Pinedo, Catalina

    2003-07-01

    The nonconjugal IncQ plasmids pMOL187 and pMOL222, which contain the metal resistance-encoding genes czc and ncc, were introduced by using Escherichia coli as a transitory delivery strain into microcosms containing subsurface-derived parent materials. The microcosms were semicontinuously dosed with an artificial groundwater to set a low-carbon flux and a target metal stress (0, 10, 100, and 1,000 micro M CdCl(2)), permitting long-term community monitoring. The broad-host-range IncPalpha plasmid RP4 was also transitorily introduced into a subset of microcosms. No novel community phenotype was detected after plasmid delivery, due to the high background resistances to Cd and Ni. At fixed Cd doses, however, small but consistent increases in Cd(r) or Ni(r) density were measured due to the introduction of a single pMOL plasmid, and this effect was enhanced by the joint introduction of RP4; the effects were most significant at the highest Cd doses. The pMOL plasmids introduced could, however, be monitored via czc- and ncc-targeted infinite-dilution PCR (ID-PCR) methods, because these genes were absent from the indigenous community: long-term presence of czc (after 14 or 27 weeks) was contingent on the joint introduction of RP4, although RP4 cointroduction was not yet required to ensure retention of ncc after 8 weeks. Plasmids isolated from Ni(r) transconjugants further confirmed the presence and retention of a pMOL222-sized plasmid. ID-PCR targeting the RP4-specific trafA gene revealed retention of RP4 for at least 8 weeks. Our findings confirm plasmid transfer and long-term retention in low-carbon-flux, metal-stressed subsurface communities but indicate that the subsurface community examined has limited mobilization potential for the IncQ plasmids employed.

  1. An insight of traditional plasmid curing in Vibrio species

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714

  2. N15: the linear phage-plasmid.

    PubMed

    Ravin, Nikolai V

    2011-03-01

    The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.

  3. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata

    PubMed Central

    Sun, Fengjun; Zhou, Dongsheng; Sun, Qiang; Luo, Wenbo; Tong, Yigang; Zhang, Defu; Wang, Qian; Feng, Wei; Chen, Weijun; Fan, Yahan; Xia, Peiyuan

    2016-01-01

    We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant. PMID:27658354

  4. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12.

    PubMed Central

    Dahlberg, Cecilia; Chao, Lin

    2003-01-01

    Although plasmids can provide beneficial functions to their host bacteria, they might confer a physiological or energetic cost. This study examines how natural selection may reduce the cost of carrying conjugative plasmids with drug-resistance markers in the absence of antibiotic selection. We studied two plasmids, R1 and RP4, both of which carry multiple drug resistance genes and were shown to impose an initial fitness cost on Escherichia coli. To determine if and how the cost could be reduced, we subjected plasmid-containing bacteria to 1100 generations of evolution in batch cultures. Analysis of the evolved populations revealed that plasmid loss never occurred, but that the cost was reduced through genetic changes in both the plasmids and the bacteria. Changes in the plasmids were inferred by the demonstration that evolved plasmids no longer imposed a cost on their hosts when transferred to a plasmid-free clone of the ancestral E. coli. Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids. Additionally, changes in the bacteria were inferred because conjugative transfer rates of evolved R1 plasmids were lower in the evolved host than in the ancestral host. Our results suggest that once a conjugative bacterial plasmid has invaded a bacterial population it will remain even if the original selection is discontinued. PMID:14704155

  5. The global problem of antibiotic resistance.

    PubMed

    Gootz, Thomas D

    2010-01-01

    Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to beta-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements

  6. Functional Characterization of a Ketoreductase-Encoding Gene med-ORF12 Involved in the Formation of a Stereospecific Pyran Ring during the Biosynthesis of an Antitumor Antibiotic Medermycin

    PubMed Central

    He, Qiang; Li, Le; Yang, Tingting; Li, Ruijuan; Li, Aiying

    2015-01-01

    Medermycin, a polyketide antibiotic, possesses strong bioactivity against a variety of tumors through a novel mechanism and is structurally featured with a pyran ring containing two chiral centers (3S and 15R). By far the biosynthetic origin of such enantiomerical conformations still remains obscure. In the present study, we reported the functional characterization of a proposed ketoreductase Med-ORF12 encoded by medermycin biosynthetic cluster and revealed its involvement in the stereochemical control at C3 center of medermycin. Firstly, bioinformatics analysis of Med-ORF12 suggested that it belongs to a group of stereospecific ketoreductases. Next, a Med-ORF12-deficient mutant was obtained and LC/MS measurements demonstrated that medermycin production was completely abolished in this mutant. Meanwhile, it was found that two shunt products were accumulated at the absence of Med-ORF12. Finally, the reintroduction of Med-ORF12 into this mutant could restore the production of medermycin. In a conclusion, these data supported that Med-ORF12 is essential for the biosynthesis of medermycin and performs its role as a stereospecifc ketoreductase in the tailoring steps of medermycin biosynthetic pathway. PMID:26162081

  7. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  8. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    PubMed

    Ali, Syed A; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.

  9. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius.

    PubMed

    Wescombe, Philip A; Burton, Jeremy P; Cadieux, Peter A; Klesse, Nikolai A; Hyink, Otto; Heng, Nicholas C K; Chilcott, Chris N; Reid, Gregor; Tagg, John R

    2006-10-01

    Streptococcus salivarius strains commonly produce bacteriocins as putative anti-competitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class. PMID:16871420

  10. Natural plasmids of filamentous fungi.

    PubMed Central

    Griffiths, A J

    1995-01-01

    Among eukaryotes, plasmids have been found in fungi and plants but not in animals. Most plasmids are mitochondrial. In filamentous fungi, plasmids are commonly encountered in isolates from natural populations. Individual populations may show a predominance of one type, but some plasmids have a global distribution, often crossing species boundaries. Surveys have shown that strains can contain more than one type of plasmid and that different types appear to be distributed independently. In crosses, plasmids are generally inherited maternally. Horizontal transmission is by cell contact. Circular plasmids are common only in Neurospora spp., but linear plasmids have been found in many fungi. Circular plasmids have one open reading frame (ORF) coding for a DNA polymerase or a reverse transcriptase. Linear plasmids generally have two ORFs, coding for presumptive DNA and RNA polymerases with amino acid motifs showing homology to viral polymerases. Plasmids often attain a high copy number, in excess of that of mitochondrial DNA. Linear plasmids have a protein attached to their 5' end, and this is presumed to act as a replication primer. Most plasmids are neutral passengers, but several linear plasmids integrate into mitochondrial DNA, causing death of the host culture. Inferred amino acid sequences of linear plasmid ORFs have been used to plot phylogenetic trees, which show a fair concordance with conventional trees. The circular Neurospora plasmids have replication systems that seem to be evolutionary intermediates between the RNA and the DNA worlds. PMID:8531891

  11. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1.

    PubMed

    Hong, Hyerim; Ko, Hyeok-Jin; Choi, In-Geol; Park, Woojun

    2014-02-01

    We used culture-dependent and culture-independent methods to extract previously undescribed plasmids harboring tetracycline (TC) resistance genes from activated sludge. The extracted plasmids were transformed into naturally competent Acinetobacter oleivorans DR1 to recover a non-Escherichia coli-based plasmid. The transformed cells showed 80-100-fold higher TC resistance than the wild-type strain. Restriction length polymorphism performed using 30 transformed cells showed four different types of plasmids. Illumina-based whole sequencing of the four plasmids identified three previously unreported plasmids and one previously reported plasmid. All plasmids carried TC resistance-related genes (tetL, tetH), tetracycline transcriptional regulators (tetR), and mobilization-related genes. As per expression analysis, TC resistance genes were functional in the presence of TC. The recovered plasmids showed mosaic gene acquisition through horizontal gene transfer. Membrane fluidity, hydrophobicity, biofilm formation, motility, growth rate, sensitivity to stresses, and quorum sensing signals of the transformed cells were different from those of the wild-type cells. Plasmid-bearing cells seemed to have an energy burden for maintaining and expressing plasmid genes. Our data showed that acquisition of TC resistance through plasmid uptake is related to loss of biological fitness. Thus, cells acquiring antibiotic resistance plasmids can survive in the presence of antibiotics, but must pay ecological costs.

  12. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    PubMed

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. PMID:27287537

  13. Antibiotic Safety

    MedlinePlus

    ... specific to women Antibiotics can lead to vaginal yeast infections. This happens because antibiotics kill the normal bacteria in the vagina and this causes yeast to grow rapidly. Symptoms of a yeast infection ...

  14. Antibiotic Agents

    MedlinePlus

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References POLICY ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network Africa ...

  15. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    PubMed

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  16. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    PubMed

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.

  17. A series of template plasmids for Escherichia coli genome engineering.

    PubMed

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. PMID:27071533

  18. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  19. Characterization of the Lactobacillus plantarum plasmid pCD033 and generation of the plasmid free strain L. plantarum 3NSH.

    PubMed

    Heiss, Silvia; Grabherr, Reingard; Heinl, Stefan

    2015-09-01

    Lactobacillus plantarum CD033, a strain isolated from grass silage in Austria, harbors a 7.9 kb plasmid designated pCD033. Sequence analysis identified 14 open reading frames and 8 of these were supposed to be putative coding sequences. Gene annotation revealed no putative essential genes being plasmid encoded, but a plasmid addiction system based on a PemI/PemK-like toxin-antitoxin system, able to stabilize plasmid maintenance. Absence of a replication initiation protein, a double strand origin as well as a single strand origin on plasmid pCD033 suggests replication via a new type of theta mechanism, whereby plasmid replication is potentially initiated and regulated by non-coding RNA. Detailed examination of segregational stability of plasmid vectors consisting of pCD033-fragments, combined with a selection marker, resulted in definition of a stably maintained minimal replicon. A gene encoding a RepB/OrfX-like protein was found to be not essential for plasmid replication. Alignment of the amino acid sequence of this protein with related proteins unveiled a highly conserved amino acid motif (LLDQQQ). L. plantarum CD033 was cured of pCD033 resulting in the novel plasmid free strain L. plantarum 3NSH. Plasmid curing demonstrated that no essential features are provided by pCD033 under laboratory conditions.

  20. [Antibiotic Stewardship].

    PubMed

    Lanckohr, Christian; Ellger, Björn

    2016-02-01

    The adequate management of infections is an important task in critical care medicine which has an effect on patient outcome. As a result, the prevalence of antiinfective therapy is high in intensive care units. In the face of an unsettling development of worldwide microbial resistance, an optimization and reduction of antiinfective therapy is necessary. Antibiotic stewardship tries to improve antiinfective therapy with an interdisciplinary approach. One overall objective of antibiotic stewardship is the reduction of resistance induction in order to preserve the therapeutic efficiency of antibiotics. Intensive care units are important fields of action for antibiotic stewardship interventions. This article reviews available evidence and some practical aspects for antibiotic stewardship.

  1. Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates.

    PubMed

    Machado, Ana Manuel Dantas; Sommer, Morten O A

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.

  2. Broad-host-range plasmids in treated wastewater effluent and receiving streams.

    PubMed

    Akiyama, Tatsuya; Asfahl, Kyle L; Savin, Mary C

    2010-01-01

    The occurrence of broad-host-range (BHR) plasmid amplicons belonging to incompatibility (Inc) groups IncA/C, IncN, IncP, and IncW in two wastewater treatment plant (WWTP) effluents and effluent-receiving streams in Northwest Arkansas, Mud Creek and Spring Creek, was determined. Community DNA captured on filter membranes and plasmid DNA extracted from antibiotic-resistant Escherichia coli isolated from Mud Creek was used for polymerase chain reaction at amplification of partial gene sequences specific to BHR plasmids. IncP plasmid amplicons were detected in effluent and downstream sites in both streams, while IncN and IncW plasmid amplicons were detected in Spring Creek in effluent and downstream but not upstream. IncA/C plasmid amplicons, in contrast, were detected at all sites, including upstream in most samples in Spring Creek and in one sample from Mud Creek. One IncP and two IncN were the only BHR plasmid amplicons found in 85 screened antibiotic-resistant E. coli isolates, and were detected only in isolates from effluent and downstream samples. Broad-host-range plasmids frequently carry antibiotic-resistance genes and can facilitate horizontal transfer of those genes. While BHR plasmids have been detected in WWTPs, WWTPs do not target these genetic elements for destruction. This study indicates that BHR plasmids are in WWTP effluent and are introducing BHR plasmids into streams. Additionally, species other than E. coli may be better targets as indicator bacteria for future studies of the impact of treated effluent on environmental dissemination of BHR plasmids.

  3. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  4. Acquired Antibiotic Resistance Genes: An Overview

    PubMed Central

    van Hoek, Angela H. A. M.; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria. PMID:22046172

  5. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures.

    PubMed

    Milewska, Klaudia; Węgrzyn, Grzegorz; Szalewska-Pałasz, Agnieszka

    2015-09-01

    The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible.

  6. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures.

    PubMed

    Milewska, Klaudia; Węgrzyn, Grzegorz; Szalewska-Pałasz, Agnieszka

    2015-09-01

    The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible. PMID:26170108

  7. The antibiotic resistance “mobilome”: searching for the link between environment and clinic

    PubMed Central

    Perry, Julie A.; Wright, Gerard D.

    2013-01-01

    Antibiotic resistance is an ancient problem, owing to the co-evolution of antibiotic-producing and target organisms in the soil and other environments over millennia. The environmental “resistome” is the collection of all genes that directly or indirectly contribute to antibiotic resistance. Many of these resistance determinants originate in antibiotic-producing organisms (where they serve to mediate self-immunity), while others become resistance determinants only when mobilized and over-expressed in non-native hosts (like plasmid-encoded β-lactamases). The modern environmental resistome is under selective pressure from human activities such as agriculture, which may influence the composition of the local resistome and lead to gene transfer events. Beyond the environment, we are challenged in the clinic by the rise in both frequency and diversity of antibiotic resistant pathogens. We assume that clinical resistance originated in the environment, but few examples of direct gene exchange between the environmental resistome and the clinical resistome have been documented. Strong evidence exists to suggest that clinical aminoglycoside and vancomycin resistance enzymes, the extended-spectrum β-lactamase CTX-M and the quinolone resistance gene qnr have direct links to the environmental resistome. In this review, we highlight recent advances in our understanding of horizontal gene transfer of antibiotic resistance genes from the environment to the clinic. Improvements in sequencing technologies coupled with functional metagenomic studies have revealed previously underappreciated diversity in the environmental resistome, and also established novel genetic links to the clinic. Understanding mechanisms of gene exchange becomes vital in controlling the future dissemination of antibiotic resistance. PMID:23755047

  8. The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella

    PubMed Central

    Bearson, Bradley L.; Allen, Heather K.; Brunelle, Brian W.; Lee, In Soo; Casjens, Sherwood R.; Stanton, Thaddeus B.

    2013-01-01

    Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the

  9. High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment.

    PubMed

    Ozaktas, Tugba; Taskin, Bilgin; Gozen, Ayse G

    2012-12-01

    Freshwater fish, Alburnus alburnus (bleak), were captured from Lake Mogan, situated in Ankara, during spring. The surface mucus of the fish was collected and associated bacteria were cultured and isolated. By sequencing PCR-amplified 16S RNA encoding genes, the isolates were identified as members of 12 different genera: Acinetobacter, Aeromonas, Bacillus, Brevundimonas, Gordonia, Kocuria, Microbacterium, Mycobacterium, Pseudomonas, Rhodococcus, and Staphylococcus, in addition to one strain that was unidentified. The mucus-dwelling bacterial isolates were tested for resistance against ampicillin, kanamycin, streptomycin and chloramphenicol. About 95% of the isolates were found to be resistant to ampicillin, 93% to chloramphenicol, and 88% to kanamycin and streptomycin. A Microbacterium oxydans and the unidentified environmental isolate were resistant to all four antibiotics tested at very high levels (>1600 μg/ml ampicillin and streptomycin; >1120 μg/ml kanamycin; >960 μg/ml chloramphenicol). Only a Kocuria sp. was sensitive to all four antibiotics at the lowest concentrations tested (3.10 μg/ml ampicillin and streptomycin; 2.15 μg/ml kanamycin; 1.85 μg/ml chloramphenicol). The rest of the isolates showed different resistance levels. Plasmid isolations were carried out to determine if the multiple antibiotic resistance could be attributed to the presence of plasmids. However, no plasmid was detected in any of the isolates. The resistance appeared to be mediated by chromosome-associated functions. This study indicated that multiple antibiotic resistance at moderate to high levels is common among the current phenotypes of the fish mucus-dwelling bacterial populations in this temperate, shallow lake which has not been subjected to any aquaculturing so far but under anthropogenic effect being in a recreational area. PMID:23039919

  10. Plasmid profiling of bacterial isolates from confined environments

    NASA Astrophysics Data System (ADS)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  11. Major Families of Multiresistant Plasmids from Geographically and Epidemiologically Diverse Staphylococci

    PubMed Central

    Shearer, Julia E. S.; Wireman, Joy; Hostetler, Jessica; Forberger, Heather; Borman, Jon; Gill, John; Sanchez, Susan; Mankin, Alexander; LaMarre, Jacqueline; Lindsay, Jodi A.; Bayles, Kenneth; Nicholson, Ainsley; O’Brien, Frances; Jensen, Slade O.; Firth, Neville; Skurray, Ronald A.; Summers, Anne O.

    2011-01-01

    Staphylococci are increasingly aggressive human pathogens suggesting that active evolution is spreading novel virulence and resistance phenotypes. Large staphylococcal plasmids commonly carry antibiotic resistances and virulence loci, but relatively few have been completely sequenced. We determined the plasmid content of 280 staphylococci isolated in diverse geographical regions from the 1940s to the 2000s and found that 79% of strains carried at least one large plasmid >20 kb and that 75% of these large plasmids were 20–30 kb. Using restriction fragment length polymorphism (RFLP) analysis, we grouped 43% of all large plasmids into three major families, showing remarkably conserved intercontinental spread of multiresistant staphylococcal plasmids over seven decades. In total, we sequenced 93 complete and 57 partial staphylococcal plasmids ranging in size from 1.3 kb to 64.9 kb, tripling the number of complete sequences for staphylococcal plasmids >20 kb in the NCBI RefSeq database. These plasmids typically carried multiple antimicrobial and metal resistances and virulence genes, transposases and recombinases. Remarkably, plasmids within each of the three main families were >98% identical, apart from insertions and deletions, despite being isolated from strains decades apart and on different continents. This suggests enormous selective pressure has optimized the content of certain plasmids despite their large size and complex organization. PMID:22384369

  12. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    PubMed

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.

  13. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  14. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  15. Analysis of plasmid-mediated quinolone and oxyimino-cephalosporin resistance mechanisms in Uruguayan Salmonella enterica isolates from 2011-2013.

    PubMed

    Cordeiro, Nicolás F; Nabón, Adriana; García-Fulgueiras, Virginia; Álvez, Marcelo; Sirok, Alfredo; Camou, Teresa; Vignoli, Rafael

    2016-09-01

    This study characterised the mechanisms of fluoroquinolone and oxyimino-cephalosporin resistance in human Salmonella enterica isolates in Uruguay. Salmonella enterica isolates were collected from 2011-2013 and were selected based on non-susceptibility to ciprofloxacin and/or oxyimino-cephalosporins. The disk diffusion assay was performed for various antibiotics, and the ciprofloxacin minimum inhibitory concentration (MIC) was determined following CLSI guidelines. Genetic relatedness was determined following PulseNet protocols. Extended-spectrum β-lactamases, ampC alleles and plasmid-mediated quinolone resistance were characterised by PCR and sequencing. Plasmid analyses were carried out by conjugation or transformation assays, and plasmid-encoded genes were identified by PCR. Mutations in the quinolone resistance-determining region of gyrases were sought by PCR and sequencing. Among 579 isolates, 105 (18.4%) ciprofloxacin-non-susceptible (CIP-NS) isolates, 9 (1.6%) oxyimino-cephalosporin-resistant isolates and 2 (0.3%) isolates resistant to both antibiotic families were detected. Thirteen isolates carried qnrB alleles (twelve qnrB19 and one qnrB2), four carried blaCTX-M-8, two blaCTX-M-14, two blaSHV-2 and three blaCMY-2-like genes. No correlation was found between mutations in gyrases and ciprofloxacin MICs. Several co-circulating clones of S. enterica ssp. enterica serovar Typhimurium were detected; conversely, S. enterica ssp. enterica serovar Enteritidis corresponded mainly to a single circulating clone. Nine (75%) of twelve of CIP-NS extraintestinal isolates shared the same pulsotype with intestinal isolates. During the study period, the frequency of CIP-NS isolates increased, albeit with ciprofloxacin MICs of 0.125-0.5mg/L. Detection of the same quinolone-resistant clones recovered both from intestinal and extraintestinal samples highlights the significance of epidemiological surveillance of antibiotic susceptibility for every human Salmonella isolate. PMID

  16. Analysis of plasmid-mediated quinolone and oxyimino-cephalosporin resistance mechanisms in Uruguayan Salmonella enterica isolates from 2011-2013.

    PubMed

    Cordeiro, Nicolás F; Nabón, Adriana; García-Fulgueiras, Virginia; Álvez, Marcelo; Sirok, Alfredo; Camou, Teresa; Vignoli, Rafael

    2016-09-01

    This study characterised the mechanisms of fluoroquinolone and oxyimino-cephalosporin resistance in human Salmonella enterica isolates in Uruguay. Salmonella enterica isolates were collected from 2011-2013 and were selected based on non-susceptibility to ciprofloxacin and/or oxyimino-cephalosporins. The disk diffusion assay was performed for various antibiotics, and the ciprofloxacin minimum inhibitory concentration (MIC) was determined following CLSI guidelines. Genetic relatedness was determined following PulseNet protocols. Extended-spectrum β-lactamases, ampC alleles and plasmid-mediated quinolone resistance were characterised by PCR and sequencing. Plasmid analyses were carried out by conjugation or transformation assays, and plasmid-encoded genes were identified by PCR. Mutations in the quinolone resistance-determining region of gyrases were sought by PCR and sequencing. Among 579 isolates, 105 (18.4%) ciprofloxacin-non-susceptible (CIP-NS) isolates, 9 (1.6%) oxyimino-cephalosporin-resistant isolates and 2 (0.3%) isolates resistant to both antibiotic families were detected. Thirteen isolates carried qnrB alleles (twelve qnrB19 and one qnrB2), four carried blaCTX-M-8, two blaCTX-M-14, two blaSHV-2 and three blaCMY-2-like genes. No correlation was found between mutations in gyrases and ciprofloxacin MICs. Several co-circulating clones of S. enterica ssp. enterica serovar Typhimurium were detected; conversely, S. enterica ssp. enterica serovar Enteritidis corresponded mainly to a single circulating clone. Nine (75%) of twelve of CIP-NS extraintestinal isolates shared the same pulsotype with intestinal isolates. During the study period, the frequency of CIP-NS isolates increased, albeit with ciprofloxacin MICs of 0.125-0.5mg/L. Detection of the same quinolone-resistant clones recovered both from intestinal and extraintestinal samples highlights the significance of epidemiological surveillance of antibiotic susceptibility for every human Salmonella isolate.

  17. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China

    PubMed Central

    Yang, Qiu-E.; Sun, Jian; Li, Liang; Deng, Hui; Liu, Bao-Tao; Fang, Liang-Xing; Liao, Xiao-Ping; Liu, Ya-Hong

    2015-01-01

    The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants blaCTX-M, plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) blaCTX-M, rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok–sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions. PMID:26441898

  18. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    PubMed

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods. PMID:26592941

  19. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.

    PubMed

    Li, Xian-Zhi; Plésiat, Patrick; Nikaido, Hiroshi

    2015-04-01

    The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

  20. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  1. Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid.

    PubMed Central

    Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J

    1992-01-01

    Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052

  2. In vivo transmission of an IncA/C plasmid in Escherichia coli depends on tetracycline concentration, and acquisition of the plasmid results in a variable cost of fitness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. While antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types...

  3. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments

    PubMed Central

    Atterby, Clara; Ramey, Andrew M.; Hall, Gabriel Gustafsson; Järhult, Josef; Börjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    Background Antibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats. Methods Escherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula. Results Screening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected. Conclusion Our findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health. PMID:27649798

  4. Plasmid copy number noise in monoclonal populations of bacteria

    NASA Astrophysics Data System (ADS)

    Wong Ng, Jérôme; Chatenay, Didier; Robert, Jérôme; Poirier, Michael Guy

    2010-01-01

    Plasmids are extra chromosomal DNA that can confer to their hosts’ supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy number (PCN) regulation processes have been studied and modeled, no measurement of the heterogeneity in PCN within a whole population has been done. We have developed a fluorescent-based measurement system, which enables determination of the mean and noise in PCN within a monoclonal population of bacteria. Two different fluorescent protein reporters were inserted: one on the chromosome and the other on the plasmid. The fluorescence of these bacteria was measured with a microfluidic flow cytometry device. We show that our measurements are consistent with known plasmid characteristics. We find that the partitioning system lowers the PCN mean and standard deviation. Finally, bacterial populations were allowed to grow without selective pressure. In this case, we were able to determine the plasmid loss rate and growth inhibition effect.

  5. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kwon, Min-A; Choi, Sunwha; Kim, Sooah; Kim, Jungyeon; Shin, Yong-An; Kim, Kyoung Heon

    2015-10-01

    We have developed a new shuttle plasmid, designated as pLK1-MCS that can replicate in both Clostridium acetobutylicum and Escherichia coli, by combining the pUB110 and pUC19 plasmids. Plasmid pLK1-MCS replicated more stably than previously reported plasmids containing either the pIM13 or the pAMβ1 replicon in the absence of antibiotic selective pressure. The transfer frequency of pLK1-MCS into C. acetobutylicum was similar to the transfer frequency of other shuttle plasmids. We complemented C. acetobutylicum ML1 (that does not produce solvents such as acetone, butanol, and ethanol owing to loss of the megaplasmid pSOL1 harboring the adhE1-ctfAB-adc operon) by introducing pLK1-MCS carrying the adhE1-ctfAB-adc operon into C. acetobutylicum ML1. The transformed cells were able to resume anaerobic solvent production, indicating that the new shuttle plasmid has the potential for practical use in microbial biotechnology.

  6. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.

    PubMed

    Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N

    2013-01-01

    Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for

  7. Genome Sequence of Listeria monocytogenes Plasmid pLM-C-273 Carrying Genes Related to Stress Resistance

    PubMed Central

    Liang, Lindsay; Gnaneshan, Saravanamuttu; Garduño, Rafael A.

    2016-01-01

    Mobile genetic elements in bacteria, such as plasmids, act as important vectors for the transfer of antibiotic resistance, virulence, and metal resistance genes. Here, we report the genome sequence of a new plasmid pLM-C-273, identified in a Listeria monocytogenes strain isolated from a clinical sample in Ontario, Canada. PMID:27738039

  8. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    PubMed

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  9. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans.

    PubMed

    Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik

    2015-09-01

    The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology.

  10. Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli.

    PubMed Central

    Miller, P F; Gambino, L F; Sulavik, M C; Gracheck, S J

    1994-01-01

    Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response. Images PMID:7986007

  11. The mosaicism of plasmids revealed by atypical genes detection and analysis

    PubMed Central

    2011-01-01

    Background From an evolutionary viewpoint, prokaryotic genomes are extremely plastic and dynamic, since large amounts of genetic material are continuously added and/or lost through promiscuous gene exchange. In this picture, plasmids play a key role, since they can be transferred between different cells and, through genetic rearrangement(s), undergo gene(s) load, leading, in turn, to the appearance of important metabolic innovations that might be relevant for cell life. Despite their central position in bacterial evolution, a massive analysis of newly acquired functional blocks [likely the result of horizontal gene transfer (HGT) events] residing on plasmids is still missing. Results We have developed a computational, composition-based, pipeline to scan almost 2000 plasmids for genes that differ significantly from their hosting molecule. Plasmids atypical genes (PAGs) were about 6% of the total plasmids ORFs and, on average, each plasmid possessed 4.4 atypical genes. Nevertheless, conjugative plasmids were shown to possess an amount of atypical genes than that found in not mobilizable plasmids, providing strong support for the central role suggested for conjugative plasmids in the context of HGT. Part of the retrieved PAGs are organized into (mainly short) clusters and are involved in important biological processes (detoxification, antibiotic resistance, virulence), revealing the importance of HGT in the spreading of metabolic pathways within the whole microbial community. Lastly, our analysis revealed that PAGs mainly derive from other plasmid (rather than coming from phages and/or chromosomes), suggesting that plasmid-plasmid DNA exchange might be the primary source of metabolic innovations in this class of mobile genetic elements. Conclusions In this work we have performed the first large scale analysis of atypical genes that reside on plasmid molecules to date. Our findings on PAGs function, organization, distribution and spreading reveal the importance of

  12. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts

    PubMed Central

    Porse, Andreas; Schønning, Kristian; Munck, Christian; Sommer, Morten O.A.

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts. PMID:27501945

  13. The Role of Clonal Interference in the Evolutionary Dynamics of Plasmid-Host Adaptation

    PubMed Central

    Hughes, Julie M.; Lohman, Brian K.; Deckert, Gail E.; Nichols, Eric P.; Settles, Matt; Abdo, Zaid; Top, Eva M.

    2012-01-01

    ABSTRACT Promiscuous plasmids replicate in a wide range of bacteria and therefore play a key role in the dissemination of various host-beneficial traits, including antibiotic resistance. Despite the medical relevance, little is known about the evolutionary dynamics through which drug resistance plasmids adapt to new hosts and thereby persist in the absence of antibiotics. We previously showed that the incompatibility group P-1 (IncP-1) minireplicon pMS0506 drastically improved its stability in novel host Shewanella oneidensis MR-1 after 1,000 generations under antibiotic selection for the plasmid. The only mutations found were those affecting the N terminus of the plasmid replication initiation protein TrfA1. Our aim in this study was to gain insight into the dynamics of plasmid evolution. Changes in stability and genotype frequencies of pMS0506 were monitored in evolving populations of MR-1 (pMS0506). Genotypes were determined by sequencing trfA1 amplicons from individual clones and by 454 pyrosequencing of whole plasmids from entire populations. Stability of pMS0506 drastically improved by generation 200. Many evolved plasmid genotypes with point mutations as well as in-frame and frameshift deletions and duplications in trfA1 were observed in all lineages with both sequencing methods. Strikingly, multiple genotypes were simultaneously present at high frequencies (>10%) in each population. Their relative abundances changed over time, but after 1,000 generations only one or two genotypes dominated the populations. This suggests that hosts with different plasmid genotypes were competing with each other, thus affecting the evolutionary trajectory. Plasmids can thus rapidly improve their stability, and clonal interference plays a significant role in plasmid-host adaptation dynamics. PMID:22761390

  14. Transformation of Streptococcus sanguis Challis by plasmid deoxyribonucleic acid from Streptococcus faecalis.

    PubMed Central

    LeBlanc, D J; Hassell, F P

    1976-01-01

    Plasmid deoxyribonucleic acid (DNA) from Streptococcus faecalis, strain DS5, was transferred to the Challis strain of Streptococcus sanguis by transformation. Two antibiotic resistance markers carried by the beta plasmid from strain DS5, erythromycin and lincomycin, were transferred to S. sanguis at a maximum frequency of 1.8 x 10-5/colony-forming unit. Approximately 70% of the covalently closed circular DNA isolated from transformant cultures by dye buoyant density gradients was shown to be hybridizable to beta plasmid DNA. Two major differences were observed between the beta plasmid from S. faecalis and the plasmid isolated from transformed S. sanguis: (i) the beta plasmid from strain DS5 sedimented in velocity gradients at 43S, whereas the covalently closed circular DNA from transformed Challis sedimented at 41S, suggesting a 1.5-Mdal deletion from the beta plasmid occurred; (ii) although the 43S beta plasmid remained in the supercoiled configuration for several weeks after isolation, the 41S plasmid was rapidly converted to a linear double-stranded molecule. Attempts to transform S. sanguis with the alpha plasmid from S. faecalis, strain DS5, were unsuccessful. PMID:824275

  15. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.

    PubMed

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-10-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ~ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. PMID:24700815

  16. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum

    PubMed Central

    Wang, Yibing; Cutcliffe, Lesley T; Skilton, Rachel J; Ramsey, Kyle H; Thomson, Nicholas R; Clarke, Ian N

    2014-01-01

    The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ∼ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism. PMID:24700815

  17. Molecular classification of IncP-9 naphthalene degradation plasmids

    SciTech Connect

    Izmalkova, T.Y.; Mavrodi, D.V.; Sokolov, S.L.; Kosheleva, I.A.; Smalla, K.; Thomas, C.M.; Boronin, A.M.

    2006-07-15

    A large collection of naphthalene-degrading fluorescent Pseudomonas strains isolated from sites contaminated with coal tar and crude oil was screened for the presence of IncP-9 plasmids. Seventeen strains were found to carry naphthalene catabolic plasmids ranging in size from 83 to 120kb and were selected for further study. Results of molecular genotyping revealed that 15 strains were closely related to P. putida, one to P. fluorescens, and one to P. aeruginosa. All catabolic plasmids found in these strains, with the exception of pBS216, pSN11, and p8909N-1, turned out to belong to IncP-9 {beta}-subgroup. Plasmids pBS216, pSN11, and p8909N-1 were identified as members of IncP-9 {delta}-subgroup. One plasmid, pBS2, contains fused replicons of IncP-9 {beta} and IncP-7 groups. RFLP analyses of the naphthalene catabolic plasmids revealed that organisation of the replicon correlates well with the overall plasmid structure. Comparative PCR studies with conserved oligonucleotide primers indicated that genes for key enzymes of naphthalene catabolism are highly conserved among all studied plasmids. Three bacterial strains, P. putida BS202, P. putida BS3701, and P. putida BS3790, were found to have two different salicylate hydroxylase genes one of which has no similarity to the 'classic' enzyme encoded by nahG gene. Discovery of a large group of plasmid with unique nahR suggested that the regulatory loop may also represent a variable part of the pathway for catabolism of naphthalene in fluorescent Pseudomonas spp.

  18. Presence and analysis of plasmids in human and animal associated arcobacter species.

    PubMed

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip; Deforce, Dieter; Ingmer, Hanne; Vandenberg, Olivier; Van den Abeele, Anne-Marie; Houf, Kurt

    2014-01-01

    In this study, we report the screening of four Arcobacter species for the presence of small and large plasmids. Plasmids were present in 9.9% of the 273 examined strains. One Arcobacter cryaerophilus and four Arcobacter butzleri plasmids were selected for further sequencing. The size of three small plasmids isolated from A. butzleri and the one from A. cryaerophilus strains ranged between 4.8 and 5.1 kb, and the size of the large plasmid, isolated from A. butzleri, was 27.4 kbp. The G+C content of all plasmids ranged between 25.4% and 26.2%. A total of 95% of the large plasmid sequence represents coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried 35 coding sequences, including seven genes in a contiguous region of 11.6 kbp that encodes an orthologous type IV secretion system found in the Wolinella succinogenes genome, Helicobacter pylori and Campylobacter jejuni plasmids, which makes this plasmid interesting for further exploration.

  19. Characterization of two novel plasmids from Geobacillus sp. 610 and 1121 strains.

    PubMed

    Kananavičiūtė, Rūta; Butaitė, Elena; Citavičius, Donaldas

    2014-01-01

    We describe two cryptic low molecular weight plasmids, pGTD7 (3279bp) and pGTG5 (1540bp), isolated from Geobacillus sp. 610 and 1121 strains, respectively. Homology analysis of the replication protein (Rep) sequences and detection of ssDNA indicate that both of them replicate via rolling circle mechanism. As revealed by sequence similarities of dso region and Rep protein, plasmid pGTD7 belongs to pC194/pUB110 plasmid family. The replicon of pGTD7 was proved to be functional in another Geobacillus host. For this purpose, a construct pUCK7, containing a replicon of the analyzed plasmid, was created and transferred to G. stearothermophilus NUB3621R strain by electroporation. Plasmid pGTG5, based on Rep protein sequence similarity, was found to be related mostly to some poorly characterized bacterial plasmids. Rep proteins encoded by these plasmids contain conservative motifs that are most similar to those of Microviridae phages. This feature suggests that pGTG5, together with other plasmids containing the same motifs, could constitute a new family of bacterial plasmids. To date, pGTG5 is the smallest plasmid identified in bacteria belonging to the genus Geobacillus. The two plasmids described in this study can be used for the construction of new vectors suitable for biotechnologically important bacteria of the genus Geobacillus.

  20. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    PubMed Central

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  1. Encoding Dictionaries.

    ERIC Educational Resources Information Center

    Ide, Nancy

    1995-01-01

    Describes problems in devising a Text Encoding Initiative (TEI) encoding format for dictionaries. Asserts that the high degree of structuring and compression of information are among the most complex text types treated in the TEI. Concludes that the source of some TEI problems lies in the design of Standard Generalized Markup Language (SGML). (CFR)

  2. Antibiotics Quiz

    MedlinePlus

    ... Viruses b) Bacteria c) Viruses and Bacteria 2. Bacteria are germs that cause colds and flu. a) ... The Flu c) Cold d) Strep Throat 4. Bacteria that cause infections can become resistant to antibiotics. ...

  3. Analysis of replication region of the cryptic plasmid pAG20 from Acetobacter aceti 3620.

    PubMed

    Kretová, Miroslava; Szemes, Tomás; Laco, Juraj; Gronesová, Paulína; Grones, Jozef

    2005-03-01

    The DNA sequence of small cryptic plasmid pAG20 in Acetobacter aceti was determined at 3064 bp with 51.6% GC pairs. The plasmid encoded a 186 amino acid protein which is important for plasmid replication in Gram-negative bacteria except Escherichia coli. Two 21 bp large direct repeat sequence 1 and two 13 bp direct repeat sequence 2 were determined in the regulation region upstream from gene encoded Rep protein. Vector pAG24 with kanamycin gene and two deletion derivatives pAG25 and pAG26 without rep gene from plasmid pAG20 were constructed. Plasmid pAG24 was replicated in a broad host range like E. coli, Acetobacter pasteurianus, A. aceti, Comanomonas spp., Serratia marcescens, and Shigella spp.

  4. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  5. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola

    PubMed Central

    Van Ham, Roeland C. H. J.; González-Candelas, Fernando; Silva, Francisco J.; Sabater, Beatriz; Moya, Andrés; Latorre, Amparo

    2000-01-01

    Buchnera aphidicola is an obligate, strictly vertically transmitted, bacterial symbiont of aphids. It supplies its host with essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. Several lineages of Buchnera show adaptation to their nutritional role in the form of plasmid-mediated amplification of key-genes involved in the biosynthesis of tryptophan (trpEG) and leucine (leuABCD). Phylogenetic analyses of these plasmid-encoded functions have thus far suggested the absence of horizontal plasmid exchange among lineages of Buchnera. Here, we describe three new Buchnera plasmids, obtained from species of the aphid host families Lachnidae and Pemphigidae. All three plasmids belong to the repA1 family of Buchnera plasmids, which is characterized by the presence of a repA1-replicon responsible for replication initiation. A comprehensive analysis of this family of plasmids unexpectedly revealed significantly incongruent phylogenies for different plasmid and chromosomally encoded loci. We infer from these incongruencies a case of horizontal plasmid transfer in Buchnera. This process may have been mediated by secondary endosymbionts, which occasionally undergo horizontal transmission in aphids. PMID:10984505

  6. A highly selectable and highly transferable Ti plasmid to study conjugal host range and Ti plasmid dissemination in complex ecosystems.

    PubMed

    Teyssier-Cuvelle, S; Oger, P; Mougel, C; Groud, K; Farrand, S K; Nesme, X

    2004-07-01

    A conjugal donor system, ST2, was constructed to study the conjugal dissemination of a Ti plasmid to wild-type recipient bacteria in vitro and in situ. The system consisted of a polyauxotrophic derivative of C58 harboring a hyperconjugative and highly selectable Ti plasmid, pSTiEGK, which was constructed by inserting a multiple antibiotic resistance cassette in the traM- mcpA region of pTiC58Delta accR. ST2 transfers pSTiEGK constitutively at frequencies up to 10(-1) to plasmidless Agrobacterium recipients. The host range of pSTiEGK includes all the known genomic species of Agrobacterium, indigenous soil agrobacteria and some Rhizobium and Phyllobacterium spp. All transconjugants became pathogenic upon acquisition of the Ti plasmid and were also able to transfer pSTiEGK by conjugation. This host range was indistinguishable from that of its wild-type parent pTiC58, and therefore pSTiEGK constitute a valid proxy to study the dissemination of Ti plasmids directly in the environment. Transconjugants can be selected on a combination of four antibiotics, which efficiently prevents the growth of the indigenous microbiota present in complex environments. The transfer of pSTiEGK to members of the genus Agrobacterium was affected primarily by the plasmid content of the recipient strain (10(3)- to 10(5)-fold reduction), e.g., the presence of incompatible plasmids. As a consequence, a species should be considered permissive to Ti transfer whenever one permissive isolate is found. PMID:15164241

  7. Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group.

    PubMed

    Amadio, Ariel F; Benintende, Graciela B; Zandomeni, Rubén O

    2009-11-01

    Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12,095bp), pFR12.5 (12,459bp) and pFR55 (55,712bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study

  8. Addressing the Natural Antibiotic Resistome in Studies of Soil Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environment is recognized as a source and a reservoir of antibiotic resistance (AR). Many antibiotic compounds are derived from bacteria and fungi that are naturally present in the environment. These microbes carry genes encoding resistance to the antibiotic that they produce and their resistanc...

  9. Detection of Variants of the pRAS3, pAB5S9, and pSN254 Plasmids in Aeromonas salmonicida subsp. salmonicida: Multidrug Resistance, Interspecies Exchanges, and Plasmid Reshaping

    PubMed Central

    Vincent, Antony T.; Trudel, Mélanie V.; Paquet, Valérie E.; Boyle, Brian; Tanaka, Katherine H.; Dallaire-Dufresne, Stéphanie; Daher, Rana K.; Frenette, Michel; Derome, Nicolas

    2014-01-01

    The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment. PMID:25267667

  10. Detection of variants of the pRAS3, pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug resistance, interspecies exchanges, and plasmid reshaping.

    PubMed

    Vincent, Antony T; Trudel, Mélanie V; Paquet, Valérie E; Boyle, Brian; Tanaka, Katherine H; Dallaire-Dufresne, Stéphanie; Daher, Rana K; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2014-12-01

    The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.

  11. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor.

    PubMed

    Murakami, Takeshi; Burian, Jan; Yanai, Koji; Bibb, Mervyn J; Thompson, Charles J

    2011-09-20

    Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin. Recombination between RsA and RsB generated zouA-dependent DNA amplification resulting in 4-12 tandem copies of the act gene cluster averaging nine repeats per genome. This resulted in a 20-fold increase in actinorhodin production compared with the parental strain. To determine whether the recombination event required taxon-specific genetic effectors or generalized bacterial recombination (recA), it was also analyzed in the heterologous host Escherichia coli. zouA was expressed under the control of an inducible promoter in wild-type and recA mutant strains. A plasmid was constructed with recombination sites RsA and RsB bordering a drug resistance marker. Induction of zouA expression generated hybrid RsB/RsA sites, evidence of site-specific recombination that occurred independently of recA. ZouA-mediated DNA amplification promises to be a valuable tool for increasing the activities of commercially important biosynthetic, degradative, and photosynthetic pathways in a wide variety of organisms.

  12. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor

    PubMed Central

    Murakami, Takeshi; Burian, Jan; Yanai, Koji; Bibb, Mervyn J.; Thompson, Charles J.

    2011-01-01

    Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin. Recombination between RsA and RsB generated zouA-dependent DNA amplification resulting in 4–12 tandem copies of the act gene cluster averaging nine repeats per genome. This resulted in a 20-fold increase in actinorhodin production compared with the parental strain. To determine whether the recombination event required taxon-specific genetic effectors or generalized bacterial recombination (recA), it was also analyzed in the heterologous host Escherichia coli. zouA was expressed under the control of an inducible promoter in wild-type and recA mutant strains. A plasmid was constructed with recombination sites RsA and RsB bordering a drug resistance marker. Induction of zouA expression generated hybrid RsB/RsA sites, evidence of site-specific recombination that occurred independently of recA. ZouA-mediated DNA amplification promises to be a valuable tool for increasing the activities of commercially important biosynthetic, degradative, and photosynthetic pathways in a wide variety of organisms. PMID:21903924

  13. Competing ParA structures space bacterial plasmids equally over the nucleoid.

    PubMed

    Ietswaart, Robert; Szardenings, Florian; Gerdes, Kenn; Howard, Martin

    2014-12-01

    Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.

  14. Effects of bacteria‑mediated reprogramming and antibiotic pretreatment on the course of colitis in mice.

    PubMed

    Gardlik, Roman; Wagnerova, Alexandra; Celec, Peter

    2014-08-01

    Since the original study by Takahashi and Yamanaka in 2006, there have been significant advances in the field of induced pluripotent stem cells. However, to the best of our knowledge, all of the studies published to date are based on ex vivo gene delivery and subsequent reimplantation of the cells. By contrast, in vivo reprogramming allows the direct administration of DNA encoding the reprogramming factors into the target tissue. In our previous study we demonstrated the beneficial effects of Salmonella‑mediated oral delivery of genes into colonic mucosa as a therapy for colitis. In the present study, the effect of the bacterial vector Salmonella typhimurium SL7207, carrying a plasmid encoding the reprogramming factors Sox2, Oct3/4 and Klf4, on colitis in mice was investigated. Therapeutic intervention, consisting of repeated gavaging following the induction of colitis, did not exhibit beneficial effects. However, preventive oral administration of the therapeutic bacterial strain resulted in improvements in weight loss, colon length and stool consistency. Recently it has been shown that antibiotic pretreatment may alleviate chemically induced colitis in mice. Therefore, in the present study it was investigated whether antibiotic pretreatment of mice was able to enhance colonization of the administered bacterial strain in the colon, and therefore improve therapeutic outcome. C57BL/6 mice were administered streptomycin and metronidazole for four days, prior to multiple oral administrations of therapeutic bacteria every other day. Following three gavages, mice were administered dextran sulfate sodium in their drinking water to induce colitis. Disease activity parameters, including stool consistency, weight loss and colon length, were improved in the group receiving antibiotics and bacterial vectors. These results indicate that antibiotic pretreatment may enhance bacterial gene delivery into the colon. Furthermore, the anticipated in vivo reprogramming of colon

  15. Hygromycin B and Apramycin Antibiotic Resistance Cassettes for Use in Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Gaynor, Erin C.

    2014-01-01

    Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium. PMID:24751825

  16. Multiple drug resistance patterns and plasmid profiles of non-typhi salmonellae in Turkey.

    PubMed Central

    Yildirmak, T.; Yazgan, A.; Ozcengiz, G.

    1998-01-01

    A total of 259 clinical isolates of nonrepetitive non-typhi salmonellae (NTS) were examined for antibiotic resistance patterns and plasmid content. The antibiotics used were amoxicillin-clavulanic acid (AMC), ampicillin (AM), aztreonam (ATM), carbenicillin (CB), cefixime (CFM), cefotaxime (CTX), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), chloramphenicol (C), ciprofloxacin (CIP), gentamicin (GM), imipenem (IPM), ofloxacin (OFX), tetracycline (TE), trimethoprim-sulfomethoxazole (SXT). Multi-drug resistant (MDR) strains comprised 19.3% of the total isolates (50/259) and almost all were S. typhimurium (49/50). Fifteen different patterns of resistance was observed, AM/CB/C/AMC/TE and AM/CB/C/AMC/SXT/GM/CTX/CRO/CAZ/CFM/ATM being the most frequent patterns. Twenty-eight out of 50 multiresistant isolates were found to contain at least one plasmid (mean five) and the size of the plasmids ranged between 1.7 and 158 kb. Plasmid profiles of multiresistant NTS strains were heterogenous as 21 different profiles were detected in a total of 28 plasmid-bearing isolates. No direct correlation was established between antibiotic resistance patterns and plasmid profiles. PMID:9825781

  17. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects.

    PubMed

    Hall, James P J; Harrison, Ellie; Lilley, Andrew K; Paterson, Steve; Spiers, Andrew J; Brockhurst, Michael A

    2015-12-01

    Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co-occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid-borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus-encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co-occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity.

  18. Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA.

    PubMed Central

    Fornari, C S; Kaplan, S

    1982-01-01

    A broad-host-range cloning vector, pUI81, was constructed in vitro from plasmids RSF1010 and pSL25 (a pBR322 derivative) and used to assay for transformation in Rhodopseudomonas sphaeroides. Washing cells with 500 mM Tris was an effective means of inducing competence for DNA uptake. Transformation frequencies as high as 10(-5) (transformants per viable cell) have been achieved by incubating Tris-treated cells with plasmid DNA, 100 mM CaCl2, and 20% polyethylene glycol 6000. Maximum frequencies were obtained when recipient cells were spread onto selective media after a 6.5-h outgrowth period in antibiotic-free medium. The structure (open circular versus closed, covalent circular), size, and concentration of plasmid DNA all significantly affected the transformation frequency. Four different plasmids, all small and suitable as cloning vectors, have been introduced by transformation into several different R. sphaeroides strains. Recombinant DNA carried on small, nonconjugative plasmids with broad host ranges can now be directly transferred to R. sphaeroides by this method. Images PMID:6981642

  19. Tylosin resistance in Arcanobacterium pyogenes is encoded by an erm X determinant.

    PubMed

    Jost, B Helen; Field, Adam C; Trinh, Hien T; Songer, J Glenn; Billington, Stephen J

    2003-11-01

    Arcanobacterium pyogenes, a commensal on the mucous membranes of many economically important animal species, is also a pathogen, causing abscesses of the skin, joints, and visceral organs as well as mastitis and abortion. In food animals, A. pyogenes is exposed to antimicrobial agents used for growth promotion, prophylaxis, and therapy, notably tylosin, a macrolide antibiotic used extensively for the prevention of liver abscessation in feedlot cattle in the United States. Of 48 A. pyogenes isolates, 11 (22.9%) exhibited inducible or constitutive resistance to tylosin (MIC of > or = 128 microg/ml). These isolates also exhibited resistance to other macrolide and lincosamide antibiotics, suggesting a macrolide-lincosamide resistance phenotype. Of the 11 resistant isolates, genomic DNA from nine hybridized to an erm(X)-specific probe. Cloning and nucleotide sequencing of the A. pyogenes erm(X) gene indicated that it was >95% similar to erm(X) genes from Corynebacterium and Propionibacterium spp. Eight of the erm(X)-containing A. pyogenes isolates exhibited inducible tylosin resistance, which was consistent with the presence of a putative leader peptide upstream of the erm(X) open reading frame. For at least one A. pyogenes isolate, 98-4277-2, erm(X) was present on a plasmid, pAP2, and was associated with the insertion sequence IS6100. pAP2 also carried genes encoding the repressor-regulated tetracycline efflux system determinant Tet 33. The repA gene from pAP2 was nonfunctional in Escherichia coli and at least one A. pyogenes isolate, suggesting that there may be host-encoded factors required for replication of this plasmid. PMID:14576111

  20. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    SciTech Connect

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C.; Hazen, T.C.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  1. Antibiotic resistance shaping multi-level population biology of bacteria

    PubMed Central

    Baquero, Fernando; Tedim, Ana P.; Coque, Teresa M.

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  2. Insights into Dynamics of Mobile Genetic Elements in Hyperthermophilic Environments from Five New Thermococcus Plasmids

    PubMed Central

    Krupovic, Mart; Gonnet, Mathieu; Hania, Wajdi Ben; Forterre, Patrick; Erauso, Gaël

    2013-01-01

    Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1), with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA) systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles. PMID:23326305

  3. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids

    PubMed Central

    Hazen, Tracy H.; Kaper, James B.; Nataro, James P.

    2015-01-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates. PMID:26238712

  4. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids.

    PubMed

    Hazen, Tracy H; Kaper, James B; Nataro, James P; Rasko, David A

    2015-10-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.

  5. Enhanced expressions and histological characteristics of intravenously administered plasmid DNA in rat lung.

    PubMed Central

    Rha, S. J.; Wang, Y. P.

    2001-01-01

    Cationic liposome-mediated gene transfection is a promising method for gene therapy. In this study, the transfection efficiency and histological patterns were evaluated in rat lung after intravenous administration via femoral vein of naked plasmid DNA, naked plasmid DNA with pretreatment of DOTAP, and DOTAP-cholesterol-plasmid DNA complex. Plasmid DNA encoding bacterial LacZ gene was used. For quantification of LacZ gene expression, beta-galactosidase assay was performed. For histologic examination, X-gal staining and immunohistochemical staining for transfected gene products were performed. Pretreatment of DOTAP prior to the infusion of naked plasmid DNA increased transfection efficiency up to a level comparable to DOTAP-cholesterol-plasmid DNA complex injection. Transfected genes were mainly expressed in type II pneumocytes and alveolar macrophages in all animals. We conclude that the high transfection efficiency is achievable by intravenous administration of naked plasmid DNA with pretreatment of DOTAP, to a level comparable to DOTAP-cholesterol-plasmid DNA complex. In this regard, naked plasmid DNA administration with pretreatment of DOTAP could be a more feasible option for intravenous gene transfer than DOTAP-cholesterol-plasmid DNA complex, in that the former is technically easier and more cost-effective than the latter with a comparable efficacy, in terms of intravenous gene delivery to the lung. PMID:11641524

  6. Rapid Tracing of Resistance Plasmids in a Nosocomial Outbreak Using Optical DNA Mapping.

    PubMed

    Müller, Vilhelm; Karami, Nahid; Nyberg, Lena K; Pichler, Christoffer; Torche Pedreschi, Paola C; Quaderi, Saair; Fritzsche, Joachim; Ambjörnsson, Tobias; Åhrén, Christina; Westerlund, Fredrik

    2016-05-13

    Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance. PMID:27627201

  7. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  8. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    PubMed

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79