[Iditification of five imported cases of Plasmodium ovale wallikeri infection in Zhejiang Province].
Zhang, Ling-ling; Ruan, Wei; Chen, Hua-liang; Lu, Qiao-yi; Yao, Li-nong
2014-10-01
To identify and analyze Plasmodium ovale wallikeri in 5 imported malaria cases, who were detected positive by microscopy and negative by conventional PCR. Epidemiological information and blood samples were collected from the five patients. The detection was conducted by microscopy, Rapid Diagnostic Test (RDT) and nested PCR with Plasmodium genus-specific, species-specific and Plasmodium ovale wallikeri-specific primers. The amplified products were sequenced and Blast analysis was performed on line in NCBI. The five patients returned from Africa, and all had a history of malaria. They were microscopically positive for Plasmodium sp., and two cases showed Pan positive RDT result. All blood samples were negative for four Plasmodium spp. by conventional nested PCR, but positive by nested PCR with Plasmodium ovale wallikeri-specific primers. Blast analysis showed that the amplified sequences of the five cases had complete homology with P. ovale wallikeri clone RSH10 18S ribosomal RNA gene (Accession No. KF219561.1). The five cases which classified as positive by microscopy while negative by conventional PCR have been confirmed as Plasmodium ovale wallikeri infection by nested PCR with P. ovale wallikeri-specific primers.
Díaz, Pedro Berzosa; Lozano, Patricia Mula; Rincón, Jose Manuel Ramos; García, Luz; Reyes, Francisco; Llanes, Agustín Benito
2015-09-18
Approximately 50 million people (60 %) live in malaria risk areas in Ethiopia, at altitudes below 2000 m. According to official data, 60-70 % of malaria cases are due to Plasmodium falciparum, and 40-30 % by Plasmodium vivax. The species Plasmodium ovale was detected in 2013 in the northwest of the country, being the first report of the presence of this species in Ethiopia since the 60 s. The aim of this study was to assess the diagnosis by microscopy and PCR, and demonstrate the presence of other Plasmodium species in the country. The survey was conducted in Bulbula, situated in the Rift Valley (West Arsi Province, Oromia Region). From December 2010 to October 2011, 3060 samples were collected from patients with symptoms of malaria; the diagnosis of malaria was done by microscopy and confirmation by PCR. 736 samples were positive for malaria by microscopy. After removing the 260 samples (109 positives and 151 negatives) for which it was not possible to do PCR, there were a total of 2800 samples, 1209 are used for its confirmation by PCR and quality control (627 are positives and 582 negatives by microscopy). From the 627 positive samples, 604 were confirmed as positive by PCR, 23 false positives were detected, and the group of 582 negative samples, 184 were positive by PCR (false negatives), which added to the previous positive samples is a total of 788, positive samples for some species of Plasmodium sp. 13.3 % more positives were detected with the PCR than the microscopy. Importantly, 23 samples were detected by PCR as P. ovale, after the sequencing of these samples was determined as P. ovale curtisi. The PCR detected more positive samples than the microscopy; in addition, P. ovale and P. ovale/P. vivax were detected that had not been detected by microscopy, which can affect in the infection control.
Heutmekers, Marloes; Gillet, Philippe; Maltha, Jessica; Scheirlinck, Annelies; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Jacobs, Jan
2012-06-18
The present study evaluated CareStart pLDH Malaria, a three-band rapid diagnostic test detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) in a reference setting. CareStart pLDH was retrospectively and prospectively assessed with a panel of stored (n=498) and fresh (n=77) blood samples obtained in international travelers suspected of malaria. Both panels comprised all four Plasmodium species; the retrospective panel comprised also Plasmodium negative samples. The reference method was microscopy corrected by PCR. The prospective panel was run side-to-side with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). In the retrospective evaluation, overall sensitivity for P. falciparum samples (n=247) was 94.7%, reaching 98.7% for parasite densities>1,000/μl. Most false negative results occurred among samples with pure gametocytaemia (2/12, 16.7%) and at parasite densities ≤ 100/μl (7/12, 58.3%). None of the Plasmodium negative samples (n=96) showed visible test lines. Sensitivities for Plasmodium vivax (n=70), Plasmodium ovale (n=69) and Plasmodium malariae (n=16) were 74.3%, 31.9% and 25.0% respectively. Wrong species identification occurred in 10 (2.5%) samples and was mainly due to P. vivax samples reacting with the Pf-pLDH test line. Overall, Pf-pLDH test lines showed higher line intensities compared to the pan-pLDH lines (67.9% and 23.0% medium and strong line intensities for P. falciparum). In the prospective panel (77 Plasmodium-positive samples), CareStart pLDH showed higher sensitivities for P. falciparum compared to OptiMAL (p=0.008), lower sensitivities for P. falciparum as compare to SDFK60 (although not reaching statistical significance, p=0.08) and higher sensitivities for P. ovale compared to both OptiMAL (p=0.03) and SDFK60 (p=0.01). Inter-observer and test reproducibility were good to excellent. CareStart pLDH performed excellent for the detection of P. falciparum, well for P. vivax, but poor for P. ovale and P. malariae.
Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa
Jarvi, S.I.; Farias, M.E.M.; Baker, H.; Freifeld, H.B.; Baker, P.E.; Van Gelder, E.; Massey, J.G.; Atkinson, C.T.
2003-01-01
This study documents the presence of Plasmodium spp. in landbirds of central Polynesia. Blood samples collected from eight native and introduced species from the island of Tutuila, American Samoa were evaluated for the presence of Plasmodium spp. by nested rDNA PCR, serology and/or microscopy. A total of 111/188 birds (59%) screened by nested PCR were positive. Detection of Plasmodium spp. was verified by nucleotide sequence comparisons of partial 18S ribosomal RNA and TRAP (thrombospondin-related anonymous protein) genes using phylogenetic analyses. All samples screened by immunoblot to detect antibodies that cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due to antigenic differences between the Hawaiian and Samoan Plasmodium isolates. Similarly, all samples examined by microscopy (214) were negative. The fact that malaria is present, but not detectable by blood smear evaluation is consistent with low peripheral parasitemia characteristic of chronic infections. High prevalence of apparently chronic infections, the relative stability of the native land bird communities, and the presence of mosquito vectors which are considered endemic and capable of transmitting avian Plasmodia, suggest that these parasites are indigenous to Samoa and have a long coevolutionary history with their hosts.
Evaluation of the Palutop+4 malaria rapid diagnostic test in a non-endemic setting.
van Dijk, David P J; Gillet, Philippe; Vlieghe, Erika; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2009-12-12
Palutop+4 (All. Diag, Strasbourg, France), a four-band malaria rapid diagnostic test (malaria RDT) targeting the histidine-rich protein 2 (HRP-2), Plasmodium vivax-specific parasite lactate dehydrogenase (Pv-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) was evaluated in a non-endemic setting on stored whole blood samples from international travellers suspected of malaria. Microscopy corrected by PCR was the reference method. Samples include those infected by Plasmodium falciparum (n = 323), Plasmodium vivax (n = 97), Plasmodium ovale (n = 73) and Plasmodium malariae (n = 25) and 95 malaria negative samples. The sensitivities for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 85.1%, 66.0%, 32.0% and 5.5%. Sensitivities increased at higher parasite densities and reached 90.0% for P. falciparum >100/microl and 83.8% for P. vivax > 500/microl. Fourteen P. falciparum samples reacted with the Pv-pLDH line, one P. vivax sample with the HRP-2 line, and respectively two and four P. ovale and P. malariae samples reacted with the HRP-2 line. Two negative samples gave a signal with the HRP-2 line. Faint and weak line intensities were observed for 129/289 (44.6%) HRP-2 lines in P. falciparum samples, for 50/64 (78.1%) Pv-pLDH lines in P. vivax samples and for 9/13 (69.2%) pan-pLDH lines in P. ovale and P. malariae samples combined. Inter-observer reliabilities for positive and negative readings were excellent for the HRP-2 and Pv-pLDH lines (overall agreement > 92.0% and kappa-values for each pair of readers >or= 0.88), and good for the pan-pLDH line (85.5% overall agreement and kappa-values >or= 0.74). Palutop+4 performed moderately for the detection of P. falciparum and P. vivax, but sensitivities were lower than those of three-band malaria RDTs.
Prevalence and distribution of human Plasmodium infection in Pakistan.
Khattak, Aamer A; Venkatesan, Meera; Nadeem, Muhammad F; Satti, Humayoon S; Yaqoob, Adnan; Strauss, Kathy; Khatoon, Lubna; Malik, Salman A; Plowe, Christopher V
2013-08-28
Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high.
Prevalence and distribution of human Plasmodium infection in Pakistan
2013-01-01
Background Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. Methods A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Results Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Conclusions Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high. PMID:23984968
Yapi, Richard B.; Hürlimann, Eveline; Houngbedji, Clarisse A.; Ndri, Prisca B.; Silué, Kigbafori D.; Soro, Gotianwa; Kouamé, Ferdinand N.; Vounatsou, Penelope; Fürst, Thomas; N’Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2014-01-01
Background Helminth infection and malaria remain major causes of ill-health in the tropics and subtropics. There are several shared risk factors (e.g., poverty), and hence, helminth infection and malaria overlap geographically and temporally. However, the extent and consequences of helminth-Plasmodium co-infection at different spatial scales are poorly understood. Methodology This study was conducted in 92 schools across Côte d’Ivoire during the dry season, from November 2011 to February 2012. School children provided blood samples for detection of Plasmodium infection, stool samples for diagnosis of soil-transmitted helminth (STH) and Schistosoma mansoni infections, and urine samples for appraisal of Schistosoma haematobium infection. A questionnaire was administered to obtain demographic, socioeconomic, and behavioral data. Multinomial regression models were utilized to determine risk factors for STH-Plasmodium and Schistosoma-Plasmodium co-infection. Principal Findings Complete parasitological and questionnaire data were available for 5,104 children aged 5-16 years. 26.2% of the children were infected with any helminth species, whilst the prevalence of Plasmodium infection was 63.3%. STH-Plasmodium co-infection was detected in 13.5% and Schistosoma-Plasmodium in 5.6% of the children. Multinomial regression analysis revealed that boys, children aged 10 years and above, and activities involving close contact to water were significantly and positively associated with STH-Plasmodium co-infection. Boys, wells as source of drinking water, and water contact were significantly and positively associated with Schistosoma-Plasmodium co-infection. Access to latrines, deworming, higher socioeconomic status, and living in urban settings were negatively associated with STH-Plasmodium co-infection; whilst use of deworming drugs and access to modern latrines were negatively associated with Schistosoma-Plasmodium co-infection. Conclusions/Significance More than 60% of the school children surveyed were infected with Plasmodium across Côte d’Ivoire, and about one out of six had a helminth-Plasmodium co-infection. Our findings provide a rationale to combine control interventions that simultaneously aim at helminthiases and malaria. PMID:24901333
Roh, Michelle E; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Kiwanuka, Gertrude N; Mwanga-Amumpaire, Juliet; Parikh, Sunil; Boum, Yap
2016-08-01
A survey of asymptomatic children in Uganda showed Plasmodium malariae and P. falciparum parasites in 45% and 55% of microscopy-positive samples, respectively. Although 36% of microscopy-positive samples were negative by rapid diagnostic test, 75% showed P. malariae or P. ovale parasites by PCR, indicating that routine diagnostic testing misses many non-P. falciparum malarial infections.
Dzakah, Emmanuel E; Kang, Keren; Ni, Chao; Wang, Hong; Wu, Peidian; Tang, Shixing; Wang, Jihua; Wang, Jufang; Wang, Xiaoning
2013-06-12
Most rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control. Plasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening. Three PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT's sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO). This study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens.
2013-01-01
Background Most rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control. Method Plasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening. Results Three PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT’s sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO). Conclusion This study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens. PMID:23758950
Maltha, Jessica; Gillet, Philippe; Heutmekers, Marloes; Bottieau, Emmanuel; Van Gompel, Alfons; Jacobs, Jan
2013-01-01
In the past malaria rapid diagnostic tests (RDTs) for self-diagnosis by travelers were considered suboptimal due to poor performance. Nowadays RDTs for self-diagnosis are marketed and available through the internet. The present study assessed RDT products marketed for self-diagnosis for diagnostic accuracy and quality of labeling, content and instructions for use (IFU). Diagnostic accuracy of eight RDT products was assessed with a panel of stored whole blood samples comprising the four Plasmodium species (n = 90) as well as Plasmodium negative samples (n = 10). IFUs were assessed for quality of description of procedure and interpretation and for lay-out and readability level. Errors in packaging and content were recorded. Two products gave false-positive test lines in 70% and 80% of Plasmodium negative samples, precluding their use. Of the remaining products, 4/6 had good to excellent sensitivity for the diagnosis of Plasmodium falciparum (98.2%-100.0%) and Plasmodium vivax (93.3%-100.0%). Sensitivity for Plasmodium ovale and Plasmodium malariae diagnosis was poor (6.7%-80.0%). All but one product yielded false-positive test lines after reading beyond the recommended reading time. Problems with labeling (not specifying target antigens (n = 3), and content (desiccant with no humidity indicator (n = 6)) were observed. IFUs had major shortcomings in description of test procedure and interpretation, poor readability and lay-out and user-unfriendly typography. Strategic issues (e.g. the need for repeat testing and reasons for false-negative tests) were not addressed in any of the IFUs. Diagnostic accuracy of RDTs for self-diagnosis was variable, with only 4/8 RDT products being reliable for the diagnosis of P. falciparum and P. vivax, and none for P. ovale and P. malariae. RDTs for self-diagnosis need improvements in IFUs (content and user-friendliness), labeling and content before they can be considered for self-diagnosis by the traveler.
Maltha, Jessica; Gillet, Philippe; Heutmekers, Marloes; Bottieau, Emmanuel; Van Gompel, Alfons; Jacobs, Jan
2013-01-01
Introduction In the past malaria rapid diagnostic tests (RDTs) for self-diagnosis by travelers were considered suboptimal due to poor performance. Nowadays RDTs for self-diagnosis are marketed and available through the internet. The present study assessed RDT products marketed for self-diagnosis for diagnostic accuracy and quality of labeling, content and instructions for use (IFU). Methods Diagnostic accuracy of eight RDT products was assessed with a panel of stored whole blood samples comprising the four Plasmodium species (n = 90) as well as Plasmodium negative samples (n = 10). IFUs were assessed for quality of description of procedure and interpretation and for lay-out and readability level. Errors in packaging and content were recorded. Results Two products gave false-positive test lines in 70% and 80% of Plasmodium negative samples, precluding their use. Of the remaining products, 4/6 had good to excellent sensitivity for the diagnosis of Plasmodium falciparum (98.2%–100.0%) and Plasmodium vivax (93.3%–100.0%). Sensitivity for Plasmodium ovale and Plasmodium malariae diagnosis was poor (6.7%–80.0%). All but one product yielded false-positive test lines after reading beyond the recommended reading time. Problems with labeling (not specifying target antigens (n = 3), and content (desiccant with no humidity indicator (n = 6)) were observed. IFUs had major shortcomings in description of test procedure and interpretation, poor readability and lay-out and user-unfriendly typography. Strategic issues (e.g. the need for repeat testing and reasons for false-negative tests) were not addressed in any of the IFUs. Conclusion Diagnostic accuracy of RDTs for self-diagnosis was variable, with only 4/8 RDT products being reliable for the diagnosis of P. falciparum and P. vivax, and none for P. ovale and P. malariae. RDTs for self-diagnosis need improvements in IFUs (content and user-friendliness), labeling and content before they can be considered for self-diagnosis by the traveler. PMID:23301027
Touré, Mahamoudou; Petersen, Pelle T; Bathily, Sidy N'd; Sanogo, Daouda; Wang, Christian W; Schiøler, Karin L; Konradsen, Flemming; Doumbia, Seydou; Alifrangis, Michael
2017-02-08
From November to December 2012 in Sélingué-Mali, blood samples from 88 febrile patients who tested negative by malaria Paracheck ® rapid diagnostic tests (RDTs) were used to assess the presence of sub-RDT Plasmodium falciparum as well as Borrelia , Coxiella burnetii , and Babesia applying molecular tools. Plasmodium sp. was present among 57 (60.2%) of the 88 malaria RDT-negative patients, whereas the prevalence of Borrelia , C. burnetii , and Babesia were 3.4% ( N = 3), 1.1% ( N = 1), and 0.0%, respectively. The additional diagnostic use of polymerase chain reaction (PCR) identified a high proportion of Plasmodium sp.-positive samples and although this may be a concern for malaria control, the respective PCR-identified malaria infections were less likely responsible for the observed fevers given the low parasite density. Also, the low infection levels of Borrelia and C. burnetii and lack of Babesia among the febrile patients call for further studies to assess the causes of fever among malaria RDT-negative patients in Sélingué. © The American Society of Tropical Medicine and Hygiene.
2011-01-01
Background The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. Methods The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Results Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. Conclusion SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl. PMID:21226920
Maltha, Jessica; Gillet, Philippe; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Bruggeman, Cathrien; Jacobs, Jan
2011-01-12
The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl.
2009-01-01
Background The SD FK80 P.f/P.v Malaria Antigen Rapid Test (Standard Diagnostics, Korea) (FK80) is a three-band malaria rapid diagnostic test detecting Plasmodium falciparum histidine-rich protein-2 (HRP-2) and Plasmodium vivax-specific lactate dehydrogenase (Pv-pLDH). The present study assessed its performance in a non-endemic setting. Methods Stored blood samples (n = 416) from international travellers suspected of malaria were used, with microscopy corrected by PCR as the reference method. Samples infected by Plasmodium falciparum (n = 178), Plasmodium vivax (n = 99), Plasmodium ovale (n = 75) and Plasmodium malariae (n = 24) were included, as well as 40 malaria negative samples. Results Overall sensitivities for the diagnosis of P. falciparum and P. vivax were 91.6% (95% confidence interval (CI): 86.2% - 95.0%) and 75.8% (65.9% - 83.6%). For P. falciparum, sensitivity at parasite densities ≥ 100/μl was 94.6% (88.8% - 97.6%); for P. vivax, sensitivity at parasite densities ≥ 500/μl was 86.8% (75.4% - 93.4%). Four P. falciparum samples showed a Pv-pLDH line, three of them had parasite densities exceeding 50.000/μl. Two P. vivax samples, one P. ovale and one P. malariae sample showed a HRP-2 line. For the HRP-2 and Pv-pLDH lines, respectively 81.4% (136/167) and 55.8% (43/77) of the true positive results were read as medium or strong line intensities. The FK80 showed good reproducibility and reliability for test results and line intensities (kappa values for both exceeding 0.80). Conclusion The FK80 test performed satisfactorily in diagnosing P. falciparum and P. vivax infections in a non-endemic setting. PMID:19930609
2010-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. Methods The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Results Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/μl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/μl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. Conclusion The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor. PMID:20565816
Maltha, Jessica; Gillet, Philippe; Bottieau, Emmanuel; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2010-06-18
Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/microl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/microl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor.
Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.
Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein
2016-01-01
We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.
Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear
HASSANPOUR, Gholamreza; MIRHENDI, Hossein; MOHEBALI, Mehdi; RAEISI, Ahmad; ZERAATI, Hojjat; KESHAVARZ, Hossein
2016-01-01
Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples. PMID:28127357
Evaluation of the Clearview® Malaria pLDH Malaria Rapid Diagnostic Test in a non-endemic setting.
Houzé, Sandrine; Hubert, Véronique; Cohen, Dorit Pessler; Rivetz, Baruch; Le Bras, Jacques
2011-09-27
Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs.
Evaluation of the Clearview® malaria pLDH malaria rapid diagnostic test in a non-endemic setting
2011-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). Methods The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Results Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. Conclusion The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs PMID:21951996
Baltzell, Kimberly A; Shakely, Deler; Hsiang, Michelle; Kemere, Jordan; Ali, Abdullah Suleiman; Björkman, Anders; Mårtensson, Andreas; Omar, Rahila; Elfving, Kristina; Msellem, Mwinyi; Aydin-Schmidt, Berit; Rosenthal, Philip J; Greenhouse, Bryan
2013-02-01
We screened for malaria in 594 blood samples from febrile patients who tested negative by a Plasmodium falciparum-specific histidine-rich protein-2-based rapid diagnostic test at 12 health facilities in Zanzibar districts North A and Micheweni, from May to August 2010. Screening was with microscopy, polymerase chain reaction (PCR) targeting the cytochrome b gene (cytbPCR) of the four major human malaria species, and quantitative PCR (qPCR). The prevalence of cytbPCR-detectable malaria infection was 2% (12 of 594), including 8 P. falciparum, 3 Plasmodium malariae, and 1 Plasmodium vivax infections. Microscopy identified 4 of 8 P. falciparum infections. Parasite density as estimated by microscopy or qPCR was > 4,000 parasites/μL in 5 of 8 cytbPCR-detectable P. falciparum infections. The infections that were missed by the rapid diagnostic test represent a particular challenge in malaria elimination settings and highlight the need for more sensitive point-of-care diagnostic tools to improve case detection of all human malaria species in febrile patients.
Hagen, Ralf Matthias; Hinz, Rebecca; Tannich, Egbert; Frickmann, Hagen
2015-06-01
We compared the performance of an in-house and a commercial malaria polymerase chain reaction (PCR) assay using freeze-thawed hemolytic blood samples. A total of 116 freeze-thawed ethylenediamine tetraacetic acid (EDTA) blood samples of patients with suspicion of malaria were analyzed by an in-house as well as by a commercially available real-time PCR. Concordant malaria negative PCR results were reported for 39 samples and malaria-positive PCR results for 67 samples. The in-house assay further detected one case of Plasmodium falciparum infection, which was negative in the commercial assay as well as five cases of P. falciparum malaria and three cases of Plasmodium vivax malaria, which showed sample inhibition in the commercial assay. The commercial malaria assay was positive in spite of a negative in-house PCR result in one case. In all concordant results, cycle threshold values of P. falciparum-positive samples were lower in the commercial PCR than in the in-house assay. Although Ct values of the commercial PCR kit suggest higher sensitivity in case of concordant results, it is prone to inhibition if it is applied to hemolytic freeze-thawed blood samples. The number of misidentifications was, however, identical for both real-time PCR assays.
High proportion of knowlesi malaria in recent malaria cases in Malaysia
2014-01-01
Background Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia. Methods A total of 457 microscopically confirmed, malaria-positive blood samples were collected from 22 state and main district hospitals in Malaysia between September 2012 and December 2013. Nested PCR assay targeting the 18S rRNA gene was used to determine the infecting Plasmodium species. Results A total of 453 samples were positive for Plasmodium species by using nested PCR assay. Plasmodium knowlesi was identified in 256 (56.5%) samples, followed by 133 (29.4%) cases of Plasmodium vivax, 49 (10.8%) cases of Plasmodium falciparum, two (0.4%) cases of Plasmodium ovale and one (0.2%) case of Plasmodium malariae. Twelve mixed infections were detected, including P. knowlesi/P. vivax (n = 10), P. knowlesi/P. falciparum (n = 1), and P. falciparum/P. vivax (n = 1). Notably, P. knowlesi (Included mixed infections involving P. knowlesi (P. knowlesi/P. vivax and P. knowlesi /P. falciparum)) showed the highest proportion in Sabah (84/115 cases, prevalence of 73.0%), Sarawak (83/120, 69.2%), Kelantan (42/56, 75.0%), Pahang (24/25, 96.0%), Johor (7/9, 77.8%), and Terengganu (4/5, 80.0%,). In contrast, the rates of P. knowlesi infection in Selangor and Negeri Sembilan were found to be 16.2% (18/111 cases) and 50.0% (5/10 cases), respectively. Sample of P. knowlesi was not obtained from Kuala Lumpur, Melaka, Perak, Pulau Pinang, and Perlis during the study period, while a microscopically-positive sample from Kedah was negative by PCR. Conclusion In addition to Sabah and Sarawak, which have been known for high prevalence of P. knowlesi infection, the findings from this study highlight the widespread distribution of P. knowlesi in many Peninsular Malaysia states. PMID:24886266
Amplification of Mitochondrial DNA for detection of Plasmodiumvivax in Balochistan.
Shahwani, Muhammad Naeem; Nisar, Samia; Aleem, Abdul; Panezai, Marina; Afridi, Sarwat; Malik, Shaukat Iqbal
2017-05-01
To access a new step using PCR to amplify the targeted mtDNA sequence for detecting specifically Plasmodium vivax and its co-infections, false positive and false negative results with Plasmodium falciparum. In this study we have standardized a new technical approach in which the target mitochondrial DNA sequence (mtDNA) was amplified by using a PCR technique as a tool to detect Plasmodium spp. Species specific primers were designed to hybridize with cytochrome c oxidase gene of P. vivax (cox I) and P. falciparum (cox III). Two hundred blood samples were collected on the basis of clinical symptoms which were initially examined through microscopic analysis after preparing Giemsa stained thick and thin blood smears. Afterwards genomic DNA was extracted from all samples and was then subjected to PCR amplification by using species specific primers and amplified segments were sequenced for confirmation of results. One-hundred and thirty-two blood samples were detected as positive for malaria by PCR, out of which 64 were found to be positive by PCR and 53 by both microscopy and PCR for P.vivax infection. Nine samples were found to be false negative, one P.vivax mono infection was declared as co infection by PCR and 3 samples identified as having P.falciparum gametes were confirmed as P.vivax by PCR amplification. Sensitivity and specificity were found to be 85% and 92% respectively. Results obtained through PCR method were comparatively better and reliable than microscopy.
LAMP kit for diagnosis of non-falciparum malaria in Plasmodium ovale infected patients.
Cuadros, Juan; Martin Ramírez, Alexandra; González, Iveth J; Ding, Xavier C; Perez Tanoira, Ramon; Rojo-Marcos, Gerardo; Gómez-Herruz, Peña; Rubio, Jose Miguel
2017-01-07
Microscopy and rapid diagnosis tests have a limited sensitivity in diagnosis of malaria by Plasmodium ovale. The LAMP kit (LoopAMP®) can be used in the field without special equipment and could have an important role in malaria control programmes in endemic areas and for malaria diagnosis in returned travellers. The performance of the Pan primer of the kit in detecting malaria by P. ovale was compared with the results of standard nPCR in samples of patients returning from P. ovale endemic areas. Plasmodium ovale positive samples (29, tested by PCR and/or microscopy) and malaria negative specimens (398, tested by microscopy and PCR) were collected in different hospitals of Europe from June 2014 to March 2016 and frozen at -20 °C. Boil and spin method was used to extract DNA from all samples and amplification was performed with LoopAMP® MALARIA kit (Eiken Chemical, Japan) in an automated turbidimeter (Eiken 500). The results of LAMP read by turbidimetry and with the naked eye were compared. The kit showed a sensitivity of 100% and a specificity of 97.24% with positive and negative predictive values of 72.5 and 100%, respectively. Naked eyed readings were in accordance with turbidimetry readings (sensitivity, 92.5%, specificity, 98.96% and positive and negative predictive values, respectively, 90.24 and 99.22%). The limit of detection of LAMP assay for P. ovale was between 0.8 and 2 parasites/µl. The Pan primer of the Malaria kit LoopAMP® can detect P. ovale at very low-levels and showed a predictive negative value of 100%. This tool can be useful in malaria control and elimination programmes and in returned travellers from P. ovale endemic areas. Naked eye readings are equivalent to automated turbidimeter readings in specimens obtained with EDTA.
Malaria rapid diagnostic tests in endemic settings.
Maltha, J; Gillet, P; Jacobs, J
2013-05-01
Malaria rapid diagnostic tests (RDTs) are instrument-free tests that provide results within 20 min and can be used by community health workers. RDTs detect antigens produced by the Plasmodium parasite such as Plasmodium falciparum histidine-rich protein-2 (PfHPR2) and Plasmodium lactate dehydrogenase (pLDH). The accuracy of RDTs for the diagnosis of uncomplicated P. falciparum infection is equal or superior to routine microscopy (but inferior to expert microscopy). Sensitivity for Plasmodium vivax is 75-100%; for Plasmodium ovale and Plasmodium malariae, diagnostic performance is poor. Design limitations of RDTs include poor sensitivity at low parasite densities, susceptibility to the prozone effect (PfHRP2-detecting RDTs), false-negative results due to PfHRP2 deficiency in the case of pfhrp2 gene deletions (PfHRP2-detecting RDTs), cross-reactions between Plasmodium antigens and detection antibodies, false-positive results by other infections and susceptibility to heat and humidity. End-user's errors relate to safety, procedure (delayed reading, incorrect sample and buffer volumes) and interpretation (not recognizing invalid test results, disregarding faint test lines). Withholding antimalarial treatment in the case of negative RDT results tends to be infrequent and tendencies towards over-prescription of antibiotics have been noted. Numerous shortcomings in RDT kits' labelling, instructions for use (correctness and readability) and contents have been observed. The World Health Organization and partners actively address quality assurance of RDTs by comparative testing of RDTs, inspections of manufacturing sites, lot testing and training tools but no formal external quality assessment programme of end-user performance exists. Elimination of malaria requires RDTs with lower detection limits, for which nucleic acid amplification tests are under development. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Comparison of molecular tests for the diagnosis of malaria in Honduras
2012-01-01
Background Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. Methods A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrolment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Results Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR) detected three of them. In addition, one of the day 28 samples, previously determined to be malaria negative by microscopy, was shown to be P. vivax-positive by three of the molecular tests specific for this parasite. Conclusions Molecular tests are valuable tools for the confirmation of Plasmodium species and in detecting mixed infections in malaria endemic regions. PMID:22513192
Comparison of molecular tests for the diagnosis of malaria in Honduras.
Fontecha, Gustavo A; Mendoza, Meisy; Banegas, Engels; Poorak, Mitra; De Oliveira, Alexandre M; Mancero, Tamara; Udhayakumar, Venkatachalam; Lucchi, Naomi W; Mejia, Rosa E
2012-04-18
Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrollment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR) detected three of them. In addition, one of the day 28 samples, previously determined to be malaria negative by microscopy, was shown to be P. vivax-positive by three of the molecular tests specific for this parasite. Molecular tests are valuable tools for the confirmation of Plasmodium species and in detecting mixed infections in malaria endemic regions.
Berhane, Araia; Anderson, Karen; Mihreteab, Selam; Gresty, Karryn; Rogier, Eric; Mohamed, Salih; Hagos, Filmon; Embaye, Ghirmay; Chinorumba, Anderson; Zehaie, Assefash; Dowd, Simone; Waters, Norman C.; Gatton, Michelle L.; Udhayakumar, Venkatachalam; Cunningham, Jane
2018-01-01
False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2–based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies. PMID:29460730
Berhane, Araia; Anderson, Karen; Mihreteab, Selam; Gresty, Karryn; Rogier, Eric; Mohamed, Salih; Hagos, Filmon; Embaye, Ghirmay; Chinorumba, Anderson; Zehaie, Assefash; Dowd, Simone; Waters, Norman C; Gatton, Michelle L; Udhayakumar, Venkatachalam; Cheng, Qin; Cunningham, Jane
2018-03-01
False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2-based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies.
Lefterova, Martina I; Budvytiene, Indre; Sandlund, Johanna; Färnert, Anna; Banaei, Niaz
2015-07-01
Malaria is the leading identifiable cause of fever in returning travelers. Accurate Plasmodium species identification has therapy implications for P. vivax and P. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay for Plasmodium species identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium 18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% for P. falciparum (20/21 positives detected) and 100% for the Plasmodium genus (52/52), P. vivax (20/20), P. ovale (9/9), and P. malariae (6/6). The sensitivity of the P. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% for P. vivax (49/52) and 100% for P. falciparum (51/51), P. ovale (62/62), P. malariae (69/69), and P. knowlesi (52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium 18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixed P. falciparum and P. ovale infection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitive Plasmodium species identification shortly after malaria diagnosis by microscopy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Siner, Angela; Liew, Sze-Tze; Kadir, Khamisah Abdul; Mohamad, Dayang Shuaisah Awang; Thomas, Felicia Kavita; Zulkarnaen, Mohammad; Singh, Balbir
2017-10-17
Plasmodium knowlesi, a simian malaria parasite, has become the main cause of malaria in Sarawak, Malaysian Borneo. Epidemiological data on malaria for Sarawak has been derived solely from hospitalized patients, and more accurate epidemiological data on malaria is necessary. Therefore, a longitudinal study of communities affected by knowlesi malaria was undertaken. A total of 3002 blood samples on filter paper were collected from 555 inhabitants of 8 longhouses with recently reported knowlesi malaria cases in the Betong Division of Sarawak, Malaysian Borneo. Each longhouse was visited bimonthly for a total of 10 times during a 21-month study period (Jan 2014-Oct 2015). DNA extracted from blood spots were examined by a nested PCR assay for Plasmodium and positive samples were then examined by nested PCR assays for Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium cynomolgi and Plasmodium inui. Blood films of samples positive by PCR were also examined by microscopy. Genus-specific PCR assay detected Plasmodium DNA in 9 out of 3002 samples. Species-specific PCR identified 7 P. knowlesi and one P. vivax. Malaria parasites were observed in 5 thick blood films of the PCR positive samples. No parasites were observed in blood films from one knowlesi-, one vivax- and the genus-positive samples. Only one of 7 P. knowlesi-infected individual was febrile and had sought medical treatment at Betong Hospital the day after sampling. The 6 knowlesi-, one vivax- and one Plasmodium-infected individuals were afebrile and did not seek any medical treatment. Asymptomatic human P. knowlesi and P. vivax malaria infections, but not P. cynomolgi and P. inui infections, are occurring within communities affected with malaria.
Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.
Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda
2017-01-03
Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other malaria endemic settings where species besides P. falciparum may be transmitted and overlooked by control or elimination activities.
Dinhopl, Nora; Mostegl, Meike M.; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Fragner, Karin; Weissenböck, Herbert
2011-01-01
In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples. PMID:21711191
Tham, Jill M.; Lee, Szu Hee; Tan, Theresa M. C.; Ting, Robert C. Y.; Kara, Ursula A. K.
1999-01-01
A rapid procedure for the diagnosis of malaria infections directly from dried blood spots by PCR amplification was evaluated with samples from 52 patients. Plasmodium infections were identified with a genus-specific primer set, and species differentiation between Plasmodium falciparum and Plasmodium vivax was analyzed by multiplex PCR. The PCR test with any of the three primer sets was able to detect as few as four parasites per microliter by gel electrophoresis or by nonisotopic paper hybridization chromatography. The diagnoses obtained by PCR correlated closely with those obtained by Giemsa staining except for two samples observed to have mixed P. falciparum-P. vivax infections. These were initially missed by microscopic analysis. In comparison with antigen-capture assays for P. falciparum, the PCR assays were able to detect three infections that were missed by the ParaSight-F test. The PCR test was negative for nine ParaSight-F-positive samples and one ICT Malaria Pf-positive sample, and these were confirmed to be false-positive results. The PCR thus gave no false-negative or false-positive results. Patients undergoing antimalarial therapy were also monitored by the PCR assay. Four of seven patients who were PCR positive for P. vivax at the time of discharge were later readmitted to the hospital with a recurrence of P. vivax infection. We would like to propose that PCR is a sensitive and easy method that can serve as a useful addition to microscopy for the diagnosis and the clinical monitoring of treatment of malaria. PMID:10203469
Piera, Kim A; Aziz, Ammar; William, Timothy; Bell, David; González, Iveth J; Barber, Bridget E; Anstey, Nicholas M; Grigg, Matthew J
2017-01-13
Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection. Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs. The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL. The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.
Bharti, Praveen Kumar; Chandel, Himanshu Singh; Ahmad, Amreen; Krishna, Sri; Udhayakumar, Venkatachalam; Singh, Neeru
2016-01-01
Background Plasmodium falciparum encoded histidine rich protein (HRP2) based malaria rapid diagnostic tests (RDTs) are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions. Methods This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR. Results Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521) and 1.8% (27/1521) of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0–25% (2.4, 95% CI; 1.6–3.3). The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0–8% (1.6, 95% CI; 1.0–2.4). Conclusion This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs. PMID:27518538
Bwanika, Richard; Kato, Charles D; Welishe, Johnson; Mwandah, Daniel C
2018-01-01
Malaria and helminths share the same geographical distribution in tropical Africa. Studies of the interaction of helminth and malaria co-infection in humans have been few and are mainly epidemiological, with little information on cellular immune responses. This study aimed to determine Cytokine profiles among patients co-infected with Plasmodium falciparum malaria and soil borne helminth attending Kampala International University Teaching Hospital (KIU). A case control study of 240 patients were recruited at KIU teaching hospital. Patients with Plasmodium falciparum malaria were 55 (22.9%) and those with soil-borne helminths were 63 (26.3%). The controls were 89 (37.1%), while those co-infected with Plasmodium falciparum malaria and soil-borne helminths were 33 (13.8%). Cases were defined as having a positive blood smear for P. falciparum malaria, those with helminths or co-infections of the two. Negative controls were those with a negative blood smear for P. falciparum malaria and those with no stool parasitic infections. Patients presenting with signs and symptoms of malaria or those suspected of having helminths were recruited for the study. A panel of five cytokines (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) were assayed from plasma samples in patients with and without Plasmodium falciparum malaria, patients with and without helminth, and then those co-infected with the two diseases diagnosis was done using thick blood smears stained with 10% Giemsa and stool examination was done following the Kato Katz technique following standard procedures. The prevalence of Plasmodium falciparum malaria by sex was 28 (11.7%) and 27 (11.3%) in male and female respectively. The overall prevalence of soil borne helminth was 26.3%, and among those harbouring helminths, 13.8% were co-infected with Plasmodium falciparum. Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and health controls for IFN-γ (P = 0.023), IL-10 (P = 0.008) and TGF-β (P = 0.0001). Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and patients co-infected with Plasmodium falciparum malaria and soil borne helminth for IL-10 (P = 0.004), IL-6 (P = 0.011) and TGF-β (P = 0.003). An up-regulation of IFN-γ during Plasmodium falciparum malaria and an up-regulation of IL-10 and TGF-β in soil borne helminth infections was demonstrated. We demonstrate that co-infections of Plasmodium falciparum and soil borne helminth lead to an up-regulation of IL-10 and IL-6 and a down-regulation of TGF-β. Trial registration No17/10-16.
Willie, Nigani; Mehlotra, Rajeev K; Howes, Rosalind E; Rakotomanga, Tovonahary A; Ramboarina, Stephanie; Ratsimbasoa, Arsène C; Zimmerman, Peter A
2018-06-01
Plasmodium falciparum histidine-rich protein 2 (PfHRP2) forms the basis of many current malaria rapid diagnostic tests (RDTs). However, the parasites lacking part or all of the pfhrp2 gene do not express the PfHRP2 protein and are, therefore, not identifiable by PfHRP2-detecting RDTs. We evaluated the performance of the SD Bioline Malaria Ag P.f/Pan RDT together with pfhrp2 variation in Madagascar. Genomic DNA isolated from 260 patient blood samples were polymerase chain reaction (PCR)-amplified for the parasite 18S rRNA and pfhrp2 genes. Post-PCR ligation detection reaction-fluorescent microsphere assay (LDR-FMA) was performed for the identification of parasite species. Plasmodium falciparum histidine-rich protein 2 amplicons were sequenced. Polymerase chain reaction diagnosis of patient samples showed that 29% (75/260) were infected and P. falciparum was present in 95% (71/75) of these PCR-positive samples. Comparing RDT and P. falciparum detection by LDR-FMA, eight samples were RDT negative but P. falciparum positive (false negatives), all of which were pfhrp2 positive. The sensitivity and specificity of the RDT were 87% and 90%, respectively. Seventy-three samples were amplified for pfhrp2 , from which nine randomly selected amplicons were sequenced, yielding 13 sequences. Amplification of pfhrp2 , combined with RDT analysis and P. falciparum detection by LDR-FMA, showed that there was no indication of pfhrp2 deletion. Sequence analysis of pfhrp2 showed that the correlation between pfhrp2 sequence structure and RDT detection rates was unclear. Although the observed absence of pfhrp2 deletion from the samples screened here is encouraging, continued monitoring of the efficacy of the SD Bioline Malaria Ag P.f/Pan RDT for malaria diagnosis in Madagascar is warranted.
Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Kappeler, Peter M.
2015-01-01
Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites. PMID:26767166
Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M
2015-12-01
Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.
A monkey's tale: The origin of Plasmodium vivax as a human malaria parasite
Escalante, Ananias A.; Cornejo, Omar E.; Freeland, Denise E.; Poe, Amanda C.; Durrego, Ester; Collins, William E.; Lal, Altaf A.
2005-01-01
The high prevalence of Duffy negativity (lack of the Duffy blood group antigen) among human populations in sub-Saharan Africa has been used to argue that Plasmodium vivax originated on that continent. Here, we investigate the phylogenetic relationships among 10 species of Plasmodium that infect primates by using three genes, two nuclear (β-tubulin and cell division cycle 2) and a gene from the plastid genome (the elongation factor Tu). We find compelling evidence that P. vivax is derived from a species that inhabited macaques in Southeast Asia. Specifically, those phylogenies that include P. vivax as an ancient lineage from which all of the macaque parasites could originate are significantly less likely to explain the data. We estimate the time to the most recent common ancestor at four neutral gene loci from Asian and South American isolates (a minimum sample of seven isolates per locus). Our analysis estimates that the extant populations of P. vivax originated between 45,680 and 81,607 years ago. The phylogeny and the estimated time frame for the origination of current P. vivax populations are consistent with an “out of Asia” origin for P. vivax as hominoid parasite. The current debate regarding how the Duffy negative trait became fixed in Africa needs to be revisited, taking into account not only human genetic data but also the genetic diversity observed in the extant P. vivax populations and the phylogeny of the genus Plasmodium. PMID:15684081
Fransisca, Liony; Kusnanto, Josef Hari; Satoto, Tri Baskoro T; Sebayang, Boni; Supriyanto; Andriyan, Eko; Bangs, Michael J
2015-03-05
The World Health Organization recommends malaria be diagnosed by standard microscopy or rapid diagnostic test (RDT) before treatment. RDTs have been used with greater frequency in the absence of matching blood slide confirmation in the majority of RDT reported cases in Mimika Regency, Papua Province, Indonesia. Given the importance of RDT in current health system as point-of-care tool, careful validation of RDT product performance for providing accurate malaria diagnosis is critical. Plasmotec Malaria-3 (XW-P07) performance was evaluated by comparing it with paired blood film microscopy and quantitative real-time PCR (qPCR). Consecutive whole blood samples were derived from one clinic in Mimika as part of routine passive malaria case detection. RDT results were read by two trained technicians and interpreted by consensus. Expert microscopic examination of blood slides was cross-checked by observer-blinded second reader and a third examiner if discordant between examinations. qPCR was used as the 'gold standard', followed by microscopy for the outcome/disease variable. Comparison analysis included sensitivity (Sn), specificity (Sp), positive and negative predictive values (PPV & NPV), and other diagnostic screening performance measures for detecting Plasmodium falciparum and Plasmodium vivax infections. Overall malaria positive samples from qPCR was 42.2% (175/415 samples); and from matching blood slides 40.5% (168/415) of which those infections with relatively low parasite densities ≤100/μl blood was 5.7% of P. falciparum and 16.5% of P. vivax samples examined. Overall RDT performance when compared with microscopy for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:72.9%, Sp:99.1%, PPV:95.4%, NPV:93.4%, Kappa:0.79. Overall RDT performance when compared with qPCR for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:66%, Sp:99.1%, PPV:95.4%, NPV:90.9%, Kappa:0.73. Plasmotec Malaria-3 test showed good overall performance scores in precision for detecting P. falciparum, but lower values regarding sensitivity and negative likelihood ratio for detecting P. vivax, a finding partly associated with greater frequency of lower density P. vivax infections compared to P. falciparum in this study. In particular, the negative likelihood ratio (>0.1) for P. vivax detection indicates RDT lacked sufficient discriminating exclusion power falling below general acceptance criteria.
Gatton, Michelle L; Ciketic, Sadmir; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; Bell, David; Cunningham, Jane; González, Iveth J
2018-01-01
Malaria rapid diagnostic tests (RDTs) can produce false positive (FP) results in patients with human African trypanosomiasis and rheumatoid factor (RF), but specificity against other infectious agents and immunological factors is largely unknown. Low diagnostic specificity caused by cross-reactivity may lead to over-estimates of the number of malaria cases and over-use of antimalarial drugs, at the cost of not diagnosing and treating the true underlying condition. Data from the WHO Malaria RDT Product Testing Programme was analysed to assess FP rates of 221 RDTs against four infectious agents (Chagas, dengue, Leishmaniasis and Schistosomiasis) and four immunological factors (anti-nuclear antibody, human anti-mouse antibody (HAMA), RF and rapid plasma regain). Only RDTs with a FP rate against clean negative samples less than 10% were included. Paired t-tests were used to compare product-specific FP rates on clean negative samples and samples containing non-Plasmodium infectious agents and immunological factors. Forty (18%) RDTs showed no FP results against any tested infectious agent or immunological factor. In the remaining RDTs significant and clinically relevant increases in FP rates were observed for samples containing HAMA and RF (P<0.001). There were significant correlations between product-matched FP rates for RF and HAMA on all RDT test bands (P<0.001), and FP rates for each infectious agent and immunological factor were also correlated between test bands of combination RDTs (P≤0.002). False positive results against non-Plasmodium infectious agents and immunological factors does not appear to be a universal property of malaria RDTs. However, since many malaria RDTs have elevated FP rates against HAMA and RF positive samples practitioners may need to consider the possibility of false positive results for malaria in patients with conditions that stimulate HAMA or RF.
Hassanpour, Gholamreza; Mohebali, Mehdi; Raeisi, Ahmad; Abolghasemi, Hassan; Zeraati, Hojjat; Alipour, Mohsen; Azizi, Ebrahim; Keshavarz, Hossein
2011-06-01
The transmission of malaria by blood transfusion was one of the first transfusion-transmitted infections recorded in the world. Transfusion-transmitted malaria may lead to serious problems because infection with Plasmodium falciparum may cause rapidly fatal death. This study aimed to compare real-time polymerase chain reaction (real-time PCR) with rapid diagnostic test (RDT) and light microscopy for the detection of Plasmodium spp. in blood transfusion, both in endemic and non-endemic areas of malaria disease in Iran. Two sets of 50 blood samples were randomly collected. One set was taken from blood samples donated in blood bank of Bandar Abbas, a city located in a malarious-endemic area, and the other set from Tehran, a non-endemic one. Light microscopic examination on both thin and thick smears, RDTs, and real-time PCR were performed on the blood samples and the results were compared. Thin and thick light microscopic examinations of all samples as well as RDT results were negative for Plasmodium spp. Two blood samples from endemic area were positive only with real-time PCR. It seems that real-time PCR as a highly sensitive method can be helpful for the confirmation of malaria infection in different units of blood transfusion organization especially in malaria-endemic areas where the majority of donors may be potentially infected with malaria parasites.
Medina Costa, Rita; de Sousa, Karina Pires; Atouguia, Jorge; Tavira, Luis Távora; Silva, Marcelo Sousa
2013-01-01
In this study, we show that 40.29% of travellers with a possible history of malaria exposure were positive for anti-Plasmodium spp. antibodies, while these individuals were negative by microscopy. The antibody test described here is useful to elucidate malaria exposure in microscopy-negative travellers from endemic countries. PMID:23691274
Kamugisha, M L; Msangeni, H; Beale, E; Malecela, E K; Akida, J; Ishengoma, D R S; Lemnge, M M
2008-01-01
Malaria is a major public health problem particularly in rural Sub-Saharan Africa. In most urban areas, malaria transmission intensity is low thus monitoring trends using reliable tools is crucial to provide vital information for future management of the disease. Rapid diagnostic tests (RDT) such as Paracheck Pf are now increasingly adopted for Plasmodium falciparum malaria diagnosis and are advantageous and cost effective alternative to microscopy. This cross sectional survey was carried out during June 2005 to determine the prevalence of malaria in an urban setting and compare microscopy diagnosis versus Paracheck Pf for detecting Plasmodium falciparum. Blood samples from a total of 301 children (< 10 years) attending outpatient clinic at Makorora Health Centre, in Tanga, Tanzania were examined for the presence of malaria. Twenty-nine (9.6%) of the children were positive to malaria by microscopy while 30 (10.0%) were positive by Paracheck test. Three out of 30 positive cases detected by Paracheck were negative by microscopy; thus considered to be false positive results. For the 271 Paracheck Pf negative cases, 2 were positive by microscopy; yielding 2 false negative results. Paracheck Pf sensitivity and specificity were 93.1% and 98.9%, respectively. P. falciparum was the only malarial species observed among the 29 microscopy positive cases. The prevalence of anaemia among the children was 53.16%. These findings indicate a low prevalence of malaria in Tanga City and that Paracheck Pf can be an effective tool for malaria diagnosis.
de Freitas, Daniel Roberto Coradi; Gomes, Luciano Teixeira; Fontes, Cor Jesus F; Tauil, Pedro Luiz; Pang, Lorrin W; Duarte, Elisabeth Carmen
2014-04-01
Transfusion-transmitted malaria is a severe disease with high fatality rate. Most Brazilian blood banks in the Amazon region perform malaria screening using microscopic examination (thick smears). Since low parasite concentrations are expected in asymptomatic blood donors a high sensitivity test should be used for donor screening. This study determined the sensitivity of a nested-PCR for plasmodium detection in pooled samples. We performed a one-stage criterion validation study with 21 positive samples pooled with samples from ten negative volunteer until three different concentrations were reached (0.33; 0.25; 0.20 parasites/μL - p/μL). Nested PCR was performed as described by Snounou et al. (1993). Sensitivities (and confidence intervals) were determined by stratum of final parasite concentration on the pooled samples. All samples with parasitemia values of 0.33 and 0.25 p/μL had 100% sensitivity (95%CI=86.3-100). One negative result was obtained from a sample with 0.20 p/μL sensitivity=95.2% (95%CI=76.2-99.9). Compared to parasitemia detectable under ideal conditions of thick smear, this nested-PCR in pooled sample was able to detect 40 times more parasites per microliter. Nested-PCR in pooled samples should be considered as a high sensitive alternative to thick smear for donor screening in blood banks at endemic regions. Local authorities need to assess cost:benefit advantages of this method compared to alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mapua, Mwanahamisi I; Pafčo, Barbora; Burgunder, Jade; Profousová-Pšenková, Ilona; Todd, Angelique; Hashimoto, Chie; Qablan, Moneeb A; Modrý, David; Petrželková, Klára J
2017-04-26
Although a high genetic diversity of Plasmodium spp. circulating in great apes has been revealed recently due to non-invasive methods enabling detection in faecal samples, little is known about the actual mechanisms underlying the presence of Plasmodium DNA in faeces. Great apes are commonly infected by strongylid nematodes, including hookworms, which cause intestinal bleeding. The impact of strongylid infections on the detection of Plasmodium DNA in faeces was assessed in wild, western, lowland gorillas from Dzanga Sangha Protected Areas, Central African Republic and eastern chimpanzees from Kalinzu Forest Reserve, Uganda. Fifty-one faecal samples from 22 habituated gorillas and 74 samples from 15 habituated chimpanzees were analysed using Cytochrome-b PCR assay and coprological methods. Overall, 26.4% of the analysed samples were positive for both Plasmodium spp. and strongylids. However, the results showed no significant impact of intensity of infections of strongylids on detection of Plasmodium DNA in gorilla and chimpanzee faeces. Bleeding caused by strongylid nematode Necator spp. cannot explain the presence of Plasmodium DNA in ape faeces.
Zhang, Yijing; Yao, Yi; Du, Weixing; Wu, Kai; Xu, Wenyue; Lin, Min; Tan, Huabing; Li, Jian
2017-07-01
In order to achieve better outcomes for treatment and in the prophylaxis of malaria, it is imperative to develop a sensitive, specific, and accurate assay for early diagnosis of Plasmodium falciparum infection, which is the major cause of malaria. In this study, we aimed to develop a loop-mediated isothermal amplification (LAMP) assay with P. falciparum unique genes for sensitive, specific, and accurate detection of P. falciparum infection. The unique genes of P. falciparum were randomly selected from PlasmoDB. The LAMP primers of the unique genes were designed using PrimerExplorer V4. LAMP assays with primers from unique genes of P. falciparum and conserved 18S rRNA gene were developed and their sensitivity was assessed. The specificity of the most sensitive LAMP assay was further examined using genomic DNA from Plasmodium vivax, Plasmodium yoelii and Toxoplasma gondii. Finally, the unique gene-based LAMP assay was validated using clinical samples of P. falciparum infection cases. A total of 31 sets of top-scored LAMP primers from nine unique genes were selected from the pools of designed primers. The LAMP assay with PF3D7_1253300-5 was the most sensitive with the detection limit 5 parasites/μl, and it displayed negative LAMP assay with the genomic DNA samples of P. vivax, P. yoelii, and T. gondii. The LAMP assay with PF3D7_0112300 (18S rRNA) was less sensitive with the detection limit 50 parasites/μl, and it displayed negative LAMP assay with the genomic DNA samples of P. yoelii and T. gondii, but displayed positive LAMP detection with P. vivax. The positive detection rate of the LAMP assay with PF3D7_1253300-5 was 90% (27/30), higher than that (80%, 24/30) of the positive rate of PF3D7_0112300 (18S rRNA) in examining clinical samples of P. falciparum infection cases. The LAMP assay with the primer set PF3D7_1253300-5 was more sensitive, specific, and accurate than those with PF3D7_0112300 (18S rRNA) in examining P. falciparum infection, and therefore it is a promising tool for diagnosis of P. falciparum infection.
Case Report: A Case of Plasmodium falciparum hrp2 and hrp3 Gene Mutation in Bangladesh.
Nima, Maisha Khair; Hougard, Thomas; Hossain, Mohammad Enayet; Kibria, Mohammad Golam; Mohon, Abu Naser; Johora, Fatema Tuj; Rahman, Rajibur; Haque, Rashidul; Alam, Mohammad Shafiul
2017-10-01
Several species of Plasmodium are responsible for causing malaria in humans. Proper diagnoses are crucial to case management, because severity and treatment varies between species. Diagnoses can be made using rapid diagnostic tests (RDTs), which detect Plasmodium proteins. Plasmodium falciparum causes the most virulent cases of malaria, and P. falciparum histidine-rich protein 2 (PfHRP2) is a common target of falciparum malaria RDTs. Here we report a case in which a falciparum malaria patient in Bangladesh tested negative on PfHRP2-based RDTs. The negative results can be attributed to a deletion of part of the pfhrp2 gene and frameshift mutations in both pfhrp2 and pfhrp3 gene. This finding may have implications for malaria diagnostics and case management in Bangladesh and other regions of South Asia.
Laban, Natasha M; Kobayashi, Tamaki; Hamapumbu, Harry; Sullivan, David; Mharakurwa, Sungano; Thuma, Philip E; Shiff, Clive J; Moss, William J
2015-01-28
Rapid diagnostic tests (RDTs) detecting histidine-rich protein 2 (PfHRP2) antigen are used to identify individuals with Plasmodium falciparum infection even in low transmission settings seeking to achieve elimination. However, these RDTs lack sensitivity to detect low-density infections, produce false negatives for P. falciparum strains lacking pfhrp2 gene and do not detect species other than P. falciparum. Results of a PfHRP2-based RDT and Plasmodium nested PCR were compared in a region of declining malaria transmission in southern Zambia using samples from community-based, cross-sectional surveys from 2008 to 2012. Participants were tested with a PfHRP2-based RDT and a finger prick blood sample was spotted onto filter paper for PCR analysis and used to prepare blood smears for microscopy. Species-specific, real-time, quantitative PCR (q-PCR) was performed on samples that tested positive either by microscopy, RDT or nested PCR. Of 3,292 total participants enrolled, 12 (0.4%) tested positive by microscopy and 42 (1.3%) by RDT. Of 3,213 (98%) samples tested by nested PCR, 57 (1.8%) were positive, resulting in 87 participants positive by at least one of the three tests. Of these, 61 tested positive for P. falciparum by q-PCR with copy numbers ≤ 2 x 10(3) copies/μL, 5 were positive for both P. falciparum and Plasmodium malariae and 2 were positive for P. malariae alone. RDT detected 32 (53%) of P. falciparum positives, failing to detect three of the dual infections with P. malariae. Among 2,975 participants enrolled during a low transmission period between 2009 and 2012, sensitivity of the PfHRP2-based RDT compared to nested PCR was only 17%, with specificity of >99%. The pfhrp gene was detected in 80% of P. falciparum positives; however, comparison of copy number between RDT negative and RDT positive samples suggested that RDT negatives resulted from low parasitaemia and not pfhrp2 gene deletion. Low-density P. falciparum infections not identified by currently used PfHRP2-based RDTs and the inability to detect non-falciparum malaria will hinder progress to further reduce malaria in low transmission settings of Zambia. More sensitive and specific diagnostic tests will likely be necessary to identify parasite reservoirs and achieve malaria elimination.
Extremely low Plasmodium prevalence in wild plovers and coursers from Cape Verde and Madagascar.
Martínez-de la Puente, Josué; Eberhart-Phillips, Luke J; Cristina Carmona-Isunza, M; Zefania, Sama; Navarro, María José; Kruger, Oliver; Hoffman, Joseph Ivan; Székely, Tamás; Figuerola, Jordi
2017-06-08
Relatively little is known about the prevalence of blood parasites in shorebirds, especially those breeding in the tropics. The prevalence of blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon was assessed in blood samples from Kentish plovers and cream-coloured coursers in Cape Verde, and samples of Kittlitz's plovers, Madagascar plovers and white-fronted plovers in Madagascar. Only two of these samples were positive for Plasmodium: a Kittlitz's plover was infected by a generalist lineage of Plasmodium that has already been reported in Europe and Africa, while in a white-fronted plover direct sequencing revealed a previously un-described Plasmodium lineage. Potential explanations for the low prevalence of blood parasites include the scarcity of vectors in habitats used by these bird species and their resistance to parasitic infections.
Detection of Plasmodium sp. in capybara.
dos Santos, Leonilda Correia; Curotto, Sandra Mara Rotter; de Moraes, Wanderlei; Cubas, Zalmir Silvino; Costa-Nascimento, Maria de Jesus; de Barros Filho, Ivan Roque; Biondo, Alexander Welker; Kirchgatter, Karin
2009-07-07
In the present study, we have microscopically and molecularly surveyed blood samples from 11 captive capybaras (Hydrochaeris hydrochaeris) from the Sanctuary Zoo for Plasmodium sp. infection. One animal presented positive on blood smear by light microscopy. Polymerase chain reaction was carried out accordingly using a nested genus-specific protocol, which uses oligonucleotides from conserved sequences flanking a variable sequence region in the small subunit ribosomal RNA (ssrRNA) of all Plasmodium organisms. This revealed three positive animals. Products from two samples were purified and sequenced. The results showed less than 1% divergence between the two capybara sequences. When compared with GenBank sequences, a 55% similarity was obtained to Toxoplasma gondii and a higher similarity (73-77.2%) was found to ssrRNAs from Plasmodium species that infect reptile, avian, rodents, and human beings. The most similar Plasmodium sequence was from Plasmodium mexicanum that infects lizards of North America, where around 78% identity was found. This work is the first report of Plasmodium in capybaras, and due to the low similarity with other Plasmodium species, we suggest it is a new species, which, in the future could be denominated "Plasmodium hydrochaeri".
Long-term pathogenic response to Plasmodium relictum infection in Culex pipiens mosquito.
Pigeault, Romain; Villa, Manon
2018-01-01
The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector's longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.
[Efficacy of a rapid test to diagnose Plasmodium vivax in symptomatic patients of Chiapas, Mexico].
González-Cerón, Lilia; Rodríguez, Mario H; Betanzos, Angel F; Abadía, Acatl
2005-01-01
To evaluate, under laboratory conditions, the sensitivity and specificity of a rapid diagnostic test (OptiMAL), based on immunoreactive strips, to detect Plasmodium vivax infection in febrile patients in Southern Chiapas, Mexico. The presence of parasites in blood samples of 893 patients was investigated by Giemsa-stained thick blood smear microscopic examination (gold standard). A blood drop from the same sample was smeared on immunoreactive strips to investigate the presence of the parasite pLDH. Discordant results were resolved by PCR amplification of the parasite's 18S SSU rRNA, to discard infection. OptiMAL had an overall sensitivity of 93.3% and its specificity was 99.5%. Its positive and negative predictive values were 96.5% and 98.9%, respectively. Signal intensity in OptiMAL strips correlated well with the parasitemia density in the blood samples (r = 0.601, p = 0.0001). This rapid test had acceptable sensitivity and specificity to detect P. vivax under laboratory conditions and could be useful for malaria diagnosis in field operations in Mexico.
Singh, Raksha; Urhehar, Anant Dattatraya
2016-01-01
Introduction Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. Aim To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. Materials and Methods This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman’s method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Results Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Conclusion Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with pfcrt-o can be used as biomarker for chloroquine drug resistance in P. falciparum and pvmdr-1 along with pvcrt-o for P. vivax. PMID:27630842
Non-invasive surveillance for Plasmodium in reservoir macaque species.
Siregar, Josephine E; Faust, Christina L; Murdiyarso, Lydia S; Rosmanah, Lis; Saepuloh, Uus; Dobson, Andrew P; Iskandriati, Diah
2015-10-12
Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3-99.4 %) sensitive for detecting Plasmodium in faecal samples of naturally infected macaques (n = 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples from naturally infected hosts. The sensitivity was significantly higher than some other studies involving wild primates. Faecal samples can be used for detection of malaria infection in field surveys of macaques, even when there are no parasites visible in thin blood smears. Repeating samples from individuals will improve inferences of the epidemiology of malaria in wild primates.
Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H
1994-02-01
We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.
Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples
2011-01-01
Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640
2013-01-01
Background Plasmodium vivax is the most prevalent malaria species in Pakistan, with a distribution that coincides with Plasmodium falciparum in many parts of the country. Both species are likely exposed to drug pressure from a number of anti-malarials including chloroquine, sulphadoxine-pyrimethamine (SP), and artemisinin combination therapy, yet little is known regarding the effects of drug pressure on parasite genes associated with drug resistance. The aims of this study were to determine the prevalence of polymorphisms in the SP resistance-associated genes pvdhfr, pvdhps and chloroquine resistance-associated gene pvmdr1 in P. vivax isolates collected from across the country. Methods In 2011, 801 microscopically confirmed malaria-parasite positive filter paper blood samples were collected at 14 sites representing four provinces and the capital city of Islamabad. Species-specific polymerase chain reaction (PCR) was used to identify human Plasmodium species infection. PCR-positive P. vivax isolates were subjected to sequencing of pvdhfr, pvdhps and pvmdr1 and to real-time PCR analysis to assess pvmdr1 copy number variation. Results Of the 801 samples, 536 were determined to be P. vivax, 128 were P. falciparum, 43 were mixed vivax/falciparum infections and 94 were PCR-negative for Plasmodium infection. Of PCR-positive P. vivax samples, 372 were selected for sequence analysis. Seventy-six of the isolates (23%) were double mutant at positions S58R and S117N in pvdhfr. Additionally, two mutations at positions N50I and S93H were observed in 55 (15%) and 24 (7%) of samples, respectively. Three 18 base pair insertion-deletions (indels) were observed in pvdhfr, with two insertions at different nucleotide positions in 36 isolates and deletions in 10. Ninety-two percent of samples contained the pvdhps (S382/A383G/K512/A553/V585) SAKAV wild type haplotype. For pvmdr1, all isolates were wild type at position Y976F and 335 (98%) carried the mutation at codon F1076L. All isolates harboured single copies of the pvmdr1 gene. Conclusions The prevalence of mutations associated with SP resistance in P. vivax is low in Pakistan. The high prevalence of P. vivax mutant pvmdr1 codon F1076L indicates that efficacy of chloroquine plus primaquine could be in danger of being compromised, but further studies are required to assess the clinical relevance of this observation. These findings will serve as a baseline for further monitoring of drug-resistant P. vivax malaria in Pakistan. PMID:24007534
Buffer substitution in malaria rapid diagnostic tests causes false-positive results
2010-01-01
Background Malaria rapid diagnostic tests (RDTs) are kits that generally include 20 to 25 test strips or cassettes, but only a single buffer vial. In field settings, laboratory staff occasionally uses saline, distilled water (liquids for parenteral drugs dilution) or tap water as substitutes for the RDT kit's buffer to compensate for the loss of a diluent bottle. The present study assessed the effect of buffer substitution on the RDT results. Methods Twenty-seven RDT brands were run with EDTA-blood samples of five malaria-free subjects, who were negative for rheumatoid factor and antinuclear antibodies. Saline, distilled water and tap water were used as substitute liquids. RDTs were also run with distilled water, without adding blood. Results were compared to those obtained with the RDT kit's buffer and Plasmodium positive samples. Results Only eight cassettes (in four RDT brands) showed no control line and were considered invalid. Visible test lines occurred for at least one malaria-free sample and one of the substitutes in 20/27 (74%) RDT brands (saline: n = 16; distilled water: n = 17; and tap water: n = 20), and in 15 RDTs which were run with distilled water only. They occurred for all Plasmodium antigens and RDT formats (two-, three- and four-band RDTs). Clearance of the background of the strip was excellent except for saline. The aspects (colour, intensity and crispness) of the control and the false-positive test lines were similar to those obtained with the RDT kits' buffer and Plasmodium positive samples. Conclusion Replacement of the RDT kit's dedicated buffer by saline, distilled water and tap water can cause false-positive test results. PMID:20650003
Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.
2013-01-01
Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255
Avian Plasmodium in Eastern Austrian mosquitoes.
Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter
2017-09-29
Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results are nonetheless valuable in providing an overview of avian Plasmodium species and lineages present in Austria.
Singh, Ruchi; Singh, Dhirendra Pratap; Savargaonkar, Deepali; Singh, Om P; Bhatt, Rajendra M; Valecha, Neena
2017-01-01
Loop-mediated isothermal amplification (LAMP) is an emerging nucleic acid based diag- nostic approach that is easily adaptable to the field settings with limited technical resources. This study was aimed to evaluate the LAMP assay for the detection and identification of Plasmodium falciparum and P. vivax infection in malaria suspected cases using genus and species-specific assay. The 18S rRNA-based LAMP assay was evaluated for diagnosis of genus Plasmodium, and species- specific diagnosis of P. falciparum and P. vivax, infection employing 317 malaria suspected cases, and the results were compared with those obtained by 18S nested PCR (n-PCR). All the samples were confirmed by microscopy for the presence of Plasmodium parasite. The n-PCR was positive in all Plasmodium-infected cases (n=257; P. falciparum=133; P. vivax=124) and negative in microscopy negative cases (n=58) except for two cases which were positive for P. vivax, giving a sen- sitivity of 100% (95% CI: 97.04-100%) and a specificity of 100% (95% CI: 88.45-99.5%). Genus-specific LAMP assay missed 11 (3.2%) microscopy and n-PCR confirmed vivax malaria cases. Considering PCR results as a refer- ence, LAMP was 100% sensitive and specific for P. falciparum, whereas it exhibited 95.16% sensitivity and 96.7% specificity for P. vivax. The n-PCR assay detected 10 mixed infection cases while species-specific LAMP detected five mixed infection cases of P. vivax and P. falciparum, which were not detected by microscopy. Genus-specific LAMP assay displayed low sensitivity. Falciparum specific LAMP assay displayed high sensitivity whereas vivax specific LAMP assay displayed low sensitivity. Failed detection of vivax cases otherwise confirmed by the n-PCR assay indicates exploitation of new targets and improved detection methods to attain 100% results for P. vivax detection.
Kho, Steven; Marfurt, Jutta; Handayuni, Irene; Pava, Zuleima; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2016-06-21
Plasmodium falciparum and Plasmodium vivax infections compromise dendritic cell (DC) function and expand regulatory T (Treg) cells in both clinical disease (malaria) and experimental human sub-microscopic infection. Conversely, in asymptomatic microscopy-positive (patent) P. falciparum or P. vivax infection in endemic areas, blood DC increase or retain HLA-DR expression and Treg cells exhibit reduced activation, suggesting that DC and Treg cells contribute to the control of patent asymptomatic infection. The effect of sub-microscopic (sub-patent) asymptomatic Plasmodium infection on DC and Treg cells in malaria-endemic area residents remains unclear. In a cross-sectional household survey conducted in Papua, Indonesia, 162 asymptomatic adults were prospectively evaluated for DC and Treg cells using field-based flow cytometry. Of these, 161 individuals (99 %) were assessed retrospectively by polymerase chain reaction (PCR), 19 of whom had sub-microscopic infection with P. falciparum and 15 with sub-microscopic P. vivax infection. Flow cytometric data were re-analysed after re-grouping asymptomatic individuals according to PCR results into negative controls, sub-microscopic and microscopic parasitaemia to examine DC and Treg cell phenotype in sub-microscopic infection. Asymptomatic adults with sub-microscopic P. falciparum or P. vivax infection had DC HLA-DR expression and Treg cell activation comparable to PCR-negative controls. Sub-microscopic P. falciparum infection was associated with lower peripheral CD4(+) T cells and lymphocytes, however sub-microscopic Plasmodium infection had no apparent effect on DC sub-set number or Treg cell frequency. In contrast to the impairment of DC maturation/function and the activation of Treg cells seen with sub-microscopic parasitaemia in primary experimental human Plasmodium infection, no phenotypic evidence of dysregulation of DC and Treg cells was observed in asymptomatic sub-microscopic Plasmodium infection in Indonesian adults. This is consistent with DC and Treg cells retaining their functional capacity in sub-microscopic asymptomatic infection with P. falciparum or P. vivax in malaria-endemic areas.
Maltha, Jessica; Gamboa, Dionicia; Bendezu, Jorge; Sanchez, Luis; Cnops, Lieselotte; Gillet, Philippe; Jacobs, Jan
2012-01-01
Background In the Peruvian Amazon, Plasmodium falciparum and Plasmodium vivax malaria are endemic in rural areas, where microscopy is not available. Malaria rapid diagnostic tests (RDTs) provide quick and accurate diagnosis. However, pfhrp2 gene deletions may limit the use of histidine-rich protein-2 (PfHRP2) detecting RDTs. Further, cross-reactions of P. falciparum with P. vivax-specific test lines and vice versa may impair diagnostic specificity. Methods Thirteen RDT products were evaluated on 179 prospectively collected malaria positive samples. Species diagnosis was performed by microscopy and confirmed by PCR. Pfhrp2 gene deletions were assessed by PCR. Results Sensitivity for P. falciparum diagnosis was lower for PfHRP2 compared to P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH)- detecting RDTs (71.6% vs. 98.7%, p<0.001). Most (19/21) false negative PfHRP2 results were associated with pfhrp2 gene deletions (25.7% of 74 P. falciparum samples). Diagnostic sensitivity for P. vivax (101 samples) was excellent, except for two products. In 10/12 P. vivax-detecting RDT products, cross-reactions with the PfHRP2 or Pf-pLDH line occurred at a median frequency of 2.5% (range 0%–10.9%) of P. vivax samples assessed. In two RDT products, two and one P. falciparum samples respectively cross-reacted with the Pv-pLDH line. Two Pf-pLDH/pan-pLDH-detecting RDTs showed excellent sensitivity with few (1.0%) cross-reactions but showed faint Pf-pLDH lines in 24.7% and 38.9% of P. falciparum samples. Conclusion PfHRP2-detecting RDTs are not suitable in the Peruvian Amazon due to pfhrp2 gene deletions. Two Pf-pLDH-detecting RDTs performed excellently and are promising RDTs for this region although faint test lines are of concern. PMID:22952633
Maltha, Jessica; Gamboa, Dionicia; Bendezu, Jorge; Sanchez, Luis; Cnops, Lieselotte; Gillet, Philippe; Jacobs, Jan
2012-01-01
In the Peruvian Amazon, Plasmodium falciparum and Plasmodium vivax malaria are endemic in rural areas, where microscopy is not available. Malaria rapid diagnostic tests (RDTs) provide quick and accurate diagnosis. However, pfhrp2 gene deletions may limit the use of histidine-rich protein-2 (PfHRP2) detecting RDTs. Further, cross-reactions of P. falciparum with P. vivax-specific test lines and vice versa may impair diagnostic specificity. Thirteen RDT products were evaluated on 179 prospectively collected malaria positive samples. Species diagnosis was performed by microscopy and confirmed by PCR. Pfhrp2 gene deletions were assessed by PCR. Sensitivity for P. falciparum diagnosis was lower for PfHRP2 compared to P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH)-detecting RDTs (71.6% vs. 98.7%, p<0.001). Most (19/21) false negative PfHRP2 results were associated with pfhrp2 gene deletions (25.7% of 74 P. falciparum samples). Diagnostic sensitivity for P. vivax (101 samples) was excellent, except for two products. In 10/12 P. vivax-detecting RDT products, cross-reactions with the PfHRP2 or Pf-pLDH line occurred at a median frequency of 2.5% (range 0%-10.9%) of P. vivax samples assessed. In two RDT products, two and one P. falciparum samples respectively cross-reacted with the Pv-pLDH line. Two Pf-pLDH/pan-pLDH-detecting RDTs showed excellent sensitivity with few (1.0%) cross-reactions but showed faint Pf-pLDH lines in 24.7% and 38.9% of P. falciparum samples. PfHRP2-detecting RDTs are not suitable in the Peruvian Amazon due to pfhrp2 gene deletions. Two Pf-pLDH-detecting RDTs performed excellently and are promising RDTs for this region although faint test lines are of concern.
Dorado, Erika Jimena; Okoth, Sheila Akinyi; Montenegro, Lidia Madeline; Diaz, Gustavo; Barnwell, John W.; Udhayakumar, Venkatachalam; Murillo Solano, Claribel
2016-01-01
Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive human migration occurring in the region. PMID:27636709
Kaewthamasorn, Morakot; Takeda, Mika; Saiwichai, Tawee; Gitaka, Jesse N; Tiawsirisup, Sonthaya; Imasato, Yuhei; Mossaad, Ehab; Sarani, Ali; Kaewlamun, Winai; Channumsin, Manun; Chaiworakul, Suchart; Katepongpun, Wichit; Teeveerapunya, Surapong; Panthong, Jarus; Mureithi, Dominic K; Bawm, Saw; Htun, Lat Lat; Win, Mar Mar; Ismail, Ahmed Ali; Ibrahim, Abdalla Mohamed; Suganuma, Keisuke; Hakimi, Hassan; Nakao, Ryo; Katakura, Ken; Asada, Masahito; Kaneko, Osamu
2018-04-11
Plasmodium was first identified in a goat in Angola in 1923, and only recently characterized by DNA isolation from a goat blood sample in Zambia. Goats were first domesticated in the Fertile Crescent approximately 10,000 years ago, and are now globally distributed. It is not known if the Plasmodium identified in African goats originated from parasites circulating in the local ungulates, or if it co-evolved in the goat before its domestication. To address this question, we performed PCR-based surveillance using a total of 1,299 goat blood samples collected from Sudan and Kenya in Africa, Iran in west Asia, and Myanmar and Thailand in southeast Asia. Plasmodium DNA was detected from all locations, suggesting that the parasite is not limited to Africa, but widely distributed. Whole mitochondrial DNA sequences revealed that there was only one nucleotide substitution between Zambian/Kenyan samples and others, supporting the existence of a goat-specific Plasmodium species, presumably Plasmodium caprae, rather than infection of goats by local ungulate malaria parasites. We also present the first photographic images of P. caprae, from one Kenyan goat sample.
Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José; Dolz, Gaby
2017-01-01
One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs.
Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.
Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D
2017-07-01
Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.
NASA Astrophysics Data System (ADS)
Das, Sayantan; Mandal, Subhamoy; Das, Debnath; Malviya, Richa; Garud, Hrushikesh T.; Ray, Ajoy K.
2016-03-01
In this article we propose a point-of-care screening device for the detection and identification of malaria parasite, plasmodium vivax, plasmodium malaria, plasmodium oval and plasmodium falciparum with a time frame of 15-20 minute. In our device we can provide 97-98% sensitivity for each species as we are using traditional staining methods for detecting the parasites. In addition, as we are also quantifying the parasites, it is possible to provide an accurate estimate about the malarial stage of the patient. The image processing approach increases the total numbers of samples screened by reducing interventions of trained pathologists. This helps in reducing the delays in screening process arising from increased number of potential cases based on seasonal and local variations. The same reduces mortality rate by faster diagnosis and reduced false negative detections (i.e. increased sensitivity). The system can also be integrated with telemedicine platform to obtain inputs from medical practitioners at tertiary healthcare units for diagnostic decision making. Through this paper, we present the functional prototype of this device containing all the integrated parts. The prototype incorporates image acquisition, image processing, storage, multimedia transmission and reporting environment for a low cost PDA device. It is a portable device capable of scanning slides. The acquired image will be preprocessed and processed to get desired output. The device is capable of transmitting and storing pathological information to database placed in a distant pathological center for further consultation.
Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR.
Link, Lonneke; Bart, Aldert; Verhaar, Nienke; van Gool, Tom; Pronk, Marjolijn; Scharnhorst, Volkher
2012-07-01
Plasmodium knowlesi infection with low parasitemia presents a diagnostic challenge, as rapid diagnostic tests are often negative and identification to the species level by microscopy is difficult. P. knowlesi malaria in a traveler is described, and real-time PCR is demonstrated to support fast and reliable diagnosis and identification to the species level.
[Application of Nested PCR in the Diagnosis of Imported Plasmodium Ovale Infection].
Huang, Bing-cheng; Xu, Chao; Li, Jin; Xiao, Ting; Yin, Kun; Liu, Gong-zhen; Wang, Wei-yan; Zhao, Gui-hua; Wei, Yan-bin; Wang, Yong-bin; Zhao, Chang-lei; Wei, Qing-kuan
2015-02-01
To identity Plasmodium ovale infection by 18S rRNA gene nested PCR. Whole blood and filter paper blood samples of malaria patients in Shandong Province were collected during 2012-2013. The parasites were observed under a microscope with Giemsa staining. The genome DNA of blood samples were extracted as PCR templates. Genus- and species-specific primers were designed according to the Plasmodium 18S rRNA gene sequences. Plasmodium ovale-positive specimens were identified by nested PCR as well as verified by sequencing. There were 7 imported cases of P. ovale infection in the province during 2012-2013. Nested PCR results showed that the P. ovale specific band (800 bp) was amplified in all the 7 specimens. Blast results indicated that the PCR products were consistent with the Plasmodium ovale reference sequence in GenBank. Seven imported cases of ovale malaria in Shandong Province in 2012-2013 are confirmed by nested PCR.
Thurber, Mary Irene; Gamble, Kathryn C; Krebs, Bethany; Goldberg, Tony L
2014-12-01
Frozen blood samples from 13 species of free-ranging birds (n = 65) and captive Chilean flamingos (Phoenicopterus chilensis) (n = 46) housed outdoors in the Chicago area were screened for Plasmodium. With the use of a modified polymerase chain reaction, 20/65 (30.8%) of free-ranging birds and 26/46 (56.5%) of flamingos were classified as positive for this parasite genus. DNA sequencing of the parasite cytochrome b gene in positive samples demonstrated that eight species of free-ranging birds were infected with five different Plasmodium spp. cytochrome b lineages, and all positive Chilean flamingos were infected with Plasmodium spp. cytochrome b lineages most closely related to organisms in the Novyella subgenus. These results show that Chilean flamingos may harbor subclinical malaria infections more frequently than previously estimated, and that they may have increased susceptibility to some Plasmodium species.
Calderaro, Adriana; Piccolo, Giovanna; Montecchini, Sara; Buttrini, Mirko; Rossi, Sabina; Dell'Anna, Maria Loretana; De Remigis, Valeria; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora
2018-02-05
Malaria is no longer endemic in Italy since 1970 when the World Health Organization declared Italy malaria-free, but it is now the most commonly imported disease. The aim of the study was to analyse the trend of imported malaria cases in Parma, Italy, during January 2013-June 2017, reporting also the treatment and the outcome of cases, exploring the comparison of the three diagnostic tests used for malaria diagnosis: microscopy, immunochromatographic assay (ICT) (BinaxNOW ® ) and Real-time PCR assays detecting Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium knowlesi. Of the 288 patients with suspected malaria, 87 were positive by microscopy: 73 P. falciparum, 2 P. vivax, 8 P. ovale, 1 P. vivax/P. ovale, 1 P. malariae and 2 Plasmodium sp. All samples were positive by ICT except 6. Plasmodial DNA was revealed in the 87 cases and in 2 additional cases showing P. falciparum-specific bands by ICT, as follows: 75 P. falciparum, 2 P. vivax, 6 P. ovale curtisi, 3 P. ovale wallikeri, 1 P. malariae, and 2 mixed infections. 72 patients were foreigners and 17 Italians travelling for tourism or business. The majority of these patients presented with fever at blood collection and did not have chemoprophylaxis. No fatal cases were observed and the drug mostly used was quinine observing a negative blood smear or a parasitaemia < 0.001% after 48-72 h' therapy. The study shows an update and a thorough analysis of imported malaria cases in the area of Parma during 4.5 years from the point of view of the total case management, clinical and diagnostic. The prevalence of malaria in such area in the considered period was especially due to immigrants mostly from Africa. Molecular methods were more sensitive and specific than microscopy and ICT, both detecting additional cases of P. falciparum malaria missed by microscopy and correctly identifying the Plasmodium species of medical interest. The data reported in this study may stimulate the clinicians in non-endemic areas to suspect malaria also in cases, where the most typical symptoms are absent, and the parasitologists to confirm the results of microscopy, remaining the reference method, with molecular methods to avoid misdiagnosis.
Four human Plasmodium species quantification using droplet digital PCR.
Srisutham, Suttipat; Saralamba, Naowarat; Malleret, Benoit; Rénia, Laurent; Dondorp, Arjen M; Imwong, Mallika
2017-01-01
Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.
Houzé, Sandrine; Boutron, Isabelle; Marmorat, Anne; Dalichampt, Marie; Choquet, Christophe; Poilane, Isabelle; Godineau, Nadine; Le Guern, Anne-Sophie; Thellier, Marc; Broutier, Hélène; Fenneteau, Odile; Millet, Pascal; Dulucq, Stéphanie; Hubert, Véronique; Houzé, Pascal; Tubach, Florence; Le Bras, Jacques; Matheron, Sophie
2013-01-01
We compared the performance of four rapid diagnostic tests (RDTs) for imported malaria, and particularly Plasmodium falciparum infection, using thick and thin blood smears as the gold standard. All the tests are designed to detect at least one protein specific to P. falciparum ( Plasmodium histidine-rich protein 2 (PfHRP2) or Plasmodium LDH (PfLDH)) and one pan-Plasmodium protein (aldolase or Plasmodium LDH (pLDH)). 1,311 consecutive patients presenting to 9 French hospitals with suspected malaria were included in this prospective study between April 2006 and September 2008. Blood smears revealed malaria parasites in 374 cases (29%). For the diagnosis of P. falciparum infection, the three tests detecting PfHRP2 showed high and similar sensitivity (96%), positive predictive value (PPV) (90%) and negative predictive value (NPV) (98%). The PfLDH test showed lower sensitivity (83%) and NPV (80%), despite good PPV (98%). For the diagnosis of non-falciparum species, the PPV and NPV of tests targeting pLDH or aldolase were 94–99% and 52–64%, respectively. PfHRP2-based RDTs are thus an acceptable alternative to routine microscopy for diagnosing P. falciparum malaria. However, as malaria may be misdiagnosed with RDTs, all negative results must be confirmed by the reference diagnostic method when clinical, biological or other factors are highly suggestive of malaria. PMID:24098699
2011-01-01
Background Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of CQ and SP resistance in P. falciparum and Plasmodium vivax to determine if high levels of in vivo resistance are reflected at molecular level as well. Methods Finger prick blood samples (n = 189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum and P. vivax for CQ (Pfcrt, Pfmdr1, Pvmdr1) and SP (Pfdhfr, Pfdhps, Pvdhfr), using various PCR-based methods. Results and discussion Positive P. vivax and P. falciparum infections were identified by PCR in 92 and 41 samples respectively. However, some of these were negative in subsequent PCRs. Based on a few P. falciparum samples, the molecular level of CQ resistance in P. falciparum was high since nearly all parasites had the Pfcrt mutant haplotypes CVIET (55%) or SVMNT (42%), though frequency of the Pfmdr1 wild type haplotype was relatively low (35%). Molecular level of SP resistance in P. falciparum was found to be high. The most prevalent Pfdhfr haplotype was double mutant CNRNI (91%), while frequency of Pfdhps double mutant SGEAA and AGEAA were 38% and 33% respectively. Combined, the frequency of quadruple mutations (CNRNI-SGEAA/AGEAA) was 63%. Based on P. vivax samples, low CQ and SP resistance were most likely due to low prevalence of Pvmdr1 Y976F mutation (5%) and absence of triple/quadruple mutations in Pvdhfr. Conclusions Based on the limited number of samples, prevalence of CQ and SP resistance at molecular levels in the population in the study area were determined as high in P. falciparum and low in P. vivax. Therefore, CQ could still be used in the treatment of P. vivax infections, but this remains to be tested in vivo while the change to ACT for P. falciparum seems justified. PMID:21457533
Kumar, Navin; Pande, Veena; Bhatt, R M; Shah, Naman K; Mishra, Neelima; Srivastava, Bina; Valecha, Neena; Anvikar, Anupkumar R
2013-01-01
Genetic polymorphisms in diagnostic antigens are important factors responsible for variable performance of rapid diagnostic tests. Additionally, the failure of antigen expression due to gene deletion may also contribute to variable performance. We report Indian Plasmodium falciparum field isolates lacking both Pfhrp2 and Pfhrp3 genes leading to false negative results of rapid diagnostic tests. The study highlights need to determine the prevalence of P. falciparum isolates lacking these genes in larger field populations in India. Copyright © 2012 Elsevier B.V. All rights reserved.
Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José
2017-01-01
One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs. PMID:28125696
Kozycki, Christina T; Umulisa, Noella; Rulisa, Stephen; Mwikarago, Emil I; Musabyimana, Jean Pierre; Habimana, Jean Pierre; Karema, Corine; Krogstad, Donald J
2017-03-20
Rapid diagnostic tests (RDTs) for histidine rich protein 2 (HRP2) are often used to determine whether persons with fever should be treated with anti-malarials. However, Plasmodium falciparum parasites with a deletion of the hrp2 gene yield false-negative RDTs and there are concerns the sensitivity of HRP2-based RDTs may fall when the intensity of transmission decreases. This observational study enrolled 9226 patients at three health centres in Rwanda from April 2014 to April 2015. It then compared the sensitivity of RDTs based on HRP2 and the Plasmodium lactate dehydrogenase (pLDH) to microscopy (thick smears) for the diagnosis of malaria. PCR was used to determine whether deletions of the histidine-rich central repeat region of the hrp2 gene (exon 2) were associated with false-negative HRP2-based RDTs. In comparison to microscopy, the sensitivity and specificity of HRP2- and pLDH-based RDTs were 89.5 and 86.2% and 80.2 and 94.3%, respectively. When the results for both RDTs were combined, sensitivity rose to 91.8% and specificity was 85.7%. Additionally, when smear positivity fell from 46 to 3%, the sensitivity of the HRP2-based RDT fell from 88 to 67%. Of 370 samples with false-negative HRP2 RDT results for which PCR was performed, 140 (38%) were identified as P. falciparum by PCR. Of the isolates identified as P. falciparum by PCR, 32 (23%) were negative for the hrp2 gene based on PCR. Of the 32 P. falciparum isolates negative for hrp2 by PCR, 17 (53%) were positive based on the pLDH RDT. This prospective study of RDT performance coincided with a decline in the intensity of malaria transmission in Kibirizi (fall in slide positivity from 46 to 3%). This decline was associated with a decrease in HRP2 RDT sensitivity (from 88 to 67%). While P. falciparum isolates without the hrp2 gene were an important cause of false-negative HRP2-based RDTs, most were identified by the pLDH-based RDT. Although WHO does not recommend the use of combined HRP2/pLDH testing in sub-Saharan Africa, these results suggest that combination HRP2/pLDH-based RDTs could reduce the impact of false-negative HRP2-based RDTs for detection of symptomatic P. falciparum malaria.
Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W
2017-01-01
More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.
Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F.; Morton, Lindsay C.; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Barnwell, John W.
2017-01-01
More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region. PMID:28301474
Gitonga, Caroline W; Edwards, Tansy; Karanja, Peris N; Noor, Abdisalan M; Snow, Robert W; Brooker, Simon J
2012-07-01
To investigate risk factors, including reported net use, for Plasmodium infection and anaemia among school children and to explore variations in effects across different malaria ecologies occurring in Kenya. This study analysed data for 49 975 school children in 480 schools surveyed during a national school malaria survey, 2008-2010. Mixed effects logistic regression was used to investigate factors associated with Plasmodium infection and anaemia within different malaria transmission zones. Insecticide-treated net (ITN) use was associated with reduction in the odds of Plasmodium infection in coastal and western highlands epidemic zones and among boys in the lakeside high transmission zone. Other risk factors for Plasmodium infection and for anaemia also varied by zone. Plasmodium infection was negatively associated with increasing socio-economic status in all transmission settings, except in the semi-arid north-east zone. Plasmodium infection was a risk factor for anaemia in lakeside high transmission, western highlands epidemic and central low-risk zones, whereas ITN use was only associated with lower levels of anaemia in coastal and central zones and among boys in the lakeside high transmission zone. The risk factors for Plasmodium infection and anaemia, including the protective associations with ITN use, vary according to malaria transmission settings in Kenya, and future efforts to control malaria and anaemia should take into account such heterogeneities among school children. © 2012 Blackwell Publishing Ltd.
Yao, Li-Nong; Zhang, Ling-Ling; Ruan, Wei; Chen, Hua-Liang; Lu, Qiao-Yi; Yang, Ting-Ting
2013-06-01
To identify the species of malaria parasites in 5 imported cases previously diagnosed as vivax malaria. Epidemiological information and blood samples were collected from five patients who returned from Africa and were diagnosed as vivax malaria. The detection was conducted by microscopy, right VIEW rapid malaria test (RDTs) and nested PCR with Plasmodium genus-specific and species-specific primers. The amplified products were sequenced and Blast analysis was performed. Three of the 5 cases had a history of malaria attack. Microscopically, 4 cases were confirmed as Plasmodium ovale infection, 1 (case 1) was co-infected with P. vivax and P. ovale. All 5 cases showed negative RDT results. Nested PCR detection revealed that the 5 cases had a P. ovale-specific fragment (800 bp), while case 1 had a P. vivax-specific fragment (120 bp) concurrently. Blast analysis showed that the amplified sequence of the 5 cases had a high sequence homology (99%) with P. ovale gene for small subunit ribosomal RNA from GenBank, and that of case 1 also shared 99% homology with P. vivax isolate SV5 18S ribosomal RNA gene (GenBank accession number: JQ627157.1). Among the five cases, four were infected by Plasmodium ovale, and one was co-infected with both P. vivax and P. ovale.
Attemene, Serge David Dago; Beourou, Sylvain; Tuo, Karim; Gnondjui, Albert Alloh; Konate, Abibatou; Toure, Andre Offianan; Kati-Coulibaly, Seraphin; Djaman, Joseph Alico
2018-03-01
Malaria is an infectious and deadly parasitic disease, associated with fever, anaemia and other ailments. Unfortunately the upsurge of plasmodium multidrug resistant constrained researchers to look for new effective drugs. Medicinal plants seem to be an unquenchable source of bioactive principles in the treatment of various diseases. The aim of this study was to assess the antiplasmodial activity of two Ivorian medicinal plants. The in vitro activity was evaluated against clinical isolates and Plasmodium falciparum K1 multidrug resistant strain using the fluorescence based SYBR green I assay. The in vivo bioassay was carried out using the classical 4 day suppressive and curative tests on Plasmodium berghei infected mice. Results showed that the in vitro bioassay of both plant extracts were found to exhibit a promising and moderate antiparasitic effects on clinical isolates (5 µg/mL < IC 50 < 15 µg/mL) and Plasmodium falciparum multidrug resistant K1 strain (15 µg/mL < IC 50 < 50 µg/mL). Furthermore, the in vivo antiplasmodial screening of both extracts showed a significant decrease in parasitemia, which was dose-dependent. Body temperature in mice treated with both extracts at experimental doses increased, compared to the negative control group and was dose-dependent. As for mice body weight a significant decrease ( p < 0.001) was noticed in the negative control group compared to tested groups of animals. The hydroethanolic stem bark extract of Anthocleista djalonensis A Chev and leaves extract of Ziziphus mauritiana Lam exhibited anti-malarial activities. Therefore, the bioactive compounds of both plant extracts need to be investigated.
Gatton, Michelle L; Dunn, Jessica; Chaudhry, Alisha; Ciketic, Sadmir; Cunningham, Jane; Cheng, Qin
2017-04-01
Rapid diagnostic tests (RDTs) are an important tool for malaria diagnosis, with most using antibodies against Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Reports of P. falciparum lacking this protein are increasing, creating a problem for diagnosis of falciparum malaria in locations without quality-assured microscopy. An agent-based stochastic simulation model of P. falciparum transmission was used to investigate the selective pressure exerted on parasite populations by use of RDTs for diagnosis of symptomatic cases. The model considered parasites with normal, reduced, or no PfHRP2, and diagnosis using PfHRP2-only or combination RDTs. Use of PfHRP2-only RDTs in communities where a PfHRP2-negative parasite was introduced during the simulation resulted in transmission of the parasite in >80% of cases, compared with <30% for normal or PfHRP2-reduced parasites. Using PfHRP2-only RDTs in the presence of PfHRP2-negative parasites caused an increase in prevalence, reduced RDT positivity within symptomatic patients but no change in the number of antimalarial treatments due to false-negative RDT results. Diagnosis with PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs did not select for PfHRP2-negative parasites. The use of PfHRP2-only RDTs is sufficient to select P. falciparum parasites lacking this protein, thus posing a significant public health problem, which could be moderated by using PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Senn, Nicolas; Rarau, Patricia; Manong, Doris; Salib, Mary; Siba, Peter; Robinson, Leanne J; Reeder, John; Rogerson, Stephen; Mueller, Ivo; Genton, Blaise
2012-03-01
In malaria-endemic areas it is recommended that febrile children be tested for malaria by rapid diagnostic test (RDT) or blood slide (BS) and receive effective malaria treatment only if results are positive. However, RDTs are known to perform less well for Plasmodium vivax. We evaluated the safety of withholding antimalarial drugs from young Papua New Guinean children with negative RDT results in areas with high levels of both Plasmodium falciparum and P. vivax infections. Longitudinal prospective study of children aged 3-27 months visiting outpatient clinics for fever. RDT was administered at first visit. RDT and microscopy were performed if children returned because of persistent symptoms. Outcomes were rates of reattendance and occurrence of severe illnesses. Of 5670 febrile episodes, 3942 (70%) involved a negative RDT result. In 133 cases (3.4%), the children reattended the clinic within 7 days for fever, of whom 29 (0.7%) were parasitemic by RDT or microscopy. Of children who reattended, 24 (0.7%) presented with a severe illness: 2 had lower respiratory tract infections (LRTIs) with low-density P. vivax on BS; 2 received a diagnosis of P. vivax malaria on the basis of RDT but BSs were negative; 16 had LRTIs; 3 had alternative diagnoses. Of these 24, 22 were cured at day 28. Two children died of illnesses other than malaria and were RDT and BS negative at the initial and subsequent visits. Treatment for malaria based on RDT results is safe and feasible even in infants living in areas with moderate to high endemicity for both P. falciparum and P. vivax infections.
Son, Ui-Han; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Sanghyun; Yun, Hae Soo; Kim, Jung-Yeon; Joo, So-Young; Jeong, Sookwan; Rhee, Man Hee; Hong, Yeonchul; Chung, Dong-Il; Kwak, Dongmi; Goo, Youn-Kyoung
2017-04-01
Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (π and Θ w ), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P >0.1), vir 12 (2.89007, P <0.01), and vir 21 (0.40782, P >0.1) were positive, and that of vir 4 (-1.32162, P >0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.
External quality assessment of malaria microscopy in the Democratic Republic of the Congo
2011-01-01
Background External quality assessments (EQA) are an alternative to cross-checking of blood slides in the quality control of malaria microscopy. This study reports the findings of an EQA of malaria microscopy in the Democratic Republic of the Congo (DRC). Methods After validation, an EQA slide panel and a questionnaire were delivered to diagnostic laboratories in four provinces of DRC. The panel included three samples for diagnosis (sample 1: Plasmodium falciparum, 177,000/μl, sample 2: P. falciparum, 2,500/μl, sample 3: no parasites seen), one didactic sample (Howell-Jolly bodies) and one sample for assessing the quality of staining. Participating laboratories were addressed and selected through the network of the National Tuberculosis Control Programme. Participants were asked to return the responses together with a stained thin and thick blood film for evaluation of Giemsa stain quality. Results Among 174 participants (response rate 95.1%), 26.2% scored samples 1, 2 and 3 correctly and 34.3%, 21.5% and 5.8% of participants reported major errors in one, two or three samples respectively. Major errors included reporting "no malaria" or "non-falciparum malaria" for Plasmodium falciparum-positive samples 1 and 2 (16.1% and 34.9% of participants respectively) and "P. falciparum" for Plasmodium negative sample 3 (24.0%). Howell-Jolly bodies (didactic sample) were not recognized by any of the participants but reported as "P. falciparum" by 16.7% of participants. With parasite density expressed according to the "plus system", 16.1% and 21.5% of participants scored one "+" different from the reference score for samples 1 and 2 respectively and 9.7% and 2.9% participants scored more than two "+" different. When expressed as counts of asexual parasites/μl, more than two-thirds of results were outside the mean ± 2SD reference values. The quality of the Giemsa stain was poor, with less than 20% slides complying with all criteria assessed. Only one quarter of participants purchase Giemsa stain from suppliers of documented reliability and half of participants use a buffered staining solution. One third of participants had participated in a formal training about malaria diagnosis, half of them earlier than 2007. Conclusion The present EQA revealed a poor quality of malaria microscopy in DRC. PMID:22008378
Risk factors for Plasmodium vivax infection in the Lacandon forest, southern Mexico.
Danis-Lozano, R; Rodriguez, M H; Gonzalez-Ceron, L; Hernandez-Avila, M
1999-06-01
A study was conducted to characterize the risk of Plasmodium vivax infection in the Lacandon forest, southern Mexico. Blood samples and questionnaire data were collected in 1992. Malaria cases (n = 137) were identified by the presence of symptoms and a positive thick blood smear. The control group included individuals with negative antibody titres and no history of malaria (n = 4994). From 7628 individuals studied, 1006 had anti-P. vivax antibodies. Seroprevalence increased with age. Risk factors associated with infection included: place of birth outside the village of residence (odds ratio, OR 11.67; 95% CI 5.21-26.11); no use of medical services (OR 4.69, 95% CI 3.01-7.29), never using bed-nets (OR 3.98, 95 % CI 1.23-12.86) and poor knowledge of malaria transmission, prevention and treatment (OR 2.30, 95 % CI 1.30-4.07). Health education represents the best recommendation for controlling the disease in the area.
Risk factors for Plasmodium vivax infection in the Lacandon forest, southern Mexico.
Danis-Lozano, R.; Rodriguez, M. H.; Gonzalez-Ceron, L.; Hernandez-Avila, M.
1999-01-01
A study was conducted to characterize the risk of Plasmodium vivax infection in the Lacandon forest, southern Mexico. Blood samples and questionnaire data were collected in 1992. Malaria cases (n = 137) were identified by the presence of symptoms and a positive thick blood smear. The control group included individuals with negative antibody titres and no history of malaria (n = 4994). From 7628 individuals studied, 1006 had anti-P. vivax antibodies. Seroprevalence increased with age. Risk factors associated with infection included: place of birth outside the village of residence (odds ratio, OR 11.67; 95% CI 5.21-26.11); no use of medical services (OR 4.69, 95% CI 3.01-7.29), never using bed-nets (OR 3.98, 95 % CI 1.23-12.86) and poor knowledge of malaria transmission, prevention and treatment (OR 2.30, 95 % CI 1.30-4.07). Health education represents the best recommendation for controlling the disease in the area. PMID:10459651
Singh, Gajinder Pal; Sharma, Amit
2016-01-01
Resistance to frontline anti-malarial drugs, including artemisinin, has repeatedly arisen in South-East Asia, but the reasons for this are not understood. Here we test whether evolutionary constraints on Plasmodium falciparum strains from South-East Asia differ from African strains. We find a significantly higher ratio of non-synonymous to synonymous polymorphisms in P. falciparum from South-East Asia compared to Africa, suggesting differences in the selective constraints on P. falciparum genome in these geographical regions. Furthermore, South-East Asian strains showed a higher proportion of non-synonymous polymorphism at conserved positions, suggesting reduced negative selection. There was a lower rate of mixed infection by multiple genotypes in samples from South-East Asia compared to Africa. We propose that a lower mixed infection rate in South-East Asia reduces intra-host competition between the parasite clones, reducing the efficiency of natural selection. This might increase the probability of fixation of fitness-reducing mutations including drug resistant ones. PMID:27853513
Submicroscopic placental infection by non-falciparum Plasmodium spp.
Doritchamou, Justin Y A; Akuffo, Richard A; Moussiliou, Azizath; Luty, Adrian J F; Massougbodji, Achille; Deloron, Philippe; Tuikue Ndam, Nicaise G
2018-02-01
Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed. Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum Plasmodium and the lack of association of these infections with adverse pregnancy outcomes.
Subinoculation as a technique in the diagnosis of avian plasmodium
Herman, C.M.; Knisley, J.O.; Snyder, E.L.
1966-01-01
In two successive years, 1964 and 1965, blood subinoculated from wild Canada geese, negative for Plasmodium by examination of peripheral blood smears, into 5-day-old domestic geese produced 60 % infection in the recipients. Prepatent and patent periods, as well as intensity of parasitemia showed much variation. Intramuscular inoculation produced the same prevalence as the intravenous route, but longer prepatent periods and less intensity of parasitemia.
Tamiru, Afework; Boulanger, Lucy; Chang, Michelle A; Malone, Joseph L; Aidoo, Michael
2015-01-21
Rapid diagnostic tests (RDTs) are now widely used for laboratory confirmation of suspected malaria cases to comply with the World Health Organization recommendation for universal testing before treatment. However, many malaria programmes lack quality control (QC) processes to assess RDT use under field conditions. Prior research showed the feasibility of using the dried tube specimen (DTS) method for preserving Plasmodium falciparum parasites for use as QC samples for RDTs. This study focused on the use of DTS for RDT QC and proficiency testing under field conditions. DTS were prepared using cultured P. falciparum at densities of 500 and 1,000 parasites/μL; 50 μL aliquots of these along with parasite negative human blood controls (0 parasites/μL) were air-dried in specimen tubes and reactivity verified after rehydration. The DTS were used in a field study in the Oromia Region of Ethiopia. Replicate DTS samples containing 0, 500 and 1,000 parasites/μL were stored at 4°C at a reference laboratory and at ambient temperatures at two nearby health facilities. At weeks 0, 4, 8, 12, 16, 20, and 24, the DTS were rehydrated and tested on RDTs stored under manufacturer-recommended temperatures at the RL and on RDTs stored under site-specific conditions at the two health facilities. Reactivity of DTS stored at 4°C at the reference laboratory on RDTs stored at the reference laboratory was considered the gold standard for assessing DTS stability. A proficiency-testing panel consisting of one negative and three positive samples, monitored with a checklist was administered at weeks 12 and 24. At all the seven time points, DTS stored at both the reference laboratory and health facility were reactive on RDTs stored under the recommended temperature and under field conditions, and the DTS without malaria parasites were negative. At the reference laboratory and one health facility, a 500 parasites/μL DTS from the proficiency panel was falsely reported as negative at week 24 due to errors in interpreting faint test lines. The DTS method can be used under field conditions to supplement other RDT QC methods and health worker proficiency in Ethiopia and possibly other malaria-endemic countries.
Kiemde, Francois; Bonko, Massa Dit Achille; Tahita, Marc Christian; Lompo, Palpouguini; Rouamba, Toussaint; Tinto, Halidou; van Hensbroek, Michael Boele; Mens, Petra F; Schallig, Henk D F H
2017-07-20
It remains challenging to distinguish malaria from other fever causing infections, as a positive rapid diagnostic test does not always signify a true active malaria infection. This study was designed to determine the influence of other causes of fever, prior anti-malarial treatment, and a possible seasonality of the performance of a PfHRP2 RDT for the diagnosis of malaria in children under-5 years of age living in a malaria endemic area. A prospective etiology study was conducted in 2015 among febrile children under 5 years of age in Burkina Faso. In order to assess the influence of other febrile illnesses, prior treatment and seasonality on the performance of a PfHRP2 RDT in diagnosing malaria, the RDT results were compared with the gold standard (expert microscopic diagnosis of Plasmodium falciparum) and test results were analysed by assuming that prior anti-malarial use and bacterial/viral infection status would have been known prior to testing. To assess bacterial and viral infection status blood, urine and stool samples were analysed. In total 683 blood samples were analysed with microscopy and RDT-PfHRP2. Plasmodium falciparum malaria was diagnosed in 49.8% (340/683) by microscopy compared to 69.5% (475/683) by RDT-PfHRP2. The RDT-PfHRP2 reported 29.7% (141/475) false positive results and 1.8% (6/340) false negative cases. The RDT-PfHRP2 had a high sensitivity (98.2%) and negative predictive value (97.1%), but a low specificity (58.9%) and positive predictive value (70.3%). Almost 50% of the alternative cause of fever were diagnosed by laboratory testing in the RDT false positive malaria group. The use of a malaria RDT-PfHRP2 in a malaria endemic area may cause misdiagnosis of the actual cause of fever due to false positive test results. The development of a practical diagnostic tool to screen for other causes of fever in malaria endemic areas is required to save lives.
Schall, J J; Pearson, A R; Perkins, S L
2000-06-01
The prevalence of malaria parasites was studied in the lizard Anolis gundlachi over a 9-yr period at a site in the wet evergreen forest of eastern Puerto Rico. Three forms of the parasite infected the lizards; these were Plasmodium floridense, Plasmodium azurophilum in erythrocytes, and P. azurophilum in white blood cells. Overall prevalence of infection for 8 samples during the study period was significantly higher for males than females (32% of 3,296 males and 22% of 1,439 females). During the study, the site experienced substantial climatic and physical disturbance including rising temperature, droughts, and hurricanes that severely damaged the forest. Parasite prevalence in the first sample, 8 mo after the massive hurricane Hugo, was slightly, though significantly, lower than for subsequent samples. However, overall prevalence was stable during the 9-yr period. The results show malaria prevalence is more constant at the site than found for 2 studies in temperate forests, and that the Puerto Rico system may be an example of the stable, endemic malaria described by standard models for human malaria epidemiology.
Schoener, E R; Hunter, S; Howe, L
2017-07-01
Although wildlife rehabilitation and translocations are important tools in wildlife conservation in New Zealand, disease screening of birds has not been standardized. Additionally, the results of the screening programmes are often difficult to interpret due to missing disease data in resident or translocating avian populations. Molecular methods have become the most widespread method for diagnosing avian malaria (Plasmodium spp.) infections. However, these methods can be time-consuming, expensive and are less specific in diagnosing mixed infections. Thus, this study developed a new real-time PCR (qPCR) method that was able to detect and specifically identify infections of the three most common lineages of avian malaria in New Zealand (Plasmodium (Novyella) sp. SYAT05, Plasmodium elongatum GRW6 and Plasmodium spp. LINN1) as well as a less common, pathogenic Plasmodium relictum GRW4 lineage. The assay was also able to discern combinations of these parasites in the same sample and had a detection limit of five parasites per microlitre. Due to concerns relating to the presence of the potentially highly pathogenic P. relictum GRW4 lineage in avian populations, an additional confirmatory high resolution (HRM) qPCR was developed to distinguish between commonly identified P. elongatum GRW6 from P. relictum GRW4. The new qPCR assays were tested using tissue samples containing Plasmodium schizonts from three naturally infected dead birds resulting in the identified infection of P. elongatum GRW6. Thus, these rapid qPCR assays have shown to be cost-effective and rapid screening tools for the detection of Plasmodium infection in New Zealand native birds.
Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.
Faust, Christina; Dobson, Andrew P
2015-12-01
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.
1999-01-01
Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878
The Origin of Malarial Parasites in Orangutans
Pacheco, M. Andreína; Reid, Michael J. C.; Schillaci, Michael A.; Lowenberger, Carl A.; Galdikas, Biruté M. F.; Jones-Engel, Lisa; Escalante, Ananias A.
2012-01-01
Background Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. Methodology/Principal Findings We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. Conclusion The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates. PMID:22536346
Nakhleh, Johnny; Christophides, George K.; Osta, Mike A.
2017-01-01
Clip domain serine protease homologs (SPHs) are positive and negative regulators of Anopheles gambiae immune responses mediated by the complement-like protein TEP1 against Plasmodium malaria parasites and other microbial infections. We have previously reported that the SPH CLIPA2 is a negative regulator of the TEP1-mediated response by showing that CLIPA2 knockdown (kd) enhances mosquito resistance to infections with fungi, bacteria, and Plasmodium parasites. Here, we identify another SPH, CLIPA14, as a novel regulator of mosquito immunity. We found that CLIPA14 is a hemolymph protein that is rapidly cleaved following a systemic infection. CLIPA14 kd mosquitoes elicited a potent melanization response against Plasmodium berghei ookinetes and exhibited significantly increased resistance to Plasmodium infections as well as to systemic and oral bacterial infections. The activity of the enzyme phenoloxidase, which initiates melanin biosynthesis, dramatically increased in the hemolymph of CLIPA14 kd mosquitoes in response to systemic bacterial infections. Ookinete melanization and hemolymph phenoloxidase activity were further increased after cosilencing CLIPA14 and CLIPA2, suggesting that these two SPHs act in concert to control the melanization response. Interestingly, CLIPA14 RNAi phenotypes and its infection-induced cleavage were abolished in a TEP1 loss-of-function background. Our results suggest that a complex network of SPHs functions downstream of TEP1 to regulate the melanization reaction. PMID:28928218
Schwarz, Norbert Georg; Mertens, Eva; Winter, Doris; Maiga-Ascofaré, Oumou; Dekker, Denise; Jansen, Stephanie; Tappe, Dennis; Randriamampionona, Njary; May, Jürgen; Rakotozandrindrainy, Raphael; Schmidt-Chanasit, Jonas
2017-01-01
It was previously reported that a malaria infection may interfere with the specificity of a commercial ELISA test against Zika virus (ZIKV). We analyzed 1,216 plasma samples from healthy, pregnant women collected in two sites in Madagascar in 2010 for ZIKV antibodies using a commercial ELISA and for Plasmodium infection by PCR. This screen revealed six putative ZIKV-positive samples by ELISA. These results could not be confirmed by indirect immunofluorescence assays or virus neutralization tests. Four of these six samples were also positive for P. falciparum. We noted that the frequency of malaria positivity was higher in ZIKV-ELISA positive samples (50% and 100% in the two study sites) than ZIKV-negative samples (17% and 10%, respectively), suggesting that malaria may have led to false ZIKV-ELISA positives.
Nguyen, Thuy-Nhien; von Seidlein, Lorenz; Nguyen, Tuong-Vy; Truong, Phuc-Nhi; Hung, Son Do; Pham, Huong-Thu; Nguyen, Tam-Uyen; Le, Thanh Dong; Dao, Van Hue; Mukaka, Mavuto; Day, Nicholas Pj; White, Nicholas J; Dondorp, Arjen M; Thwaites, Guy E; Hien, Tran Tinh
2018-05-01
A substantial proportion of Plasmodium species infections are asymptomatic with densities too low to be detectable with standard diagnostic techniques. The importance of such asymptomatic plasmodium infections in malaria transmission is probably related to their duration and density. To explore the duration of asymptomatic plasmodium infections and changes in parasite densities over time, a cohort of participants who were infected with Plasmodium parasites was observed over a 2-year follow-up period. In this open cohort study, inhabitants of four villages in Vietnam were invited to participate in baseline and subsequent 3-monthly surveys up to 24 months, which included the collection of venous blood samples. Samples were batch-screened using ultra-sensitive (u)PCR (lower limit of detection of 22 parasites per mL). Participants found to be infected by uPCR during any of these surveys were invited to join a prospective cohort and provide monthly blood samples. We estimated the persistence of Plasmodium falciparum and Plasmodium vivax infections and changes in parasite densities over a study period of 24 months. Between Dec 1, 2013, and Jan 8, 2016, 356 villagers participated in between one and 22 surveys. These study participants underwent 4248 uPCR evaluations (11·9 tests per participant). 1874 (32%) of 4248 uPCR tests indicated a plasmodium infection; 679 (36%) of 1874 tests were P falciparum monoinfections, 507 (27%) were P vivax monoinfections, 463 (25%) were co-infections with P falciparum and P vivax, and 225 (12%) were indeterminate species of Plasmodium. The median duration of P falciparum infection was 2 months (IQR 1-3); after accounting for censoring, participants had a 20% chance of having parasitaemia for 4 months or longer. The median duration of P vivax infection was 6 months (3-9), and participants had a 59% chance of having parasitaemia for 4 months or longer. The parasite densities of persistent infections oscillated; following ultralow-density infections, high-density infections developed frequently. Persistent largely asymptomatic P vivax and P falciparum infections are common in this area of low seasonal malaria transmission. Infections with low-density parasitaemias can develop into much higher density infections at a later time, which are likely to sustain malaria endemicity. The Wellcome Trust, Bill & Melinda Gates Foundation. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Submicroscopic placental infection by non-falciparum Plasmodium spp.
Doritchamou, Justin Y. A.; Akuffo, Richard A.; Moussiliou, Azizath; Luty, Adrian J. F.; Massougbodji, Achille; Deloron, Philippe
2018-01-01
Background Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Methods and findings Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed Conclusions Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum Plasmodium and the lack of association of these infections with adverse pregnancy outcomes. PMID:29432484
Lubis, Inke N D; Wijaya, Hendri; Lubis, Munar; Lubis, Chairuddin P; Divis, Paul C S; Beshir, Khalid B; Sutherland, Colin J
2017-04-01
As Indonesia works toward the goal of malaria elimination, information is lacking on malaria epidemiology from some western provinces. As a basis for studies of antimalarial efficacy, we set out to survey parasite carriage in 3 communities in North Sumatera Province. A combination of active and passive detection of infection was carried out among communities in Batubara, Langkat, and South Nias regencies. Finger-prick blood samples from consenting individuals of all ages provided blood films for microscopic examination and blood spots on filter paper. Plasmodium species were identified using nested polymerase chain reaction (PCR) of ribosomal RNA genes and a novel assay that amplifies a conserved sequence specific for the sicavar gene family of Plasmodium knowlesi. Of 3731 participants, 614 (16.5%) were positive for malaria parasites by microscopy. PCR detected parasite DNA in samples from 1169 individuals (31.3%). In total, 377 participants (11.8%) harbored P. knowlesi. Also present were Plasmodium vivax (14.3%), Plasmodium falciparum (10.5%) and Plasmodium malariae (3.4%). Amplification of sicavar is a specific and sensitive test for the presence of P. knowlesi DNA in humans. Subpatent and asymptomatic multispecies parasitemia is relatively common in North Sumatera, so PCR-based surveillance is required to support control and elimination activities. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Liu, Weimin; Sundararaman, Sesh A; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Plenderleith, Lindsey J; Ndjango, Jean-Bosco N; Speede, Sheri; Atencia, Rebeca; Cox, Debby; Shaw, George M; Ayouba, Ahidjo; Peeters, Martine; Rayner, Julian C; Hahn, Beatrice H; Sharp, Paul M
2016-07-02
Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W
2015-01-01
A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed.
Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F.; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S.; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W.
2015-01-01
A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed. PMID:26151448
Fedele, Pasquale L; Wheeler, Michael; Lemoh, Christopher; Chunilal, Sanjeev
2014-10-01
Current screening guidelines for malaria in new refugees include a combination of thick and thin film examination and immunochromatographic antigen test (ICT). However, as the prevalence of malaria in our population has decreased due to changing refugee demographics, we sought to determine if an ICT alone can reliably exclude malaria in our asymptomatic refugee population.A retrospective analysis was conducted of all investigations for malaria performed from 1 August 2011 to 31 July 2013, including thick and thin blood film examination, BinaxNOW ICT, and external morphological and polymerase chain reaction (PCR) validation where applicable.Malaria was diagnosed in 45 of 1248 (3.6%) patients investigated, all of whom were symptomatic and the majority (71.1%) returned travellers. All 599 asymptomatic refugees screened were negative. Overall, 42 of 45 malaria cases were detected by the ICT; sensitivity 93.3% (95% CI 80.7-98.3%) and negative predictive value (NPV) 99.8% (99.2-99.9%). All 21 cases of Plasmodium falciparum and 20 of 22 cases of Plasmodium vivax were detected, giving a sensitivity of 100% (80.8-100%) and 90.9% (69.4-98.4%) respectively. Too few cases of Plasmodium malariae and no cases of Plasmodium ovale or Plasmodium knowlesi were diagnosed for adequate assessment to be carried out.These data suggest that full malaria screening in all asymptomatic refugees with the combination of thick and thin blood films and rapid antigen test may not be warranted. Alternative screening approaches should be considered, including the use of ICT alone, or limiting screening of asymptomatic refugees to only those originating from countries with high incidence of malaria.
A PCR method based on 18S rRNA gene for detection of malaria parasite in Balochistan.
Shahwani, Zubeda; Aleem, Abdul; Ahmed, Nazeer; Mushtaq, Muhammad; Afridi, Sarwat
2016-12-01
To establish a polymerase chain reaction method based on 18S ribosomal ribonucleic acid gene for the detection of plasmodium deoxyribonucleic acid in patients suffering from malaria symptoms. This cross-sectional study was conducted from September 2013 to October 2014 in district Quetta of Pakistan's Balochistan province. Blood samples were collected from patients suffering from general symptoms of malaria. A polymerase chain reaction-based technique was applied for the diagnosis of malaria and detection of responsible species in the patients who were suspected to carry the parasite. Performance of this polymerase chain reaction method was compared against the microscopy results. Parasite number was also calculated for microscopy positive samples.All samples after the genomic deoxyribonucleic acid isolation were subjected to polymerase chain reaction amplification and agarose gel electrophoresis. Of the 200 samples, 114(57%) were confirmed as positive and 86(43%) as negative for malaria by microscopy. Polymerase chain reaction identified 124(62%) samples as positive and 76(38%) as negative for malaria. The comparative analysis of both diagnostic methods confirmed 109(54.5%) samples as positive by both techniques. Besides, 5(6.58%) samples were identified as false positive and 15(12.1%) samples as false negative by polymerase chain reaction. Sensitivity, specificity and positive predictive values for polymerase chain reaction in comparison to microscopy were 87.98%, 93.42% and 96%, respectively. Polymerase chain reaction-based methods in malaria diagnosis and species identification were found to be more effective than other techniques.
Ocan, Moses; Bwanga, Freddie; Okeng, Alfred; Katabazi, Fred; Kigozi, Edgar; Kyobe, Samuel; Ogwal-Okeng, Jasper; Obua, Celestino
2016-08-19
In the absence of an effective vaccine, malaria treatment and eradication is still a challenge in most endemic areas globally. This is especially the case with the current reported emergence of resistance to artemisinin agents in Southeast Asia. This study therefore explored the prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites in northern Uganda. Adult patients (≥18 years) presenting to out-patients department of Lira and Gulu regional referral hospitals in northern Uganda were randomly recruited. Laboratory investigation for presence of plasmodium infection among patients was done using Plasmodium falciparum exclusive rapid diagnostic test, histidine rich protein-2 (HRP2) (Pf). Finger prick capillary blood from patients with a positive malaria test was spotted on a filter paper Whatman no. 903. The parasite DNA was extracted using chelex resin method and sequenced for mutations in K13-propeller gene using Sanger sequencing. PCR DNA sequence products were analyzed using in DNAsp 5.10.01software, data was further processed in Excel spreadsheet 2007. A total of 60 parasite DNA samples were sequenced. Polymorphisms in the K13-propeller gene were detected in four (4) of the 60 parasite DNA samples sequenced. A non-synonymous polymorphism at codon 533 previously detected in Cambodia was found in the parasite DNA samples analyzed. Polymorphisms at codon 522 (non-synonymous) and codon 509 (synonymous) were also found in the samples analyzed. The study found evidence of positive selection in the Plasmodium falciparum population in northern Uganda (Tajima's D = -1.83205; Fu and Li's D = -1.82458). Polymorphism in the K13-propeller gene previously reported in Cambodia has been found in the Ugandan Plasmodium falciparum parasites. There is need for continuous surveillance for artemisinin resistance gene markers in the country.
Akinyi, Sheila; Hayden, Tonya; Gamboa, Dionicia; Torres, Katherine; Bendezu, Jorge; Abdallah, Joseph F.; Griffing, Sean M.; Quezada, Wilmer Marquiño; Arrospide, Nancy; De Oliveira, Alexandre Macedo; Lucas, Carmen; Magill, Alan J.; Bacon, David J.; Barnwell, John W.; Udhayakumar, Venkatachalam
2013-01-01
The majority of malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), encoded by the pfhrp2 gene. Recently, P. falciparum isolates from Peru were found to lack pfhrp2 leading to false-negative RDT results. We hypothesized that pfhrp2-deleted parasites in Peru derived from a single genetic event. We evaluated the parasite population structure and pfhrp2 haplotype of samples collected between 1998 and 2005 using seven neutral and seven chromosome 8 microsatellite markers, respectively. Five distinct pfhrp2 haplotypes, corresponding to five neutral microsatellite-based clonal lineages, were detected in 1998-2001; pfhrp2 deletions occurred within four haplotypes. In 2003-2005, outcrossing among the parasite lineages resulted in eight population clusters that inherited the five pfhrp2 haplotypes seen previously and a new haplotype; pfhrp2 deletions occurred within four of these haplotypes. These findings indicate that the genetic origin of pfhrp2 deletion in Peru was not a single event, but likely occurred multiple times. PMID:24077522
Pirahmadi, Sakineh; Zakeri, Sedigheh; Raeisi, Ahmad
2017-01-01
Asymptomatic malaria infection provides a reservoir of parasites, causing the persistence of malaria transmission. It accounts an important challenge for successful management of the control, elimination, and eradication programmes in any malaria-endemic region. This investigation was designed to assess the presence and the prevalence of asymptomatic carriers in Iranshahr district of Sistan and Baluchistan Province (2013-2014), with a considerable population movement, during the malaria elimination phase in Iran. Finger-prick blood samples were collected from symptomless (n=250) and febrile (n=50) individuals residing in Iranshahr district, easthern Iran (Hoodian, Mand, Chah-e Giji, Jolgehashem, Esfand, Dalgan and Chahshour) during Jan 2013 to Dec 2014, and Plasmodium infections were detected using light microscopic and highly sensitive nested-PCR techniques. Thick and thin Giemsa-stained blood smears were negative for Plasmodium parasites. In addition, based on nested-PCR analysis, no P. vivax , P. falciparum, and P. malariae parasites were detected among the studied individuals. Investigation the absence of asymptomatic carriers in Iranshahr district was illustrated and achieving malaria elimination in this area is feasible in a near future.
Yerlikaya, Seda; Campillo, Ana; Gonzalez, Iveth J
2018-03-15
Despite the increased use and worldwide distribution of malaria rapid diagnostic tests (RDTs) which distinguish between Plasmodium falciparum and non-falciparum species, little is known about their performance for detecting Plasmodium knowlesi (Pk), Plasmodium malariae (Pm), and Plasmodium ovale (Po). The objective of this review is to analyze results of published studies evaluating the diagnostic accuracy of malaria RDTs in detecting Pk, Pm and Po mono-infections.MEDLINE, EMBASE, Web of Science and CENTRAL databases were systematically searched to identify studies which reported on the performance of RDTs in detecting Pk, Pm,Po mono-infections.Among 40 studies included in the review, three reported on Pk, eight on Pm, five on Po, one on Pk and Pm, and 23 on Pm and Po infections. In the meta-analysis, estimates of sensitivities of RDTs in detecting Pk infections ranged from 2% to 48%. Test performances for Pm and Po infections were less accurate and highly heterogeneous, mainly due to the small number of samples tested.Limited data available suggest that malaria RDTs show suboptimal performance for detecting Pk, Pm,Po infections. New improved RDTs as well as appropriately designed, cross-sectional studies to demonstrate their usefulness in the detection of neglected Plasmodium species, are urgently needed.
Schoone, G J; Oskam, L; Kroon, N C; Schallig, H D; Omar, S A
2000-11-01
A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the sample with one modified in vitro RNA as a competitor in a single-tube NASBA reaction. Parasite densities ranging from 10 to 10(8) Plasmodium falciparum parasites per ml could be demonstrated and quantified in whole blood. This is approximately 1,000 times more sensitive than conventional microscopy analysis of thick blood smears. Comparison of the parasite densities obtained by microscopy and QT-NASBA with 120 blood samples from Kenyan patients with clinical malaria revealed that for 112 of 120 (93%) of the samples results were within a 1-log difference. QT-NASBA may be especially useful for the detection of low parasite levels in patients with early-stage malaria and for the monitoring of the efficacy of drug treatment.
Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers
Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric
2009-01-01
Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894
Mirza, V; Burrows, E B; Gils, S; Hunter, S; Gartrell, B D; Howe, L
2017-08-01
Human colonisation of New Zealand has resulted in the introduction of emerging diseases, such as avian malaria and toxoplasmosis, which arrived with their exotic avian and mammalian hosts. Plasmodium spp. and Toxoplasma gondii have a wide host range, and several species of endemic New Zealand birds have developed a fatal disease following infection with either pathogen. However, no reports of either toxoplasmosis or avian malaria in New Zealand raptors, namely, the New Zealand falcons (Falco novaeseelandiae), Australasian harriers (Circus approximans) and moreporks (Ninox novaeseelandiae) exist in the literature. Therefore, this study was designed to determine if these two pathogens are present in these raptors through a retrospective analysis of archived tissue samples. Detection and isolate identification of these pathogens was determined using established histological and molecular techniques. All three species of New Zealand raptors tested positive for the presence of Plasmodium spp. (10/117; 8.5%) and an atypical genotype of T. gondii (9/117; 7.7%). Plasmodium lineages identified include P. elongatum GRW6, P. relictum SGS1, P. relictum PADOM02 and Plasmodium sp. LINN1. Two Australasian harriers and one morepork tested positive for the presence of both Plasmodium spp. and T. gondii. However, the pathogenicity of these organisms to the raptors is unclear as none of the tissues showed histological evidence of clinical disease associated with Plasmodium spp. and T. gondii infections. Thus, these results demonstrate for the first time that these two potential pathogens are present in New Zealand's raptors; however, further research is required to determine the prevalence and pathogenicity of these organisms among the living populations of these birds in the country.
Kang, Jung-Mi; Cho, Pyo-Yun; Moe, Mya; Lee, Jinyoung; Jun, Hojong; Lee, Hyeong-Woo; Ahn, Seong Kyu; Kim, Tae Im; Pak, Jhang Ho; Myint, Moe Kyaw; Lin, Khin; Kim, Tong-Soo; Na, Byoung-Kuk
2017-03-16
Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.
Zhong, Daibin; Lo, Eugenia; Wang, Xiaoming; Yewhalaw, Delenasaw; Zhou, Guofa; Atieli, Harrysone E; Githeko, Andrew; Hemming-Schroeder, Elizabeth; Lee, Ming-Chieh; Afrane, Yaw; Yan, Guiyun
2018-05-02
Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44-65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections.
Safeukui, Innocent; Millet, Pascal; Boucher, Sébastien; Melinard, Laurence; Fregeville, Frédéric; Receveur, Marie-Catherine; Pistone, Thierry; Fialon, Pierre; Vincendeau, Philippe; Fleury, Hervé; Malvy, Denis
2008-01-01
Background A simple real-time PCR assay using one set of primer and probe for rapid, sensitive and quantitative detection of Plasmodium species, with simultaneous differentiation of Plasmodium falciparum from the three other Plasmodium species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) in febrile returning travellers and migrants was developed and evaluated. Methods Consensus primers were used to amplify a species-specific region of the multicopy 18S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be perfect matches to the 18S rRNA gene of the fourth Plasmodium species, while the acceptor probe sequence was designed for P. falciparum over a region containing one mismatched, which allowed differentiation of the three other Plasmodium species. The performance characteristics of the real-time PCR assay were compared with those of conventional PCR and microscopy-based diagnosis from 119 individuals with a suspected clinical diagnostic of imported malaria. Results Blood samples with parasite densities less than 0.01% were all detected, and analytical sensitivity was 0.5 parasite per PCR reaction. The melt curve means Tms (standard deviation) in clinical isolates were 60.5°C (0.6°C) for P. falciparum infection and 64.6°C (1.8°C) for non-P. falciparum species. These Tms values of the P. falciparum or non-P. falciparum species did not vary with the geographic origin of the parasite. The real-time PCR results correlated with conventional PCR using both genus-specific (Kappa coefficient: 0.95, 95% confidence interval: 0.9 – 1) or P. falciparum-specific (0.91, 0.8 – 1) primers, or with the microscopy results (0.70, 0.6 – 0.8). The real-time assay was 100% sensitive and specific for differentiation of P. falciparum to non-P. falciparum species, compared with conventional PCR or microscopy. The real-time PCR assay can also detect individuals with mixed infections (P. falciparum and non-P. falciparum sp.) in the same sample. Conclusion This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of P. falciparum to other Plasmodium species. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed. PMID:18442362
Leclerc, Antoine; Chavatte, Jean-Marc; Landau, Irène; Snounou, Georges; Petit, Thierry
2014-09-01
A morphologic and molecular epidemiologic investigation was conducted on a captive African black-footed penguin (Spheniscus demersus) colony with a history of Plasmodium infections at La Palmyre Zoo (France). Each penguin received 12.5 mg of pyrimethamine twice a week as a prophylaxis every year from April to November. Although Plasmodium parasites were not detected in blood smears and tissues collected from the penguins, various blood parasites were recorded in blood smears from wild Eurasian magpies (Pica pica) and carrion crows (Corvus corone) sampled at the same time in the study area. These parasites consisted of several Plasmodium spp. (P. lenoblei, P. dorsti, P bioccai, P. relictum, P. dherteae, P. beaucournui, P. maior, P. tranieri, and P. snounoui), Parahaemoproteus spp., Trypanosoma spp., and Leucocytozoon spp. On the other hand, nested polymerase chain reaction enabled detection of Plasmodium DNA in 28/44 (64%) penguins, 15/25 (60%) magpies, and 4/9 (44%) crows. Sequencing and phylogenetic analyses indicated that the parasite DNA amplified from the penguins, magpies, and crows were similar. Magpies and crows could therefore act as a reservoir for penguin Plasmodium infections, which may be more prevalent than previously thought. Morphologic characterization of the Plasmodium spp. detected in the penguins, as well as further biological and epidemiologic studies, are needed to fully understand the transmission of Plasmodium parasites to captive penguins.
Herrera, Sócrates; Gómez, Andrés; Vera, Omaira; Vergara, Juana; Valderrama-Aguirre, Augusto; Maestre, Amanda; Méndez, Fabián; Wang, Ruobing; Chitnis, Chetan E; Yazdani, Syed S; Arévalo-Herrera, Myriam
2005-11-01
The Duffy antigen (Fy) is necessary for Plasmodium vivax invasion of human erythrocytes. Some populations have a highly prevalent Fy-negative phenotype; such persons are naturally protected from P. vivax blood infection but are expected to completely support the P. vivax pre-erythrocytic cycle, representing a valuable model for studying the immune response during these parasitic stages. We typed 214 individuals, mostly Afro-Colombians, from a P. vivax-endemic area for Fy expression and determined the antibody response to P. vivax pre-erythrocytic (sporozoites and CS) and blood-stage antigens (blood forms, P. vivax merozoite surface protein 1, and P. vivax Duffy binding protein [PvDBP]). Antibody titers to P. vivax circumsporozoite protein, P11, and N-terminal peptides and the number of responders were similar in Fy-negative and Fy-positive individuals. The number of responders to sporozoites, blood forms, and PvDBP were different between these groups. Thus, Fy-negative individuals from malaria-endemic areas can be used to study the immune response to the P. vivax liver phase without interference of the erythrocytic cycle.
Loy, Dorothy E; Liu, Weimin; Li, Yingying; Learn, Gerald H; Plenderleith, Lindsey J; Sundararaman, Sesh A; Sharp, Paul M; Hahn, Beatrice H
2017-02-01
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Imai, Kazuo; Tarumoto, Norihito; Misawa, Kazuhisa; Runtuwene, Lucky Ronald; Sakai, Jun; Hayashida, Kyoko; Eshita, Yuki; Maeda, Ryuichiro; Tuda, Josef; Murakami, Takashi; Maesaki, Shigefumi; Suzuki, Yutaka; Yamagishi, Junya; Maeda, Takuya
2017-09-13
A simple and accurate molecular diagnostic method for malaria is urgently needed due to the limitations of conventional microscopic examination. In this study, we demonstrate a new diagnostic procedure for human malaria using loop mediated isothermal amplification (LAMP) and the MinION™ nanopore sequencer. We generated specific LAMP primers targeting the 18S-rRNA gene of all five human Plasmodium species including two P. ovale subspecies (P. falciparum, P. vivax, P. ovale wallikeri, P. ovale curtisi, P. knowlesi and P. malariae) and examined human blood samples collected from 63 malaria patients in Indonesia. Additionally, we performed amplicon sequencing of our LAMP products using MinION™ nanopore sequencer to identify each Plasmodium species. Our LAMP method allowed amplification of all targeted 18S-rRNA genes of the reference plasmids with detection limits of 10-100 copies per reaction. Among the 63 clinical samples, 54 and 55 samples were positive by nested PCR and our LAMP method, respectively. Identification of the Plasmodium species by LAMP amplicon sequencing analysis using the MinION™ was consistent with the reference plasmid sequences and the results of nested PCR. Our diagnostic method combined with LAMP and MinION™ could become a simple and accurate tool for the identification of human Plasmodium species, even in resource-limited situations.
Plasmodium vivax: modern strategies to study a persistent parasite's life cycle.
Galinski, Mary R; Meyer, Esmeralda V S; Barnwell, John W
2013-01-01
Plasmodium vivax has unique attributes to support its survival in varying ecologies and climates. These include hypnozoite forms in the liver, an invasion preference for reticulocytes, caveola-vesicle complex structures in the infected erythrocyte membrane and rapidly forming and circulating gametocytes. These characteristics make this species very different from P. falciparum. Plasmodium cynomolgi and other related simian species have identical biology and can serve as informative models of P. vivax infections. Plasmodium vivax and its model parasites can be grown in non-human primates (NHP), and in short-term ex vivo cultures. For P. vivax, in the absence of in vitro culture systems, these models remain highly relevant side by side with human clinical studies. While post-genomic technologies allow for greater exploration of P. vivax-infected blood samples from humans, these come with restrictions. Two advantages of NHP models are that infections can be experimentally tailored to address hypotheses, including genetic manipulation. Also, systems biology approaches can capitalise on computational biology combined with set experimental infection periods and protocols, which may include multiple sampling times, different types of samples, and the broad use of "omics" technologies. Opportunities for research on vivax malaria are increasing with the use of existing and new methodological strategies in combination with modern technologies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kalantari, Mohsen; Soltani, Zahra; Ebrahimi, Mostafa; Yousefi, Masoud; Amin, Masoumeh; Shafiei, Ayda; Azizi, Kourosh
2017-01-01
Despite control programs, which aim to eliminate malaria from Iran by 2025, transmission of malaria has not been removed from the country. This study aimed to monitor malaria from asymptomatic parasitaemia and clinical cases from about one year of active case surveillance and potential vectors of malaria in the newly emerged focus of Mamasani and Rostam, southern Iran during 2014–2015. Samples were collected and their DNAs were extracted for Polymerase Chain Reaction (PCR) assay using specific primers for detection of Plasmodium species. The Annual Parasite Incidence rate (API) was three cases per 1,000 population from 2,000 individuals in three villages. Parasites species were detected in 9 out of the 4,000 blood smear samples among which, 6 cases were indigenous and had no history of travels to endemic areas of malaria. Also, the prevalence rate of asymptomatic parasites was about 0.3%. Overall, 1073 Anopheles spp. were caught from 9 villages. Totally, 512 female samples were checked by PCR, which indicated that none of them was infected with Plasmodium. Despite new malaria local transmission in humans in Mamasani and Rostam districts, no infection with Plasmodium was observed in Anopheles species. Because of neighboring of the studied area to the re-emerged focus in Fars province (Kazerun) and important endemic foci of malaria in other southern provinces, such as Hormozgan and Kerman, monitoring of the vectors and reservoir hosts of Plasmodium species would be unavoidable. Application of molecular methods, such as PCR, can simplify access to the highest level of accuracy in malaria researches. PMID:28078947
Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María
2018-01-30
Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species identification in remote malaria diagnosis.
Isaksson, Caroline; Sepil, Irem; Baramidze, Vladimer; Sheldon, Ben C
2013-04-08
Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host's resistance. Generation of reactive oxygen species (ROS) is one of the host's initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses - total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success.
IMAI, NATSUKO; RUJENI, NADINE; NAUSCH, NORMAN; BOURKE, CLAIRE D.; APPLEBY, LAURA J.; COWAN, GRAEME; GWISAI, REGGIS; MIDZI, NICHOLAS; CAVANAGH, DAVID; MDULUZA, TAKAFIRA; TAYLOR, DAVID; MUTAPI, FRANCISCA
2011-01-01
SUMMARY Despite the overlapping distribution of Schistosoma haematobium and Plasmodium falciparum infections, few studies have investigated early immune responses to both parasites in young children resident in areas co-endemic for the parasites. This study measures infection levels of both parasites and relates them to exposure and immune responses in young children. Levels of IgM, IgE, IgG4 directed against schistosome cercariae, egg and adult worm and IgM, IgG directed against P. falciparum schizonts and the merozoite surface proteins 1 and 2 together with the cytokines IFN-γ, IL-4, IL-5, IL-10 and TNF-α were measured by ELISA in 95 Zimbabwean children aged 1–5 years. Schistosome infection prevalence was 14·7% and that of Plasmodium infection was 0% in the children. 43. 4% of the children showed immunological evidence of exposure to schistosome parasites and 13% showed immunological evidence of exposure to Plasmodium parasites. Schistosome–specific responses, indicative of exposure to parasite antigens, were positively associated with cercariae-specific IgE responses, while Plasmodium-specific responses, indicative of exposure to parasite antigens, were negatively associated with responses associated with protective immunity against Plasmodium. There was no significant association between schistosome-specific and Plasmodium-specific responses. Systemic cytokine levels rose with age as well as with schistosome infection and exposure. Overall the results show that (1) significantly more children are exposed to schistosome and Plasmodium infection than those currently infected and; (2) the development of protective acquired immunity commences in early childhood, although its effects on infection levels and pathology may take many years to become apparent. PMID:21813042
Wihokhoen, Benchawan; Dondorp, Arjen M; Turner, Paul; Woodrow, Charles J; Imwong, Mallika
2016-02-01
Molecular approaches offer a means of testing archived samples stored as dried blood spots in settings where standard blood cultures are not possible. Peripheral blood films are one suggested source of material, although the sensitivity of this approach has not been well defined. Thin blood smears and dried blood spots from a severe pediatric malaria study were assessed using specific polymerase chain reaction (PCR) primers to detect non-typhoidal Salmonella (NTS; MisL gene), Streptococcus pneumoniae (lytA), and Plasmodium falciparum (18S rRNA). Of 16 cases of NTS and S. pneumoniae confirmed on blood culture, none were positive by PCR using DNA extracts from blood films or dried blood spots. In contrast, four of 36 dried blood spots and two of 178 plasma samples were PCR positive for S. pneumoniae, despite negative bacterial blood cultures, suggesting false positives. Quantitative assessment revealed that the effective concentration of P. falciparum DNA in blood films was three log orders of magnitude lower than for dried blood spots. The P. falciparum kelch13 gene could not be amplified from blood films. These findings question the value of blood PCR-based approaches for detection of NTS and S. pneumoniae, and show that stored blood films are an inefficient method of studying P. falciparum. © The American Society of Tropical Medicine and Hygiene.
Wihokhoen, Benchawan; Dondorp, Arjen M.; Turner, Paul; Woodrow, Charles J.; Imwong, Mallika
2016-01-01
Molecular approaches offer a means of testing archived samples stored as dried blood spots in settings where standard blood cultures are not possible. Peripheral blood films are one suggested source of material, although the sensitivity of this approach has not been well defined. Thin blood smears and dried blood spots from a severe pediatric malaria study were assessed using specific polymerase chain reaction (PCR) primers to detect non-typhoidal Salmonella (NTS; MisL gene), Streptococcus pneumoniae (lytA), and Plasmodium falciparum (18S rRNA). Of 16 cases of NTS and S. pneumoniae confirmed on blood culture, none were positive by PCR using DNA extracts from blood films or dried blood spots. In contrast, four of 36 dried blood spots and two of 178 plasma samples were PCR positive for S. pneumoniae, despite negative bacterial blood cultures, suggesting false positives. Quantitative assessment revealed that the effective concentration of P. falciparum DNA in blood films was three log orders of magnitude lower than for dried blood spots. The P. falciparum kelch13 gene could not be amplified from blood films. These findings question the value of blood PCR-based approaches for detection of NTS and S. pneumoniae, and show that stored blood films are an inefficient method of studying P. falciparum. PMID:26711525
Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Canier, Lydie; Kim, Nimol; Khim, Saorin; Alipon, Sweet C; Chuor Char, Meng; Chea, Nguon; Dysoley, Lek; Van den Bergh, Rafael; Etienne, William; De Smet, Martin; Ménard, Didier; Kindermans, Jean-Marie
2014-10-06
Intensified efforts are urgently needed to contain and eliminate artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion. Médecins Sans Frontières plans to support the Ministry of Health in eliminating P. falciparum in an area with artemisinin resistance in the north-east of Cambodia. As a first step, the prevalence of Plasmodium spp. and the presence of mutations associated with artemisinin resistance were evaluated in two districts of Preah Vihear Province. A cross-sectional population-based study using a two-stage cluster sampling was conducted in the rural districts of Chhaeb and Chey Saen, from September to October 2013. In each district, 30 clusters of 10 households were randomly selected. In total, blood samples were collected for 1,275 participants in Chhaeb and 1,224 in Chey Saen. Prevalence of Plasmodium spp. was assessed by PCR on dried blood spots. Plasmodium falciparum positive samples were screened for mutations in the K13-propeller domain gene (PF3D7_1343700). The prevalence of Plasmodium spp. was estimated at 1.49% (95% CI 0.71-3.11%) in Chhaeb and 2.61% (95% CI 1.45-4.66%) in Chey Saen. Twenty-seven samples were positive for P. falciparum, giving a prevalence of 0.16% (95% CI 0.04-0.65) in Chhaeb and 2.04% (95% CI 1.04-3.99%) in Chey Saen. Only 4.0% of the participants testing positive presented with fever or history of fever. K13-propeller domain mutant type alleles (C580Y and Y493H) were found, only in Chey Saen district, in seven out of 11 P. falciparum positive samples with enough genetic material to allow testing. The overall prevalence of P. falciparum was low in both districts but parasites presenting mutations in the K13-propeller domain gene, strongly associated with artemisinin-resistance, are circulating in Chey Saen.The prevalence might be underestimated because of the absentees - mainly forest workers - and the workers of private companies who were not included in the study. These results confirm the need to urgently develop and implement targeted interventions to contain and eliminate P. falciparum malaria in this district before it spreads to other areas.
Figueiredo, Mayra Araguaia Pereira; Di Santi, Silvia Maria Fátima; Figueiredo, Thaysa Araguaia Pereira; Machado, Rosangela Zacarias
2015-01-01
The states that make up the Legal Amazon Region, which include the state of Maranhão, account for 99% of registered cases of human malaria in Brazil. It is also believed that transmission of malaria from nonhuman primates (NHP) to humans occurs in this region, because of current reports of seroepidemiological results from samples from humans and NHP coexisting in the same areas. This study aimed to make morphological, serological and molecular diagnoses of Plasmodium spp. in neotropical primates on the island of São Luís, state of Maranhão, Brazil. The diagnostic techniques used were optical microscopy, the polymerase chain reaction (PCR) and the indirect immunofluorescence assay (IFA). From June 2009 to April 2010, 70 NHP were sampled: 50 at the Wild Animal Screening Center (CETAS), located in the municipality of São Luís and 20 free-living individuals that were caught in a private reserve located in the municipality of São Jose de Ribamar, state of Maranhão. Under an optical microscope, 140 slides (two from each animal) were evaluated and five animals (7.1%) were found to be positive. IFA did not detect anti-Plasmodium spp. From PCR on the 70 animals sampled, amplified Plasmodium spp. products were observed in 13 samples, of which eight (61.5%) were from free-living animals and five (38.5%) were from animals at CETAS.
Prugnolle, Franck; Durand, Patrick; Neel, Cécile; Ollomo, Benjamin; Ayala, Francisco J.; Arnathau, Céline; Etienne, Lucie; Mpoudi-Ngole, Eitel; Nkoghe, Dieudonné; Leroy, Eric; Delaporte, Eric; Peeters, Martine; Renaud, François
2010-01-01
Plasmodium reichenowi, a chimpanzee parasite, was until very recently the only known close relative of Plasmodium falciparum, the most virulent agent of human malaria. Recently, Plasmodium gaboni, another closely related chimpanzee parasite, was discovered, suggesting that the diversity of Plasmodium circulating in great apes in Africa might have been underestimated. It was also recently shown that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite and that the world diversity of P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. The evidence indicates that all extant populations of P. falciparum originated from P. reichenowi, likely by a single transfer from chimpanzees. In this work, we have studied the diversity of Plasmodium species infecting chimpanzees and gorillas in Central Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used noninvasive sampling methods. We confirm the presence of P. reichenowi and P. gaboni in wild chimpanzees. Moreover, our results reveal the existence of an unexpected genetic diversity of Plasmodium lineages circulating in gorillas. We show that gorillas are naturally infected by two related lineages of parasites that have not been described previously, herein referred to as Plasmodium GorA and P. GorB, but also by P. falciparum, a species previously considered as strictly human specific. The continuously increasing contacts between humans and primate populations raise concerns about further reciprocal host transfers of these pathogens. PMID:20133889
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Plasmodium vivax molecular diagnostics in community surveys: pitfalls and solutions.
Gruenberg, Maria; Moniz, Clara Antunes; Hofmann, Natalie Ellen; Wampfler, Rahel; Koepfli, Cristian; Mueller, Ivo; Monteiro, Wuelton Marcelo; Lacerda, Marcus; de Melo, Gisely Cardoso; Kuehn, Andrea; Siqueira, Andre M; Felger, Ingrid
2018-01-30
A distinctive feature of Plasmodium vivax infections is the overall low parasite density in peripheral blood. Thus, identifying asymptomatic infected individuals in endemic communities requires diagnostic tests with high sensitivity. The detection limits of molecular diagnostic tests are primarily defined by the volume of blood analysed and by the copy number of the amplified molecular marker serving as the template for amplification. By using mitochondrial DNA as the multi-copy template, the detection limit can be improved more than tenfold, compared to standard 18S rRNA targets, thereby allowing detection of lower parasite densities. In a very low transmission area in Brazil, application of a mitochondrial DNA-based assay increased prevalence from 4.9 to 6.5%. The usefulness of molecular tests in malaria epidemiological studies is widely recognized, especially when precise prevalence rates are desired. Of concern, however, is the challenge of demonstrating test accuracy and quality control for samples with very low parasite densities. In this case, chance effects in template distribution around the detection limit constrain reproducibility. Rigorous assessment of false positive and false negative test results is, therefore, required to prevent over- or under-estimation of parasite prevalence in epidemiological studies or when monitoring interventions.
Singh, N; Saxena, A; Sharma, V P
2002-10-01
The performance of a new indigenous rapid diagnostic test, Paracheck Pf was evaluated in detection of Plasmodium falciparum in asymptomatic children in remote forest villages of Mandla district, central India to determine the lower limits of sensitivity and specificity of rapid test. A finger prick blood sample was collected to prepare blood smear and for testing with the Paracheck test. The blood smears were read by an experienced technician blinded to the Paracheck results. The figures for specificity, sensitivity, accuracy and predictive values were calculated using microscopy as gold standard. The new diagnostic test had a sensitivity of 94% and a specificity of 89%. The positive and negative predictive values were 71% and 98%, respectively. The J -index was 0.83%. The rapid test was found to be very easy to perform and the result could be read reliably by field workers. The field evaluation with this new inexpensive test, ($0.65/test) indicates that it could be used as an epidemiological tool in the management of malaria particularly in areas where microscopy is not operationally feasible to attain the goal of the roll back malaria initiative.
PIRAHMADI, Sakineh; ZAKERI, Sedigheh; RAEISI, Ahmad
2017-01-01
Background: Asymptomatic malaria infection provides a reservoir of parasites, causing the persistence of malaria transmission. It accounts an important challenge for successful management of the control, elimination, and eradication programmes in any malaria-endemic region. This investigation was designed to assess the presence and the prevalence of asymptomatic carriers in Iranshahr district of Sistan and Baluchistan Province (2013–2014), with a considerable population movement, during the malaria elimination phase in Iran. Methods: Finger-prick blood samples were collected from symptomless (n=250) and febrile (n=50) individuals residing in Iranshahr district, easthern Iran (Hoodian, Mand, Chah-e Giji, Jolgehashem, Esfand, Dalgan and Chahshour) during Jan 2013 to Dec 2014, and Plasmodium infections were detected using light microscopic and highly sensitive nested-PCR techniques. Results: Thick and thin Giemsa-stained blood smears were negative for Plasmodium parasites. In addition, based on nested-PCR analysis, no P. vivax, P. falciparum, and P. malariae parasites were detected among the studied individuals. Conclusion: Investigation the absence of asymptomatic carriers in Iranshahr district was illustrated and achieving malaria elimination in this area is feasible in a near future. PMID:28761465
The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing
Culleton, Richard; Coban, Cevayir; Zeyrek, Fadile Yildiz; Cravo, Pedro; Kaneko, Akira; Randrianarivelojosia, Milijaona; Andrianaranjaka, Voahangy; Kano, Shigeyuki; Farnert, Anna; Arez, Ana Paula; Sharp, Paul M.; Carter, Richard; Tanabe, Kazuyuki
2011-01-01
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa. PMID:22195007
Plasmodium knowlesi malaria in a traveller returning from the Philippines to Italy, 2016.
De Canale, Ettore; Sgarabotto, Dino; Marini, Giulia; Menegotto, Nicola; Masiero, Serena; Akkouche, Wassim; Biasolo, Maria Angela; Barzon, Luisa; Palù, Giorgio
2017-10-01
Plasmodium knowlesi is a simian parasite responsible for most human cases of malaria in Malaysian Borneo. A timely recognition of infection is crucial because of the risk of severe disease due to the rapid increase in parasitemia. We report a case of P. knowlesi infection in a traveller who developed fever and thrombocytopenia after returning from the Philippines in 2016. Rapid antigen test was negative, microscopy examination showed parasites similar to Plasmodium malariae, with a parasite count of 10,000 parasites per μL blood, while molecular testing identified P. knowlesi infection. Treatment with atovaquone-proguanil led to resolution of fever and restoration of platelet count in two days. P. knowlesi infection should be suspected in febrile travellers returning from South East Asia. Due to the low sensitivity of rapid antigen tests and the low specificity of microscopy, confirmation by molecular tests is recommended.
Ondigo, Bartholomew N; Park, Gregory S; Gose, Severin O; Ho, Benjamin M; Ochola, Lyticia A; Ayodo, George O; Ofulla, Ayub V; John, Chandy C
2012-12-21
Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA.
Cheong, Fei Wen; Lau, Yee Ling; Fong, Mun Yik; Mahmud, Rohela
2013-01-01
Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-133 has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-133 (pkMSP-133) was expressed by using an Escherichia coli system. The purified pkMSP-133 reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-133 also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-133. PMID:23509118
Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat
2012-04-01
To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.
Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G
2013-12-01
Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. © 2013 Society for Conservation Biology.
Rubio, J M; Jiménez Del Bianco, A I; Cervera-Alonso, Y; Fernandez-Garcia, M D; Lanza, M; Ta Tang, T H; Sevil Puras, F; Blanco, L
2016-02-01
Malaria is a vectorborne disease caused by protozoan of the genus Plasmodium, which can also be transmitted by the transfusion of infected red blood cells. One year after return from a travel to Honduras, a Spanish traveller developed vivax malaria. Prior to the onset of symptoms, the donor made a donation that tested non-reactive using an immunological test for malaria. Samples from the donor taken before donation and tested by serological and molecular methods were negative but positive at the time of hospital admission. The possible sources of the donors' infection, imported versus locally acquired, are discussed. © 2015 International Society of Blood Transfusion.
Bansal, Geetha P; Vengesai, Arthur; Cao, Yi; Mduluza, Takafira; Kumar, Nirbhay
2017-06-01
Infections caused by Plasmodium falciparum and P. vivax account for more than 90% of global malaria burden. Exposure to malaria parasite elicits immune responses during natural infection and it is generally believed that the immunity is not only stage specific but also species specific. However, partial genomic similarity for various antigens in different Plasmodium spp. raises the possibility of immunological cross-reactivity at the level of specific antigens. Serum samples collected from children who were permanent residents of a P. falciparum transmission area in Zimbabwe were screened for antibody reactivity against Pfs48/45, a P. falciparum gametocyte antigen and Pvs48/45, a P. vivax homolog of Pfs48/45 using ELISA. Western blotting was used to further confirm identity of the specific antibody reactivity to the Pfs48/45 and Pvs48/45 proteins. Pan Plasmodium PCR and nested PCR were used to confirm infection with the Plasmodium species. Twenty-seven percent (49/181) of the participants were found to be sero-positive for Pfs48/45 and 73% (n=36) of these Pfs48/45 positive sera also showed reactivity with Pvs48/45. Immune cross-reactivity revealed by ELISA was also confirmed by Western blot analysis using a panel of randomly selected 23 Pfs48/45 and Pvs48/45 ELISA positive samples. Nested PCR analysis of 27 blood samples randomly selected from the 36 that showed positive ELISA reactivity to both Pfs48/45 and Pvs48/45 antigens confirmed infection with P. falciparum and generalized absence of P. vivax except for a single sample which revealed PCR positivity for both P. vivax and P. falciparum. Our studies with sera samples from a predominantly P. falciparum transmission area in Zimbabwe suggest immunological cross-reactivity with Pvs48/45, thus raising the possibility of partial species cross-reactive immunity and possible cross-boosting of immunity during co-infection with P. falciparum and P. vivax. Copyright © 2017 Elsevier B.V. All rights reserved.
Portugal, Silvia; Tran, Tuan M; Ongoiba, Aissata; Bathily, Aboudramane; Li, Shanping; Doumbo, Safiatou; Skinner, Jeff; Doumtabe, Didier; Kone, Younoussou; Sangala, Jules; Jain, Aarti; Davies, D Huw; Hung, Christopher; Liang, Li; Ricklefs, Stacy; Homann, Manijeh Vafa; Felgner, Philip L; Porcella, Stephen F; Färnert, Anna; Doumbo, Ogobara K; Kayentao, Kassoum; Greenwood, Brian M; Traore, Boubacar; Crompton, Peter D
2017-03-01
Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Zehtindjiev, Pavel; Križanauskienė, Asta; Bensch, Staffan; Palinauskas, Vaidas; Asghar, Muhammad; Dimitrov, Dimitar; Scebba, Sergio; Valkiūnas, Gediminas
2012-06-01
Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of <0.01%) in the same sample with P. polymorphum ; the latter parasite clearly predominated (3.5% parasitemia). However, experienced researchers were unable to detect sequences of mitochondrial cytochrome b gene (cyt b ) of P. polymorphum from the microscopically positive sample by using published and newly designed primers for DNA amplification of avian Plasmodium spp. The light parasitemia of P. relictum was easily detectable using several polymerase chain reaction (PCR)-based assays, but P. polymorphum was undetectable in all applied assays. Quantitative PCR also showed the presence of light parasitemia (0.06%) of the lineage GRW11 in this sample. This supports the conclusion that the morphologically distinct parasite observed along with P. relictum and predominant in the sample is genetically dissimilar from the lineage GRW11 based on cyt b sequence. In samples with co-infections, general PCR protocols tend to favor the amplification of the parasite with the higher parasitemia or the amplification with the best matching sequence to the primers. Because the parasitemia of P. polymorphum was >50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.
Pinheiro, L; Franco, S; Adagu, I S; Rosa, R; Rosário, V E; Warhurst, D C
2003-01-01
Isolates of Plasmodium falciparum from three areas of West Africa were recovered from cryopreservation and their chloroquine-sensitivity were determined in vitro. Of the 90 samples studied, 60 were from Guinea-Bissau (30Resistant/30Sensitive), 15 were from S. Tomé and Príncipe (11Resistant/4Sensitive) and 15 were from Angola (11Resistant/4Sensitive). All the isolates were sensitive to mefloquine. Using the polymerase chain reaction/restriction fragment length polymorphism technique (PCR/RFLP) it was possible to detect two mutations in the pfmdr1 gene, often associated with chloroquine-resistance. 66% of the samples from Guiné-Bissau showed a correlation with chloroquine-resistance while 73% of the samples from São Tomé and Angola altogether had the 86Tyr mutation. The present study on West African isolates and clones showed, for the first time, the presence of a double point mutation in the pfmdr1 gene one being found, up to now, only in South America isolates of Plasmodium falciparum.
Lee, Kim-Sung; Cox-Singh, Janet; Brooke, George; Matusop, Asmad; Singh, Balbir
2009-01-01
Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borno) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans. PMID:19358848
Grigg, M J; William, T; Dhanaraj, P; Menon, J; Barber, B E; von Seidlein, L; Rajahram, G; Price, R N; Anstey, N M; Yeo, T W
2014-01-01
Introduction Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species. Methods and analysis ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis. Ethics and dissemination This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations. Trial registration number NCT01708876. PMID:25138814
Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi.
William, Timothy; Jelip, Jenarun; Menon, Jayaram; Anderios, Fread; Mohammad, Rashidah; Awang Mohammad, Tajul A; Grigg, Matthew J; Yeo, Tsin W; Anstey, Nicholas M; Barber, Bridget E
2014-10-02
While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain. To describe the changing epidemiology of malaria in Sabah, in particular the increasing incidence of P. knowlesi, a retrospective descriptive study was undertaken involving a review of Department of Health malaria notification data from 2012-2013, extending a previous review of these data from 1992-2011. In addition, malaria PCR and microscopy data from the State Public Health Laboratory were reviewed to estimate the accuracy of the microscopy-based notification data. Notifications of P. malariae/P. knowlesi increased from 703 in 2011 to 815 in 2012 and 996 in 2013. Notifications of P. vivax and P. falciparum decreased from 605 and 628, respectively, in 2011, to 297 and 263 in 2013. In 2013, P. malariae/P. knowlesi accounted for 62% of all malaria notifications compared to 35% in 2011. Among 1,082 P. malariae/P. knowlesi blood slides referred for PCR testing during 2011-2013, there were 924 (85%) P. knowlesi mono-infections, 30 (2.8%) P. falciparum, 43 (4.0%) P. vivax, seven (0.6%) P. malariae, six (0.6%) mixed infections, 31 (2.9%) positive only for Plasmodium genus, and 41 (3.8%) Plasmodium-negative. Plasmodium knowlesi mono-infection accounted for 32/156 (21%) and 33/87 (38%) blood slides diagnosed by microscopy as P. falciparum and P. vivax, respectively. Twenty-six malaria deaths were reported during 2010-2013, including 12 with 'P. malariae/P. knowlesi' (all adults), 12 with P. falciparum (seven adults), and two adults with P. vivax. Notifications of P. malariae/P. knowlesi in Sabah are increasing, with this trend likely reflecting a true increase in incidence of P. knowlesi and presenting a major threat to malaria control and elimination in Malaysia. With the decline of P. falciparum and P. vivax, control programmes need to incorporate measures to protect against P. knowlesi, with further research required to determine effective interventions.
Fluorescence microscope (Cyscope) for malaria diagnosis in pregnant women in Medani Hospital, Sudan.
Hassan, Saad El-Din H; Haggaz, Abd Elrahium D; Mohammed-Elhassan, Ehab B; Malik, Elfatih M; Adam, Ishag
2011-09-24
Accuracy of diagnosis is the core for malaria control. Although microscopy is the gold standard in malaria diagnosis, its reliability is largely dependent on user skill. We compared performance of Cyscope fluorescence microscope with the Giemsa stained light microscopy for the diagnosis of malaria among pregnant women at Medani Hospital in Central Sudan. The area is characterized by unstable malaria transmission. Socio-demographic characteristics and obstetrics history were gathered using pre-tested questionnaires. Blood samples were collected from febrile pregnant women who were referred as malaria case following initial diagnosis by general microscopist. During the study period 128 febrile pregnant women presented at the hospital. Among them, Plasmodium falciparum malaria was detected in 82 (64.1%) and 80 (62.5%) by the Giemsa-stained light microscopy and the Cyscope fluorescence microscope, respectively. The sensitivity of the Cyscope fluorescence microscope was 97.6% (95% CI: 92.2%-99.6%). Out of 46 which were negative by Giemsa-stained light microscopy, 5 were positive by the Cyscope fluorescence microscope. This is translated in specificity of 89.1% (95% CI: 77.5%-95.9%). The positive and negative predictive value of Cyscope fluorescence microscope was 94.1% (95% CI: 87.4% -97.8%) and 95.3% (95% CI: 85.4% - 99.2%), respectively. This study has shown that Cyscope fluorescence microscope is a reliable diagnostic, sensitive and specific in diagnosing P. falciparum malaria among pregnant women in this setting. Further studies are needed to determine effectiveness in diagnosing other Plasmodium species and to compare it with other diagnostic tools e.g. rapid diagnostic tests and PCR.
Ferraguti, Martina; Martínez-de la Puente, Josué; Muñoz, Joaquín; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi
2013-01-01
Haemosporidians, a group of vector-borne parasites that include Plasmodium, infect vertebrates including birds. Although mosquitoes are crucial elements in the transmission of avian malaria parasites, little is known of their ecology as vectors. We examined the presence of Plasmodium and Haemoproteus lineages in five mosquito species belonging to the genera Culex and Ochlerotatus to test for the effect of vector species, season and host-feeding source on the transmission dynamics of these pathogens. We analyzed 166 blood-fed individually and 5,579 unfed mosquitoes (grouped in 197 pools) from a locality in southern Spain. In all, 15 Plasmodium and two Haemoproteus lineages were identified on the basis of a fragment of 478 bp of the mitochondrial cytochrome b gene. Infection prevalence of blood parasites in unfed mosquitoes varied between species (range: 0–3.2%) and seasons. The feeding source was identified in 91 mosquitoes where 78% were identified as bird. We found that i) several Plasmodium lineages are shared among different Culex species and one Plasmodium lineage is shared between Culex and Ochlerotatus genera; ii) mosquitoes harboured Haemoproteus parasites; iii) pools of unfed females of mostly ornithophilic Culex species had a higher Plasmodium prevalence than the only mammophylic Culex species studied. However, the mammophylic Ochlerotatus caspius had in pool samples the greatest Plasmodium prevalence. This relative high prevalence may be determined by inter-specific differences in vector survival, susceptibility to infection but also the possibility that this species feeds on birds more frequently than previously thought. Finally, iv) infection rate of mosquitoes varies between seasons and reaches its maximum prevalence during autumn and minimum prevalence in spring. PMID:23823127
de Alencar, Filomena E C; Malafronte, Rosely Dos Santos; Cerutti, Crispim; Natal Fernandes, Lícia; Buery, Julyana Cerqueira; Fux, Blima; Rezende, Helder Ricas; Miranda, Angelica Espinosa
2017-11-09
Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.
Kim, Saorin; Nhem, Sina; Dourng, Dany; Ménard, Didier
2015-03-14
Malaria rapid diagnostic tests (RDTs) are generally considered as point-of-care tests. However, most of the studies assessing the performance of malaria RDTs are conducted by research teams that are not representative of the classical end-users, who are typically unskilled in traditional laboratory techniques for diagnosing malaria. To evaluate the performance of a malaria RDT by end-users in a malaria-endemic area, a study protocol was designed and the VIKIA Malaria Ag Pf/Pan test, previously evaluated in 2013, was re-evaluated by representative end-users. Twenty end-users with four different profiles in seven communes in Kampot Province (Cambodia) were selected. A set of 20 calibrated aliquots, including negative samples, low positive samples (200 parasites/μL of Plasmodium falciparum and Plasmodium vivax) and high positive samples (2,000 parasites/μL of P. falciparum and P. vivax) was used. Testing was performed directly by the end-users without any practical training on the VIKIA Malaria Ag Pf/Pan kit. All results obtained by the end-users were consistent with the expected results, except for the low positive (200 parasites/μL) P. vivax aliquot (35% of concordant results). No significant difference was observed between the different end-users. End-user interviews evaluating ease-of-use and ease-of-reading of the VIKIA Malaria Ag Pf/Pan kit recorded 159 positive answers and only one negative answer. Out of 20 end-users, only one considered the test was not easy to perform with the support of the quick guide. The data presented in this study clearly demonstrate that the performance of the VIKIA Malaria Ag Pf/Pan test when performed by traditional end-users in field conditions is similar to that obtained by a research team and that this RDT can be considered as a point-of-care tool/assay. Furthermore, the protocol designed for this study could be used systematically in parallel to conventional evaluation studies to determine the performance of malaria RDTs in field conditions.
2014-01-01
Background Misdiagnosis of malaria by commercial rapid diagnostic tests (RDTs) is a major cause of concern in the diagnosis of malaria. This retrospective study was aimed at assessing the relative performance of four RDTs with emphasis on the detection of two Plasmodium vivax antigens: aldolase and lactate dehydrogenase (LDH). Methods Three commercially available Plasmodium LDH or aldolase antigen detection kits (One Step Malaria P.f/P.v, ParaHit Total ver. 1.0, SD Bioline Malaria) and an anti-P. vivax aldolase-specific monoclonal antibody (mAb) pair 1C3-12 F10 were evaluated with P. vivax positive as well as non-P. vivax samples and healthy samples using blood smear examination as standard. Each test was read according to the manufacturer’s instructions. Results MAb 1C3-12 F10 pair targeting P. vivax-specific aldolase exhibited very good specificity and sensitivity of 100 and 97.4%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) of 100 and 99.5%, respectively, were also observed. The anti-P. vivax LDH in the One-Step Malaria P.f/P.v test showed sensitivity, specificity, PPV and NPV of 93.5, 98.0, 88.9 and 98.8%, respectively. ParaHit Total ver. 1.0 targeting the pan-aldolase antigen showed sensitivity, specificity of 97.4 and 99.6%, respectively. PPV and NPV were both 99.5%. SD Bioline had sensitivity, specificity, PPV and NPV of 93.5, 100, 100 and 98.8%, respectively. The overall sensitivity and specificity of all four RDTs were acceptable, especially for the aldolase detection tests. Five (6.5%) of the P. vivax-positive samples (n = 77) that were confirmed by microscopic examination as well as the two aldolase detection RDTs (mAb 1C3-12 F10 and ParaHit Total ver.1.0) were undetected by the two LDH detection RDTs (One Step Malaria P.f/P.v and SD Bioline). Similarly, two positive samples (2.6%) that were positively confirmed by the LDH detection RDTs were also undetected by the aldolase detection test kits. Conclusion Aldolase and LDH antigens perform differently in different P. vivax samples; hence there is a high risk of misdiagnosis when monoclonal antibodies are used against only one particular antigen in the test. A combination of both aldolase and LDH in RDTs for the rapid diagnosis of P. vivax will enhance the sensitivity of the assay and reduce misdiagnosis. PMID:25015737
Singh, Naveen K; Arya, Sunil K; Estrela, Pedro; Goswami, Pranab
2018-06-08
A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (K d = 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Origin of the human malaria parasite Plasmodium falciparum in gorillas
Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.
2010-01-01
Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995
Santos-Ciminera, Patricia D; Acheé, Nicole L; Quinnan, Gerald V; Roberts, Donald R
2004-09-01
We evaluated polymerase chain reaction (PCR) to confirm immunoassays for malaria parasites in mosquito pools after a failure to detect malaria with PCR during an outbreak in which pools tested positive using VecTest and enzyme-linked immunosorbent assay (ELISA). We combined VecTest, ELISA, and PCR to detect Plasmodium falciparum and Plasmodium vivax VK 210. Each mosquito pool, prepared in triplicate, consisted of 1 exposed Anopheles stephensi and up to 9 unfed mosquitoes. The results of VecTest and ELISA were concordant. DNA from a subset of the pools, 1 representative of each ratio of infected to uninfected mosquitoes, was extracted and used as template in PCR. All P. vivax pools were PCR positive but some needed additional processing for removal of apparent inhibitors before positive results were obtained. One of the pools selected for P. falciparum was negative by PCR, probably because of losses or contamination during DNA extraction; 2 remaining pools at this ratio were PCR positive. Testing pools by VecTest, ELISA, and PCR is feasible, and PCR is useful for confirmation of immunoassays. An additional step might be needed to remove potential inhibitors from pools prior to PCR.
Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.
2018-01-01
Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342
NASA Astrophysics Data System (ADS)
Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.
2015-05-01
The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.
Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi
2014-01-01
Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). Main results We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemia Eleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03). Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemia Eight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. Authors' conclusions RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs. PLAIN LANGUAGE SUMMARY Rapid tests for diagnosing malaria caused by Plasmodium vivax or other less common parasites This review summarises trials evaluating the accuracy of rapid diagnostic tests (RDTs) for diagnosing malaria due to Plasmodium vivax or other non-falciparum species. After searching for relevant studies up to December 2013, we included 47 studies, enrolling 22,862 adults and children. What are rapid tests and why do they need to be able to distinguish Plasmodium vivax malaria RDTs are simple to use, point of care tests, suitable for use in rural settings by primary healthcare workers. RDTs work by using antibodies to detect malaria antigens in the patient's blood. A drop of blood is placed on the test strip where the antibodies and antigen combine to create a distinct line indicating a positive test. Malaria can be caused any one of five species of Plasmodium parasite, but P. falciparum and P. vivax are the most common. In some areas, RDTs need to be able to distinguish which species is causing the malaria symptoms as different species may require different treatments. Unlike P. falciparum, P. vivax has a liver stage which can cause repeated illness every few months unless it is treated with primaquine. The most common types of RDTs for P. vivax use two test lines in combination; one line specific to P. falciparum, and one line which can detect any species of Plasmodium. If the P. falciparum line is negative and the 'any species' line is positive, the illness is presumed to be due to P. vivax (but could also be caused by P. malariae, or P. ovale). More recently, RDTs have been developed which specifically test for P. vivax. What does the research say RDTs testing for non-falciparum malaria were very specific (range 98% to 100%) meaning that only 1% to 2% of patients who test positive would actually not have the disease. However, they were less sensitive (range 78% to 89%), meaning between 11% and 22% of people with non-falciparum malaria would actually get a negative test result. RDTs which specifically tested for P. vivax were more accurate with a specificity of 99% and a sensitivity of 95%, meaning that only 5% of people with P. vivax malaria would have a negative test result. PMID:25519857
Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil.
Figueiredo, Mayra Araguaia Pereira; Di Santi, Silvia Maria; Manrique, Wilson Gómez; André, Marcos Rogério; Machado, Rosangela Zacarias
2017-01-01
In the Brazilian Amazon region, malaria caused by Plasmodium malariae is considered to be a zoonosis because of cross-transfer of the parasite between humans and Neotropical primates. To contribute information on this issue, we investigated occurrences of natural infection with Plasmodium sp. among Neotropical primates in the Maranhense Amazon (Amazon region of the state of Maranhão), in the northeastern region of Brazil. Blood samples were collected from 161 Neotropical primates of six species that were caught in an environmental reserve (Sítio Aguahy) and from captive primates (CETAS-Wildlife Screening Center, municipality of São Luís), in Maranhão. Plasmodium sp. was diagnosed based on light microscopy, PCR, qPCR and LAMP for amplification of the 18S rRNA gene. Serum samples were also assayed by means of indirect immunofluorescence for IgG antibodies against P. malariae/P. brasilianum, P. falciparum and P. berghei. Parasites were detected through light microscopy on five slides from captive primates (four Sapajus spp. and one Callithrix jacchus). In the molecular tests, 34.16% (55/161) and 29.81% (48/161) of the animals sampled were positive in the qPCR and PCR assays, respectively. In the PCR, 47/48 animals were positive for P. malariae/P. brasilianum; of these, eight were free-living primates and 39 from CETAS, São Luís. One sample showed a band in the genus-specific reaction, but not in the second PCR reaction. Anti-P. malariae/P. brasilianum IgG antibodies were detected in four serum samples from Sapajus spp. in captivity. In this study, circulation of P. malariae/P. brasilianum in Neotropical primates was confirmed, with low levels of parasitemia and low levels of antibodies. The importance of these animals as reservoirs of human malaria in the region studied is still unknown. This scenario has an impact on control and elimination of malaria in this region.
An innovative tool for moving malaria PCR detection of parasite reservoir into the field
2013-01-01
Background To achieve the goal of malaria elimination in low transmission areas such as in Cambodia, new, inexpensive, high-throughput diagnostic tools for identifying very low parasite densities in asymptomatic carriers are required. This will enable a switch from passive to active malaria case detection in the field. Methods DNA extraction and real-time PCR assays were implemented in an “in-house” designed mobile laboratory allowing implementation of a robust, sensitive and rapid malaria diagnostic strategy in the field. This tool was employed in a survey organized in the context of the MalaResT project (NCT01663831). Results The real-time PCR screening and species identification assays were performed in the mobile laboratory between October and November 2012, in Rattanakiri Province, to screen approximately 5,000 individuals in less than four weeks and treat parasite carriers within 24–48 hours after sample collection. An average of 240 clinical samples (and 40 quality control samples) was tested every day, six/seven days per week. Some 97.7% of the results were available <24 hours after the collection. A total of 4.9% were positive for malaria. Plasmodium vivax was present in 61.1% of the positive samples, Plasmodium falciparum in 45.9%, Plasmodium malariae in 7.0% and Plasmodium ovale in 2.0%. Conclusions The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings. This will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information. Fast results will be of great help for staff in the field to track and treat asymptomatic parasitaemic cases. The concept of the mobile laboratory could be extended to other countries for the molecular detection of malaria or other pathogens, or to culture vivax parasites, which does not support long-time delay between sample collection and culture. PMID:24206649
High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.
Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2016-01-01
Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures.
Nest ecology of blood parasites in the European roller and its ectoparasitic carnid fly.
Václav, Radovan; Betáková, Tatiana; Švančarová, Petra; Pérez-Serrano, Jorge; Criado-Fornelio, Ángel; Škorvanová, Lucia; Valera, Francisco
2016-06-01
Haemosporidian parasites are considered the most important vector-borne parasites. However, vector identity and ecology is unknown for most such host-vector-parasite systems. In this study, we employ microscopic and molecular analyses to examine haemosporidian prevalence in a migratory, cavity-nesting bird, European roller Coracias garrulus, and its nidicolous blood-feeding ectoparasite Carnus hemapterus. This system is unique in that the ectoparasite is confined to a near-closed environment, in contrast to the free-wandering system of haematophagous dipterans such as mosquitoes. Blood film analysis confirms previous works in that Haemoproteus parasites are widely prevalent in adult rollers and belong to a single species, Haemoproteus coraciae. Leucocytozoon sp. and Trypanosoma sp. also are detected in adult rollers at low intensities with this technique. By means of molecular analysis, we report for the first time Plasmodium sp. presence in C. garrulus. Based on PCR results, Plasmodium parasites are relatively less prevalent than Haemoproteus parasites (20% vs. 31%) in rollers. In contrast, haemosporidian prevalences show the opposite trend for Carnus flies: Plasmodium sp. occurrence (62%) clearly predominates over that of Haemoproteus sp. (5%). A comparison between roller and Carnus samples reveals a significantly higher prevalence of Plasmodium sp. in Carnus samples. Insect survey and phylogenetic analysis suggest Culicoides flies as Haemoproteus sp. vectors, which appear to readily transmit the parasite in southern Spain. This study does not find support for Carnus flies to serve as biological or mechanical vectors of haemosporidians. In spite of this, nidicolous blood-feeding ectoparasites, such as carnid flies, appear as a suitable model for studies on the occurrence and temporal dynamics of avian haemosporidians such as Plasmodium sp. present at low intensities. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory. Methods Details of reported malaria deaths during 2010-2011 were reviewed to determine the proportion of each Plasmodium species. Demographics, clinical presentations and management of severe malaria caused by each species were compared. Results Fourteen malaria deaths were reported, comprising seven Plasmodium falciparum, six P. knowlesi and one Plasmodium vivax (all PCR-confirmed). Of the six P. knowlesi deaths, five were attributable to knowlesi malaria and one was attributable to P. knowlesi-associated enterobacter sepsis. Patients with directly attributable P. knowlesi deaths (N = 5) were older than those with P. falciparum (median age 51 [IQR 50-65] vs 22 [IQR 9-55] years, p = 0.06). Complications in fatal P. knowlesi included respiratory distress (N = 5, 100%), hypotension (N = 4, 80%), and renal failure (N = 4, 80%). All patients with P. knowlesi were reported as P. malariae by microscopy. Only two of five patients with severe knowlesi malaria on presentation received immediate parenteral anti-malarial treatment. The patient with P. vivax-associated severe illness did not receive parenteral treatment. In contrast six of seven patients with severe falciparum malaria received immediate parenteral treatment. Conclusion Plasmodium knowlesi was responsible, either directly or through gram-negative bacteraemia, for almost half of malaria deaths in Sabah. Patients with severe non-falciparum malaria were less likely to receive immediate parenteral therapy. This highlights the need in Sabah for microscopically diagnosed P. malariae to be reported as P. knowlesi to improve recognition and management of this potentially fatal species. Clinicians need to be better informed of the potential for severe and fatal malaria from non-falciparum species, and the need to treat all severe malaria with immediate intravenous artesunate. PMID:22905799
Hemosporidian parasites in forest birds from Venezuela: genetic lineage analyses.
Mijares, Alfredo; Rosales, Romel; Silva-Iturriza, Adriana
2012-09-01
Avian hemosporidian parasites of the genera Haemoproteus, Plasmodium, and Leucocytozoon are transmitted by different dipteran vectors. In the present work, we looked for the presence of these parasites in 47 birds from 12 families, which were sampled in the migratory corridor Paso de Portachuelo, located at the Henri Pittier National Park, Venezuela. The presence of the parasites was evidenced by amplification of a region of 471 bp of their cytochrome b gene. This region of the marker presents enough polymorphism to identify most of the mitochondrial lineages. Therefore, the obtained amplicons were sequenced, not only to identify the genus of the parasites sampled, but also to analyze their genetic diversity in the study area. The overall parasite prevalence was low (11%). We reported, for the first time, Plasmodium in birds of the species Formicarius analis and Chamaeza campanisona (Formicariidae) and Haemoproteus in Geotrygon linearis (Columbidae). A phylogenetic tree was generated using the Haemoproteus, Plasmodium, and Leucocytozoon sequences obtained in this study, together with representative sequences from previous studies. The highest genetic diversities between the two Haemoproteus lineages (11.70%) and among the three Plasmodium lineages (7.86%) found in this study are also similar to those found when lineages reported in the literature were used. These results indicate that in the migratory corridor Paso de Portachuleo, representative parasite lineages are found, making this location an attractive location for future studies.
Plasmodium malariae in the Colombian Amazon region: you don't diagnose what you don't suspect.
Niño, Carlos Hernando; Cubides, Juan Ricardo; Camargo-Ayala, Paola Andrea; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Cortés-Castillo, Moisés Tomás; Sánchez-Suárez, Lizeth; Sánchez, Ricardo; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2016-11-29
Malaria is a worldwide public health problem; parasites from the genus Plasmodium spp. are the aetiological agent of this disease. The parasite is mainly diagnosed by microscope-based techniques. However, these have limited sensitivity. Many asymptomatic infections are sub-microscopic and can only be detected by molecular methods. This study was aimed at comparing nested PCR results to those obtained by microscope for diagnosing malaria and to present epidemiological data regarding malaria in Colombia's Amazon department. A total of 1392 blood samples (taken by venepuncture) from symptomatic patients in Colombia's Amazon department were analysed in parallel by thick blood smear (TBS) test and nested PCR for determining Plasmodium spp. infection and identifying infecting species, such as Plasmodium vivax, Plasmodium malariae and/or Plasmodium falciparum. Descriptive statistics were used for comparing the results from both tests regarding detection of the disease, typing infecting species and their prevalence in the study region. Bearing the microscope assay in mind as gold standard, PCR diagnosis performance was evaluated by statistical indicators. The present study revealed great differences between both diagnostic tests, as well as suggesting high P. malariae prevalence from a molecular perspective. This differed profoundly from previous studies in this region of Colombia, usually based on the TBS test, suggesting that diagnosis by conventional techniques could lead to underestimating the prevalence of certain Plasmodium spp. having high circulation in this area. The present results highlight the need for modifying state malaria surveillance schemes for more efficient strategies regarding the detection of this disease in endemic areas. The importance of PCR as a back-up test in cases of low parasitaemia or mixed infection is also highlighted.
Manin, Benny O.; Daim, Sylvia; Vythilingam, Indra; Drakeley, Chris
2017-01-01
Background Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak. Methodology/Principal findings Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%–100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality. Conclusions/Significance This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts. PMID:28968395
Matta, Nubia E; González, Leydy P; Pacheco, M Andreína; Escalante, Ananías A; Moreno, Andrea M; González, Angie D; Calderón-Espinosa, Martha L
2018-05-01
Colombia is a megadiverse country with about 600 species of reptiles; however, there are few studies on species of hemoparasites found in this taxonomic group. Here, we document the presence of Plasmodium spp. in four species of reptiles from the northern part of the Orinoco-Amazon region in Colombia. Individuals analyzed in this study were captured in localities between 200 and 500 m altitude, in the department of Guaviare. Each sample was screened for haemosporidian parasites by using morphology and a nested polymerase chain reaction (PCR) protocol that targets the mitochondrial cytochrome b (cytb) gene. Four morphotypes of the genus Plasmodium were found; two of these species are re-described using morphological and molecular data (cytb). For the other two morphotypes, it was not possible to assign a described species. Among those, Plasmodium screened one species was only detected by microscopy. Considering the potential species diversity, it is possible that commonly used primers may not detect all species, reinforcing the importance of using microscopy in haematozoa surveys. There was no correspondence between the morphological traits associated with the subgenera and the phylogenetic relationships that we found in our analyses. Additionally, we found an expansion in the geographical distribution of these two species, and a new host for P. kentropyxi, demonstrating that studies of tropical herpetofauna and their parasites deserve more attention.
Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa
Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic
2009-01-01
Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742
2012-01-01
Background Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Methods Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Results Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. Conclusion With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA. PMID:23259607
Tajebe, Addimas; Magoma, Gabriel; Aemero, Mulugeta; Kimani, Francis
2014-10-18
Malaria is caused by five Plasmodium species and transmitted by anopheline mosquitoes. It occurs in single and mixed infections. Mixed infection easily leads to misdiagnosis. Accurate detection of malaria species is vital. Therefore, the study was conducted to determine the level of mixed infection and misdiagnosis of malaria species in the study area using SYBR Green I-based real time PCR. The study was conducted in seven health centres from North Gondar, north-west Ethiopia. The data of all febrile patients, who attended the outpatient department for malaria diagnosis, from October to December 2013, was recorded. Dried blood spots were prepared from 168 positive samples for molecular re-evaluation. Parasite DNA was extracted using a commercial kit and Plasmodium species were re-evaluated with SYBR Green I-based real time PCR to detect mixed infections and misdiagnosed mono-infections. Among 7343 patients who were diagnosed for malaria in six study sites within the second quarter of the Ethiopian fiscal year (2013) 1802 (24.54%) were positive for malaria parasite. Out of this, 1,216 (67.48%) Plasmodium falciparum, 553 (30.68%) Plasmodium vivax and 33 (1.8%) mixed infections of both species were recorded. The result showed high prevalence of P. falciparum and P. vivax, but very low prevalence of mixed infections. Among 168 samples collected on dried blood spot 7 (4.17%) were P. vivax, 158 (94.05%) were P. falciparum and 3 (1.80%) were mixed infections of both species. After re-evaluation 10 (5.95%) P. vivax, 112 (66.67%) P. falciparum, 21 (12.50%) P. falciparum + P. vivax mixed infection, and 17 (10.12%) Plasmodium ovale positive rate was recorded. The re-evaluation showed high level of mixed infection, and misdiagnosis of P. ovale and P. vivax. The result shows that P. falciparum prevalence is higher than P. vivax in the study area. The results, obtained from SYBR Green I-based real time PCR, indicated that the diagnosis efficiency of microscopy is very low for species-specific and mixed infection detection. Therefore, real time PCR-based species diagnosis should be applied for clinical diagnosis and quality control purposes in order to prevent the advent of drug resistant strains due to misdiagnosis and mistreatment.
Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore.
Chavatte, Jean-Marc; Tan, Sarah Bee Hui; Snounou, Georges; Lin, Raymond Tzer Pin Valentine
2015-11-14
Plasmodium ovale, considered the rarest of the malaria parasites of humans, consists of two morphologically identical but genetically distinct sympatric species, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. These parasites resemble morphologically to Plasmodium vivax with which they also share a tertian periodicity and the ability to cause relapses, making them easily misidentified as P. vivax. Plasmodium ovale infections are rarely reported, but given the likelihood of misidentification, their prevalence might be underestimated. Morphological and molecular analysis of confirmed malaria cases admitted in Singapore in 2012-2014 detected nine imported P. ovale cases that had been misidentified as P. vivax. Since P. ovale had not been previously officially reported in Singapore, a retrospective analysis of available, frozen, archival blood samples was performed and returned two additional misidentified P. ovale cases in 2003 and 2006. These eleven P. ovale samples were characterized with respect to seven molecular markers (ssrRNA, Potra, Porbp2, Pog3p, dhfr-ts, cytb, cox1) used in recent studies to distinguish between the two sympatric species, and to a further three genes (tufa, clpC and asl). The morphological features of P. ovale and the differential diagnosis with P. vivax were reviewed and illustrated by microphotographs. The genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was assessed by ten molecular markers distributed across the three genomes of the parasite (Genbank KP050361-KP050470). The data obtained for seven of these markers were compared with those published and confirmed that both P. ovale species were present. This dimorphism was also confirmed for the first time on: (1) two genes from the apicoplast genome (tufA and clpC genes); and, (2) the asl gene that was used for phylogenetic analyses of other Plasmodium species, and that was found to harbour the highest number of dimorphic loci between the two P. ovale species. Misidentified P. ovale infections are reported for the first time among imported malaria cases in Singapore. Genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was confirmed using markers from the parasites' three genomes. The apparent increase of imported P. ovale since 2012 (with yearly detection of cases) is puzzling. Given decrease in the overall number of malaria cases recorded in Singapore since 2010 the 'resurgence' of this neglected species raises public health concerns.
Verma, Reena; Chandy, Sara; Jayaprakash, N S; Manoharan, Anand; Vijayalakshmi, M A; Venkataraman, Krishnan
2017-09-01
Malaria, caused by Plasmodium falciparum has become a major health burden in most tropical and developing countries. P. falciparum Histidine Rich Protein2 (PfHRP2), which exhibits polymorphism, is being widely used as a diagnostic marker. Recently, we reported the development of monoclonal antibodies against conserved C-terminal 105 amino acids of PfHRP2 for malaria diagnosis. Now, in this study, the diagnostic performance of two anti-C-terminal PfHRP2 mAbs (b10c1 and Aa3c10) were evaluated with 100 blood samples from clinically identified malaria patients from seven different geographical centers in India. Sandwich ELISA, polymerase chain reaction (PCR) and statistical tools were used for the evaluation of the performance of the anti-C-terminal PfHRP2 mAb. These mAbs detected P. falciparum (mean OD value 1.525 ± 0.56) malaria with great accuracy with no cross reactivity with P. Plasmodium vivax (mean OD value 0.285 ± 0.051) and normal healthy control samples (mean OD value 0.185 ± 0.06) in Sandwich ELISA assay. The samples which were RDT negative for P. falciparum were also reactive in Sandwich ELISA with mean OD value of (1.303 ± 0.532). The amount of PfHRP2 antigen in the patients' blood sample was quantified and categorized into three distinct groups having the HRP2 antigen in high, intermediate and low amounts. The presence of Pfhrp2 gene was also confirmed by PCR analysis. The sensitivity and specificity of the mAb were found to be 95 and 96% respectively. These data strongly suggest that the anti-C-terminal PfHRP2 mAbs b10c1 and Aa3c10 have merits for improvising the existing malarial diagnostics.
2012-01-01
Background Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. Methods A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. Results From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 – 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Conclusions Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool. PMID:22720788
Plasmodium ovale in Indonesia.
Baird, J K; Purnomo; Masbar, S
1990-12-01
We report 34 infections by Plasmodium ovale found among 15,806 blood film examinations taken between 1973 and 1989 from several sites in Indonesia. Twenty five of the P. ovale infections occurred in a single sample of 514 people living in Owi, Irian Jaya. We detected five additional infections at 3 other sites in Irian Jaya. Other infections by P. ovale occurred at two sites in West Flores. Another infection has already been reported from East Timor. Despite relatively frequent sampling of populations on Sumatra, Kalimantan, Java and Sulawesi, P. ovale has not been found on those islands. It appears that this parasite occurs only on the easternmost islands of the Indonesian archipelago where it is nonetheless a rare finding.
Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E
2003-05-01
Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.
Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.
2015-01-01
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491
Auburn, Sarah; Serre, David; Pearson, Richard D.; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P.; Nosten, Francois; Price, Ric N.
2016-01-01
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax. Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6–kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003–2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. PMID:27456706
Gonzalez-Ceron, Lilia; Rodriguez, Mario H.; Nettel, Jose C.; Villarreal, Cuauhtemoc; Kain, Kevin C.; Hernandez, Juan E.
1999-01-01
The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247. PMID:9864243
Gonzalez-Ceron, L; Rodriguez, M H; Nettel, J C; Villarreal, C; Kain, K C; Hernandez, J E
1999-01-01
The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247.
A simple field kit for the determination of drug susceptibility in Plasmodium falciparum.
Nguyen-Dinh, P; Magloire, R; Chin, W
1983-05-01
A field kit has been developed which greatly simplifies the performance of the 48-hour in vitro test for drug resistance in Plasmodium falciparum. The kit uses an easily reconstituted lyophilized culture medium, and requires only a fingerprick blood sample. In parallel tests with 13 isolates of P. falciparum in Haiti, the new technique had a success rate equal to that of the previously described method, with comparable results in terms of parasite susceptibility in vitro to chloroquine and pyrimethamine.
Al-Harthi, Saeed A
2015-12-01
Molecular tools are increasingly accepted as the most sensitive and reliable techniques for malaria diagnosis and epidemiological surveys. Also, collection of finger prick blood spots onto filter papers is the most simple and affordable method for samples preservation and posterior molecular analysis, especially in rural endemic regions where malaria remains a major health problem. Two malaria molecular diagnostic tests, a Plasmodium genus-specific conventional PCR and a Plasmodium species-specific Nested PCR, were evaluated using DNA templates prepared from Whatman-FTA cards' dry blood spots using both, Methanol-fixation/Heat-extraction and FTA commercial purification kit. A total of 121 blood samples were collected from six Saudi south-western endemic districts both, as thick and thin films for routine microscopic screening and onto FTA cards for molecular studies. Out of the 121 samples, 75 were P. falciparum positive by at least one technique. No other species of Plasmodium were detected. P. falciparum parasites were identified in 69/75 (92%) samples by microscopic screening in health care centers. P. genus-specific PCR was able to amplify P. falciparum DNA in 41/75 (55%) and 59/75 (79%) samples using Methanol-fixation/Heat-extraction and FTA purification kit, respectively. P. species-specific Nested PCR revealed 68/75 (91%) and 75/75 (100%) positive samples using DNA templates were isolated by Methanol-fixation/Heat- extraction and FTA purification methods, respectively. The species-specific Nested PCR applied to Whatman-FTA preserved and processed blood samples represents the best alternative to classical microscopy for malaria diagnosis, particularly in epidemiological screening.
Fola, Abebe A; Harrison, G L Abby; Hazairin, Mita Hapsari; Barnadas, Céline; Hetzel, Manuel W; Iga, Jonah; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E
2017-03-01
Abstract Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3 , and 758 positive P. falciparum samples were genotyped at Pfmsp2 . The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax . The genetic diversity of P. vivax ( PvMS16 : expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3 : 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum ( Pfmsp2 : 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum . Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax . The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
2013-01-01
Background The emergence of Plasmodium falciparum resistance to artemisinins in Southeast Asia threatens the control of malaria worldwide. The pharmacodynamic hallmark of artemisinin derivatives is rapid parasite clearance (a short parasite half-life), therefore, the in vivo phenotype of slow clearance defines the reduced susceptibility to the drug. Measurement of parasite counts every six hours during the first three days after treatment have been recommended to measure the parasite clearance half-life, but it remains unclear whether simpler sampling intervals and frequencies might also be sufficient to reliably estimate this parameter. Methods A total of 2,746 parasite density-time profiles were selected from 13 clinical trials in Thailand, Cambodia, Mali, Vietnam, and Kenya. In these studies, parasite densities were measured every six hours until negative after treatment with an artemisinin derivative (alone or in combination with a partner drug). The WWARN Parasite Clearance Estimator (PCE) tool was used to estimate “reference” half-lives from these six-hourly measurements. The effect of four alternative sampling schedules on half-life estimation was investigated, and compared to the reference half-life (time zero, 6, 12, 24 (A1); zero, 6, 18, 24 (A2); zero, 12, 18, 24 (A3) or zero, 12, 24 (A4) hours and then every 12 hours). Statistical bootstrap methods were used to estimate the sampling distribution of half-lives for parasite populations with different geometric mean half-lives. A simulation study was performed to investigate a suite of 16 potential alternative schedules and half-life estimates generated by each of the schedules were compared to the “true” half-life. The candidate schedules in the simulation study included (among others) six-hourly sampling, schedule A1, schedule A4, and a convenience sampling schedule at six, seven, 24, 25, 48 and 49 hours. Results The median (range) parasite half-life for all clinical studies combined was 3.1 (0.7-12.9) hours. Schedule A1 consistently performed the best, and schedule A4 the worst, both for the individual patient estimates and for the populations generated with the bootstrapping algorithm. In both cases, the differences between the reference and alternative schedules decreased as half-life increased. In the simulation study, 24-hourly sampling performed the worst, and six-hourly sampling the best. The simulation study confirmed that more dense parasite sampling schedules are required to accurately estimate half-life for profiles with short half-life (≤three hours) and/or low initial parasite density (≤10,000 per μL). Among schedules in the simulation study with six or fewer measurements in the first 48 hours, a schedule with measurements at times (time windows) of 0 (0–2), 6 (4–8), 12 (10–14), 24 (22–26), 36 (34–36) and 48 (46–50) hours, or at times 6, 7 (two samples in time window 5–8), 24, 25 (two samples during time 23–26), and 48, 49 (two samples during time 47–50) hours, until negative most accurately estimated the “true” half-life. For a given schedule, continuing sampling after two days had little effect on the estimation of half-life, provided that adequate sampling was performed in the first two days and the half-life was less than three hours. If the measured parasitaemia at two days exceeded 1,000 per μL, continued sampling for at least once a day was needed for accurate half-life estimates. Conclusions This study has revealed important insights on sampling schedules for accurate and reliable estimation of Plasmodium falciparum half-life following treatment with an artemisinin derivative (alone or in combination with a partner drug). Accurate measurement of short half-lives (rapid clearance) requires more dense sampling schedules (with more than twice daily sampling). A more intensive sampling schedule is, therefore, recommended in locations where P. falciparum susceptibility to artemisinins is not known and the necessary resources are available. Counting parasite density at six hours is important, and less frequent sampling is satisfactory for estimating long parasite half-lives in areas where artemisinin resistance is present. PMID:24225303
Flegg, Jennifer A; Guérin, Philippe J; Nosten, Francois; Ashley, Elizabeth A; Phyo, Aung Pyae; Dondorp, Arjen M; Fairhurst, Rick M; Socheat, Duong; Borrmann, Steffen; Björkman, Anders; Mårtensson, Andreas; Mayxay, Mayfong; Newton, Paul N; Bethell, Delia; Se, Youry; Noedl, Harald; Diakite, Mahamadou; Djimde, Abdoulaye A; Hien, Tran T; White, Nicholas J; Stepniewska, Kasia
2013-11-13
The emergence of Plasmodium falciparum resistance to artemisinins in Southeast Asia threatens the control of malaria worldwide. The pharmacodynamic hallmark of artemisinin derivatives is rapid parasite clearance (a short parasite half-life), therefore, the in vivo phenotype of slow clearance defines the reduced susceptibility to the drug. Measurement of parasite counts every six hours during the first three days after treatment have been recommended to measure the parasite clearance half-life, but it remains unclear whether simpler sampling intervals and frequencies might also be sufficient to reliably estimate this parameter. A total of 2,746 parasite density-time profiles were selected from 13 clinical trials in Thailand, Cambodia, Mali, Vietnam, and Kenya. In these studies, parasite densities were measured every six hours until negative after treatment with an artemisinin derivative (alone or in combination with a partner drug). The WWARN Parasite Clearance Estimator (PCE) tool was used to estimate "reference" half-lives from these six-hourly measurements. The effect of four alternative sampling schedules on half-life estimation was investigated, and compared to the reference half-life (time zero, 6, 12, 24 (A1); zero, 6, 18, 24 (A2); zero, 12, 18, 24 (A3) or zero, 12, 24 (A4) hours and then every 12 hours). Statistical bootstrap methods were used to estimate the sampling distribution of half-lives for parasite populations with different geometric mean half-lives. A simulation study was performed to investigate a suite of 16 potential alternative schedules and half-life estimates generated by each of the schedules were compared to the "true" half-life. The candidate schedules in the simulation study included (among others) six-hourly sampling, schedule A1, schedule A4, and a convenience sampling schedule at six, seven, 24, 25, 48 and 49 hours. The median (range) parasite half-life for all clinical studies combined was 3.1 (0.7-12.9) hours. Schedule A1 consistently performed the best, and schedule A4 the worst, both for the individual patient estimates and for the populations generated with the bootstrapping algorithm. In both cases, the differences between the reference and alternative schedules decreased as half-life increased. In the simulation study, 24-hourly sampling performed the worst, and six-hourly sampling the best. The simulation study confirmed that more dense parasite sampling schedules are required to accurately estimate half-life for profiles with short half-life (≤ three hours) and/or low initial parasite density (≤ 10,000 per μL). Among schedules in the simulation study with six or fewer measurements in the first 48 hours, a schedule with measurements at times (time windows) of 0 (0-2), 6 (4-8), 12 (10-14), 24 (22-26), 36 (34-36) and 48 (46-50) hours, or at times 6, 7 (two samples in time window 5-8), 24, 25 (two samples during time 23-26), and 48, 49 (two samples during time 47-50) hours, until negative most accurately estimated the "true" half-life. For a given schedule, continuing sampling after two days had little effect on the estimation of half-life, provided that adequate sampling was performed in the first two days and the half-life was less than three hours. If the measured parasitaemia at two days exceeded 1,000 per μL, continued sampling for at least once a day was needed for accurate half-life estimates. This study has revealed important insights on sampling schedules for accurate and reliable estimation of Plasmodium falciparum half-life following treatment with an artemisinin derivative (alone or in combination with a partner drug). Accurate measurement of short half-lives (rapid clearance) requires more dense sampling schedules (with more than twice daily sampling). A more intensive sampling schedule is, therefore, recommended in locations where P. falciparum susceptibility to artemisinins is not known and the necessary resources are available. Counting parasite density at six hours is important, and less frequent sampling is satisfactory for estimating long parasite half-lives in areas where artemisinin resistance is present.
Vo, Thi Kim Duy; Bigot, Patricia; Gazin, Pierre; Sinou, Veronique; De Pina, Jean Jacques; Huynh, Dinh Chien; Fumoux, Francis; Parzy, Daniel
2007-05-01
Real-time PCR diagnosis of malaria has advantages over traditional microscopic methods, especially when parasitaemia is low and when dealing with mixed infections. We have developed a new real-time PCR with specific genes in each Plasmodium species present only in one copy to identify the four pathogenic Plasmodium spp. for humans. The sensitivity was less than 25 parasites/microl. No cross-hybridisation was observed with human DNA or among the four Plasmodium spp. Using LightCycler PCR and conventional microscopy, we compared the diagnosis of malaria in patients from Vietnam and in returned European travellers with suspicion of malaria. In patients from Vietnam with suspicion of malaria, one mixed infection was observed by PCR only; the remaining data (54 of 55 patients) correlated with microscopy. In 79 patients without symptoms, low parasitaemia was detected in 7 samples by microscopy and in 16 samples by PCR. In returned travellers, PCR results were correlated with microscopy for all four species in 48 of 56 samples. The eight discrepant results were resolved in favour of real-time PCR diagnosis. This new real-time PCR is a rapid, accurate and efficient method for malaria diagnosis in returned travellers as well as for epidemiological studies or antimalarial efficiency trials in the field.
Osoga, Joseph; Waitumbi, John; Guyah, Bernard; Sande, James; Arima, Cornel; Ayaya, Michael; Moseti, Caroline; Morang'a, Collins; Wahome, Martin; Achilla, Rachel; Awinda, George; Nyakoe, Nancy; Wanja, Elizabeth
2017-07-24
Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood. This study sought to evaluate the diagnostic performance of P-Genus FISH alongside Giemsa microscopy compared to quantitative reverse transcription polymerase chain reaction (qRT-PCR) in a clinical setting. Five hundred study participants were recruited prospectively and screened for Plasmodium parasites by P-Genus FISH assay, and Giemsa microscopy. The microscopic methods were performed by two trained personnel and were blinded, and if the results were discordant a third reading was performed as a tie breaker. The diagnostic performance of both methods was evaluated against qRT-PCR as a more sensitive method. The number of Plasmodium positive cases was 26.8% by P-Genus FISH, 33.2% by Giemsa microscopy, and 51.2% by qRT-PCR. The three methods had 46.8% concordant results with 61 positive cases and 173 negative cases. Compared to qRT-PCR the sensitivity and specificity of P-Genus FISH assay was 29.3 and 75.8%, respectively, while microscopy had 58.2 and 93.0% respectively. Microscopy had a higher positive and negative predictive values (89.8 and 68.0% respectively) compared to P-Genus FISH (56.0 and 50.5%). In overall, microscopy had a good measure of agreement (76%, k = 0.51) compared to P-Genus FISH (52%, k = 0.05). The diagnostic performance of P-Genus FISH was shown to be inferior to Giemsa microscopy in the clinical samples. This hinders the possible application of the method in the field despite the many advantages of the method especially diagnosis of low parasite density infections. The P-Genus assay has great potential but application of the method in clinical setting would rely on extensive training of microscopist and continuous proficiency testing.
Grigg, M J; William, T; Dhanaraj, P; Menon, J; Barber, B E; von Seidlein, L; Rajahram, G; Price, R N; Anstey, N M; Yeo, T W
2014-08-19
Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species. ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis. This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations. NCT01708876. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kim, Jung-Yeon; Kim, Hyung-Hwan; Shin, Hyun-ll; Sohn, Youngjoo; Kim, Hyuck; Lee, Sang-Wook; Lee, Won-Ja; Lee, Hyeong-Woo
2012-05-08
The malaria aldolase is widely used as rapid diagnostic test (RDT), but the efficacy in aspect of its serological effectiveness in diagnosis is not known. The genetic variation of Korean isolates was analysed and recombinant aldolase was evaluated as a serological antigen in Plasmodium vivax malaria. Genomic DNA was purified and the aldolase gene of P. vivax from 25 patients' blood samples was amplified. The samples came from 5 epidemic areas; Bucheon-si, Gimpo-si, Paju-si of Gyeonggido, Gangwha-gun of Incheon metropolitan city, and Cheorwon of Gangwon-do, South Korea. The antigenicity of the recombinant aldolase was tested by western blot and enzyme-linked immunosorbent assay (ELISA). Sequence analysis of 25 Korean isolates of P. vivax showed that the open reading frame (ORF) of 1,110 nucleotides encoded a deduced protein of 369 amino acids (aa). This ORF showed 100% homology with the P. vivax Sal I strain (XM_00165894) and P. vivax WDK strain (AF247063), 87.4% homology with Plasmodium falciparum (AF179421), 90.6% homology with Plasmodium chabaudi (AF247060), 89.5% homology with Plasmodium vinckei (AF247061), and 96.7% homology with Plasmodium knowlesi. A single nucleotide polymorphism (SNP) at nucleotide 180 (G to A, n = 5) was also observed in the isolates. The expressed recombinant protein had a molecular weight of approximately 31 kDa (monomeric form) and 62 kDa (dimeric form) as analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Among 109 P. vivax patients, 32 (29.4%) had positive in an enzyme-linked absorbance assay (ELISA). This result showed significant correlation between ELISA and an indirect fluorescent antibody test (IFAT) (P < 0.0001). The aldolase gene from Korean isolates of P. vivax showed one SNP at nucleotide position 180; this SNP mutant was discovered in only the western part of Han River, and included the regions of Ganghwa, Gimpo, and Bucheon. Based on the results, the relationship between antibody production against aldolase and the pattern of disease onset should be more investigated before using aldolase for serodiagnosis.
2012-01-01
Background The malaria aldolase is widely used as rapid diagnostic test (RDT), but the efficacy in aspect of its serological effectiveness in diagnosis is not known. The genetic variation of Korean isolates was analysed and recombinant aldolase was evaluated as a serological antigen in Plasmodium vivax malaria. Methods Genomic DNA was purified and the aldolase gene of P. vivax from 25 patients’ blood samples was amplified. The samples came from 5 epidemic areas; Bucheon-si, Gimpo-si, Paju-si of Gyeonggido, Gangwha-gun of Incheon metropolitan city, and Cheorwon of Gangwon-do, South Korea. The antigenicity of the recombinant aldolase was tested by western blot and enzyme-linked immunosorbent assay (ELISA). Results Sequence analysis of 25 Korean isolates of P. vivax showed that the open reading frame (ORF) of 1,110 nucleotides encoded a deduced protein of 369 amino acids (aa). This ORF showed 100% homology with the P. vivax Sal I strain (XM_00165894) and P. vivax WDK strain (AF247063), 87.4% homology with Plasmodium falciparum (AF179421), 90.6% homology with Plasmodium chabaudi (AF247060), 89.5% homology with Plasmodium vinckei (AF247061), and 96.7% homology with Plasmodium knowlesi. A single nucleotide polymorphism (SNP) at nucleotide 180 (G to A, n = 5) was also observed in the isolates. The expressed recombinant protein had a molecular weight of approximately 31 kDa (monomeric form) and 62 kDa (dimeric form) as analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Among 109 P. vivax patients, 32 (29.4%) had positive in an enzyme-linked absorbance assay (ELISA). This result showed significant correlation between ELISA and an indirect fluorescent antibody test (IFAT) (P < 0.0001). Conclusions The aldolase gene from Korean isolates of P. vivax showed one SNP at nucleotide position 180; this SNP mutant was discovered in only the western part of Han River, and included the regions of Ganghwa, Gimpo, and Bucheon. Based on the results, the relationship between antibody production against aldolase and the pattern of disease onset should be more investigated before using aldolase for serodiagnosis. PMID:22569198
Wilkinson, Laura C.; Handel, Colleen M.; Van Hemert, Caroline R.; Loiseau, Claire; Sehgal, Ravinder N. M.
2016-01-01
The prevalence of vector-borne parasitic diseases is widely influenced by biological and ecological factors. Environmental conditions such as temperature and precipitation can have a marked effect on haemosporidian parasites (Plasmodium spp.) that cause malaria and those that cause other malaria-like diseases in birds. However, there have been few long-term studies monitoring haemosporidian infections in birds in northern latitudes, where weather conditions can be highly variable and the effects of climate change are becoming more pronounced. We used molecular methods to screen more than 2,000 blood samples collected from black-capped chickadees (Poecile atricapillus), a resident passerine bird. Samples were collected over a 10 year period, mostly during the non-breeding season, at seven sites in Alaska, USA. We tested for associations between Plasmodium prevalence and local environmental conditions including temperature, precipitation, site, year and season. We also evaluated the relationship between parasite prevalence and individual host factors of age, sex and presence or absence of avian keratin disorder. This disease, which causes accelerated keratin growth in the beak, provided a natural study system in which to test the interaction between disease state and malaria prevalence. Prevalence of Plasmodium infection varied by year, site, age and individual disease status but there was no support for an effect of sex or seasonal period. Significantly, birds with avian keratin disorder were 2.6 times more likely to be infected by Plasmodium than birds without the disorder. Interannual variation in the prevalence of Plasmodium infection at different sites was positively correlated with summer temperatures at the local but not statewide scale. Sequence analysis of the parasite cytochrome b gene revealed a single Plasmodiumspp. lineage, P43. Our results demonstrate associations between prevalence of avian malaria and a variety of biological and ecological factors. These results also provide important baseline data that will be informative for predicting future changes inPlasmodium prevalence in the subarctic.
Ghinai, Isaac; Cook, Jackie; Hla, Teddy Tun Win; Htet, Hein Myat Thu; Hall, Tom; Lubis, Inke Nd; Ghinai, Rosanna; Hesketh, Therese; Naung, Ye; Lwin, Mya Mya; Latt, Tint Swe; Heymann, David L; Sutherland, Colin J; Drakeley, Chris; Field, Nigel
2017-01-05
The spread of artemisinin-resistant Plasmodium falciparum is a global health concern. Myanmar stands at the frontier of artemisinin-resistant P. falciparum. Myanmar also has the highest reported malaria burden in Southeast Asia; it is integral in the World Health Organization's plan to eliminate malaria in Southeast Asia, yet few epidemiological data exist for the general population in Myanmar. This cross-sectional, probability household survey was conducted in Phyu township, Bago Region (central Myanmar), during the wet season of 2013. Interviewers collected clinical and behavioural data, recorded tympanic temperature and obtained dried blood spots for malaria PCR and serology. Plasmodium falciparum positive samples were tested for genetic mutations in the K13 region that may confer artemisinin resistance. Estimated type-specific malaria PCR prevalence and seroprevalence were calculated, with regression analysis to identify risk factors for seropositivity to P. falciparum. Data were weighted to account for unequal selection probabilities. 1638 participants were sampled (500 households). Weighted PCR prevalence was low (n = 41, 2.5%) and most cases were afebrile (93%). Plasmodium falciparum was the most common species (n = 19. 1.1%) and five (26%) P. falciparum samples harboured K13 mutations. Plasmodium knowlesi was detected in 1.0% (n = 16) and Plasmodium vivax was detected in 0.4% (n = 7). Seroprevalence was 9.4% for P. falciparum and 3.1% for P. vivax. Seroconversion to P. falciparum was 0.003/year in the whole population, but 16-fold higher in men over 23 years old (LR test p = 0.016). This is the first population-based seroprevalence study from central Myanmar. Low overall prevalence was discovered. However, these data suggest endemic transmission continues, probably associated with behavioural risk factors amongst working-age men. Genetic mutations associated with P. falciparum artemisinin resistance, the presence of P. knowlesi and discrete demographic risk groups present opportunities and challenges for malaria control. Responses targeted to working-age men, capable of detecting sub-clinical infections, and considering all species will facilitate malaria elimination in this setting.
Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan
2011-12-19
In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.
2011-01-01
Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras. PMID:22183028
Bruce, M C; Galinski, M R; Barnwell, J W; Snounou, G; Day, K P
1999-10-01
Allelic diversity at the Plasmodium vivax merozoite surface protein-3alpha (PvMsp-3alpha) locus was investigated using a combined polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) protocol. Symptomatic patient isolates from global geographic origins showed a high level of polymorphism at the nucleotide level. These samples were used to validate the sensitivity, specificity, and reproducibility of the PCR/RFLP method. It was then used to investigate PvMsp3alpha diversity in field samples from children living in a single village in a malaria-endemic region of Papua New Guinea, with the aim of assessing the usefulness of this locus as an epidemiologic marker of P. vivax infections. Eleven PvMsp-3alpha alleles were distinguishable in 16 samples with single infections, revealing extensive parasite polymorphism within this restricted area. Multiple infections were easily detected and accounted for 5 (23%) of 22 positive samples. Pairs of samples from individual children provided preliminary evidence for high turnover of P. vivax populations.
Pal-Bhowmick, Ipsita; Andersen, John; Srinivasan, Prakash; Narum, David L; Bosch, Jürgen; Miller, Louis H
2012-01-01
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite's ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand's cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. IMPORTANCE The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Ramey, Andrew M; Schmutz, Joel A; Reed, John A; Fujita, Go; Scotton, Bradley D; Casler, Bruce; Fleskes, Joseph P; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J
2015-04-01
Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011-May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.
Ramey, Andrew M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.
2014-01-01
Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011–May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions. PMID:25830100
Ramey, Andy M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.
2015-01-01
Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011 - May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (p ≥ 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.
Shannon, Kerry L; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S; Khyang, Jacob; Ram, Malathi; Haq, M Zahirul; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E; Shields, Timothy; Nyunt, Myaing M; Khan, Wasif A; Sack, David A; Sullivan, David J
2015-08-01
Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case-uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07-46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42-1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria. © The American Society of Tropical Medicine and Hygiene.
Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.
Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F
1999-12-01
Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.
Kho, Steven; Marfurt, Jutta; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2015-08-01
Clinical illness with Plasmodium falciparum or Plasmodium vivax compromises the function of dendritic cells (DC) and expands regulatory T (Treg) cells. Individuals with asymptomatic parasitemia have clinical immunity, restricting parasite expansion and preventing clinical disease. The role of DC and Treg cells during asymptomatic Plasmodium infection is unclear. During a cross-sectional household survey in Papua, Indonesia, we examined the number and activation of blood plasmacytoid DC (pDC), CD141(+), and CD1c(+) myeloid DC (mDC) subsets and Treg cells using flow cytometry in 168 afebrile children (of whom 15 had P. falciparum and 36 had P. vivax infections) and 162 afebrile adults (of whom 20 had P. falciparum and 20 had P. vivax infections), alongside samples from 16 patients hospitalized with uncomplicated malaria. Unlike DC from malaria patients, DC from children and adults with asymptomatic, microscopy-positive P. vivax or P. falciparum infection increased or retained HLA-DR expression. Treg cells in asymptomatic adults and children exhibited reduced activation, suggesting increased immune responsiveness. The pDC and mDC subsets varied according to clinical immunity (asymptomatic or symptomatic Plasmodium infection) and, in asymptomatic infection, according to host age and parasite species. In conclusion, active control of asymptomatic infection was associated with and likely contingent upon functional DC and reduced Treg cell activation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)
2013-01-01
Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria. PMID:23731624
Hematozoa in two populations of the threatened red-billed chough in Spain.
Blanco, G; Merino, S; Tella, J L; Fargallo, J A; Gajón, A
1997-07-01
The prevalence of hematozoa in two populations of red-billed choughs (Pyrrhocorax pyrrhocorax) was sampled in 1992 and 1994 in Spain. Two blood parasites infected red-billed choughs. A species of Plasmodium, possibly Plasmodium relictum, and the piroplasm Babesia frugilegica, are described for the first time from this host. Low prevalence (1/178, < 1%) of hematozoa in these populations, was evidence for a lack of effects of blood parasites on the life history and conservation of this threatened species in at least the two populations studied.
The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.
Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones
2017-04-25
Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.
Meixell, Brandt W.; Arnold, Todd W.; Lindberg, Mark S.; Smith, Matthew M.; Runstadler, Jonathan A.; Ramey, Andy M.
2016-01-01
Methods: We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. Results: We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. Conclusions: We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.
Kang, Keren; Dzakah, Emmanuel E; Huang, Yongping; Xie, Mingquan; Luo, Xiaochun; Li, Wenmei; Wang, Jihua
2015-05-30
The low sensitivity and specificity of Plasmodium falciparum diagnostic tests pose a serious health threat to people living in endemic areas. The objective of the study was to develop a rapid assay for the detection of histidine-rich protein 2 (HRP2) of P. falciparum in whole blood by immunofluorescence chromatographic technology. A total of 1163 positive and negative blood samples were screened. The double-antibody sandwich assay was used to establish the kit and its performance was evaluated for sensitivity, specificity, accuracy, precision, stability, and clinical effectiveness. The cut-off level of detection of the kit was 25 parasites/μl. Common interfering substances in human blood specimens, such as bilirubin, triglyceride and cholesterol had no significant effect on HRP2 antigen detection. The precision of the kit was run with different concentration of standard calibrators and the values were less than 10 %. The performance of this diagnostic kit in the detection of the calibrators has shown that a shelf life of about 12 months gives a more reliable result. Among clinical samples tested, the HRP2 test kit and the reference products had good coincidence rate in a parallel experiment and this test kit had a more sensitive detecting level to the target protein than the reference kits used in this study. The specificity and sensitivity for this test were 99.6 % (800/803) and 99.7 % (1160/1163), respectively. A novel HRP2 immunofluorescence detection method was developed in this study. Overall performance evaluation indicated that the kit has a rapid, high sensitivity and on-spot method for detecting P. falciparum.
Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas
2015-01-01
For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms pipiens and molestus) and Aedes vexans. Vectors of this Plasmodium sp. remain unknown. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C
2006-03-01
Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.
Polley, Spencer D.; Mori, Yasuyoshi; Watson, Julie; Perkins, Mark D.; González, Iveth J.; Notomi, Tsugunori; Chiodini, Peter L.; Sutherland, Colin J.
2010-01-01
Loop-mediated isothermal amplification (LAMP) of DNA offers the ability to detect very small quantities of pathogen DNA following minimal tissue sample processing and is thus an attractive methodology for point-of-care diagnostics. Previous attempts to diagnose malaria by the use of blood samples and LAMP have targeted the parasite small-subunit rRNA gene, with a resultant sensitivity for Plasmodium falciparum of around 100 parasites per μl. Here we describe the use of mitochondrial targets for LAMP-based detection of any Plasmodium genus parasite and of P. falciparum specifically. These new targets allow routine amplification from samples containing as few as five parasites per μl of blood. Amplification is complete within 30 to 40 min and is assessed by real-time turbidimetry, thereby offering rapid diagnosis with greater sensitivity than is achieved by the most skilled microscopist or antigen detection using lateral flow immunoassays. PMID:20554824
Ahmed, Md Atique; Fong, Mun Yik; Lau, Yee Ling; Yusof, Ruhani
2016-04-26
The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise F ST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic studies with a larger sample size will be necessary to determine whether natural selection is driving this genetic differentiation and geographical separation.
Thillainayagam, Mahalakshmi; Malathi, Kullappan; Ramaiah, Sudha
2017-11-27
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson-Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase-ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.
Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W.; Wini, Lyndes; Harrison, G. L. Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo
2018-01-01
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. PMID:29373596
Auburn, Sarah; Serre, David; Pearson, Richard D; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, Francois; Price, Ric N
2016-10-15
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Waltmann, Andreea; Koepfli, Cristian; Tessier, Natacha; Karl, Stephan; Fola, Abebe; Darcy, Andrew W; Wini, Lyndes; Harrison, G L Abby; Barnadas, Céline; Jennison, Charlie; Karunajeewa, Harin; Boyd, Sarah; Whittaker, Maxine; Kazura, James; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E
2018-01-01
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination.
Clinical Evaluation of a Loop-Mediated Amplification Kit for Diagnosis of Imported Malaria
Polley, Spencer D.; González, Iveth J.; Mohamed, Deqa; Daly, Rosemarie; Bowers, Kathy; Watson, Julie; Mewse, Emma; Armstrong, Margaret; Gray, Christen; Perkins, Mark D.; Bell, David; Kanda, Hidetoshi; Tomita, Norihiro; Kubota, Yutaka; Mori, Yasuyoshi; Chiodini, Peter L.; Sutherland, Colin J.
2013-01-01
Background. Diagnosis of malaria relies on parasite detection by microscopy or antigen detection; both fail to detect low-density infections. New tests providing rapid, sensitive diagnosis with minimal need for training would enhance both malaria diagnosis and malaria control activities. We determined the diagnostic accuracy of a new loop-mediated amplification (LAMP) kit in febrile returned travelers. Methods. The kit was evaluated in sequential blood samples from returned travelers sent for pathogen testing to a specialist parasitology laboratory. Microscopy was performed, and then malaria LAMP was performed using Plasmodium genus and Plasmodium falciparum–specific tests in parallel. Nested polymerase chain reaction (PCR) was performed on all samples as the reference standard. Primary outcome measures for diagnostic accuracy were sensitivity and specificity of LAMP results, compared with those of nested PCR. Results. A total of 705 samples were tested in the primary analysis. Sensitivity and specificity were 98.4% and 98.1%, respectively, for the LAMP P. falciparum primers and 97.0% and 99.2%, respectively, for the Plasmodium genus primers. Post hoc repeat PCR analysis of all 15 tests with discrepant results resolved 4 results in favor of LAMP, suggesting that the primary analysis had underestimated diagnostic accuracy. Conclusions. Malaria LAMP had a diagnostic accuracy similar to that of nested PCR, with a greatly reduced time to result, and was superior to expert microscopy. PMID:23633403
Yasukochi, Yoshiki; Naka, Izumi; Patarapotikul, Jintana; Hananantachai, Hathairad; Ohashi, Jun
2015-08-01
The 175-kDa erythrocyte binding antigen (EBA-175) of Plasmodium falciparum plays a crucial role in merozoite invasion into human erythrocytes. EBA-175 is believed to have been under diversifying selection; however, there have been no studies investigating the effect of dispersal of humans out of Africa on the genetic variation of EBA-175 in P. falciparum. The PCR-direct sequencing was performed for a part of the eba-175 gene (regions II and III) using DNA samples obtained from Thai patients infected with P. falciparum. The divergence times for the P. falciparum eba-175 alleles were estimated assuming that P. falciparum/Plasmodium reichenowi divergence occurred 6 million years ago (MYA). To examine the possibility of diversifying selection, nonsynonymous and synonymous substitution rates for Plasmodium species were also estimated. A total of 32 eba-175 alleles were identified from 131 Thai P. falciparum isolates. Their estimated divergence time was 0.13-0.14 MYA, before the exodus of humans from Africa. A phylogenetic tree for a large sequence dataset of P. falciparum eba-175 alleles from across the world showed the presence of a basal Asian-specific cluster for all P. falciparum sequences. A markedly more nonsynonymous substitutions than synonymous substitutions in region II in P. falciparum was also detected, but not within Plasmodium species parasitizing African apes, suggesting that diversifying selection has acted specifically on P. falciparum eba-175. Plasmodium falciparum eba-175 genetic diversity appeared to increase following the exodus of Asian ancestors from Africa. Diversifying selection may have played an important role in the diversification of eba-175 allelic lineages. The present results suggest that the dispersals of humans out of Africa influenced significantly the molecular evolution of P. falciparum EBA-175.
2013-01-01
Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646
Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M
2017-01-01
Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally. PMID:27348298
Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M
2016-08-01
Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally.
Chittoria, Anita; Mohanty, Sujata; Jaiswal, Yogesh Kumar; Das, Aparup
2012-01-01
The Duffy (Fy) antigens act as receptors for chemokines as well as for Plasmodium vivax to invade human RBCs. A recent study has correlated the occurrence of the FY*A allele of Duffy gene with decreased susceptibility to vivax malaria, but no epidemiological correlation between the distribution of FY*A allele and incidences of vivax malaria has been established so far. Furthermore, if such correlations exist, whether natural selection has mediated the association, is an important question. Since India is highly endemic to P. vivax malaria with variable eco-climatic and varying vivax malaria epidemiology across different regions, such a question could well be answered in Indians. For this, we have genotyped the FY gene at the -33(rd) and the 125(th) nucleotide positions in 250 Indians sampled from six different zonal plus one tribal population covering the whole of India and studied possible correlations with eco-climatic and vivax malaria incidences. No FY*O allele was found, however, both the FY*A and FY*B alleles forming FY*A/FY*A, FY*A/FY*B and FY*B/FY*B genotypes were widely distributed among Indians. Five out of seven population samples significantly deviated from the Hardy-Weinberg equilibrium expectation, and two alleles (FY*A and FY*B) and the homozygote genotype, FY*B/FY*B were clinically distributed over the population coordinates. Furthermore, vivax malaria incidences over the past five years were significantly negatively and positively associated with the frequencies of the FY*A and FY*B alleles, respectively. The Northern Indians were highly differentiated from the other zonal population samples at the FY gene, as evidenced from the reconstructed Neighbor-Joining phylogenetic tree. The results specify the role of natural selection in the distribution of FY gene polymorphism in India. Furthermore, the hypotheses on the part of the FY*A allele in conferring protection to vivax malaria could be validated following population genetic studies in a vivax malaria epidemiological setting, such as India.
In vivo Susceptibility of Plasmodium vivax to Chloroquine in Southeastern Iran.
Heidari, A; Keshavarz, H; Shojaee, S; Raeisi, A; Dittrich, S
2012-01-01
Plasmodium vivax is the predominant species causes of malaria with about 90% total annual reported malaria in Iran. This study conducted to determine the susceptibility of Plasmodium vivax isolates to chloroquine in Sistan and Balochistan Province, southeastern Iran. A total 270 subjects with symptomatic malaria and confirmed P. vivax infection completed the designed 28-day in vivo study. The thick and thin film blood smears were screened for malaria parasites by microscopy. The nested PCR was applied using the Plasmodium 18 subunit ribosomal ribonucleic (Ssr RNA) genes for detecting mixed infections and diagnosis of parasites in the samples with low parasite on days 0, 5, 6, 7, and 28. P. vivax was cleared in 15%, 50%, 95%, and 100% of patients on days 1, 2, 3, 4 respectively by microscopy assessment. Six patients were exhibited specific P. vivax band in nested PCR on day 5. No recurrence was observed on days 7, 14 and 28. Mean (±standard deviation) parasite clearance time was 2.41 (±0.8) days. P. vivax is still susceptible to chloroquine in Southeatern Iran. This finding is compatible with results of neighboring countries Pakistan and Afghanistan.
Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges
2010-01-01
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187
Modrzynska, Katarzyna; Pfander, Claudia; Chappell, Lia; Yu, Lu; Suarez, Catherine; Dundas, Kirsten; Gomes, Ana Rita; Goulding, David; Rayner, Julian C; Choudhary, Jyoti; Billker, Oliver
2017-01-11
A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Chenet, Stella M; Pacheco, M Andreína; Bacon, David J; Collins, William E; Barnwell, John W; Escalante, Ananias A
2013-12-01
The merozoite surface protein-9 (MSP-9) has been considered a target for an anti-malarial vaccine since it is one of many proteins involved in the erythrocyte invasion, a critical step in the parasite life cycle. Orthologs encoding this antigen have been found in all known species of Plasmodium parasitic to primates. In order to characterize and investigate the extent and maintenance of MSP-9 genetic diversity, we analyzed DNA sequences of the following malaria parasite species: Plasmodium falciparum, Plasmodium reichenowi, Plasmodium chabaudi, Plasmodium yoelii, Plasmodium berghei, Plasmodium coatneyi, Plasmodium gonderi, Plasmodium knowlesi, Plasmodium inui, Plasmodium simiovale, Plasmodium fieldi, Plasmodium cynomolgi and Plasmodium vivax and evaluated the signature of natural selection in all MSP-9 orthologs. Our findings suggest that the gene encoding MSP-9 is under purifying selection in P. vivax and closely related species. We further explored how selection affected different regions of MSP-9 by comparing the polymorphisms in P. vivax and P. falciparum, and found contrasting patterns between these two species that suggest differences in functional constraints. This observation implies that the MSP-9 orthologs in human parasites may interact differently with the host immune response. Thus, studies carried out in one species cannot be directly translated into the other. Copyright © 2013 Elsevier B.V. All rights reserved.
Ramey, Andy M.; Schmutz, Joel A.; Fleskes, Joseph P.; Yabsley, Michael J.
2013-01-01
Information on the molecular detection of hematozoa from different tissue types and multiple years would be useful to inform sample collection efforts and interpret results of meta-analyses or investigations spanning multiple seasons. In this study, we tested blood and muscle tissue collected from northern pintails (Anas acuta) during autumn and winter of different years to evaluate prevalence and genetic diversity ofLeucocytozoon, Haemoproteus, and Plasmodium infections in this abundant waterfowl species of the Central Valley of California. We first compared results for paired blood and wing muscle samples to assess the utility of different tissue types for molecular investigations of haemosporidian parasites. Second, we explored inter-annual variability of hematozoa infection in Central Valley northern pintails and investigated possible effects of age, sex, and sub-region of sample collection on estimated parasite detection probability and prevalence. We found limited evidence for differences between tissue types in detection probability and prevalence ofLeucocytozoon, Haemoproteus, and Plasmodium parasites, which supports the utility of both sample types for obtaining information on hematozoan infections. However, we detected 11 haemosporidian mtDNA cyt bhaplotypes in blood samples vs. six in wing muscle tissue collected during the same sample year suggesting an advantage to using blood samples for investigations of genetic diversity. Estimated prevalence ofLeucocytozoon parasites was greater during 2006–2007 as compared to 2011–2012 and four unique haemosporidian mtDNA cyt b haplotypes were detected in the former sample year but not in the latter. Seven of 15 mtDNA cyt b haplotypes detected in northern pintails had 100% identity with previously reported hematozoa lineages detected in waterfowl (Haemoproteus and Leucocytozoon) or other avian taxa (Plasmodium) providing support for lack of host specificity for some parasite lineages.
Gresty, Karryn J; Gray, Karen-Ann; Bobogare, Albino; Wini, Lyndes; Taleo, George; Hii, Jeffrey; Cheng, Qin; Waters, Norman C
2014-10-14
Plasmodium falciparum and Plasmodium vivax are endemic in Vanuatu and the Solomon Islands. While both countries have introduced artemether-lumefantrine (AL) as first-line therapy for both P. falciparum and P. vivax since 2008, chloroquine and sulphadoxine-pyrimethamine (SP) were used as first-line therapy for many years prior to the introduction of AL. Limited data are available on the extent of SP resistance at the time of policy change. Blood spots were obtained from epidemiological surveys conducted on Tanna Island, Tafea Province, Vanuatu and Temotu Province, Solomon Islands in 2008. Additional samples from Malaita Province, Solomon Islands were collected as part of an AL therapeutic efficacy study conducted in 2008. Plasmodium vivax and P. falciparum dhfr and dhps genes were sequenced to detect nucleotide polymorphisms. All P. falciparum samples analysed (n=114) possessed a double mutant pfdhfr allele (C59R/S108N). Additionally, mutation A437G in pfhdps was detected in a small number of samples 2/13, 1/17 and 3/26 from Tanna Island, Vanuatu and Temotu and Malaita Provinces Solomon Islands respectively. Mutations were also common in pvdhfr from Tanna Island, Vanuatu, where 33/51 parasites carried the double amino acid substitution S58R/S117N, while in Temotu and Malaita Provinces, Solomon Islands 32/40 and 39/46 isolates carried the quadruple amino acid substitution F57L/S58R/T61M/S117T in DHFR respectively. No mutations in pvdhps (n=108) were detected in these three island groups. Prior to the introduction of AL, there was a moderate level of SP resistance in the P. falciparum population that may cause SP treatment failure in young children. Of the P. vivax isolates, a majority of Solomon Islands isolates carried quadruple mutant pvdhfr alleles while a majority of Vanuatu isolates carried double mutant pvdhfr alleles. This suggests a higher level of SP resistance in the P. vivax population in Solomon Islands compared to the sympatric P. falciparum population and there is a higher level of SP resistance in P. vivax parasites from Solomon Islands than Vanuatu. This study demonstrates that the change of treatment policy in these countries from SP to ACT was timely. The information also provides a baseline for future monitoring.
Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study.
Degarege, Abraham; Legesse, Mengistu; Medhin, Girmay; Animut, Abebe; Erko, Berhanu
2012-11-09
The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio for being infected with non-severe P. falciparum increased with the number of intestinal helminth species (p<0.001). Mean Plasmodium density among intestinal helminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027). Individuals who were co-infected with different species of intestinal helminths and Plasmodium showed lower mean haemoglobin concentration than individuals who were infected only with Plasmodium. Infections with A. lumbricoides, T. trichiura and S. mansoni were positively associated with P. falciparum infection. However, further studies are required to investigate how these helminths could contribute to increased prevalence of P. falciparum infection.
Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study
2012-01-01
Background The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. Methods A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Results Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio for being infected with non-severe P. falciparum increased with the number of intestinal helminth species (p<0.001). Mean Plasmodium density among intestinal helminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027). Individuals who were co-infected with different species of intestinal helminths and Plasmodium showed lower mean haemoglobin concentration than individuals who were infected only with Plasmodium. Conclusions Infections with A. lumbricoides, T. trichiura and S. mansoni were positively associated with P. falciparum infection. However, further studies are required to investigate how these helminths could contribute to increased prevalence of P. falciparum infection. PMID:23136960
Grimberg, Brian T; Udomsangpetch, Rachanee; Xainli, Jia; McHenry, Amy; Panichakul, Tasanee; Sattabongkot, Jetsumon; Cui, Liwang; Bockarie, Moses; Chitnis, Chetan; Adams, John; Zimmerman, Peter A; King, Christopher L
2007-01-01
Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection. PMID:18092885
2013-01-01
Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by microscopy and RDT, respectively. None of the sub-microscopic subjects had severe anaemia, though 29.4% had mild anaemia (10–11.9 g/dl). Conclusions Asymptomatic, low-density malaria infection was common in the study area and PCR may be a better tool for measuring Plasmodium prevalence than microscopy and RDT. The inadequate sensitivity of the diagnostic methods to detect substantial number of sub-microscopic parasitaemia would undoubtedly affect malaria control efforts, making reduction of transmission more difficult. RDT and microscopy-based prevalence studies and subsequent reports of reduction in malaria incidence underestimate the true pictures of P. falciparum infections in the community. PCR, on the other hand, seems to have reasonable sensitivity to detect a higher number of infected subjects with low and sub-microscopic parasite densities than RDTs or microscopy. PMID:24090230
Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G
2003-11-01
Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.
Hundessa, Samuel; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Zhang, Wenyi; Guo, Yuming
2017-05-01
Meteorological factors play a crucial role in malaria transmission, but limited evidence is available from China. This study aimed to estimate the weekly associations between meteorological factors and Plasmodium vivax and Plasmodium falciparum malaria in China. The Distributed Lag Non-Linear Model was used to examine non-linearity and delayed effects of average temperature, rainfall, relative humidity, sunshine hours, wind speed and atmospheric pressure on malaria. Average temperature was associated with P. vivax and P. falciparum cases over long ranges of lags. The effect was more immediate on P. vivax (0-6 weeks) than on P. falciparum (1-9 weeks). Relative humidity was associated with P. vivax and P. falciparum over 8-10 weeks and 5-8 weeks lag, respectively. A significant effect of wind speed on P. vivax was observed at 0-2 weeks lag, but no association was found with P. falciparum. Rainfall had a decreasing effect on P. vivax, but no association was found with P. falciparum. Sunshine hours were negatively associated with P. falciparum, but the association was unclear for P. vixax. However, the effects of atmospheric pressure on both malaria types were not significant at any lag. Our study highlights a substantial effect of weekly climatic factors on P. vivax and P. falciparum malaria transmission in China, with different lags. This provides an evidence base for health authorities in developing a malaria early-warning system. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mariette, Natacha; Barnadas, Céline; Bouchier, Christiane; Tichit, Magali; Ménard, Didier
2008-01-01
Background Rapid diagnostic tests (RDTs) are becoming increasingly indispensable in malaria management, as a means of increasing the accuracy of diagnosis. The WHO has issued recommendations, but the selection of the most suitable RDT remains difficult for users in endemic countries. The genetic variability of the antigens detected with RDTs has been little studied, but may affect the sensitivity of RDTs. This factor has been studied by comparisons between countries at continental level, but little information is available concerning antigen variability within a given country. Methods A country-wide assessment of polymorphism of the PfHRP2, PfHRP3, pLDH and aldolase antigens was carried out in 260 Plasmodium falciparum and 127 Plasmodium vivax isolates, by sequencing the genes encoding these antigens in parasites originating from the various epidemiological strata for malaria in Madagascar. Results Higher levels of polymorphism were observed for the pfhrp2 and pfhrp3 genes than for the P. falciparum and P. vivax aldolase and pldh genes. Pfhrp2 sequence analysis predicted that 9% of Malagasy isolates would not be detected at parasite densities ≤ 250 parasites/μl (ranging from 6% in the north to 14% in the south), although RDTs based on PfHRP2 detection are now recommended in Madagascar. Conclusion These findings highlight the importance of training of health workers and the end users of RDTs in the provision of information about the possibility of false-negative results for patients with clinical symptoms of malaria, particularly in the south of Madagascar. PMID:18957099
Chloroquine mediated modulation of Anopheles gambiae gene expression.
Abrantes, Patrícia; Dimopoulos, George; Grosso, Ana Rita; do Rosário, Virgílio E; Silveira, Henrique
2008-07-02
Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.
Samal, Ajit Gopal; Behera, Prativa Kumari; Mohanty, Akshay Kumar; Satpathi, Sanghamitra; Kumar, Abhishek; Panda, Rabi Ratna; Minz, Aruna Mukti; Mohanty, Sanjib; Samal, Abhijit; Van Der Pluijm, Rob W
2017-10-01
Rapid and accurate diagnosis is crucial in the treatment of malaria. Rapid Diagnostic Tests (RDTs) using blood have been recommended by the WHO as an acceptable method for the diagnosis of malaria. RDTs provide results quickly, is simple to use and easy to interpret. However, its use requires collection of blood by skin puncture. Hence the aim of the pilot study is to explore the sensitivity and specificity of RDTs using urine (collected non-invasively) for diagnosis of Plasmodium falciparum malaria and to assess the relation between parasite density in blood with HRP-2 Ag detection in urine. All fever cases admitted to Ispat General Hospital (IGH) Rourkela, India, during June 2012-March 2013 with a clinical diagnosis of malaria were examined for the presence of asexual forms of P. falciparum in peripheral blood smears. All smear positive febrile patients who met the eligibility criteria were enrolled. Smear negative fever cases were enrolled as control cases. RDTs were performed using both urine and blood samples by using commercially available blood specific kits. Sixty blood smear positive cases and 51 febrile blood smear negative cases were enrolled. Sensitivity and specificity of RDT urine were 86.67% (95%CI:75.83-93.09) and 94.12% (95%CI:84.08-97.98) respectively whereas those of RDT blood were 91.67% (95% CI: 81.93-96.39) and 98.04% (95% CI 89.7-99.65). The sensitivity of both RDT urine as well as RDT blood were found to be dependent on the level of parasitemia. Results of this study are promising. Larger studies are needed to assess whether RDTs using urine could serve as a practical, reliable method for the detection of P. falciparum in a non-invasive manner where invasive blood taking is less feasible.
Ranadive, Nikhil; Kunene, Simon; Darteh, Sarah; Ntshalintshali, Nyasatu; Nhlabathi, Nomcebo; Dlamini, Nomcebo; Chitundu, Stanley; Saini, Manik; Murphy, Maxwell; Soble, Adam; Schwartz, Alanna; Greenhouse, Bryan
2017-01-01
Abstract Background. The performance of Plasmodium falciparum–specific histidine-rich protein 2–based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Methods. Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2–based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. Results. From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/μL, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. Conclusions. In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts. PMID:28369268
Ranadive, Nikhil; Kunene, Simon; Darteh, Sarah; Ntshalintshali, Nyasatu; Nhlabathi, Nomcebo; Dlamini, Nomcebo; Chitundu, Stanley; Saini, Manik; Murphy, Maxwell; Soble, Adam; Schwartz, Alanna; Greenhouse, Bryan; Hsiang, Michelle S
2017-05-01
The performance of Plasmodium falciparum-specific histidine-rich protein 2-based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2-based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/μL, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Oner, Yaşar Ali; Okutan, Salih Erkan; Artinyan, Elizabeth; Kocazeybek, Bekir
2005-04-01
Malaria is a parasitic infection caused by Plasmodium species and it is especially seen in tropical and subtropical areas. We aimed to evaluate the effects of the infection in Afghanistan, which is an endemic place for malaria and had severe socio-economical lost after the war. We also compared these data with the ones that were recorded before the war. Blood samples were taken from 376 malaria suspected patients who come to the health center, established by the medical group of Istanbul Medical Faculty in 2002, Afghanistan. Blood samples were screened using the OPTIMAL Rapid Malaria Test and Giemsa staining method. In 95 (25.3%) patients diagnosis was malaria. In 65 patients (17.3%) the agent of the infection was P. falciparum and in 30 patients (8%) agents were other Plasmodium species.
Wanji, Samuel; Kimbi, Helen K; Eyong, Joan E; Tendongfor, Nicholas; Ndamukong, Judith L
2008-05-22
Rapid and correct diagnosis of malaria is considered an important strategy in the control of the disease. However, it remains to be determined how well these tests can perform in those who harbour the parasite, but are asymptomatic, so that rapid diagnostic tests (RDTs) could be used in rapid mass surveillance in malaria control programmes. Microscopic and immunochromatographic diagnosis of malaria were performed on blood samples from the hyperendemic Mount Cameroon region. Thin and thick blood films were stained with Giemsa and examined under light microscopy for malaria parasites. The RDT was performed on the blood samples for the detection of Plasmodium species. In addition, the performance characteristics of the test were determined using microscopy as gold standard. Results revealed 40.32% to be positive for microscopy and 34.41% to be positive for the RDT. Parasites were detected in a greater proportion of samples as the parasite density increase. Plasmodium falciparum was the predominant Plasmodium species detected in the study population either by microscopy or by the RDT. Overall, the test recorded a sensitivity and specificity of 85.33% and 95.05% respectively, and an accuracy of 91.40%. The sensitivity and specificity of the RDT increased as parasite densities increased. The Hexagon Malaria Combi test showed a high sensitivity and specificity in diagnosing malaria in asymptomatic subjects and so could be suitable for use in mass surveillance programmes for the management and control of malaria.
Talundzic, Eldin; Maganga, Mussa; Masanja, Irene M; Peterson, David S; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2014-01-27
Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country's diagnostic laboratory; and, (ii) determine the assay's sensitivity and specificity compared to a nested 18S rRNA PCR. Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings.
Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M
2017-09-18
Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this study shows equal sensitivity as previously described methods based on whole blood, both in its limit of detection and prevalence estimates in two field surveys. The reduced cost and complexity of this method will allow for the scale-up of surveillance studies to target MDA and other malaria elimination interventions, and help lead to a better understanding of the epidemiology of low-density malaria infections.
Maeno, Yoshimasa; Quang, Nguyen Tuyen; Culleton, Richard; Kawai, Satoru; Masuda, Gaku; Hori, Kaoru; Nakazawa, Shusuke; Marchand, Ron P
2017-06-24
Plasmodium falciparum has developed resistance against artemisinin in Southeast Asia. Mutations in the P. falciparum Kelch-13 (Pfk13) gene are associated with artemisinin resistance in vitro and in vivo. We investigated the prevalence of mutations in PfK13 from sporozoite-stage parasites isolated from the salivary glands of Anopheles dirus mosquitoes. Mosquitoes were caught by human-landing catches at two locations within the Khanh Phu commune, South-Central Vietnam. Identification of Anopheles species was performed based on morphological features and nucleotide sequence analysis. Sporozoite-infected salivary glands were stored on filter paper and at 4-6 °C. A nested-PCR targeting the small subunit ribosomal RNA gene was used for Plasmodium species identification. Pfk13 was amplified by nested PCR, and subjected to nucleotide sequencing. Five of 33 P. falciparum sporozoite samples carried the P553L mutation at the PfK13 locus. This mutation has been recorded previously in Vietnam, but not in Khanh Hoa province, were surveys of K13 polymorphism have not previously been carried out. These results demonstrate the utility of mosquito-stage malaria parasite samples for studies on the molecular epidemiology of drug resistance.
Evaluation of the OnSite (Pf/Pan) rapid diagnostic test for diagnosis of clinical malaria.
Mohon, Abu Naser; Elahi, Rubayet; Podder, Milka Patracia; Mohiuddin, Khaja; Hossain, Mohammad Sharif; Khan, Wasif A; Haque, Rashidul; Alam, Mohammad Shafiul
2012-12-12
Accurate diagnosis of malaria is an essential prerequisite for proper treatment and drug resistance monitoring. Microscopy is considered the gold standard for malaria diagnosis but has limitations. ELISA, PCR, and Real Time PCR are also used to diagnose malaria in reference laboratories, although their application at the field level is currently not feasible. Rapid diagnostic tests (RDTs) however, have been brought into field operation and widely adopted in recent days. This study evaluates OnSite (Pf/Pan) antigen test, a new RDT introduced by CTK Biotech Inc, USA for malaria diagnosis in a reference setting. Blood samples were collected from febrile patients referred for malaria diagnosis by clinicians. Subjects were included in this study from two different Upazila Health Complexes (UHCs) situated in two malaria endemic districts of Bangladesh. Microscopy and nested PCR were considered the gold standard in this study. OnSite (Pf/Pan) RDT was performed on preserved whole blood samples. In total, 372 febrile subjects were included in this study. Of these subjects, 229 (61.6%) tested positive for Plasmodium infection detected by microscopy and nested PCR. OnSite (Pf/Pan) RDT was 94.2% sensitive (95% CI, 89.3-97.3) and 99.5% specific (95% CI, 97.4-00.0) for Plasmodium falciparum diagnosis and 97.3% sensitive (95% CI, 90.5-99.7) and 98.7% specific (95% CI, 96.6-99.6) for Plasmodium vivax diagnosis. Sensitivity varied with differential parasite count for both P. falciparum and P. vivax. The highest sensitivity was observed in febrile patients with parasitaemia that ranged from 501-1,000 parasites/μL regardless of the Plasmodium species. The new OnSite (Pf/Pan) RDT is both sensitive and specific for symptomatic malaria diagnosis in standard laboratory conditions.
Serological diagnosis of hantavirus pulmonary syndrome in a febrile patient in Colombia.
Mattar, Salim; Garzon, Denisse; Tadeu, Luis; Faccini-Martínez, Alvaro A; Mills, James N
2014-08-01
Hantavirus pulmonary syndrome (HPS) is an often fatal rodent-borne zoonosis caused by any of at least 20 hantavirus genotypes distributed throughout the Americas. Although HPS has been documented in several bordering countries, it has not been reported in Colombia. Here we report seroconversion to a hantavirus in paired samples from a hospitalized patient with symptoms compatible with HPS from Montería, Córdoba Department, north-western Colombia. Tests for regionally endemic agents including Plasmodium, Leptospira, Salmonella, dengue virus, Brucella, Rickettsia, human immunodeficiency virus and hepatitis viruses were negative. Because the patient was enrolled in a clinical trial for hemorrhagic fevers conducted by the University of Córdoba, serum samples were collected on admission and at discharge. Testing using Sin Nombre virus ELISA showed IgG and IgM seroconversion between samples. The eventual finding of this first clinical case of hantavirus infection in Colombia is consistent with the high prevalence of hantavirus antibodies in humans in the region and the likely exposure of the patient to rodents. The clinical presentation was similar to that found in neighbouring Panama. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.
2010-01-01
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011
GREENHOUSE, BRYAN; MYRICK, ALISSA; DOKOMAJILAR, CHRISTIAN; WOO, JONATHAN M.; CARLSON, ELAINE J.; ROSENTHAL, PHILIP J.; DORSEY, GRANT
2006-01-01
Genotyping methods for Plasmodium falciparum drug efficacy trials have not been standardized and may fail to accurately distinguish recrudescence from new infection, especially in high transmission areas where polyclonal infections are common. We developed a simple method for genotyping using previously identified microsatellites and capillary electrophoresis, validated this method using mixtures of laboratory clones, and applied the method to field samples. Two microsatellite markers produced accurate results for single-clone but not polyclonal samples. Four other microsatellite markers were as sensitive as, and more specific than, commonly used genotyping techniques based on merozoite surface proteins 1 and 2. When applied to samples from 15 patients in Burkina Faso with recurrent parasitemia after treatment with sulphadoxine-pyrimethamine, the addition of these four microsatellite markers to msp1 and msp2 genotyping resulted in a reclassification of outcomes that strengthened the association between dhfr 59R, an anti-folate resistance mutation, and recrudescence (P = 0.31 versus P = 0.03). Four microsatellite markers performed well on polyclonal samples and may provide a valuable addition to genotyping for clinical drug efficacy studies in high transmission areas. PMID:17123974
Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.
Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika
2018-01-11
Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine candidate against P. malariae infection because of its sufficiently low genetic diversity and highly conserved amino acids especially on the carboxyl end.
2011-01-01
Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%), with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1%) were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15%) schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection were identified within Oromia. Conclusion These findings demonstrate the marked spatial heterogeneity of malaria in Oromia and, in general, Ethiopia, and provide a strong epidemiological basis for planning as well as monitoring and evaluating malaria control in a setting with seasonal and unstable malaria transmission. PMID:21288368
Fang, Rui; Wey, Andrew; Bobbili, Naveen K; Leke, Rose F G; Taylor, Diane Wallace; Chen, John J
2017-07-17
Antibodies play an important role in immunity to malaria. Recent studies show that antibodies to multiple antigens, as well as, the overall breadth of the response are associated with protection from malaria. Yet, the variability and reliability of antibody measurements against a combination of malarial antigens using multiplex assays have not been well characterized. A normalization procedure for reducing between-plate variation using replicates of pooled positive and negative controls was investigated. Sixty test samples (30 from malaria-positive and 30 malaria-negative individuals), together with five pooled positive-controls and two pooled negative-controls, were screened for antibody levels to 9 malarial antigens, including merozoite antigens (AMA1, EBA175, MSP1, MSP2, MSP3, MSP11, Pf41), sporozoite CSP, and pregnancy-associated VAR2CSA. The antibody levels were measured in triplicate on each of 3 plates, and the experiments were replicated on two different days by the same technician. The performance of the proposed normalization procedure was evaluated with the pooled controls for the test samples on both the linear and natural-log scales. Compared with data on the linear scale, the natural-log transformed data were less skewed and reduced the mean-variance relationship. The proposed normalization procedure using pooled controls on the natural-log scale significantly reduced between-plate variation. For malaria-related research that measure antibodies to multiple antigens with multiplex assays, the natural-log transformation is recommended for data analysis and use of the normalization procedure with multiple pooled controls can improve the precision of antibody measurements.
Ginouves, Marine; Veron, Vincent; Musset, Lise; Legrand, Eric; Stefani, Aurélia; Prevot, Ghislaine; Demar, Magalie; Djossou, Félix; Brousse, Paul; Nacher, Mathieu; Carme, Bernard
2015-11-10
The two main plasmodial species in French Guiana are Plasmodium vivax and Plasmodium falciparum whose respective prevalence influences the frequency of mixed plasmodial infections. The accuracy of their diagnosis is influenced by the sensitivity of the method used, whereas neither microscopy nor rapid diagnostic tests allow a satisfactory evaluation of mixed plasmodial infections. In the present study, the frequency of mixed infections in different part of French Guiana was determined using real time PCR, a sensitive and specific technique. From 400 cases of malaria initially diagnosed by microscopy, real time PCR showed that 10.75 % of the cases were mixed infections. Their prevalence varied considerably between geographical areas. The presence, in equivalent proportions, of the two plasmodial species in eastern French Guiana was associated with a much higher prevalence of mixed plasmodial infections than in western French Guiana, where the majority of the population was Duffy negative and thus resistant to vivax malaria. Clinicians must be more vigilant regarding mixed infections in co-endemic P. falciparum/P. vivax areas, in order to deliver optimal care for patients suffering from malaria. This may involve the use of rapid diagnostic tests capable of detecting mixed infections or low density single infections. This is important as French Guiana moves towards malaria elimination.
Three species of Plasmodium from Canada geese, Branta canadensis
Herman, C.M.; Barrow, J.H.
1967-01-01
Studies on Canada geese at the Seney National Wildlife Refuge in northern Michigan during the past few years have uncovered at least three species of Plasmodium: P circumflexum, P. relictum, and P. vaughani. Although rarely observed in direct blood smears from the wild hosts, isodiagnosis, using primarily domestic geese as recipients, revealed a prevalence of 60 percent in random samplings of the population. P. circumflexum is the most prevalent and mixed infections have been noted. In experimental infections, induced by blood inoculation, the malaria produced by P. circumflexum produces about a 70 percent mortality in Canada geese and about a 10 percent mortality in domestic geese.
Fong, Mun Yik; Rashdi, Sarah A. A.; Yusof, Ruhani; Lau, Yee Ling
2016-01-01
Background Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII. Methods Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright’s FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3). Results A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes, and high inter-population genetic differentiation (FST index). The main differences between PkγRII and PkDBPαRII include length polymorphism and no departure from neutrality (as measured by Tajima’s D statistics) in the PkγRII. Conclusion Despite the biological difference between PkγRII and PkDBPαRII, both generally have similar genetic diversity level, natural selection, geographical haplotype clustering and inter-population genetic differentiation index. PMID:27195821
African origin of the malaria parasite Plasmodium vivax.
Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M
2014-01-01
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
African origin of the malaria parasite Plasmodium vivax
Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.
2014-01-01
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500
Alnasser, Yossef; Ferradas, Cusi; Clark, Taryn; Calderon, Maritza; Gurbillon, Alejandro; Gamboa, Dionicia; McKakpo, Uri S.; Quakyi, Isabella A.; Bosompem, Kwabena M.; Sullivan, David J.; Vinetz, Joseph M.; Gilman, Robert H.
2016-01-01
Plasmodium vivax is the most prevalent cause of human malaria in the world and can lead to severe disease with high potential for relapse. Its genetic and geographic diversities make it challenging to control. P. vivax is understudied and to achieve control of malaria in endemic areas, a rapid, accurate, and simple diagnostic tool is necessary. In this pilot study, we found that a colorimetric system using AuNPs and MSP10 DNA detection in urine can provide fast, easy, and inexpensive identification of P. vivax. The test exhibited promising sensitivity (84%), high specificity (97%), and only mild cross-reactivity with P. falciparum (21%). It is simple to use, with a visible color change that negates the need for a spectrometer, making it suitable for use in austere conditions. Using urine eliminates the need for finger-prick, increasing both the safety profile and patient acceptance of this model. PMID:27706158
Grist, Eric P M; Flegg, Jennifer A; Humphreys, Georgina; Mas, Ignacio Suay; Anderson, Tim J C; Ashley, Elizabeth A; Day, Nicholas P J; Dhorda, Mehul; Dondorp, Arjen M; Faiz, M Abul; Gething, Peter W; Hien, Tran T; Hlaing, Tin M; Imwong, Mallika; Kindermans, Jean-Marie; Maude, Richard J; Mayxay, Mayfong; McDew-White, Marina; Menard, Didier; Nair, Shalini; Nosten, Francois; Newton, Paul N; Price, Ric N; Pukrittayakamee, Sasithon; Takala-Harrison, Shannon; Smithuis, Frank; Nguyen, Nhien T; Tun, Kyaw M; White, Nicholas J; Witkowski, Benoit; Woodrow, Charles J; Fairhurst, Rick M; Sibley, Carol Hopkins; Guerin, Philippe J
2016-10-24
Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.
Carter, Tamar E.; Boulter, Alexis; Existe, Alexandre; Romain, Jean R.; St. Victor, Jean Yves; Mulligan, Connie J.; Okech, Bernard A.
2015-01-01
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. PMID:25646258
Sow, Fatimata; Bonnot, Guillaume; Ahmed, Bilal Rabah; Diagana, Sidi Mohamed; Kebe, Hachim; Koita, Mohamedou; Samba, Ba Malado; Al-Mukhaini, Said K; Al-Zadjali, Majed; Al-Abri, Seif S; Ali, Osama A M; Samy, Abdallah M; Hamid, Muzamil Mahdi Abdel; Ali Albsheer, Musab M; Simon, Bruno; Bienvenu, Anne-Lise; Petersen, Eskild; Picot, Stéphane
2017-02-02
Plasmodium vivax is the second most important human malaria parasite, widely spread across the world. This parasite is associated with important issues in the process toward malaria elimination, including potential for relapse and increased resistance to chloroquine. Plasmodium vivax multi-drug resistant (pvmdr1) is suspected to be a marker of resistance although definitive evidence is lacking. Progress has been made in knowledge of biological factors affecting parasite growth, including mechanisms of regulated cell death and the suspected role of metacaspase. Plasmodium vivax metacaspase1 (PvMCA1-cd) has been described with a catalytic domain composed of histidine (H372) and cysteine (C428) residues. The aim of this study was to test for a link between the conserved histidine and cysteine residues in PvMCA1-cd, and the polymorphism of the P. vivax multi-drug resistant gene (pvmdr1). Thirty P. vivax isolates were collected from Mauritania, Sudan, and Oman. Among the 28 P. vivax isolates successfully sequenced, only 4 samples showed the conserved His (372)-Cys (428) residues in PvMCA1-cd. Single nucleotide polymorphisms observed were H372T (46.4%), H372D (39.3%), and C428R (85.7%). A new polymorphic catalytic domain was observed at His (282)-Cys (305) residues. Sequences alignment analysis of pvmdr1 showed SNP in the three codons 958, 976 and 1076. A single SNP was identified at the codon M958Y (60%), 2 SNPs were found at the position 976: Y976F (13%) and Y976V (57%), and 3 SNPs were identified at the position 1076: F1076L (40%), F1076T (53%) and F1076I (3%). Only one isolate was wildtype in all three codons (MYF), 27% were single MYL mutants, and 10% were double MFL mutants. Three new haplotypes were also identified: the triple mutant YVT was most prevalent (53.3%) distributed in the three countries, while triple YFL and YVI mutants (3%), were only found in samples from Sudan and Mauritania. Triple or quadruple mutants for metacaspase genes and double or triple mutants for Pvmdr1 were observed in 24/28 and 19/28 samples. There was no difference in the frequency of mutations between PvMCA1-cd and Pvmdr1 (P > 0.2). Histidine and cysteine residues in PvMCA1-cd are highly polymorphic and linkage disequilibrium with SNPs of Pvmdr1 gene may be expected from these three areas with different patterns of P. vivax transmission.
Carrasco-Escobar, Gabriel; Miranda-Alban, Julio; Fernandez-Miñope, Carlos; Brouwer, Kimberly C; Torres, Katherine; Calderon, Maritza; Gamboa, Dionicia; Llanos-Cuentas, Alejandro; Vinetz, Joseph M
2017-10-16
The incidence of malaria due both to Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon has risen in the past 5 years. This study tested the hypothesis that the maintenance and emergence of malaria in hypoendemic regions such as Amazonia is determined by submicroscopic and asymptomatic Plasmodium parasitaemia carriers. The present study aimed to precisely quantify the rate of very-low parasitaemia carriers in two sites of the Peruvian Amazon in relation to transmission patterns of P. vivax and P. falciparum in this area. This study was carried out within the Amazonian-ICEMR longitudinal cohort. Blood samples were collected for light microscopy diagnosis and packed red blood cell (PRBC) samples were analysed by qPCR. Plasma samples were tested for total IgG reactivity against recombinant PvMSP-10 and PfMSP-10 antigens by ELISA. Occupation and age 10 years and greater were considered surrogates of occupation-related mobility. Risk factors for P. falciparum and P. vivax infections detected by PRBC-qPCR were assessed by multilevel logistic regression models. Among 450 subjects, the prevalence of P. vivax by PRBC-PCR (25.1%) was sixfold higher than that determined by microscopy (3.6%). The prevalence of P. falciparum infection was 4.9% by PRBC-PCR and 0.2% by microscopy. More than 40% of infections had parasitaemia under 5 parasites/μL. Multivariate analysis for infections detected by PRBC-PCR showed that participants with recent settlement in the study area (AOR 2.1; 95% CI 1.03:4.2), age ≥ 30 years (AOR 3.3; 95% CI 1.6:6.9) and seropositivity to P. vivax (AOR 1.8; 95% CI 1.0:3.2) had significantly higher likelihood of P. vivax infection, while the odds of P. falciparum infection was higher for participants between 10 and 29 years (AOR 10.7; 95% CI 1.3:91.1) and with a previous P. falciparum infection (AOR 10.4; 95% CI 1.5:71.1). This study confirms the contrasting transmission patterns of P. vivax and P. falciparum in the Peruvian Amazon, with stable local transmission for P. vivax and the source of P. falciparum to the study villages dominated by very low parasitaemia carriers, age 10 years and older, who had travelled away from home for work and brought P. falciparum infection with them.
Vaughan-Williams, Charles H; Raman, Jaishree; Raswiswi, Eric; Immelman, Etienne; Reichel, Holger; Gate, Kelly; Knight, Steve
2012-12-28
Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine resistance has yet to emerge in KwaZulu-Natal. In addition, data from this investigation implies the possible re-emergence of chloroquine-sensitive parasites. Results from this study must be viewed with caution, given the extremely small sample size. A larger study is needed to accurately determine therapeutic efficacy of artemether-lumefantrine and resistance marker prevalence. The high proportion of rapid diagnostic test false-positive results requires further investigation.
Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid
2015-01-01
Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the sensitivity of the diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in our study population was underestimated by 8% compared to the new assays. Our findings highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in community surveillance and for monitoring interventions to better describe malaria epidemiology and inform malaria elimination efforts. PMID:25734259
Orjuela-Sánchez, Pamela; Duggan, Erika; Nolan, John; Frangos, John A; Carvalho, Leonardo Jm
2012-11-05
Plasmodium berghei rodent malaria is a well-known model for the investigation of anti-malarial drug efficacy in vivo. However, the availability of drug in vitro assays in P. berghei is reduced when compared with the spectrum of techniques existing for Plasmodium falciparum. New alternatives to the current manual or automated methods described for P. berghei are attractive. The present study reports a new ELISA drug in vitro assay for P. berghei using two monoclonal antibodies against the parasite lactate dehydrogenase (pLDH). This procedure includes a short-in vitro culture, the purification of schizonts and the further generation of synchronized mice infections. Early stages of the parasite are then incubated against different concentrations of anti-malarial drugs using micro-plates. The novelty of this procedure in P. berghei relies on the quantification of the drug activity derived from the amount of pLDH estimated by an ELISA assay using two monoclonal antibodies: 14C1 and 19G7. The IC₅₀s obtained through the ELISA assay were compared with those from the micro-test. The initial parameters of the synchronized samples used in the in vitro assays were a parasitaemia of 0.5% and haematocrit of 1%, with an incubation period of 22 hours at 36.5°C. pLDH detection using a 14C1 coating at 10 μg/ml and 19G7 at 2.5 × 10⁻³ μg/ml provided good readouts of optical densities with low background in negative controls and specific detection levels for all parasite stages. IC₅₀s values derived from the ELISA assay for artesunate, chloroquine, amodiaquine and quinine were: 15, 7, 2, and 144 nM, respectively. When artesunate and chloroquine IC₅₀s were evaluated using the micro-test similar values were obtained. This ELISA-based in vitro drug assay is easy to implement, fast, and avoids the use radioisotopes or expensive equipment. The utility of this simple assay for screening anti-malarial drug activity against P. berghei in vitro is demonstrated.
Yap, Nan Jiun; Goh, Xiang Ting; Koehler, Anson V; William, Timothy; Yeo, Tsin Wen; Vythilingam, Indra; Gasser, Robin B; Lim, Yvonne A L
2017-10-01
Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-1 42 ; consisting of MSP-1 19 and MSP-1 33 ) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-1 42 (comprising Pk-msp-1 19 and Pk-msp-1 33 ) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-1 42 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-1 19 sequence was found to be more conserved than Pk-msp-1 33 . We have found evidence for negative selection in Pk-msp- 42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi. Copyright © 2017 Elsevier B.V. All rights reserved.
Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa
2016-03-01
Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance
Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus-Infected Patients.
Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie
2016-10-15
The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus–Infected Patients
Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J.; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O.; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J.; Prescott, Joseph B.; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L.; Feldmann, Friederike; Williamson, Brandi N.; Best, Sonja M.; Nyenswah, Tolbert G.; Grolla, Allen; Strong, James E.; Kobinger, Gary; Bolay, Fatorma K.; Zoon, Kathryn C.; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T.; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie
2016-01-01
Background. The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. Methods. All blood samples from suspected Ebola virus–infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus–infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. Results. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus–infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Conclusions. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. PMID:27531847
Iglesias, Nuria; Subirats, Mercedes; Trevisi, Patricia; Ramírez-Olivencia, Germán; Castán, Pablo; Puente, Sabino; Toro, Carlos
2014-07-01
Microscopy and rapid diagnostic tests (RDTs) are the techniques commonly used for malaria diagnosis but they are usually insensitive at very low levels of parasitemia. Nested PCR is commonly used as a reference technique in the diagnosis of malaria due to its high sensitivity and specificity. However, it is a cumbersome assay only available in reference centers. We evaluated a new nested PCR-based assay, BIOMALAR kit (Biotools B&M Labs, Madrid, Spain) which employs ready-to-use gelled reagents and allows the identification of the main four species of Plasmodium. Blood samples were obtained from patients with clinical suspicion of malaria. A total of 94 subjects were studied. Fifty-two (55.3%) of them were malaria-infected subjects corresponding to 48 cases of Plasmodium falciparum, 1 Plasmodium malariae, 2 Plasmodium vivax, and 1 Plasmodium ovale. The performance of the BIOMALAR test was compared with microscopy, rapid diagnostic test (RDT) (BinaxNOW® Malaria) and real-time quantitative PCR (qPCR). The BIOMALAR test showed a sensitivity of 98.1% (95% confidence interval [CI], 89.7-100), superior to microscopy (82.7% [95% CI, 69.7-91.8]) and RDT (94.2% [95% CI, 84.1-98.8]) and similar to qPCR (100% [95% CI, 93.2-100]). In terms of specificity, the BIOMALAR assay showed the same value as microscopy and qPCR (100% [95% CI, 93.2-100]). Nine subjects were submicroscopic carriers of malaria. The BIOMALAR test identified almost all of them (8/9) in comparison with RDT (6/9) and microscopy (0/9). In conclusion, the BIOMALAR is a PCR-based assay easy to use with an excellent performance and especially useful for diagnosis submicroscopic malaria.
Cordón, G Pérez; Prados, A Hitos; Romero, D; Moreno, M Sánchez; Pontes, A; Osuna, A; Rosales, M J
2009-11-12
Birds from the Almuñecar ornithological garden (Granada, Spain) were surveyed from June 2006 to May 2007 to establish programmes to prevent, control, and treat intestinal and haematic parasites. A total of 984 faecal samples and 41 samples of blood were collected from Psittacidae, Cacatuidae, Phasianidae, and Anatidae. One or more intestinal parasites were identified in 51.6% of the samples. Blood parasites were found in 26.8% of the birds examined. The most frequent pathogenic endoparasites were coccidians, such as Cyclospora sp. (4.5%), Eimeria sp. (4.1%) and Isospora sp. (2%) and helminths such as Capillaria sp. (10. 1%), Ascaridia sp. (4.9%) and Heterakis gallinarum (4.9%). All the parasites varied with season but the most were found year round. Multiple parasitic infections by intestinal parasites were common, with 196 of 984 faecal samples having 2-5 intestinal parasites. The most frequent cases of multiple parasitism were Blastocystis plus Entamoeba sp. and Blastocystis plus Cyclospora sp. The haematic protozoa detected were Haemoproteus sp. (17%) and Plasmodium sp. (7.3%). Multiple parasitism by Haemoproteus sp. and Plasmodium sp. was detected in 1 sample of Gallus gallus. After each sampling, some of the affected animals were treated according to our results, and the corresponding programmes of prevention and control were designed.
A lab-on-chip for malaria diagnosis and surveillance
2014-01-01
Background Access to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges. Methods The platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection. Results This diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%. Conclusions These results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries. PMID:24885206
Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum.
Parr, Jonathan B; Anderson, Olivia; Juliano, Jonathan J; Meshnick, Steven R
2018-04-02
Rapid diagnostic tests (RDTs) that detect histidine-rich protein 2 (PfHRP2) are used throughout Africa for the diagnosis of Plasmodium falciparum malaria. However, recent reports indicate that parasites lacking the pfhrp2 and/or histidine-rich protein 3 (pfhrp3) genes, which produce antigens detected by these RDTs, are common in select regions of South America, Asia, and Africa. Proving the absence of a gene is challenging, and multiple PCR assays targeting these genes have been described. A detailed characterization and comparison of published assays is needed to facilitate robust and streamlined testing approaches. Among six pfhrp2 and pfhrp3 PCR assays tested, the lower limit of detection ranged from 0.01 pg/µL to 0.1 ng/µL of P. falciparum 3D7 strain DNA, or approximately 0.4-4000 parasite genomes/µL. By lowering the elongation temperature to 60 °C, a tenfold improvement in the limit of detection and/or darker bands for all exon 1 targets and for the first-round reaction of a single exon 2 target was achieved. Additionally, assays targeting exon 1 of either gene yielded spurious amplification of the paralogous gene. Using these data, an optimized testing algorithm for the detection of pfhrp2- and pfhrp3-negative P. falciparum is proposed. Surveillance of pfhrp2- and pfhrp3-negative P. falciparum requires careful laboratory workflows. PCR-based testing methods coupled with microscopy and/or antigen testing serve as useful tools to support policy development. Standardized approaches to the detection of pfhrp2- and pfhrp3-negative P. falciparum should inform efforts to define the impact of these parasites.
Owusu, Ewurama D A; Djonor, Samson K; Brown, Charles A; Grobusch, Martin P; Mens, Petra F
2018-02-23
Plasmodium falciparum, the most dominant species in sub-Saharan Africa, causes the most severe clinical malaria manifestations. In resource-limited Ghana, where malaria and HIV geographically overlap, histidine-rich protein 2 (HRP2)-based rapid diagnostic test (RDT) is a faster, easier and cheaper alternative to clinical gold standard light microscopy. However, mutations in parasite hrp2 gene may result in missed infections, which have severe implications for malaria control. The performance of a common HRP2-based RDT and expert light microscopy in HIV-positive and HIV-negative children under 5 years old was compared with PCR as laboratory gold standard. Finger-prick capillary blood was tested with First Response ® Malaria Ag P. falciparum (HRP2). Giemsa-stained thick and thin blood films were examined with ≥ 200 high power fields and parasites counted per 200 white blood cells. Nested PCR species identification of P. falciparum was performed and resolved on agarose gel. False negatives from RDT were further tested for deleted pfhrp2/3 and flanking genes, using PCR. The study was performed in two anti-retroviral therapy clinics in Accra and Atibie. Out of 401 participants enrolled, 150 were HIV positive and 251 HIV negative. Malaria was more prevalent in children without HIV. Microscopy had a higher sensitivity [100% (99-100)] than RDT [83% (53.5-100)]. Parasites with pfhrp2/3 deletions contributed to missed infections from RDT false negatives. Circulation of malaria parasites with pfrhp2/3 deletions in this population played a role in missed infections with RDT. This ought to be addressed if further strides in malaria control are to be made.
Reeves, Andrew B.; Smith, Mathew M.; Meixell, Brandt W.; Fleskes, Joseph P; Ramey, Andrew M.
2015-01-01
Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon. PMID:25710468
[Microbiological diagnosis of imported malaria].
Torrús, Diego; Carranza, Cristina; Manuel Ramos, José; Carlos Rodríguez, Juan; Rubio, José Miguel; Subirats, Mercedes; Ta-Tang, Thuy-Huong
2015-07-01
Current diagnosis of malaria is based on the combined and sequential use of rapid antigen detection tests (RDT) of Plasmodium and subsequent visualization of the parasite stained with Giemsa solution in a thin and thick blood smears. If an expert microscopist is not available, should always be a sensitive RDT to rule out infection by Plasmodium falciparum, output the result immediately and prepare thick smears (air dried) and thin extensions (fixed with methanol) for subsequent staining and review by an expert microscopist. The RDT should be used as an initial screening test, but should not replace microscopy techniques, which should be done in parallel. The diagnosis of malaria should be performed immediately after clinical suspicion. The delay in laboratory diagnosis (greater than 3 hours) should not prevent the initiation of empirical antimalarial treatment if the probability of malaria is high. If the first microscopic examination and RDT are negative, they must be repeated daily in patients with high suspicion. If suspicion remains after three negative results must be sought the opinion of an tropical diseases expert. Genomic amplification methods (PCR) are useful as confirmation of microscopic diagnosis, to characterize mixed infections undetectable by other methods, and to diagnose asymptomatic infections with submicroscopic parasitaemia. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
2014-01-01
Background Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country’s diagnostic laboratory; and, (ii) determine the assay’s sensitivity and specificity compared to a nested 18S rRNA PCR. Methods Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Results Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. Conclusion The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings. PMID:24467985
2013-01-01
Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector regardless of its nutrional status upon emergence. The data suggest that small-sized An. gambiae, therefore, would contribute little to malaria transmission, whereas this size effect would not affect An. stephensi. PMID:24326030
Capone, Aida; Ricci, Irene; Damiani, Claudia; Mosca, Michela; Rossi, Paolo; Scuppa, Patrizia; Crotti, Elena; Epis, Sara; Angeletti, Mauro; Valzano, Matteo; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Mandrioli, Mauro; Favia, Guido
2013-06-18
Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.
Chittoria, Anita; Mohanty, Sujata; Jaiswal, Yogesh Kumar; Das, Aparup
2012-01-01
The Duffy (Fy) antigens act as receptors for chemokines as well as for Plasmodium vivax to invade human RBCs. A recent study has correlated the occurrence of the FY*A allele of Duffy gene with decreased susceptibility to vivax malaria, but no epidemiological correlation between the distribution of FY*A allele and incidences of vivax malaria has been established so far. Furthermore, if such correlations exist, whether natural selection has mediated the association, is an important question. Since India is highly endemic to P. vivax malaria with variable eco-climatic and varying vivax malaria epidemiology across different regions, such a question could well be answered in Indians. For this, we have genotyped the FY gene at the −33rd and the 125th nucleotide positions in 250 Indians sampled from six different zonal plus one tribal population covering the whole of India and studied possible correlations with eco-climatic and vivax malaria incidences. No FY*O allele was found, however, both the FY*A and FY*B alleles forming FY*A/FY*A, FY*A/FY*B and FY*B/FY*B genotypes were widely distributed among Indians. Five out of seven population samples significantly deviated from the Hardy-Weinberg equilibrium expectation, and two alleles (FY*A and FY*B) and the homozygote genotype, FY*B/FY*B were clinally distributed over the population coordinates. Furthermore, vivax malaria incidences over the past five years were significantly negatively and positively associated with the frequencies of the FY*A and FY*B alleles, respectively. The Northern Indians were highly differentiated from the other zonal population samples at the FY gene, as evidenced from the reconstructed Neighbor-Joining phylogenetic tree. The results specify the role of natural selection in the distribution of FY gene polymorphism in India. Furthermore, the hypotheses on the part of the FY*A allele in conferring protection to vivax malaria could be validated following population genetic studies in a vivax malaria epidemiological setting, such as India. PMID:23028857
Reed, John A; Sexson, Matthew G; Smith, Matthew M; Schmutz, Joel A; Ramey, Andrew M
2018-06-14
We assessed hematozoa infection in Spectacled Eiders ( Somateria fischeri) at two areas in Alaska. No Haemoproteus or Plasmodium species were detected. Leucocytozoon prevalence was 6.5% for adults across sites and 41.9% for juveniles sampled in the Arctic, providing evidence for local transmission. All Leucocytozoon haplotypes were previously detected in waterfowl.
Molecular Surveillance as Monitoring Tool for Drug-Resistant Plasmodium falciparum in Suriname
Adhin, Malti R.; Labadie-Bracho, Mergiory; Bretas, Gustavo
2013-01-01
The aim of this translational study was to show the use of molecular surveillance for polymorphisms and copy number as a monitoring tool to track the emergence and dynamics of Plasmodium falciparum drug resistance. A molecular baseline for Suriname was established in 2005, with P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance (pfmdr1) markers and copy number in 40 samples. The baseline results revealed the existence of a uniformly distributed mutated genotype corresponding with the fully mefloquine-sensitive 7G8-like genotype (Y184F, S1034C, N1042D, and D1246Y) and a fixed pfmdr1 N86 haplotype. All samples harbored the pivotal pfcrtK76T mutation, showing that chloroquine reintroduction should not yet be contemplated in Suriname. After 5 years, 40 samples were assessed to trace temporal changes in the status of pfmdr1 polymorphisms and copy number and showed minor genetic alterations in the pfmdr1 gene and no significant changes in copy number, thus providing scientific support for prolongation of the current drug policy in Suriname. PMID:23836573
Genotyping of the Duffy Blood Group among Plasmodium knowlesi-Infected Patients in Malaysia
De Silva, Jeremy Ryan; Lau, Yee Ling; Fong, Mun Yik
2014-01-01
The Duffy blood group is of major interest in clinical medicine as it plays an important role in Plasmodium knowlesi and Plasmodium vivax infection. In the present study, the distribution of Duffy blood group genotypes and allelic frequencies among P. knowlesi infected patients as well as healthy individuals in Peninsular Malaysia were determined. The blood group of 60 healthy blood donors and 51 P. knowlesi malaria patients were genotyped using allele specific polymerase chain reaction (ASP-PCR). The data was analyzed using Fisher's exact test in order to assess the significance of the variables. Our results show a high proportion of the FY*A/FY*A genotype (>85% for both groups) and a high frequency of the FY*A allele (>90% for both groups). The FY*A/FY*A genotype was the most predominant genotype in both infected and healthy blood samples. The genotype frequency did not differ significantly between the donor blood and the malaria patient groups. Also, there was no significant correlation between susceptibility to P. knowlesi infection with any Duffy blood genotype. PMID:25268233
Plasmodium ovale infection in Malaysia: first imported case.
Lim, Yvonne A L; Mahmud, Rohela; Chew, Ching Hoong; T, Thiruventhiran; Chua, Kek Heng
2010-10-08
Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax. Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing. Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector. The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis.
Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P
2016-08-02
Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.
Figueiredo, Mayra Araguaia Pereira; Di Santi, Silvia Maria; Manrique, Wilson Gómez; Gonçalves, Luiz Ricardo; André, Marcos Rogério; Machado, Rosangela Zacarias
2017-04-26
Considering the diversity of feeding habits that females of some species of anophelines present, it is important to understand which vertebrates are part of blood food sources and how important is the role of each in the ecoepidemiology of malaria. There are many vector species for Plasmodium spp. in the State of Maranhão, Brazil. In São Luís Island, Anopheles aquasalis is the main vector for human malaria; this species is abundant in areas with primates that are positive for Plasmodium. Anopheles aquasalis has natural exophilic and zoophilic feeding behavior, but in cases of high density and absence of animals, presents quite varied behavior, and feeds on human blood. In this context, the objective of the present study was to identify Plasmodium spp. and the blood meal sources of anophelines in two environmental reserves on São Luís Island, state of Maranhão, using molecular methods. Between June and July 2013, female anophelines were collected in the Sítio Aguahy Private Reserve, in the municipality of São José de Ribamar, and in the Sítio Mangalho Reserve, located within the Maracanã Environmental Protection Area, in the municipality of São Luís. CDC-type light traps, Shannon traps and protected human bait were used during three consecutive hours in peridomestic and wooded areas. Pools of anophelines were formed using mosquitoes of the same species that had been caught at the same site on the same date. A genus-specific amplification protocol based on the 18S rRNA gene was used for qPCR and cPCR. A total of 416 anophelines were collected, of the following species: An. aquasalis (399), An. mediopunctatus (3), An. shannoni (1), An. nuneztovari (sensu lato) (1), An. goeldii (1), An. evansae (2) and An. (Nyssorhynchus) sp. (9), comprising 54 pools. Two pools were positive for Plasmodium (2/54) based on the 18S rRNA gene. In the phylogenetic analysis using the maximum likelihood method, based on a 240 bp fragment of the 18S rRNA gene, it was found that the sequences of Plasmodium sp. amplified from pools of An. aquasalis (pool 2) and An. nuneztovari (s.l.) (pool 10) were phylogenetically related to a clade of P. falciparum isolates from India, and to a clade of Plasmodium sp. isolates from psittacines in Brazil, respectively. Cat, dog and human DNA were identified in the blood meals of the anophelines sampled. The species An. aquasalis was the most abundant anopheline species in São Luís Island. Plasmodium spp. DNA was detected, thus confirming the importance of this species as the main vector on São Luís Island, Brazil. In addition, the presence of An. nuneztovari (s.l.) with DNA positive for Plasmodium spp. confirms its importance as a secondary vector.
Basic features of slime mould motility
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro
2015-03-01
The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...
Zhang, Cui; Gao, Han; Yang, Zhenke; Jiang, Yuanyuan; Li, Zhenkui; Wang, Xu; Xiao, Bo; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing
2017-03-01
CRISPR/Cas9 has been successfully adapted for gene editing in malaria parasites including Plasmodium falciparum and Plasmodium yoelii. However, the reported methods were limited to editing one gene at a time. In practice, it is often desired to modify multiple genetic loci in a parasite genome. Here we describe a CRISPR/Cas9 mediated genome editing method that allows successive modification of more than one gene in the genome of P. yoelii using an improved single-vector system (pYCm) we developed previously. Drug resistant genes encoding human dihydrofolate reductase (hDHFR) and a yeast bifunctional protein (yFCU), with cytosine deaminase (CD) and uridyl phosphoribosyl transferase (UPRT) activities in the plasmid, allowed sequential positive (pyrimethamine, Pyr) and negative (5-fluorocytosine, 5FC) selections and generation of transgenic parasites free of the episomal plasmid after genetic modification. Using this system, we were able to efficiently tag a gene of interest (Pyp28) and subsequently disrupted two genes (Pyctrp and Pycdpk3) that are individually critical for ookinete motility. Disruption of the genes either eliminated (Pyctrp) or greatly reduced (Pycdpk3) ookinete forward motility in matrigel in vitro and completely blocked oocyst development in mosquito midgut. The method will greatly facilitate studies of parasite gene function, development, and disease pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Sugiarto; Kesumawati Hadi, Upik; Soviana, Susi; Hakim, Lukman
2016-11-01
Anopheles mosquitoes may be incriminated as malaria vectors by observing sporozoites in their salivary glands and by testing heads or thoraces by an enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium species-specific circumsporozoite proteins (CSP). This study tested Anopheles collected in Sungai Nyamuk Village for the presence of both Plasmodium falciparum and Plasmodium vivax CSP. The Anopheles spp. were collected by human landing collection indoors and outdoors and by indoor and outdoor resting catches in Sungai Nyamuk Village, Nunukan District, North Kalimantan Province from August 2010 to January 2012. Overall, 5,100 Anopheles spp. comprising 11 species were collected and 2,259 adult parous females were tested by ELISA. Of these, only one Anopheles peditaeniatus Leicester (3.8%, n = 26) and one Anopheles sundaicus sensu lato (0.6%, n = 157) that originated from outdoor biting catches tested positive for P. falciparum CSP. The remaining females from indoor biting, outdoor resting, and indoor resting catches were negative for P. falciparum and P. vivax proteins. Confirmation of these vectors biting outdoors indicated that P. falciparum transmission may be occurring outside of houses by An. peditaeniatus and An. sundaicus. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Muluye, Abrham Belachew; Melese, Eshetie; Adinew, Getnet Mequanint
2015-10-15
Resistances to currently available drugs and insecticides, significant drug toxicities and costs and lack of vaccines currently complicated the treatment of malaria. A continued search for safe, effective and affordable plant-based antimalarial agents thus becomes crucial and vital in the face of these difficulties. The aim of the study was to evaluate the antimalarial activity of 80 % methanolic extract of the seeds of Brassica nigra against Plasmodium berghei infection in mice. Chloroquine sensitive Plasmodium berghei (ANKA strain) was used to test the antimalarial activity of the extract. In suppressive and prophylactic models, Swiss albino male mice were randomly grouped into five groups of five mice each. Group I mice were treated with the vehicle, group II, III and IV were treated with 100, 200, and 400 mg/kg of the extract, respectively and the last group (V) mice were treated with chloroquine (10 mg/kg). The level of parasitemia, survival time and variation in weight of mice were used to determine the antimalarial activity of the extract. Chemosuppressive activities produced by the extract of the seeds of Brassica nigra were 21.88, 50.00 (P < 0.01) and 53.13 % (P < 0.01), while the chemoprophylactic activities were 17.42, 21.21 and 53.79 % (P < 0.05) at 100, 200 and 400 mg/kg of the extract, respectively as compared to the negative control. Mice treated with 200 and 400 mg/kg extract were significantly (P < 0.05) lived longer and gained weight as compared to negative control in 4-day suppressive test. From this study, it can be concluded that the seed extract of Brassica nigra showed good chemosuppressive and moderate chemoprophylactic activities and the plant may contain biologically active principles which are relevant in the treatment and prophylaxis of malaria, thus supporting further studies of the plant for its active components.
High prevalence of asymptomatic malaria in south-eastern Bangladesh
2014-01-01
Background The WHO has reported that RDT and microscopy-confirmed malaria cases have declined in recent years. However, it is still unclear if this reflects a real decrease in incidence in Bangladesh, as particularly the hilly and forested areas of the Chittagong Hill Tract (CHT) Districts report more than 80% of all cases and deaths. surveillance and epidemiological data on malaria from the CHT are limited; existing data report Plasmodium falciparum and Plasmodium vivax as the dominant species. Methods A cross-sectional survey was conducted in the District of Bandarban, the southernmost of the three Hill Tracts Districts, to collect district-wide malaria prevalence data from one of the regions with the highest malaria endemicity in Bangladesh. A multistage cluster sampling technique was used to collect blood samples from febrile and afebrile participants and malaria microscopy and standardized nested PCR for diagnosis were performed. Demographic data, vital signs and splenomegaly were recorded. Results Malaria prevalence across all subdistricts in the monsoon season was 30.7% (95% CI: 28.3-33.2) and 14.2% (95% CI: 12.5-16.2) by PCR and microscopy, respectively. Plasmodium falciparum mono-infections accounted for 58.9%, P. vivax mono-infections for 13.6%, Plasmodium malariae for 1.8%, and Plasmodium ovale for 1.4% of all positive cases. In 24.4% of all cases mixed infections were identified by PCR. The proportion of asymptomatic infections among PCR-confirmed cases was 77.0%, oligosymptomatic and symptomatic cases accounted for only 19.8 and 3.2%, respectively. Significantly (p < 0.01) more asymptomatic cases were recorded among participants older than 15 years as compared to younger participants, whereas prevalence and parasite density were significantly (p < 0.01) higher in patients younger than 15 years. Spleen rate and malaria prevalence in two to nine year olds were 18.6 and 34.6%, respectively. No significant difference in malaria prevalence and parasite density was observed between dry and rainy season. Conclusions A large proportion of asymptomatic plasmodial infections was found which likely act as a reservoir of transmission. This has major implications for ongoing malaria control programmes that are based on the treatment of symptomatic patients. These findings highlight the need for new intervention strategies targeting asymptomatic carriers. PMID:24406220
Salim, Nahya; Schindler, Tobias; Abdul, Ummi; Rothen, Julian; Genton, Blaise; Lweno, Omar; Mohammed, Alisa S; Masimba, John; Kwaba, Denis; Abdulla, Salim; Tanner, Marcel; Daubenberger, Claudia; Knopp, Stefanie
2014-12-09
There is a paucity of data pertaining to the epidemiology and public health impact of Enterobius vermicularis and Strongyloides stercoralis infections. We aimed to determine the extent of enterobiasis, strongyloidiasis, and other helminth infections and their association with asymptomatic Plasmodium parasitaemia, anaemia, nutritional status, and blood cell counts in infants, preschool-aged (PSAC), and school-aged children (SAC) from rural coastal Tanzania. A total of 1,033 children were included in a cross-sectional study implemented in the Bagamoyo district in 2011/2012. Faecal samples were examined for intestinal helminth infections using a broad set of quality controlled methods. Finger-prick blood samples were subjected to filariasis and Plasmodium parasitaemia testing and full blood cell count examination. Weight, length/height, and/or mid-upper arm circumference were measured and the nutritional status determined in accordance with age. E. vermicularis infections were found in 4.2% of infants, 16.7%, of PSAC, and 26.3% of SAC. S. stercoralis infections were detected in 5.8%, 7.5%, and 7.1% of infants, PSAC, and SAC, respectively. Multivariable regression analyses revealed higher odds of enterobiasis in children of all age-groups with a reported anthelminthic treatment history over the past six months (odds ratio (OR): 2.15; 95% confidence interval (CI): 1.22 - 3.79) and in SAC with a higher temperature (OR: 2.21; CI: 1.13 - 4.33). Strongyloidiasis was associated with eosinophilia (OR: 2.04; CI: 1.20-3.48) and with Trichuris trichiura infections (OR: 4.13; CI: 1.04-16.52) in children of all age-groups, and with asymptomatic Plasmodium parasitaemia (OR: 13.03; CI: 1.34 - 127.23) in infants. None of the investigated helminthiases impacted significantly on the nutritional status and anaemia, but moderate asymptomatic Plasmodium parasitaemia was a strong predictor for anaemia in children aged older than two years (OR: 2.69; 95% CI: 1.23 - 5.86). E. vermicularis and S. stercoralis infections were moderately prevalent in children from rural coastal Tanzania. Our data can contribute to inform yet missing global burden of disease and prevalence estimates for strongyloidiasis and enterobiasis. The association between S stercoralis and asymptomatic Plasmodium parasitaemia found here warrants further comprehensive investigations.
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-05-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at -20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at -20°C or extracted immediately, especially if anticipating 2 or more years of storage. © The American Society of Tropical Medicine and Hygiene.
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J.; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-01-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at −20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at −20°C or extracted immediately, especially if anticipating 2 or more years of storage. PMID:25758652
Hybrid selection for sequencing pathogen genomes from clinical samples
2011-01-01
We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008
Evaluation of the OnSite (Pf/Pan) rapid diagnostic test for diagnosis of clinical malaria
2012-01-01
Background Accurate diagnosis of malaria is an essential prerequisite for proper treatment and drug resistance monitoring. Microscopy is considered the gold standard for malaria diagnosis but has limitations. ELISA, PCR, and Real Time PCR are also used to diagnose malaria in reference laboratories, although their application at the field level is currently not feasible. Rapid diagnostic tests (RDTs) however, have been brought into field operation and widely adopted in recent days. This study evaluates OnSite (Pf/Pan) antigen test, a new RDT introduced by CTK Biotech Inc, USA for malaria diagnosis in a reference setting. Methods Blood samples were collected from febrile patients referred for malaria diagnosis by clinicians. Subjects were included in this study from two different Upazila Health Complexes (UHCs) situated in two malaria endemic districts of Bangladesh. Microscopy and nested PCR were considered the gold standard in this study. OnSite (Pf/Pan) RDT was performed on preserved whole blood samples. Results In total, 372 febrile subjects were included in this study. Of these subjects, 229 (61.6%) tested positive for Plasmodium infection detected by microscopy and nested PCR. OnSite (Pf/Pan) RDT was 94.2% sensitive (95% CI, 89.3-97.3) and 99.5% specific (95% CI, 97.4-00.0) for Plasmodium falciparum diagnosis and 97.3% sensitive (95% CI, 90.5-99.7) and 98.7% specific (95% CI, 96.6-99.6) for Plasmodium vivax diagnosis. Sensitivity varied with differential parasite count for both P. falciparum and P. vivax. The highest sensitivity was observed in febrile patients with parasitaemia that ranged from 501–1,000 parasites/μL regardless of the Plasmodium species. Conclusion The new OnSite (Pf/Pan) RDT is both sensitive and specific for symptomatic malaria diagnosis in standard laboratory conditions. PMID:23234579
2012-01-01
Background Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. Methods A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. Results The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. Conclusions The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa. PMID:22682065
Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai
2012-06-10
Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.
Alemu, Abebe; Shiferaw, Yitayal; Ambachew, Aklilu; Hamid, Halima
2012-10-01
To assess the prevalence of malaria helminth co-infections and their contribution for aneamia in febrile patients attending Azzezo health center, Gondar, Northwest Ethiopia. A cross section study was conducted among febrile patients attending Azezo health center from February-March 30, 2011. Convenient sampling technique was used to select 384 individuals. Both capillary blood and stool were collected. Giemsa stained thick and thin blood film were prepared for identification of Plasmodium species and stool sample was examined by direct wet mount and formalin-ether concentration technique for detection of intestinal helminthes parasites. Haemoglobin concentration was determined using a portable haemoglobin spectrophotometer, Hemocue Hb 201 analyzer. Out of 384 febrile patients examined for malaria parasites, 44 (11.5%) individuals were positive for malaria parasites, of which Plasmodium vivax accounted for 75.0% (33), Plasmodium falciparum for 20.5% (9) infectious, whereas two person (4.5%) had mixed species infection. Prevalence of malaria was higher in males (28) when compared with prevalence in females (16). More than half (207, 53.9%) of study participants had one or more infection. Prevalence was slightly higher in females (109, 52.7%) than in males (98, 47.3%). About helminths, Ascaris lumbricoides was the predominant isolate (62.1%) followed by hookworms (18.4%). Only 22 participants were co-infected with malaria parasite and helminths and co-infection with Ascaris lumbricoides was predominant (45.0%). The prevalence of anemia was 10.9% and co-infection with Plasmodium and helminth parasites was significantly associated with (P< 0.000 1) higher anemia prevalence compared to individuals without any infection. Prevalence of malaria and soil transmitted helminths is high and the disease is still major health problem in the study area. Hence, simultaneous combat against the two parasitic infections is very crucial to improve health of the affected communities in economically developing countries. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.
Robinson, Kelly M; Hawkins, Aziah S; Santana-Cruz, Ivette; Adkins, Ricky S; Shetty, Amol C; Nagaraj, Sushma; Sadzewicz, Lisa; Tallon, Luke J; Rasko, David A; Fraser, Claire M; Mahurkar, Anup; Silva, Joana C; Dunning Hotopp, Julie C
2017-09-01
As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi ) and one minority member (i.e. human or the Wolbachia endosymbiont w Bm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium , at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium- human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.
Astudillo, Viviana González; Hernández, Sonia M.; Kistler, Whitney M.; Boone, Shaun L.; Lipp, Erin K.; Shrestha, Sudip; Yabsley, Michael J.
2013-01-01
The prevalence of five avian haemoparasite groups was examined for effects on health and associations with extrinsic factors. Overall, 786 samples were examined from six sites in two Georgia (USA) watersheds, during breeding and non-breeding periods in 2010 and 2011. Among the four most commonly infected species, Haemoproteus prevalence was significantly higher in Northern Cardinals (Cardinalis cardinalis) compared to Indigo Buntings (Passerina cyanea) and Tufted Titmice (Baeolophus bicolor) while prevalence in White-throated Sparrows (Zonotrichia albicollis) was significantly higher than in Indigo Buntings. Higher prevalence of Plasmodium was noted in Tufted Titmice and Northern Cardinals. While Leucocytozoon prevalence was highest in White-throated Sparrows, Trypanosoma prevalence was highest in Tufted Titmice. Interesting differences in infection probabilities were noted between foraging guilds with Haemoproteus associated with low-middle level strata and birds in the middle-upper strata were more likely to be infected with Plasmodium and Trypanosoma. In contrast, ground-foraging birds were more likely to be infected with Leucocytozoon. Breeding season was correlated with higher polychromasia counts and higher prevalence of Haemoproteus, Plasmodium and Trypanosoma. In addition, prevalence of infection with certain haemoparasite genera and packed cell volume (PCV) were different among host species. Body mass index was inversely correlated with prevalence of microfilaria infection but positively related to Haemoproteus infection. However, we found no relationship between PCV or polychromasia levels with haemoparasite infection. Molecular characterization of 61 samples revealed 19 unique Haemoproteus (n = 7) and Plasmodium (n = 12) haplotypes with numerous new host records. No differences were noted in haplotype diversity among birds with different migratory behaviors or foraging heights, thus additional studies are needed that incorporate molecular analysis, host biology, and vector biology into comprehensive models on parasite ecology. Detailed morphological examination of these parasites is also necessary to determine if closely related haplotypes represent single species or morphologically distinct, but closely related, haplotypes. PMID:24533333
Multiplicity of Infection and Disease Severity in Plasmodium vivax
Pacheco, M. Andreína; Lopez-Perez, Mary; Vallejo, Andrés F.; Herrera, Sócrates; Arévalo-Herrera, Myriam; Escalante, Ananias A.
2016-01-01
Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity. PMID:26751811
Jang, Jin Woo; Cho, Chi Hyun; Han, Eun Taek; An, Seong Soo A; Lim, Chae Seung
2013-06-03
The malaria rapid diagnostic tests (RDTs) are now widely used in the world. Compared to Plasmodium falciparum, a poor sensitivity of RDTs was reported against Plasmodium vivax based on the adopted antibody against pan-Plasmodium antigen lactate dehydrogenase (pLDH) or aldolase. Levels of pLDH were measured from patient with P. vivax, and the correlations between the levels of pLDH and the sensitivities of RDTs were analysed among Republic of Korea (ROK) isolates. Three RDTs, OptiMAL test, SD BIOLINE Malaria Ag P.f/Pan test, Humasis Malaria Pf/Pan antigen test, and the Genedia pLDH antigen ELISA were performed with blood samples from 152 febrile patients and 100 healthy controls. Three malaria RDTs revealed sensitivities between 85.5 (131/152) and 86.8% (132/152) with highest sensitivity for the detection of P.vivax by pLDH antigen ELISA test (145/152, 95.4%) in comparison to traditional microscopy using Giemsa-stained slides. None of the healthy control tested positive by three RDTs or ELISA, indicating 100% specificity in their respective test. Levels of pLDH among Korean P. vivax isolates ranged between 0 ng/mL and 22,387.2 ng/mL (mean ± standard deviation 3,917.5 ± 6,120.9 ng/mL). The lower detection limits of three RDTs were between 25 and 50 ng/mL with artificially diluted samples. The moderate degree of correlation was observed between parasitaemia and concentrations of pLDH (r = 0.4, p < 0.05). The pLDH levels of P. vivax are the main explanation for the variations in the performance of pLDH-based RDTs. Therefore, comparing sensitivities of RDT may need to include targeted biomarker value of patients.
Koita, Ousmane A; Doumbo, Ogobara K; Ouattara, Amed; Tall, Lalla K; Konaré, Aoua; Diakité, Mahamadou; Diallo, Mouctar; Sagara, Issaka; Masinde, Godfred L; Doumbo, Safiatou N; Dolo, Amagana; Tounkara, Anatole; Traoré, Issa; Krogstad, Donald J
2012-02-01
We identified 480 persons with positive thick smears for asexual Plasmodium falciparum parasites, of whom 454 had positive rapid diagnostic tests (RDTs) for the histidine-rich protein 2 (HRP2) product of the hrp2 gene and 26 had negative tests. Polymerase chain reaction (PCR) amplification for the histidine-rich repeat region of that gene was negative in one-half (10/22) of false-negative specimens available, consistent with spontaneous deletion. False-negative RDTs were found only in persons with asymptomatic infections, and multiplicities of infection (MOIs) were lower in persons with false-negative RDTs (both P < 0.001). These results show that parasites that fail to produce HRP2 can cause patent bloodstream infections and false-negative RDT results. The importance of these observations is likely to increase as malaria control improves, because lower MOIs are associated with false-negative RDTs and false-negative RDTs are more frequent in persons with asymptomatic infections. These findings suggest that the use of HRP2-based RDTs should be reconsidered.
Ansari, Hifzur Rahman; Templeton, Thomas J; Subudhi, Amit Kumar; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C; Benavente, Ernest Diez; Clark, Taane G; Sutherland, Colin J; Barnwell, John W; Culleton, Richard; Cao, Jun; Pain, Arnab
2016-10-01
Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J
2009-01-01
Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT® performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified. PMID:19860920
Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J
2009-10-27
In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4]. OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7]. CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI95 85.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI95 71.1-84.4], spec 97.8% [CI95 96.3-98.7]. Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35 degrees C). None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified.
Evaluation of the Immunoquick+4 malaria rapid diagnostic test in a non-endemic setting.
van Dijk, D P J; Gillet, P; Vlieghe, E; Cnops, L; Van Esbroeck, M; Jacobs, J
2010-05-01
The aim of this retrospective study was to evaluate the Immunoquick+4 (BioSynex, Strasbourg, France), a three-band malaria rapid diagnostic test (MRDT) targeting histidine-rich protein-2 (HRP-2) and pan Plasmodium-specific parasite lactate dehydrogenase, in a non-endemic reference setting. Stored whole-blood samples (n = 613) from international travellers suspected of malaria were used, with microscopy corrected by polymerase chain reaction (PCR) as the reference method. Samples infected by P. falciparum (n = 323), P. vivax (n = 97), P. ovale (n = 73) and P. malariae (n = 25) were selected, as well as 95 malaria-negative samples. The overall sensitivities of the Immunoquick+4 for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 88.9, 75.3, 56.0 and 19.2%, respectively. Sensitivity was significantly related to parasite density for P. falciparum (93.6% versus 71.4% at parasite densities >100/microl and
Li, Jian; Chen, Jiangtao; Xie, Dongde; Eyi, Urbano Monsuy; Matesa, Rocio Apicante; Ondo Obono, Maximo Miko; Ehapo, Carlos Sala; Yang, Liye; Yang, Huitian; Lin, Min
2016-01-01
Objective With emergence and geographically expanding of antimalarial resistance worldwide, molecular markers are essential tool for surveillance of resistant Plasmodium parasites. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain are shown to be associated with artemisinin (ART) resistance in vivo and in vitro. This study aims to investigate the ART resistance-associated polymorphisms of K13-propeller and PfATPase6 genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea (EG). Methods A total of 172 samples were collected from falciparum malaria patients on Bioko Island between 2013 and 2014. The polymorphisms of K13-propeller and PfATPase6 genes were analyzed by Nest-PCR and sequencing. Results Sequences of K13-propeller and PfATPase6 were obtained from 90.74% (98/108) and 91.45% (139/152) samples, respectively. The 2.04% (2/98) cases had non-synonymous K13-propeller A578S mutation but no found the mutations associated with ART resistance in Southeast Asia. For PfATPase6, the mutations were found at positions N569K and A630S with the mutation prevalence of 7.91% (11/139) and 1.44% (2/139), respectively. In addition, a sample with the mixed type at position I723V was discovered (0.72%, 1/139). Conclusions This study initially offers an insight of K13-propeller and PfATPase6 polymorphisms on Bioko Island, EG. It suggests no widespread ART resistance or tolerance in the region, and might be helpful for developing and updating guidance for the use of ART-based combination therapies (ACTs). PMID:27054064
Li, Jian; Chen, Jiangtao; Xie, Dongde; Eyi, Urbano Monsuy; Matesa, Rocio Apicante; Ondo Obono, Maximo Miko; Ehapo, Carlos Sala; Yang, Liye; Yang, Huitian; Lin, Min
2016-04-01
With emergence and geographically expanding of antimalarial resistance worldwide, molecular markers are essential tool for surveillance of resistant Plasmodium parasites. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain are shown to be associated with artemisinin (ART) resistance in vivo and in vitro. This study aims to investigate the ART resistance-associated polymorphisms of K13-propeller and PfATPase6 genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea (EG). A total of 172 samples were collected from falciparum malaria patients on Bioko Island between 2013 and 2014. The polymorphisms of K13-propeller and PfATPase6 genes were analyzed by Nest-PCR and sequencing. Sequences of K13-propeller and PfATPase6 were obtained from 90.74% (98/108) and 91.45% (139/152) samples, respectively. The 2.04% (2/98) cases had non-synonymous K13-propeller A578S mutation but no found the mutations associated with ART resistance in Southeast Asia. For PfATPase6, the mutations were found at positions N569K and A630S with the mutation prevalence of 7.91% (11/139) and 1.44% (2/139), respectively. In addition, a sample with the mixed type at position I723V was discovered (0.72%, 1/139). This study initially offers an insight of K13-propeller and PfATPase6 polymorphisms on Bioko Island, EG. It suggests no widespread ART resistance or tolerance in the region, and might be helpful for developing and updating guidance for the use of ART-based combination therapies (ACTs).
Plasmodium spp. in raptors on the Eurasian-African migration route.
Paperna, I; Yosef, R; Landau, I
2007-12-01
Examination of blood smears obtained from raptors trapped while on migration at Eilat, Israel, demonstrated Plasmodium infection in Accipiter brevipes and Buteo buteo. The following species are described, from A. brevipes: Plasmodium alloelongatum n. sp., P. accipiteris n. sp. and from B. buteo: P. buteonis n. sp. and Plasmodium sp. for which we lack sufficient data for adequate species description. Overall prevalence of infection with Plasmodium spp. was very low: among 38 examined A. brevipes 5% and among 56 B. buteo 3.6%.
Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2015-05-01
Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.
Kpoviessi, Salomé; Bero, Joanne; Agbani, Pierre; Gbaguidi, Fernand; Kpadonou-Kpoviessi, Bénédicta; Sinsin, Brice; Accrombessi, Georges; Frédérich, Michel; Moudachirou, Mansourou; Quetin-Leclercq, Joëlle
2014-01-01
Cymbopogon species are largely used in folk medicine for the treatment of many diseases some of which related to parasitical diseases as fevers and headaches. As part of our research on antiparasitic essential oils from Beninese plants, we decided to evaluate the in vitro antiplasmodial and antitrypanosomal activities of essential oils of four Cymbopogon species used in traditional medicine as well as their cytotoxicity. The essential oils of four Cymbopogon species Cymbopogon citratus (I), Cymbopogon giganteus (II), Cymbopogon nardus (III) and Cymbopogon schoenantus (IV) from Benin obtained by hydrodistillation were analysed by GC/MS and GC/FID and were tested in vitro against Trypanosoma brucei brucei and Plasmodium falciparum respectively for antitrypanosomal and antiplasmodial activities. Cytotoxicity was evaluated in vitro against Chinese Hamster Ovary (CHO) cells and the human non cancer fibroblast cell line (WI38) through MTT assay to evaluate the selectivity. All tested oils showed a strong antitrypanosomal activity with a good selectivity. Sample II was the most active against Trypanosoma brucei brucei and could be considered as a good candidate. It was less active against Plasmodium falciparum. Samples II, III and IV had low or no cytotoxicity, but the essential oil of Cymbopogon citratus (I), was toxic against CHO cells and moderately toxic against WI38 cells and needs further toxicological studies. Sample I (29 compounds) was characterised by the presence as main constituents of geranial, neral, β-pinene and cis-geraniol; sample II (53 compounds) by trans-p-mentha-1(7),8-dien-2-ol, trans-carveol, trans-p-mentha-2,8-dienol, cis-p-mentha-2,8-dienol, cis-p-mentha-1(7),8-dien-2-ol, limonene, cis-carveol and cis-carvone; sample III (28 compounds) by β-citronellal, nerol, β-citronellol, elemol and limonene and sample IV (41 compounds) by piperitone, (+)-2-carene, limonene, elemol and β-eudesmol. Our study shows that essential oils of Cymbopogon genus can be a good source of antitrypanosomal agents. This is the first report on the activity of these essential oils against Trypanosoma brucei brucei, Plasmodium falciparum and analysis of their cytotoxicity. © 2013 Published by Elsevier Ireland Ltd.
Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare
2012-01-01
Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024
Koepfli, Cristian; Robinson, Leanne J; Rarau, Patricia; Salib, Mary; Sambale, Naomi; Wampfler, Rahel; Betuela, Inoni; Nuitragool, Wang; Barry, Alyssa E; Siba, Peter; Felger, Ingrid; Mueller, Ivo
2015-01-01
A better understanding of human-to-mosquito transmission is crucial to control malaria. In order to assess factors associated with gametocyte carriage, 2083 samples were collected in a cross-sectional survey in Papua New Guinea. Plasmodium species were detected by light microscopy and qPCR and gametocytes by detection of pfs25 and pvs25 mRNA transcripts by reverse-transcriptase PCR (qRT-PCR). The parasite prevalence by PCR was 18.5% for Plasmodium falciparum and 13.0% for P. vivax. 52.5% of all infections were submicroscopic. Gametocytes were detected in 60% of P. falciparum-positive and 51% of P. vivax-positive samples. Each 10-fold increase in parasite density led to a 1.8-fold and 3.3-fold increase in the odds of carrying P. falciparum and P. vivax gametocytes. Thus the proportion of gametocyte positive and gametocyte densities was highest in young children carrying high asexual parasite densities and in symptomatic individuals. Dilution series of gametocytes allowed absolute quantification of gametocyte densities by qRT-PCR and showed that pvs25 expression is 10-20 fold lower than pfs25 expression. Between 2006 and 2010 parasite prevalence in the study site has decreased by half. 90% of the remaining infections were asymptomatic and likely constitute an important reservoir of transmission. However, mean gametocyte densities were low (approx. 1-2 gametocyte/μL) and it remains to be determined to what extent low-density gametocyte positive individuals are infective to mosquitos.
Survival of Plasmodium falciparum in human blood during refrigeration.
Chattopadhyay, Rana; Majam, Victoria F; Kumar, Sanjai
2011-03-01
Transfusion-transmitted malaria remains a serious concern for blood safety. Viable Plasmodium parasites must be present in human blood to transmit malaria, but their survival in blood over time stored under refrigeration has never been carefully investigated. We spiked leukoreduced normal human blood with Plasmodium falciparum (3D7 strain) asexual ring-stage parasites and stored it at 4 °C for 28 days, taking samples at different days intervals. We evaluated the samples for parasitemia by blood film microscopy and by culturing red blood cells (RBCs) to allow further development of parasites. We observed a significant reduction in parasitemia (0.5% vs. 0.12%) after only 1 day in storage at 4 °C. Thereafter, reduction in parasitemia was relatively gradual. Microscopically detectable parasites were present even after 28 days of storage. However, after storing for more than 14 days at 4 °C, parasites no longer replicated when cultured in vitro. Although the storage of asexual blood-stage P. falciparum parasites at 4 °C is detrimental to their survival (a 7.1-fold reduction in parasitemia after 14 days in storage), parasites remained microscopically detectable for 28 days, the end time point of our study. Further in vitro and in vivo studies will be needed to confirm loss of viability of P. falciparum after 14 days in storage, but our initial efforts repeatedly failed to show maturation and development of the parasites in cultured RBCs after that time. © 2010 American Association of Blood Banks.
Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.
Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.
Carter, Tamar E; Boulter, Alexis; Existe, Alexandre; Romain, Jean R; St Victor, Jean Yves; Mulligan, Connie J; Okech, Bernard A
2015-03-01
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. © The American Society of Tropical Medicine and Hygiene.
Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda
2013-01-01
Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807
Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects.
Kublin, James G; Mikolajczak, Sebastian A; Sack, Brandon K; Fishbaugher, Matt E; Seilie, Annette; Shelton, Lisa; VonGoedert, Tracie; Firat, Melike; Magee, Sara; Fritzen, Emma; Betz, Will; Kain, Heather S; Dankwa, Dorender A; Steel, Ryan W J; Vaughan, Ashley M; Noah Sather, D; Murphy, Sean C; Kappe, Stefan H I
2017-01-04
Immunization of humans with whole sporozoites confers complete, sterilizing immunity against malaria infection. However, achieving consistent safety while maintaining immunogenicity of whole parasite vaccines remains a formidable challenge. We generated a genetically attenuated Plasmodium falciparum (Pf) malaria parasite by deleting three genes expressed in the pre-erythrocytic stage (Pf p52 - /p36 - /sap1 - ). We then tested the safety and immunogenicity of the genetically engineered (Pf GAP3KO) sporozoites in human volunteers. Pf GAP3KO sporozoites were delivered to 10 volunteers using infected mosquito bites with a single exposure consisting of 150 to 200 bites per subject. All subjects remained blood stage-negative and developed inhibitory antibodies to sporozoites. GAP3KO rodent malaria parasites engendered complete, protracted immunity against infectious sporozoite challenge in mice. The results warrant further clinical testing of Pf GAP3KO and its potential development into a vaccine strain. Copyright © 2017, American Association for the Advancement of Science.
Abidin, Tommy Rowel; Alexander, Neal; Brock, Paddy; Grigg, Matthew J.; Murphy, Amanda; William, Timothy; Menon, Jayaram; Drakeley, Chris J.; Cox, Jonathan
2016-01-01
The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008–2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas. PMID:26812373
K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa
Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A.
2015-01-01
Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. PMID:25367300
Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development
Bancone, Germana; Malleret, Benoit; Suwanarusk, Rossarin; Chowwiwat, Nongnud; Chu, Cindy S; McGready, Rose; Rénia, Laurent; Nosten, François
2017-01-01
Abstract Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder in humans and appears to be protective against falciparum severe malaria. Controversially, it is also thought that Plasmodium vivax has driven the recent selection of G6PD alleles. We use an experimental approach to determine whether G6PD-MahidolG487A variant, a widespread cause of severe G6PD deficiency in Southeast Asia, provides a barrier against vivax malaria. Our results show that the immature reticulocytes (CD71+) targeted by P. vivax invasion are enzymatically normal, even in hemizygous G6PD-Mahidol G487A mutants; thus, allowing the normal growth, development, and high parasite density in severely deficient samples. PMID:28591790
Malaria and helminth co-infection and nutritional status of febrile patients in Southern Ethiopia.
Degarege, Abraham; Animut, Abebe; Legesse, Mengistu; Medhin, Girmay; Erko, Berhanu
2014-02-01
Because the mechanisms by which Plasmodium and helminth parasites affect nutritional status are different, these parasites likely have additive effects when they co-exist in a host. This study aimed to compare the prevalence of undernutrition in patients infected with either Plasmodium or helminths and those co-infected with the two types of parasites. Acute febrile patients suspected of having malaria who attended the outpatient clinic at Dore Bafeno Health Center between December 2010 and February 2011 were examined for Plasmodium parasites using Giemsa-stained thick and thin blood smears and for helminths using the thick Kato-Katz method. Nutritional status was determined using anthropometric indices generated from height and weight measurements. Of the 702 patients examined, 34.5% were infected with helminths alone, 12.3% were infected with Plasmodium alone, and 19.4% co-infected with Plasmodium and intestinal helminths. Out of the patients examined, 44.9% were undernourished. The prevalence of undernutrition was not significantly different between those patients not infected with Plasmodium or helminth species and those infected with Plasmodium or helminth species. The differences in the odds of undernutrition were also not significant between patients who were co-infected with different Plasmodium and helminth species and those with single infections with Plasmodium or helminth species in our multivariable logistic regression model adjusted for the confounding effects of age and sex. The prevalence of undernutrition was comparable in patients infected with Plasmodium or helminths alone and those co-infected with Plasmodium and helminths in Dore Bafeno Health Center, Southern Ethiopia. However, further studies are needed in areas of intense transmission where both parasites are endemic to elucidate whether the impact of Plasmodium and helminth co-infection on undernutrition is additive or multiplicative. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Gbalégba, Constant G N; Ba, Hampâté; Silué, Kigbafori D; Ba, Ousmane; Tia, Emmanuel; Chouaibou, Mouhamadou; Tian-Bi, Nathan T Y; Yapi, Grégoire Y; Koné, Brama; Utzinger, Jürg; Koudou, Benjamin G
2018-04-25
Since 2000, substantial progress has been made in reducing malaria worldwide. However, some countries in West Africa remain a hotspot for malaria with all age groups at risk. Asymptomatic carriers of Plasmodium spp. are important sources of infections for malaria vectors and thus contribute to the anchoring of the disease in favourable eco-epidemiological settings. The objective of this study was to assess the asymptomatic malaria case rates in Korhogo and Kaedi, two urban areas in northern Côte d'Ivoire and southern Mauritania, respectively. Cross-sectional surveys were carried out during the rainy season in 2014 and the dry season in 2015 in both settings. During each season, 728 households were randomly selected and a household-based questionnaire was implemented to collect demographic and epidemiological data, including of malaria preventive methods used in communities. Finger-prick blood samples were obtained for biological examination using microscopy and rapid diagnostic tests (RDTs). Overall, 2672 households and 15 858 consenting participants were surveyed. Plasmodium spp. infection was confirmed in 12.4% (n = 832) and 0.3% (n = 22) of the assessed individuals in Korhogo and Kaedi, respectively. In Korhogo, the prevalence of asymptomatic malaria was 10.5% (95% CI: 9.7-11.2) as determined by microscopy and 9.3% (95% CI: 8.6-10.0%) when assessed by RDT. In Kaedi, asymptomatic malaria prevalence was 0.2% (95% CI: 0.1-0.4%) according to microscopy, while all RDTs performed were negative (n = 8372). In Korhogo, asymptomatic malaria infection was significantly associated with age and season, with higher risk within the 5-14 years-old, and during the rainy season. In Kaedi, the risk of asymptomatic malaria infection was associated with season only (higher during the dry season; crude OR (cOR): 6.37, 95% CI: 1.87-21.63). P. falciparum was the predominant species identified in both study sites representing 99.2% (n = 825) in Korhogo and 59.1% (n = 13) in Kaedi. Gametocytes were observed only in Korhogo and only during the rainy season at 1.3% (95% CI: 0.7-2.4%). Our findings show a low prevalence of clinical malaria episodes with a significant proportion of asymptomatic carriers in both urban areas. National policies for malaria infections are focused on treatment of symptomatic cases. Malaria control strategies should be designed for monitoring and managing malaria infections in asymptomatic carriers. Additional measures, including indoor residual spraying, effective use of long-lasting insecticidal nets is strongly needed to reduce the number of Plasmodium spp. infections in Korhogo and Kaedi.
Tiono, Alfred B; Ouédraogo, Alphonse; Diarra, Amidou; Coulibaly, Sam; Soulama, Issiaka; Konaté, Amadou T; Barry, Aïssata; Mukhopadhyay, Amitava; Sirima, Sodiomon B; Hamed, Kamal
2014-01-27
Rapid diagnostic tests (RDTs) are immune chromatographic tests targeting antigens of one or more Plasmodium species and offer the potential to extend accurate malaria diagnosis in endemic areas. In this study, the performance of Plasmodium falciparum-specific histidine-rich protein-2 (PfHRP-2) RDT in the detection of asymptomatic carriers from a hyperendemic region of Burkina Faso was compared with microscopy to gain further insight on its relevance in community-based interventions. The performance of HRP-2 test was evaluated in terms of sensitivity, specificity, positive and negative predictive values, discordant values, likelihood ratios, accuracy, and precision using microscopy as the 'gold standard'. This analysis was carried out in a controlled, parallel, cluster-randomized (18 clusters; 1:1) study in children and adults. The effect of systematic treatment of P. falciparum asymptomatic carriers during three consecutive monthly community screening campaigns on the incidence of symptomatic malaria episodes over a 12-month period was compared with no treatment of asymptomatic carriers. Sensitivity of HRP-2 test in asymptomatic carriers was higher in campaign 1 (92.4%) when compared to campaign 2 (84.0%) and campaign 3 (77.8%). The sensitivity of HRP-2 test increased as parasite density increased across all the age groups. Highest sensitivity (≥97.0%) was recorded at parasite densities of 1,000-4,999/μl, except for children aged 10 to 14 years. The specificity of HRP-2 test was comparable across age groups and highest in campaign 3 (95.9%). The negative predictive values were high across the three campaigns (≥92.7%) while the positive predictive values ranged from 23.2 to 73.8%. False-positive and false-negative rates were high in campaign 1 and campaign 3, respectively. The performance of HRP-2 test in detecting asymptomatic carriers of P. falciparum varied by age and parasite density. Although the use of HRP-2 test is beneficial for the diagnosis of acute malaria, its low sensitivity in screening asymptomatic carriers may limit its utility in pre-elimination interventional settings. The use of a practical and more sensitive test such as loop-mediated isothermal amplification in combination with a cost effective HRP-2 test may be worth exploring in such settings.
Fever prevalence and management among three rural communities in the North West Zone, Somalia.
Youssef, R M; Alegana, V A; Amran, J; Noor, A M; Snow, R W
2010-06-01
Between March and August 2008 we undertook 2 cross-sectional surveys among 1375 residents of 3 randomly selected villages in the district of Gebiley in the North-West Zone, Somalia. We investigated for the presence of malaria infection and the period prevalence of self-reported fever 14 days prior to both surveys. All blood samples examined were negative for both species of Plasmodium. The period prevalence of 14-day fevers was 4.8% in March and 0.6% in August; the majority of fevers (84.4%) were associated with other symptoms including cough, running nose and sore throat; 48/64 cases had resolved by the day of interview (mean duration 5.4 days). Only 18 (37.5%) fever cases were managed at a formal health care facility: 7 within 24 hours and 10 within 24-72 hours of onset. None of the fevers were investigated for malaria; they were treated with antibiotics, antipyretics and vitamins.
Serologic Markers for Detecting Malaria in Areas of Low Endemicity, Somalia, 2008
Youssef, Randa M.; Cook, Jackie; Cox, Jonathan; Alegana, Victor A.; Amran, Jamal; Noor, Abdisalan M.; Snow, Robert W.; Drakeley, Chris
2010-01-01
Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy. PMID:20202412
Fever prevalence and management among three rural communities in the North West Zone, Somalia
Youssef, R.M.; Alegana, V.A.; Amran, J.; Noor, A.M.; Snow, R.W.
2010-01-01
Between March and August 2008 we undertook 2 cross-sectional surveys among 1375 residents of 3 randomly selected villages in the district of Gebiley in the North-West Zone, Somalia. We investigated for the presence of malaria infection and the period prevalence of self-reported fever 14 days prior to both surveys. All blood samples examined were negative for both species of Plasmodium. The period prevalence of 14-day fevers was 4.8% in March and 0.6% in August; the majority of fevers (84.4%) were associated with other symptoms including cough, running nose and sore throat; 48/64 cases had resolved by the day of interview (mean duration 5.4 days). Only 18 (37.5%) fever cases were managed at a formal health care facility: 7 within 24 hours and 10 within 24–72 hours of onset. None of the fevers were investigated for malaria; they were treated with antibiotics, antipyretics and vitamins. PMID:20799585
Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008.
Bousema, Teun; Youssef, Randa M; Cook, Jackie; Cox, Jonathan; Alegana, Victor A; Amran, Jamal; Noor, Abdisalan M; Snow, Robert W; Drakeley, Chris
2010-03-01
Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.
Bifurcation in the chemotactic behavior of Physarum plasmodium
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro; Gunji, Yukio-Pegio; Sato, Hiroshi; Tsubakino, Hiroto
2017-07-01
The plasmodium of true slime mold Physarum polycephalum is a unicellular and multinuclear giant amoeba. Since the cellular organism has some computational abilities, it is attracting much attention in the field of information science. However, previous studies have mainly focused on the optimization behavior of the plasmodium for a single-modality stimulus, and there are few studies on how the organism adapts to multi-modal stimuli. We stimulated the plasmodium with mixture of attractant and repellent stimuli, and we observed bifurcation in the chemotactic behavior of the plasmodium.
Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E
2005-01-07
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
2011-01-01
Background The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies. Methods Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked. Results Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens. Conclusion The CSP-ELISA can considerably overestimate the EIR, particularly for P. falciparum and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing Plasmodium specific PCR followed if possible by sequencing of the amplicons for Plasmodium species determination. PMID:21767376
Nyirenda, James T.; Tembo, Dumizulu L.; Storm, Janet; Dube, Queen; Msefula, Chisomo L.; Jambo, Kondwani C.; Mwandumba, Henry C.; Heyderman, Robert S.; Gordon, Melita A.
2017-01-01
ABSTRACT Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S. Typhimurium were reduced in febrile P. falciparum-infected children (median, −0.20 log10 [interquartile range {IQR}, −1.85, 0.32]) compared to nonfebrile malaria-negative children (median, −1.42 log10 [IQR, −2.0, −0.47], P = 0.052). In relation to SBA, C3 deposition on S. Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S. Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, −0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, −1.0 log10 [IQR, −1.68, −0.16]). In relation to WBBA, S. Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S. Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in children from settings of malaria endemicity. The mechanisms underlying humoral immunity impairment are incompletely understood and should be explored further. PMID:28515136
Nyirenda, Tonney S; Nyirenda, James T; Tembo, Dumizulu L; Storm, Janet; Dube, Queen; Msefula, Chisomo L; Jambo, Kondwani C; Mwandumba, Henry C; Heyderman, Robert S; Gordon, Melita A; Mandala, Wilson L
2017-07-01
Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum -infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum -infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum -infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum -infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in children from settings of malaria endemicity. The mechanisms underlying humoral immunity impairment are incompletely understood and should be explored further. Copyright © 2017 Nyirenda et al.
Zoonotic Malaria – Global Overview and Research and Policy Needs
Ramasamy, Ranjan
2014-01-01
The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118
Plasmodium infection decreases fecundity and increases survival of mosquitoes.
Vézilier, J; Nicot, A; Gandon, S; Rivero, A
2012-10-07
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).
2013-01-01
Background Plasmodium vivax is the prevalent malarial species accounting for 70% of malaria burden in Pakistan; however, there is no baseline data on the circulating genotypes. Studies have shown that polymorphic loci of gene encoding antigens pvcsp and pvmsp1 can be used reliably for conducting molecular epidemiological studies. Therefore, this study aimed to bridge the existing knowledge gap on population structure on P. vivax from Pakistan using these two polymorphic genes. Methods During the period January 2008 to May 2009, a total of 250 blood samples were collected from patients tested slide positive for P. vivax, at the Aga Khan University Hospital, Karachi, or its collection units located in Baluchistan and Sindh Province. Nested PCR/RFLP was performed, using pvcsp and pvmsp1 markers to detect the extent of genetic diversity in clinical isolates of P. vivax from southern Pakistan. Results A total of 227/250 (91%) isolates were included in the analysis while the remainder were excluded due to negative PCR outcome for P.vivax. Pvcsp analysis showed that both VK 210 (85.5%, 194/227) and VK 247 type (14.5%, 33/227) were found to be circulating in P. vivax isolates from southern Pakistan. A total of sixteen and eighty-seven genotypes of pvcsp and pvmsp-1 were detected respectively. Conclusion This is the first report from southern Pakistan on characterization of P. vivax isolates confirming that extensively diverse pvcsp and pvmsp1 variants are present within this region. Results from this study provide valuable data on genetic diversity of P. vivax that will be helpful for further epidemiological studies. PMID:23311628
Ayogu, E E; Ukwe, C V; Nna, E O
2016-01-01
Current malaria control strategies are based on early diagnosis and appropriate treatment of malaria cases. The study aimed at comparing the performance of blood film microscopy and rapid diagnostic test (RDT) in Plasmodium falciparum detection in patients ≥6 years of age. A total of 154 consecutive pyretic patients aged 6-62 years were enrolled, sampled, and tested for malaria using RDT (first response) and microscopy by Giemsa staining. Genomic DNA was extracted after saponin hemolysis and nested polymerase chain reaction (PCR) was used to detect Plasmodium falciparum. The endpoints were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Of the 154 patients, 80 (51.9%) had fever of ≥37.5°C. 106 (68.8%) were positive by First response® , 132 (85.7%) by microscopy, and 121 (78.6%) by PCR. The sensitivity, specificity, PPV, and NPV of first response compared to microscopic method were 82.2%, 100.0%, 100.0%, and 34.3%, respectively, while it was 75.4%, 75.0%, 95.3%, and 31.2%, respectively, when compared to PCR. The sensitivity, specificity, PPV, and NPV of the microscopic method compared to PCR were 92.3%, 50.0%, 90.91%, and 54.5%, respectively. There was a significant difference in the performance of RDT and film microscopy methods (P ≤ 0.05). Microscopy performed better and is more reliable than first response (RDT) in areas with low parasite density among patients ≥6 years of age. Rapid diagnostic tests could be useful in aareas with high parasite density as an alternative to smear microscopy.
Wang, Jiuling; Zhang, Yue; Zhao, Yang O.; Li, Michelle W. M.; Zhang, Lili; Dragovic, Srdjan; Abraham, Nabil M.; Fikrig, Erol
2013-01-01
Malaria, a mosquito-borne disease caused by Plasmodium species, causes substantial morbidity and mortality throughout the world. Plasmodium sporozoites mature in oocysts formed in the mosquito gut wall and then invade the salivary glands, where they remain until transmitted to the vertebrate host during a mosquito bite. The Plasmodium circumsporozoite protein (CSP) binds to salivary glands and plays a role in the invasion of this organ by sporozoites. We identified an Anopheles salivary gland protein, named CSP-binding protein (CSPBP), that interacts with CSP. Downregulation of CSPBP in mosquito salivary glands inhibited invasion by Plasmodium organisms. In vivo bioassays showed that mosquitoes that were fed blood with CSPBP antibody displayed a 25% and 90% reduction in the parasite load in infected salivary glands 14 and 18 days after the blood meal, respectively. These results suggest that CSPBP is important for the infection of the mosquito salivary gland by Plasmodium organisms and that blocking CSPBP can interfere with the Plasmodium life cycle. PMID:23801601
Reed, John A.; Sexson, Matthew G.; Smith, Matthew M.; Schmutz, Joel A.; Ramey, Andy M.
2018-01-01
We assessed hematozoa infection in Spectacled Eiders (Somateria fischeri) at two areas in Alaska. No Haemoproteus or Plasmodium species were detected. Leucocytozoon prevalence was 6.5% for adults across sites and 41.9% for juveniles sampled in the Arctic, providing evidence for local transmission. All Leucocytozoon haplotypes were previously detected in waterfowl.
Mlambo, Godfree; Kumar, Nirbhay
2007-02-01
Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).
Malaria seroprevalence in blood bank donors from endemic and non-endemic areas of Venezuela.
Contreras, Carmen Elena; Donato, Marcos de; Rivas, María Ana; Rodulfo, Hectorina; Mora, Robert; Batista, María Eulalia; Marcano, Norka
2011-03-01
In Venezuela, a total of 363,466 malaria cases were reported between 1999-2009. Several states are experiencing malaria epidemics, increasing the risk of vector and possibly transfusion transmission. We investigated the risk of transfusion transmission in blood banks from endemic and non-endemic areas of Venezuela by examining blood donations for evidence of malaria infection. For this, commercial kits were used to detect both malaria-specific antibodies (all species) and malaria antigen (Plasmodium falciparum only) in samples from Venezuelan blood donors (n = 762). All samples were further studied by microscopy and polymerase chain reaction (PCR). The antibody results showed that P. falciparum-infected patients had a lower sample/cut-off ratio than Plasmodium vivax-infected patients. Conversely, a higher ratio for antigen was observed among all P. falciparum-infected individuals. Sensitivity and specificity were higher for malarial antigens (100 and 99.8%) than for antibodies (82.2 and 97.4%). Antibody-positive donors were observed in Caracas, Ciudad Bolívar, Puerto Ayacucho and Cumaná, with prevalences of 1.02, 1.60, 3.23 and 3.63%, respectively. No PCR-positive samples were observed among the donors. However, our results show significant levels of seropositivity in blood donors, suggesting that more effective measures are required to ensure that transfusion transmission does not occur.
Cordray, Michael S; Richards-Kortum, Rebecca R
2015-11-26
Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests. Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame (<30 min) and produces a product that can be visually detected on a lateral flow dipstick. A self-sealing paper and plastic system that performs both the amplification and detection of a malaria DNA sequence is presented. Primers were designed using the NCBI nBLAST tools and screened using gel electrophoresis. Paper and plastic devices were prototyped using commercial design software and parts were cut using a laser cutter and assembled by hand. Synthetic copies of the Plasmodium 18S gene were spiked into solution and used as targets for the RPA reaction. To test the performance of the device the same samples spiked with synthetic target were run in parallel both in the paper and plastic devices and using conventional bench top methods. Novel RPA primers were developed that bind to sequences present in the four species of Plasmodium which infect humans. The paper and plastic devices were found to be capable of detecting as few as 5 copies/µL of synthetic Plasmodium DNA (50 copies total), comparable to the same reaction run on the bench top. The devices produce visual results in an hour, cost approximately $1, and are self-contained once the device is sealed. The device was capable of carrying out the RPA reaction and detecting meaningful amounts of synthetic Plasmodium DNA in a self-sealing and self-contained device. This device may be a step towards making nucleic acid tests more accessible for malaria detection.
Nega, Desalegn; Dana, Daniel; Tefera, Tamirat; Eshetu, Teferi
2015-01-01
Background In Sub-Saharan African countries, including Ethiopia, malaria in pregnancy is a major public health threat which results in significant morbidities and mortalities among pregnant women and their fetuses. In malaria endemic areas, Plasmodium infections tend to remain asymptomatic yet causing significant problems like maternal anemia, low birth weight, premature births, and still birth. This study was conducted to determine the prevalence and predictors of asymptomatic Plasmodium infection among pregnant women in the rural surroundings of Arba Minch Town, Southern Ethiopia. Methods A community based cross-sectional study comprising multistage sampling was conducted between April and June, 2013. Socio-demographic data were collected by using a semi-structured questionnaire. Plasmodium infection was diagnosed by using Giemsa-stained blood smear microscopy and a rapid diagnostic test (SD BIOLINE Malaria Ag Pf/Pv POCT, standard diagnostics, inc., Korea). Results Of the total 341 pregnant women participated in this study, 9.1% (31/341) and 9.7% (33/341) were confirmed to be infected with Plasmodium species by microscopy and rapid diagnostic tests (RDTs), respectively. The geometric mean of parasite density was 2392 parasites per microliter (μl); 2275/ μl for P. falciparum and 2032/ μl for P. vivax. Parasitemia was more likely to occur in primigravidae (Adjusted odds ratio (AOR): 9.4, 95% confidence interval (CI): 4.3–60.5), secundigravidae (AOR: 6.3, 95% CI: 2.9–27.3), using insecticide treated bed net (ITN) sometimes (AOR: 3.2, 95% CI: 1.8- 57.9), not using ITN at all (AOR: 4.6, 95% CI: 1.4–14.4) compared to multigravidae and using ITN always, respectively. Conclusion Asymptomatic malaria in this study is low compared to other studies’ findings. Nevertheless, given the high risk of malaria during pregnancy, pregnant women essentially be screened for asymptomatic Plasmodium infection and be treated promptly via the antenatal care (ANC) services. PMID:25849587
Grigg, M J; William, T; Drakeley, C J; Jelip, J; von Seidlein, L; Barber, B E; Fornace, K M; Anstey, N M; Yeo, T W; Cox, J
2014-01-01
Introduction Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. Methods and analysis A population-based case–control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. Ethics This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK. PMID:25149186
Wanji, Samuel; Kengne-Ouafo, Arnaud J.; Joan Eyong, Ebanga E.; Kimbi, Helen K.; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L.; Nana-Djeunga, Hugues C.; Bourguinat, Catherine; Sofeu-Feugaing, David D.; Charvet, Claude L.
2012-01-01
The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein–enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction–based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms. PMID:22556072
Wanji, Samuel; Kengne-Ouafo, Arnaud J; Eyong, Ebanga E Joan; Kimbi, Helen K; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L; Nana-Djeunga, Hugues C; Bourguinat, Catherine; Sofeu-Feugaing, David D; Charvet, Claude L
2012-05-01
The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein-enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction-based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms.
Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J
2016-06-01
Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Jones, Sharon M; Cumming, Graeme S; Peters, Jeffrey L
2018-05-16
Similar patterns of parasite prevalence in animal communities may be driven by a range of different mechanisms. The influences of host heterogeneity and host-parasite interactions in host community assemblages are poorly understood. We sampled birds at 27 wetlands in South Africa to compare four hypotheses explaining how host community heterogeneity influences host specificity in avian haemosporidia communities: the host-neutral hypothesis, the super-spreader hypothesis, the host specialist hypothesis and the heterogeneity hypothesis. A total of 289 birds (29%) were infected with Plasmodium, Haemoproteus and/or Leucocytozoon lineages. Leucocytozoon was the most diverse and generalist parasite genus, and Plasmodium the most conservative. The host-neutral and host specialist hypotheses received the most support in explaining prevalence by lineage (Leucocytozoon) and genus (Plasmodium and Haemoproteus), respectively. We observed that haemosporidian prevalence was potentially amplified or reduced with variation in host and/or parasitic taxonomic levels of analysis. Our results show that Leucocytozoon host abundance and diversity was influential to parasite prevalence at varying taxonomic levels, particularly within heterogeneous host communities. Furthermore, we note that prevalent mechanisms of infection can potentially act as distinct roots for shaping communities of avian haemosporidia.
Plasmodium ovale infection in Malaysia: first imported case
2010-01-01
Background Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax. Methods Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing. Results and Discussion Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector. Conclusions The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis. PMID:20929588
2018-01-01
In vitro culture of Plasmodium vivax liver stages underlies key understandings of the fundamental biology of this parasite, particularly the latent, hyponozoite stage, toward drug and vaccine development. Here, we report systematic production of Plasmodium vivax sporozoites in colonized Anopheles darlingi mosquitoes in the Peruvian Amazon. Human subject-derived P. vivax-infected blood was fed to Anopheles darlingi females using standard membrane feedings assays. Optimizing A. darlingi infection and sporozoite production included replacement of infected patient donor serum with naïve donor serum, comparing anticoagulants in processing blood samples, and addition of penicillin–streptomycin and ATP to infectious blood meals. Replacement of donor serum by naïve serum in the P. vivax donor blood increased oocysts in the mosquito midgut, and heparin, as anticoagulant, was associated with the highest sporozoite yields. Maintaining blood-fed mosquitoes on penicillin–streptomycin in sugar significantly extended mosquito survival which enabled greater sporozoite yield. In this study, we have shown that a robust P. vivax sporozoite production is feasible in a malaria-endemic setting where infected subjects and a stable A. darlingi colony are brought together, with optimized laboratory conditions. PMID:29465219
Moreno, Marta; Tong-Rios, Carlos; Orjuela-Sanchez, Pamela; Carrasco-Escobar, Gabriel; Campo, Brice; Gamboa, Dionicia; Winzeler, Elizabeth A; Vinetz, Joseph M
2018-04-13
In vitro culture of Plasmodium vivax liver stages underlies key understandings of the fundamental biology of this parasite, particularly the latent, hyponozoite stage, toward drug and vaccine development. Here, we report systematic production of Plasmodium vivax sporozoites in colonized Anopheles darlingi mosquitoes in the Peruvian Amazon. Human subject-derived P. vivax-infected blood was fed to Anopheles darlingi females using standard membrane feedings assays. Optimizing A. darlingi infection and sporozoite production included replacement of infected patient donor serum with naïve donor serum, comparing anticoagulants in processing blood samples, and addition of penicillin-streptomycin and ATP to infectious blood meals. Replacement of donor serum by naïve serum in the P. vivax donor blood increased oocysts in the mosquito midgut, and heparin, as anticoagulant, was associated with the highest sporozoite yields. Maintaining blood-fed mosquitoes on penicillin-streptomycin in sugar significantly extended mosquito survival which enabled greater sporozoite yield. In this study, we have shown that a robust P. vivax sporozoite production is feasible in a malaria-endemic setting where infected subjects and a stable A. darlingi colony are brought together, with optimized laboratory conditions.
Arnáez, Juan; Roa, Miguel A; Albert, Leticia; Cogollos, Rosario; Rubio, Jose M; Villares, Rebeca; Alarabe, Abdulkareem; Cervera, Aurea; López-Vélez, Rogelio
2010-01-01
In Europe, imported malarial cases occur in returning travelers and immigrants mostly from African countries. There have been an increasing number of cases in the past years in Spain. An analysis of all cases of malaria who attended at the Hospital of Mostoles in the Southwest of Madrid from 1995 to 2007 was performed. Clinical, epidemiological, laboratory, and parasitological findings were analyzed and compared between immigrants coming from endemic countries (recent immigrants) and children who traveled to endemic areas to visit friends and relatives (VFRs). Sixty cases of imported malaria were detected. Most of the cases (59 of 60) were acquired in sub-Saharan Africa. The most common species was Plasmodium falciparum (43 of 60). Microscopic examination was positive in 95%, and the polymerase chain reaction (PCR) for Plasmodium achieved additional diagnosis in seven cases. Fourteen cases were VFRs; none of them used appropriate malaria chemoprophylaxis. Fever and thrombocytopenia were significantly more common among VFRs. They also had significantly higher parasite density. Twelve cases were asymptomatic at the time of diagnosis; all of them were recent immigrants. VFRs account for a significant number of childhood malarial cases. These patients had not taken malaria chemoprophylaxis and malarial cases were more severe. VFR children are a high-risk group, and pretravel advice should underline the risk for malaria. Recent immigrants can be asymptomatic and parasitemias are lower. Therefore, a high index of suspicion is necessary, and PCR for Plasmodium should be performed in case of negative thick smears.
Canier, Lydie; Khim, Nimol; Kim, Saorin; Eam, Rotha; Khean, Chanra; Loch, Kaknika; Ken, Malen; Pannus, Pieter; Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Alipon, SweetC; Char, Meng Chuor; Chea, Nguon; Etienne, William; De Smet, Martin; Kindermans, Jean-Marie; Ménard, Didier
2015-01-01
In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 μL) and different volumes of venous blood (50 μL, 200 μL, and 1 mL). The limit of detection of the polymerase chain reaction assay, using calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 μL, 200 μL, 1 mL) combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, ∼100-fold lower than 5 μL DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods used was found. The 5 μL DBS method missed 27% of the samples detected by the 1 mL venous blood method, but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. falciparum parasite carriers (N = 3) were only detected in high-transmission areas. PMID:25561570
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K
2016-01-01
Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec's Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5-99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention.
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B.; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K.
2016-01-01
Background Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Methods Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. Results The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. Conclusion The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention. PMID:26784111
2012-01-01
Background Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. Methods An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. Results Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. Conclusions The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine resistance has yet to emerge in KwaZulu-Natal. In addition, data from this investigation implies the possible re-emergence of chloroquine-sensitive parasites. Results from this study must be viewed with caution, given the extremely small sample size. A larger study is needed to accurately determine therapeutic efficacy of artemether-lumefantrine and resistance marker prevalence. The high proportion of rapid diagnostic test false-positive results requires further investigation. PMID:23272998
Frech, Christian; Chen, Nansheng
2011-01-01
Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. PMID:22215999
Sánchez-Arcila, Juan Camilo; de França, Marcelle Marcolino; Pereira, Virginia Araujo; Vasconcelos, Mariana Pinheiro Alves; Têva, Antonio; Perce-da-Silva, Daiana de Souza; Neto, Joffre Rezende; Aprígio, Cesarino Junior Lima; Lima-Junior, Josue da Costa; Rodrigues, Mauricio Martins; Soares, Irene Silva; Banic, Dalma Maria; Oliveira-Ferreira, Joseli
2015-11-06
Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.
Innexin AGAP001476 Is Critical for Mediating Anti-Plasmodium Responses in Anopheles Mosquitoes
Li, Michelle W. M.; Wang, Jiuling; Zhao, Yang O.; Fikrig, Erol
2014-01-01
The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes. PMID:25035430
Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area.
Li, Peipei; Zhao, Zhenjun; Xing, Hua; Li, Wenli; Zhu, Xiaotong; Cao, Yaming; Yang, Zhaoqing; Sattabongkot, Jetsumon; Yan, Guiyun; Fan, Qi; Cui, Liwang
2016-11-15
The Greater Mekong Subregion is aiming to achieve regional malaria elimination by 2030. Though a shift in malaria parasite species predominance by Plasmodium vivax has been recently documented, the transmission of the two minor Plasmodium species, Plasmodium malariae and Plasmodium ovale spp., is poorly characterized in the region. This study aims to determine the prevalence of these minor species in the China-Myanmar border area and their genetic diversity. Epidemiology study was conducted during passive case detection in hospitals and clinics in Myanmar and four counties in China along the China-Myanmar border. Cross-sectional surveys were conducted in villages and camps for internally displaced persons to determine the prevalence of malaria infections. Malaria infections were diagnosed initially by microscopy and later in the laboratory using nested PCR for the SSU rRNA genes. Plasmodium malariae and P. ovale infections were confirmed by sequencing the PCR products. The P. ovale subtypes were determined by sequencing the Pocytb, Pocox1 and Pog3p genes. Parasite populations were evaluated by PCR amplification and sequencing of the MSP-1 genes. Antifolate sensitivity was assessed by sequencing the dhfr-ts and dhps genes from the P. malariae and P. ovale isolates. Analysis of 2701 blood samples collected from the China-Myanmar border by nested PCR targeting the parasite SSU rRNA genes identified 561 malaria cases, including 161 Plasmodium falciparum, 327 P. vivax, 66 P. falciparum/P. vivax mixed infections, 4 P. malariae and 3 P. ovale spp. P. vivax and P. falciparum accounted for >60 and ~30% of all malaria cases, respectively. In comparison, the prevalence of P. malariae and P. ovale spp. was very low and only made up ~1% of all PCR-positive cases. Nevertheless, these two species were often misidentified as P. vivax infections or completely missed by microscopy even among symptomatic patients. Phylogenetic analysis of the SSU rRNA, Pocytb, Pocox1 and Pog3p genes confirmed that the three P. ovale spp. isolates belonged to the subtype P. ovale curtisi. Low-level genetic diversity was detected in the MSP-1, dhfr and dhps genes of these minor parasite species, potentially stemming from the low prevalence of these parasites preventing their mixing. Whereas most of the dhfr and dhps positions equivalent to those conferring antifolate resistance in P. falciparum and P. vivax were wild type, a new mutation S113C corresponding to the S108 position in pfdhfr was identified in two P. ovale curtisi isolates. The four human malaria parasite species all occurred sympatrically at the China-Myanmar border. While P. vivax has become the predominant species, the two minor parasite species also occurred at very low prevalence but were often misidentified or missed by conventional microscopy. These minor parasite species displayed low levels of polymorphisms in the msp-1, dhfr and dhps genes.
Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.
2014-01-01
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236
Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling
Warncke, Jan D.; Vakonakis, Ioannis
2016-01-01
SUMMARY During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family. PMID:27582258
Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.
Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten
2016-01-01
The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.
Ferraguti, Martina; Martínez-de la Puente, Josué; Bensch, Staffan; Roiz, David; Ruiz, Santigo; Viana, Duarte S; Soriguer, Ramón C; Figuerola, Jordi
2018-05-01
Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes
Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.
2012-01-01
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609
Alam, Mohammad Shafiul; Chakma, Sumit; Khan, Wasif A; Glass, Gregory E; Mohon, Abu Naser; Elahi, Rubayet; Norris, Laura C; Podder, Milka Patracia; Ahmed, Sabeena; Haque, Rashidul; Sack, David A; Sullivan, David J; Norris, Douglas E
2012-07-27
Historically, the Chittagong Hill Tracts (CHT) of Bangladesh was considered hyperendemic for malaria. To better understand the contemporary malaria epidemiology and to develop new and innovative control strategies, comprehensive epidemiologic studies are ongoing in two endemic unions of Bandarban district of CHT. Within these studies entomological surveillance has been undertaken to study the role of the existing anopheline species involved in the malaria transmission cycle throughout the year. CDC miniature light traps were deployed to collect anopheline mosquitoes from the sleeping room of the selected houses each month in a single union (Kuhalong). Molecular identification was carried out for available Anopheles species complexes. Circumsporozoite proteins (CSP) for Plasmodium falciparum, Plasmodium vivax-210 (Pv-210) and Plasmodium vivax-247(Pv-247) were detected by Enzyme-linked immunosorbent assay (ELISA) from the female anopheline mosquitoes. To confirm CSP-ELISA results, polymerase chain reaction (PCR) was also performed. A total of 2,837 anopheline mosquitoes, of which 2,576 were female, belonging to 20 species were collected from July 2009-June 2010. Anopheles jeyporiensis was the most abundant species (18.9%), followed by An. vagus (16.8%) and An. kochi (14.4%). ELISA was performed on 2,467 female mosquitoes of 19 species. 15 (0.6%) female anophelines belonging to eight species were found to be positive for Plasmodium infection by CSP-ELISA. Of those, 11 (0.4%) mosquitoes were positive for P. falciparum and four (0.2%) for Pv-210. No mosquito was found positive for Pv-247. An. maculatus (2.1%, 2/97) had the highest infection rate followed by An. umbrosus (1.7%, 2/115) and An. barbirostris (1.1%, 2/186). Other infected species were An. nigerrimus, An. nivipes, An. jeyporiensis, An. kochi, and An. vagus. Out of 11 P. falciparum CSP positive samples, seven turned out to be positive by PCR. None of the samples positive for Pv-210 was positive by PCR. In terms of abundance and incrimination, the results suggest that An. maculatus, An. jeyporiensis and An. nivipes play important roles in malaria transmission in Kuhalong. The findings of this study suggest that even in the presence of an insecticide impregnated bed-net intervention, a number of Anopheles species still play a role in the transmission of malaria. Further investigations are required to reveal the detailed biology and insecticide resistance patterns of the vector mosquito species in endemic areas in Bangladesh in order to assist with the planning and implementation of improved malaria control strategies.
Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR
Lucchi, Naomi W.; Narayanan, Jothikumar; Karell, Mara A.; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J.; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. PMID:23437209
Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D
2014-10-04
As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.
Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.
Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam
2015-01-21
Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.
Slime mold solves maze in one pass, assisted by gradient of chemo-attractants.
Adamatzky, Andrew
2012-06-01
Plasmodium of Physarum polycephalum is a large cell, visible by unaided eye, which exhibits sophisticated patterns of foraging behaviour. The plasmodium's behaviour is well interpreted in terms of computation, where data are spatially extended configurations of nutrients and obstacles, and results of computation are networks of protoplasmic tubes formed by the plasmodium. In laboratory experiments and numerical simulation we show that if plasmodium of P. polycephalum is inoculated in a maze's peripheral channel and an oat flake (source of attractants) in a the maze's central chamber then the plasmodium grows toward target oat flake and connects the flake with the site of original inoculation with a pronounced protoplasmic tube. The protoplasmic tube represents a path in the maze. The plasmodium solves maze in one pass because it is assisted by a gradient of chemo-attractants propagating from the target oat flake.
Construction of living cellular automata using the Physarum plasmodium
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji
2015-04-01
The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.
Marroquin-Flores, Rosario A; Williamson, Jessie L; Chavez, Andrea N; Bauernfeind, Selina M; Baumann, Matthew J; Gadek, Chauncey R; Johnson, Andrew B; McCullough, Jenna M; Witt, Christopher C; Barrow, Lisa N
2017-01-01
Avian malaria and related haemosporidian parasites (genera Haemoproteus , Plasmodium , and Leucocytozoon ) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150-2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus , 12 Leucocytozoon , 6 Plasmodium ). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43-98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, GenBank, and ARCTOS).
Marroquin-Flores, Rosario A.; Williamson, Jessie L.; Chavez, Andrea N.; Bauernfeind, Selina M.; Baumann, Matthew J.; Gadek, Chauncey R.; Johnson, Andrew B.; McCullough, Jenna M.
2017-01-01
Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150–2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43–98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, GenBank, and ARCTOS). PMID:28828279
Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle.
Mastan, Babu S; Kumari, Anchala; Gupta, Dinesh; Mishra, Satish; Kumar, Kota Arun
2014-06-01
Plasmepsins (PM), aspartic proteases of Plasmodium, comprises a family of ten proteins that perform critical functions in Plasmodium life cycle. Except VII and VIII, functions of the remaining plasmepsin members have been well characterized. Here, we have generated a mutant parasite lacking PM VII in Plasmodium berghei using reverse genetics approach. Systematic comparison of growth kinetics and infection in both mosquito and vertebrate host revealed that PM VII depleted mutants exhibited no defects in development and progressed normally throughout the parasite life cycle. These studies suggest a dispensable role for PM VII in Plasmodium berghei life cycle. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-01-01
Background Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Methods Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Results Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. Conclusions The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions. PMID:23742633
Eibach, Daniel; Traore, Boubacar; Bouchrik, Mourad; Coulibaly, Boubacar; Coulibaly, Nianégué; Siby, Fanta; Bonnot, Guillaume; Bienvenu, Anne-Lise; Picot, Stéphane
2013-06-06
Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.
Dewanee Ranaweera, A; Danansuriya, Manjula N; Pahalagedera, Kusumawathie; de A W Gunasekera, W M Kumudunayana T; Dharmawardena, Priyani; Mak, Keng Wai; Wong, Pei-Sze Jeslyn; Li, Mei-Zhi Irene; Tan, Cheong Huat; Hapuarachchi, Hapuarachchige C; Herath, Hema D B; Fernando, Deepika
2017-03-21
Sri Lanka has achieved 'malaria-free' status and is now in the phase of prevention of re-introduction of malaria. Imported malaria remains a challenge to resurgence of the disease. The diagnostic challenges encountered and the rapid response initiated to manage a Plasmodium infection, which was later confirmed as Plasmodium knowlesi, the first reported case from Sri Lanka, is discussed. An army officer who returned from Malaysia in October 2016 was found to be positive for Plasmodium both by microscopy and rapid diagnostic test (RDT) by the Anti Malaria Campaign Sri Lanka (AMC) during his third visit to a health care provider. Microscopy findings were suspicious of P. knowlesi infection as the smears showed parasite stages similar to both Plasmodium malariae and Plasmodium falciparum. Nested PCR at AMC confirmed Plasmodium genus, but not the species. In the absence of species confirmation, the patient was treated as a case of P. falciparum. The presence of P. knowlesi was later confirmed by a semi-nested PCR assay performed at the Environmental Health Institute, National Environmental Agency in Singapore. The parasite strain was also characterized by sequencing the circumsporozoite gene. Extensive case investigation including parasitological and entomological surveillance was carried out. Plasmodium knowlesi should be suspected in patients returning from countries in the South Asian region where the parasite is prevalent and when blood smear results are inconclusive.
Motshoge, Thato; Ababio, Grace K; Aleksenko, Larysa; Read, John; Peloewetse, Elias; Loeto, Mazhani; Mosweunyane, Tjantilili; Moakofhi, Kentse; Ntebele, Davies S; Chihanga, Simon; Motlaleng, Mpho; Chinorumba, Anderson; Vurayai, Moses; Pernica, Jeffrey M; Paganotti, Giacomo M; Quaye, Isaac K
2016-09-29
Botswana is one of eight SADC countries targeting malaria elimination by 2018. Through spirited upscaling of control activities and passive surveillance, significant reductions in case incidence of Plasmodium falciparum (0.96 - 0.01) was achieved between 2008 and 2012. As part of the elimination campaign, active detection of asymptomatic Plasmodium species by a highly sensitive method was deemed necessary. This study was carried out to determine asymptomatic Plasmodium species carriage by nested PCR in the country, in 2012. A cross-sectional study involving 3924 apparently healthy participants were screened for Plasmodium species in 14 districts (5 endemic: Okavango, Ngami, Tutume, Boteti and Bobirwa; and 9 epidemic: North East, Francistown, Serowe-Palapye, Ghanzi, Kweneng West, Kweneng East, Kgatleng, South East, and Good Hope). Venous blood was taken from each participant for a nested PCR detection of Plasmodium species. The parasite rates of asymptomatic Plasmodium species detected were as follows: Plasmodium falciparum, 0.16 %; Plasmodium vivax, 4.66 %; Plasmodium malariae, (Pm) 0.16 %; Plasmodium ovale, 0 %, mixed infections (P. falciparum and P. vivax), 0.055 %; and (P. vivax and P. malariae), 0.027 %, (total: 5.062 %). The high proportion of asymptomatic reservoir of P. vivax was clustered in the East, South Eastern and Central districts of the country. There appeared to be a correlation between the occurrence of P. malariae infection with P. vivax infection, with the former only occurring in districts that had substantial P. vivax circulation. The median age among 2-12 year olds for P. vivax infection was 5 years (Mean 5.13 years, interquartile range 3-7 years). The odds of being infected with P. vivax decreased by 7 % for each year increase in age (OR 0.93, 95 % CI 0.87-1.00, p = 0.056). We have confirmed low parasite rate of asymptomatic Plasmodium species in Botswana, with the exception of P.vivax which was unexpectedly high. This has implication for the elimination campaign so a follow up study is warranted to inform decisions on new strategies that take this evidence into account in the elimination campaign.
First case of a naturally acquired human infection with Plasmodium cynomolgi
2014-01-01
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans. The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods. Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax. This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax. Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria. The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization. PMID:24564912
First case of a naturally acquired human infection with Plasmodium cynomolgi.
Ta, Thuy H; Hisam, Shamilah; Lanza, Marta; Jiram, Adela I; Ismail, NorParina; Rubio, José M
2014-02-24
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
Adhikari, Madhav; Ranjitkar, Samir; Schousboe, Mette Leth; Alifrangis, Michael; Imwong, Mallika; Bhatta, Dwij Raj; Banjara, Megha Raj
2012-03-01
In Nepal, Plasmodium vivax accounts for approximately 80-90% of the malaria cases, but limited studies have been conducted on the genetic diversity of this parasite population. This study was carried out to determine the genetic diversity of P. vivax population sampled from subjects living in an endemic area of Jhapa District by analyzing the polymorphic merozoite surface protein-3alpha (Pvmsp-3alpha) gene by using PCR-restriction fragment length polymorphism. Three distinct genotypes were obtained from 96 samples; type A: 40 (71%), type B: 7 (13%), and type C: 9 (16%) which could be categorized into 13 allelic patterns: A1-A9, B1, B2, C1 and C2. These results indicated a high genetic diversity within the studied P. vivax population. As the transmission rate of malaria is low in Nepal, the diversity is most likely due to migration of people between the malaria endemic regions, either within the country or between Nepal and India. Similar prevalence of the three genotypes of Pvmsp-3alpha between the two countries likely supports the latter explanation.
[Laboratory analysis of the first case of imported oval malaria in Rizhao City].
Chao, Li; Ying, Zhang; Ting, Xiao
2016-01-25
To diagnose the first imported case of Plasmodium ovale infection by laboratory detection. The epidemiological data and blood samples of the case were collected, and the samples were detected by the microscopic examination, rapid diagnostic test (RDT) and nested PCR. The patient was a construction worker backing from Congo, Africa. He experienced the symptoms of irregular fever and weakness one month after returning in Lingyang Town, Junxian County. The results of RDT only suggested no- Plasmodium falciparum infection. Under the microscope, it was seen that the infected RBC were obviously disfigured and in irregular shape, the ring forms were thick and big, and also thick granulas in big trophozoite stage and schizont stage were found. The results of PCR showed that the size of amplified product was about 800 bp, which was conformed to that of P. ovale . Though microscopic examination is the golden standard for malaria diagnosis, as P. ovale is difficult to be identified under microscope, the microscopic method combined with PCR test can be used for definite diagnosis.
Comparison of rapid diagnostic tests for the detection of Plasmodium vivax malaria in South Korea.
Kim, Jung-Yeon; Ji, So-Young; Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja
2013-01-01
South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStart(TM) and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStart(TM) and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria.
Comparison of Rapid Diagnostic Tests for the Detection of Plasmodium vivax Malaria in South Korea
Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja
2013-01-01
South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStartTM and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStartTM and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria. PMID:23667710
Fong, Mun-Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee-Ling
2015-02-21
Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates. Blood samples from 28 knowlesi malaria patients were used. These samples were collected between 2011 and 2013 from hospitals in North Borneo. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and phylogenetics of PkDBPαII haplotypes were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Forty-nine PkDBPαII sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence revealed 58 synonymous and 102 non-synonymous mutations. Analysis on these mutations showed that PkDBPαII was under purifying (negative) selection. At the amino acid level, 38 different PkDBPαII haplotypes were identified. Twelve of the 28 blood samples had mixed haplotype infections. Phylogenetic analysis revealed that all the haplotypes were in allele group I, but they formed a sub-group that was distinct from those of Peninsular Malaysia. Wright's FST fixation index indicated high genetic differentiation between the North Borneo and Peninsular Malaysia haplotypes. This study is the first to report the genetic diversity and natural selection of PkDBPαII of P. knowlesi from Borneo Island. The PkDBPαII haplotypes found in this study were distinct from those from Peninsular Malaysia. This difference may not be attributed to geographical separation because other genetic markers studied thus far such as the P. knowlesi circumsporozoite protein gene and small subunit ribosomal RNA do not display such differentiation. Immune evasion may possibly be the reason for the differentiation.
Morris, Ulrika; Ding, Xavier C.; Jovel, Irina; Msellem, Mwinyi I.; Bergman, Daniel; Islam, Atiqul; Ali, Abdullah S.; Polley, Spencer; Gonzalez, Iveth J.; Mårtensson, Andreas; Björkman, Anders
2017-01-01
Background New field applicable diagnostic tools are needed for highly sensitive detection of residual malaria infections in pre-elimination settings. Field performance of a high throughput DNA extraction system for loop mediated isothermal amplification (HTP-LAMP) was therefore evaluated for detecting malaria parasites among asymptomatic individuals in Zanzibar. Methods HTP-LAMP performance was evaluated against real-time PCR on 3008 paired blood samples collected on filter papers in a community-based survey in 2015. Results The PCR and HTP-LAMP determined malaria prevalences were 1.6% (95%CI 1.3–2.4) and 0.7% (95%CI 0.4–1.1), respectively. The sensitivity of HTP-LAMP compared to PCR was 40.8% (CI95% 27.0–55.8) and the specificity was 99.9% (CI95% 99.8–100). For the PCR positive samples, there was no statistically significant difference between the geometric mean parasite densities among the HTP-LAMP positive (2.5 p/μL, range 0.2–770) and HTP-LAMP negative (1.4 p/μL, range 0.1–7) samples (p = 0.088). Two lab technicians analysed up to 282 samples per day and the HTP-LAMP method was experienced as user friendly. Conclusions Although field applicable, this high throughput format of LAMP as used here was not sensitive enough to be recommended for detection of asymptomatic low-density infections in areas like Zanzibar, approaching malaria elimination. PMID:28095434
Aydin-Schmidt, Berit; Morris, Ulrika; Ding, Xavier C; Jovel, Irina; Msellem, Mwinyi I; Bergman, Daniel; Islam, Atiqul; Ali, Abdullah S; Polley, Spencer; Gonzalez, Iveth J; Mårtensson, Andreas; Björkman, Anders
2017-01-01
New field applicable diagnostic tools are needed for highly sensitive detection of residual malaria infections in pre-elimination settings. Field performance of a high throughput DNA extraction system for loop mediated isothermal amplification (HTP-LAMP) was therefore evaluated for detecting malaria parasites among asymptomatic individuals in Zanzibar. HTP-LAMP performance was evaluated against real-time PCR on 3008 paired blood samples collected on filter papers in a community-based survey in 2015. The PCR and HTP-LAMP determined malaria prevalences were 1.6% (95%CI 1.3-2.4) and 0.7% (95%CI 0.4-1.1), respectively. The sensitivity of HTP-LAMP compared to PCR was 40.8% (CI95% 27.0-55.8) and the specificity was 99.9% (CI95% 99.8-100). For the PCR positive samples, there was no statistically significant difference between the geometric mean parasite densities among the HTP-LAMP positive (2.5 p/μL, range 0.2-770) and HTP-LAMP negative (1.4 p/μL, range 0.1-7) samples (p = 0.088). Two lab technicians analysed up to 282 samples per day and the HTP-LAMP method was experienced as user friendly. Although field applicable, this high throughput format of LAMP as used here was not sensitive enough to be recommended for detection of asymptomatic low-density infections in areas like Zanzibar, approaching malaria elimination.
Kattenberg, Johanna H; Ochodo, Eleanor A; Boer, Kimberly R; Schallig, Henk Dfh; Mens, Petra F; Leeflang, Mariska Mg
2011-10-28
During pregnancy, malaria infection with Plasmodium falciparum or Plasmodium vivax is related to adverse maternal health and poor birth outcomes. Diagnosis of malaria, during pregnancy, is complicated by the absence or low parasite densities in peripheral blood. Diagnostic methods, other than microscopy, are needed for detection of placental malaria. Therefore, the diagnostic accuracy of rapid diagnostic tests (RDTs), detecting antigen, and molecular techniques (PCR), detecting DNA, for the diagnosis of Plasmodium infections in pregnancy was systematically reviewed. MEDLINE, EMBASE and Web of Science were searched for studies assessing the diagnostic accuracy of RDTs, PCR, microscopy of peripheral and placental blood and placental histology for the detection of malaria infection (all species) in pregnant women. The results of 49 studies were analysed in metandi (Stata), of which the majority described P. falciparum infections. Although both placental and peripheral blood microscopy cannot reliably replace histology as a reference standard for placental P. falciparum infection, many studies compared RDTs and PCR to these tests. The proportion of microscopy positives in placental blood (sensitivity) detected by peripheral blood microscopy, RDTs and PCR are respectively 72% [95% CI 62-80], 81% [95% CI 55-93] and 94% [95% CI 86-98]. The proportion of placental blood microscopy negative women that were negative in peripheral blood microscopy, RDTs and PCR (specificity) are 98% [95% CI 95-99], 94% [95% CI 76-99] and 77% [95% CI 71-82]. Based on the current data, it was not possible to determine if the false positives in RDTs and PCR are caused by sequestered parasites in the placenta that are not detected by placental microscopy. The findings suggest that RDTs and PCR may have good performance characteristics to serve as alternatives for the diagnosis of malaria in pregnancy, besides any other limitations and practical considerations concerning the use of these tests. Nevertheless, more studies with placental histology as reference test are urgently required to reliably determine the accuracy of RDTs and PCR for the diagnosis of placental malaria. P. vivax-infections have been neglected in diagnostic test accuracy studies of malaria in pregnancy.
2011-01-01
Background During pregnancy, malaria infection with Plasmodium falciparum or Plasmodium vivax is related to adverse maternal health and poor birth outcomes. Diagnosis of malaria, during pregnancy, is complicated by the absence or low parasite densities in peripheral blood. Diagnostic methods, other than microscopy, are needed for detection of placental malaria. Therefore, the diagnostic accuracy of rapid diagnostic tests (RDTs), detecting antigen, and molecular techniques (PCR), detecting DNA, for the diagnosis of Plasmodium infections in pregnancy was systematically reviewed. Methods MEDLINE, EMBASE and Web of Science were searched for studies assessing the diagnostic accuracy of RDTs, PCR, microscopy of peripheral and placental blood and placental histology for the detection of malaria infection (all species) in pregnant women. Results The results of 49 studies were analysed in metandi (Stata), of which the majority described P. falciparum infections. Although both placental and peripheral blood microscopy cannot reliably replace histology as a reference standard for placental P. falciparum infection, many studies compared RDTs and PCR to these tests. The proportion of microscopy positives in placental blood (sensitivity) detected by peripheral blood microscopy, RDTs and PCR are respectively 72% [95% CI 62-80], 81% [95% CI 55-93] and 94% [95% CI 86-98]. The proportion of placental blood microscopy negative women that were negative in peripheral blood microscopy, RDTs and PCR (specificity) are 98% [95% CI 95-99], 94% [95% CI 76-99] and 77% [95% CI 71-82]. Based on the current data, it was not possible to determine if the false positives in RDTs and PCR are caused by sequestered parasites in the placenta that are not detected by placental microscopy. Conclusion The findings suggest that RDTs and PCR may have good performance characteristics to serve as alternatives for the diagnosis of malaria in pregnancy, besides any other limitations and practical considerations concerning the use of these tests. Nevertheless, more studies with placental histology as reference test are urgently required to reliably determine the accuracy of RDTs and PCR for the diagnosis of placental malaria. P. vivax-infections have been neglected in diagnostic test accuracy studies of malaria in pregnancy. PMID:22035448
Barber, Bridget E; William, Timothy; Grigg, Matthew J; Piera, Kim; Yeo, Tsin W; Anstey, Nicholas M
2013-04-01
Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
Checks and balances? DNA replication and the cell cycle in Plasmodium.
Matthews, Holly; Duffy, Craig W; Merrick, Catherine J
2018-03-27
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Ponsa, Narong; Sattabongkot, Jetsumon; Kittayapong, Pattamaporn; Eikarat, Nantana; Coleman, Russell E
2003-11-01
The sporontocidal activity of tafenoquine (WR-238605) and artelinic acid was determined against naturally circulating isolates of Plasmodium vivax in western Thailand. Primaquine was used as a negative control and a dihydroacridine-dione (WR-250547) was used as a positive control. Laboratory-reared Anopheles dirus mosquitoes were infected with P. vivax by allowing mosquitoes to feed on blood (placed in an artificial-membrane feeding apparatus) collected from gametocytemic volunteers reporting to local malaria clinics in Tak province, Thailand. Four days post-infection, mosquitoes were refed on uninfected mice treated 90 minutes earlier with a given drug. Drug activity was determined by assessing oocyst and sporozoite development. Neither primaquine nor artelinic acid affected oocyst or sporozoite development at a dose of 100 mg of base drug/kg of mouse body weight. In contrast, tafenoquine and WR-250547 affected sporogonic development at doses as low as 25.0 and 0.39 mg/kg, respectively. The potential role of these compounds in the prevention of malaria transmission is discussed, as are alternative strategies for the use of transmission-blocking antimalarial drugs.
Mehrotra, Sonali; B Ningappa, Mylarappa; Raman, Jayalakshmi; Anand, Ranjith P; Balaram, Hemalatha
2012-04-01
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion. Copyright © 2012 Elsevier B.V. All rights reserved.
Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?
NASA Technical Reports Server (NTRS)
Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua
2004-01-01
Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.
The effect of particle size on the toxic action of silver nanoparticles
NASA Astrophysics Data System (ADS)
Sosenkova, L. S.; Egorova, E. M.
2011-04-01
Silver nanoparticles in AOT reverse micelles were obtained by means of the biochemical synthesis. Synthesis of nanoparticles was carried out with variation of the three parameters of reverse-micellar systems: concentration of silver ions, concentration of the stabilizer (AOT) and hydration extent w = [H2O]/[AOT]. The combinations of varied parameters have been found, allowing to prepare micellar solutions of spherical silver nanoparticles with average sizes 4.6 and 9.5 nm and narrow size distribution. From micellar solution the nanoparticles were transferred into the water phase; water solutions of the nanoparticles were used for testing their biological activity. Our assay is based on negative chemotaxis, a motile reaction of cells to an unfavorable chemical environment. Plasmodium of the slime mold Physarum polycephalum used as an object is a multinuclear amoeboid cell with unlimited growth and the auto-oscillatory mode of locomotion. In researches of chemotaxis on plasmodium it is learned that silver nanoparticles of smaller size exhibit a higher biological activity (behave as stronger repellent) and this correlates with the literary data obtained in studies of silver nanoparticles interaction with other biological objects.
Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia
Mkulama, Mtawa AP; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano
2008-01-01
Background In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. Methods A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Results Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. Conclusion This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll. PMID:18495008
Escalating Plasmodium falciparum antifolate drug resistance mutations in Macha, rural Zambia.
Mkulama, Mtawa A P; Chishimba, Sandra; Sikalima, Jay; Rouse, Petrica; Thuma, Philip E; Mharakurwa, Sungano
2008-05-21
In Zambia the first-line treatment for uncomplicated malaria is artemisinin combination therapy (ACT), with artemether-lumefantrine currently being used. However, the antifolate regimen, sulphadoxine-pyrimethamine (SP), remains the treatment of choice in children weighing less than 5 kg and also in expectant mothers. SP is also the choice drug for intermittent preventive therapy in pregnancy and serves as stand-by treatment during ACT stock outs. The current study assessed the status of Plasmodium falciparum point mutations associated with antifolate drug resistance in the area around Macha. A representative sample of 2,780 residents from the vicinity of Macha was screened for malaria by microscopy. At the same time, blood was collected onto filter paper and dried for subsequent P. falciparum DNA analysis. From 188 (6.8%) individuals that were thick film-positive, a simple random sub-set of 95 P. falciparum infections were genotyped for DHFR and DHPS antifolate resistance mutations, using nested PCR and allele-specific restriction enzyme digestion. Plasmodium falciparum field samples exhibited a high prevalence of antifolate resistance mutations, including the DHFR triple (Asn-108 + Arg-59 + Ile-51) mutant (41.3%) and DHPS double (Gly-437 + Glu-540) mutant (16%). The quintuple (DHFR triple + DHPS double) mutant was found in 4 (6.5%) of the samples. Levels of mutated parasites showed a dramatic escalation, relative to previous surveys since 1988. However, neither of the Val-16 and Thr-108 mutations, which jointly confer resistance to cycloguanil, was detectable among the human infections. The Leu-164 mutation, associated with high grade resistance to both pyrimethamine and cycloguanil, as a multiple mutant with Asn-108, Arg-59 and (or) Ile-51, was also absent. This study points to escalating levels of P. falciparum antifolate resistance in the vicinity of Macha. Continued monitoring is recommended to ensure timely policy revisions before widespread resistance exacts a serious public health toll.
Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R.; Pande, Veena
2018-01-01
Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance. PMID:29565981
Yewhalaw, Delenasaw; Nguyen, Jennifer; Kebede, Estifanos; Zemene, Endalew; Getachew, Sisay; Tushune, Kora; Zhong, Daibin; Zhou, Guofa; Petros, Beyene; Yan, Guiyun
2017-01-01
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations. PMID:28746333
Lo, Eugenia; Hemming-Schroeder, Elizabeth; Yewhalaw, Delenasaw; Nguyen, Jennifer; Kebede, Estifanos; Zemene, Endalew; Getachew, Sisay; Tushune, Kora; Zhong, Daibin; Zhou, Guofa; Petros, Beyene; Yan, Guiyun
2017-07-01
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.
Siwal, Nisha; Singh, Upasana Shyamsunder; Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R; Pande, Veena; Das, Aparup
2018-01-01
Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance.
Evaluation of the Parasight Platform for Malaria Diagnosis
Eshel, Yochay; Houri-Yafin, Arnon; Benkuzari, Hagai; Lezmy, Natalie; Soni, Mamta; Charles, Malini; Swaminathan, Jayanthi; Solomon, Hilda; Sampathkumar, Pavithra; Premji, Zul; Mbithi, Caroline; Nneka, Zaitun; Onsongo, Simon; Maina, Daniel; Levy-Schreier, Sarah; Cohen, Caitlin Lee; Gluck, Dan; Pollak, Joseph Joel
2016-01-01
ABSTRACT The World Health Organization estimates that nearly 500 million malaria tests are performed annually. While microscopy and rapid diagnostic tests (RDTs) are the main diagnostic approaches, no single method is inexpensive, rapid, and highly accurate. Two recent studies from our group have demonstrated a prototype computer vision platform that meets those needs. Here we present the results from two clinical studies on the commercially available version of this technology, the Sight Diagnostics Parasight platform, which provides malaria diagnosis, species identification, and parasite quantification. We conducted a multisite trial in Chennai, India (Apollo Hospital [n = 205]), and Nairobi, Kenya (Aga Khan University Hospital [n = 263]), in which we compared the device to microscopy, RDTs, and PCR. For identification of malaria, the device performed similarly well in both contexts (sensitivity of 99% and specificity of 100% at the Indian site and sensitivity of 99.3% and specificity of 98.9% at the Kenyan site, compared to PCR). For species identification, the device correctly identified 100% of samples with Plasmodium vivax and 100% of samples with Plasmodium falciparum in India and 100% of samples with P. vivax and 96.1% of samples with P. falciparum in Kenya, compared to PCR. Lastly, comparisons of the device parasite counts with those of trained microscopists produced average Pearson correlation coefficients of 0.84 at the Indian site and 0.85 at the Kenyan site. PMID:27974542
Fornace, Kimberly M; Nuin, Nor Afizah; Betson, Martha; Grigg, Matthew J; William, Timothy; Anstey, Nicholas M; Yeo, Tsin W; Cox, Jonathan; Ying, Lau Tiek; Drakeley, Chris J
2016-03-01
Although asymptomatic carriage of human malaria species has been widely reported, the extent of asymptomatic, submicroscopic Plasmodium knowlesi parasitemia is unknown. In this study, samples were obtained from individuals residing in households or villages of symptomatic malaria cases with the aim of detecting submicroscopic P. knowlesi in this population. Four published molecular assays were used to confirm the presence of P. knowlesi. Latent class analysis revealed that the estimated proportion of asymptomatic individuals was 6.9% (95% confidence interval, 5.6%-8.4%). This study confirms the presence of a substantial number of asymptomatic monoinfections across all age groups; further work is needed to estimate prevalence in the wider community. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014
Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar
2016-01-01
We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703
Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development.
Bancone, Germana; Malleret, Benoit; Suwanarusk, Rossarin; Chowwiwat, Nongnud; Chu, Cindy S; McGready, Rose; Rénia, Laurent; Nosten, François; Russell, Bruce
2017-07-15
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder in humans and appears to be protective against falciparum severe malaria. Controversially, it is also thought that Plasmodium vivax has driven the recent selection of G6PD alleles. We use an experimental approach to determine whether G6PD-MahidolG487A variant, a widespread cause of severe G6PD deficiency in Southeast Asia, provides a barrier against vivax malaria. Our results show that the immature reticulocytes (CD71+) targeted by P. vivax invasion are enzymatically normal, even in hemizygous G6PD-Mahidol G487A mutants; thus, allowing the normal growth, development, and high parasite density in severely deficient samples. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Response to various periods of mechanical stimuli in Physarum plasmodium
NASA Astrophysics Data System (ADS)
Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki
2017-06-01
Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli.
Susceptibility of human Plasmodium knowlesi infections to anti-malarials
2013-01-01
Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken. PMID:24245918
Lobanov, Alexey V.; Delgado, Cesar; Rahlfs, Stefan; Novoselov, Sergey V.; Kryukov, Gregory V.; Gromer, Stephan; Hatfield, Dolph L.; Becker, Katja; Gladyshev, Vadim N.
2006-01-01
The use of selenocysteine (Sec) as the 21st amino acid in the genetic code has been described in all three major domains of life. However, within eukaryotes, selenoproteins are only known in animals and algae. In this study, we characterized selenoproteomes and Sec insertion systems in protozoan Apicomplexa parasites. We found that among these organisms, Plasmodium and Toxoplasma utilized Sec, whereas Cryptosporidium did not. However, Plasmodium had no homologs of known selenoproteins. By searching computationally for evolutionarily conserved selenocysteine insertion sequence (SECIS) elements, which are RNA structures involved in Sec insertion, we identified four unique Plasmodium falciparum selenoprotein genes. These selenoproteins were incorrectly annotated in PlasmoDB, were conserved in other Plasmodia and had no detectable homologs in other species. We provide evidence that two Plasmodium SECIS elements supported Sec insertion into parasite and endogenous selenoproteins when they were expressed in mammalian cells, demonstrating that the Plasmodium SECIS elements are functional and indicating conservation of Sec insertion between Apicomplexa and animals. Dependence of the plasmodial parasites on selenium suggests possible strategies for antimalarial drug development. PMID:16428245
Requena, Pilar; Campo, Joseph J; Umbers, Alexandra J; Ome, Maria; Wangnapi, Regina; Barrios, Diana; Robinson, Leanne J; Samol, Paula; Rosanas-Urgell, Anna; Ubillos, Itziar; Mayor, Alfredo; López, Marta; de Lazzari, Elisa; Arévalo-Herrera, Myriam; Fernández-Becerra, Carmen; del Portillo, Hernando; Chitnis, Chetan E; Siba, Peter M; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Menéndez, Clara; Dobaño, Carlota
2014-09-15
Pregnancy triggers immunological changes aimed to tolerate the fetus, but its impact on B lymphocytes is poorly understood. In addition, exposure to the Plasmodium parasite is associated with altered distribution of peripheral memory B cell (MBC) subsets. To study the combined impact of high malaria exposure and pregnancy in B cell subpopulations, we analyzed PBMCs from pregnant and nonpregnant individuals from a malaria-nonendemic country (Spain) and from a high malaria-endemic country (Papua New Guinea). In the malaria-naive cohorts, pregnancy was associated with a significant expansion of all switched (IgD(-)) MBC and a decrease of naive B cells. Malaria-exposed women had more atypical MBC and fewer marginal zone-like MBC, and their levels correlated with both Plasmodium vivax- and Plasmodium falciparum-specific plasma IgG levels. Classical but not atypical MBC were increased in P. falciparum infections. Moreover, active atypical MBC positively correlated with proinflammatory cytokine plasma concentrations and had lower surface IgG levels than the average. Decreased plasma eotaxin (CCL11) levels were associated with pregnancy and malaria exposure and also correlated with B cell subset frequencies. Additionally, active atypical and active classical MBC expressed higher levels of eotaxin receptor CCR3 than the other B cell subsets, suggesting a chemotactic effect of eotaxin on these B cell subsets. These findings are important to understand immunity to infections like malaria that result in negative outcomes for both the mother and the newborn and may have important implications on vaccine development. Copyright © 2014 by The American Association of Immunologists, Inc.
Prado, Monica; Eickel, Nina; De Niz, Mariana; Heitmann, Anna; Agop-Nersesian, Carolina; Wacker, Rahel; Schmuckli-Maurer, Jacqueline; Caldelari, Reto; Janse, Chris J; Khan, Shahid M; May, Jürgen; Meyer, Christian G; Heussler, Volker T
2015-01-01
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition. PMID:26208778
Carrasco-Escobar, Gabriel; Gamboa, Dionicia; Castro, Marcia C; Bangdiwala, Shrikant I; Rodriguez, Hugo; Contreras-Mancilla, Juan; Alava, Freddy; Speybroeck, Niko; Lescano, Andres G; Vinetz, Joseph M; Rosas-Aguirre, Angel; Llanos-Cuentas, Alejandro
2017-08-14
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Smith, Matthew M.; Van Hemert, Caroline R.; Merizon, Richard
2016-01-01
Projections related to future climate warming indicate the potential for an increase in the distribution and prevalence of blood parasites in northern regions. However, baseline data are lacking for resident avian host species in Alaska. Grouse and ptarmigan occupy a diverse range of habitat types throughout the northern hemisphere and are among the most well-known and important native game birds in North America. Information regarding the prevalence and diversity of haemosporidian parasites in tetraonid species is limited, with few recent studies and an almost complete lack of genetic data. To better understand the genetic diversity of haemosporidian parasites in Alaskan tetraonids and to determine current patterns of geographic range and host specificity, we used molecular methods to screen 459 tissue samples collected from grouse and ptarmigan species across multiple regions of Alaska for infection by Leucocytozoon, Haemoproteus, and Plasmodium blood parasites. Infections were detected in 342 individuals, with overall apparent prevalence of 53% for Leucocytozoon, 21% for Haemoproteus, and 9% for Plasmodium. Parasite prevalence varied by region, with different patterns observed between species groups (grouse versus ptarmigan). Leucocytozoon was more common in ptarmigan, whereas Haemoproteus was more common in grouse. We detected Plasmodium infections in grouse only. Analysis of haemosporidian mitochondrial DNA cytochrome b sequences revealed 23 unique parasite haplotypes, several of which were identical to lineages previously detected in other avian hosts. Phylogenetic analysis showed close relationships between haplotypes from our study and those identified in Alaskan waterfowl for Haemoproteus and Plasmodium parasites. In contrast, Leucocytozoon lineages were structured strongly by host family. Our results provide some of the first genetic data for haemosporidians in grouse and ptarmigan species, and provide an initial baseline on the prevalence and diversity of blood parasites in a group of northern host species.
2012-01-01
Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874
Cornejo, Omar E.; Durrego, Ester; Stanley, Craig E.; Castillo, Andreína I.; Herrera, Sócrates; Escalante, Ananias A.
2016-01-01
Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. PMID:27347876
Khan, Shahid Niaz; Khan, Asif; Khan, Sanaullah; Ayaz, Sultan; Attaullah, Sobia; Khan, Jabbar; Khan, Muhammad Asim; Ali, Ijaz; Shah, Abdul Haleem
2014-09-09
Plasmodium vivax is one of the widespread human malarial parasites accounting for 75% of malaria epidemics. However, there is no baseline information about the status and nature of genetic variation of Plasmodium species circulating in various parts of Pakistan. The present study was aimed at observing the molecular epidemiology and genetic variation of Plasmodium vivax by analysing its merozoite surface protein-3α (msp-3α) and merozoite surface protein-3β (msp-3β) genes, by using suballele, species-specific, combined nested PCR/RFLP detection techniques. A total of 230 blood samples from suspected subjects tested slide positive for vivax malaria were collected from Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan during the period May 2012 to December 2013. Combined nested PCR/RFLP technique was conducted using Pvmsp-3α and Pvmsp-3β genetic markers to detect extent of genetic variation in clinical isolates of P. vivax in the studied areas of Pakistan. By PCR, P. vivax, 202/230 (87.82%), was found to be widely distributed in the studied areas. PCR/RFLP analysis showed a high range of allelic variations for both msp-3α and msp-3β genetic markers of P. vivax, i.e., 21 alleles for msp-3α and 19 for msp-3β. Statistically a significant difference (p ≤ 0.05) was observed in the genetic diversity of the suballelic variants of msp-3α and msp-3β genes of P. vivax. It is concluded that P. vivax populations are highly polymorphic and diverse allelic variants of Pvmsp-3α and Pvmsp-3β are present in Pakistan.
Pincelli, Anaclara; Neves, Paulo A R; Lourenço, Barbara H; Corder, Rodrigo M; Malta, Maíra B; Sampaio-Silva, Juliana; de Souza, Rodrigo M; Cardoso, Marly A; Castro, Marcia C; Ferreira, Marcelo U; For The Mina Brazil Working Group
2018-05-07
We measured the prevalence of malaria in pregnancy and estimated its impact on birth weight and length and maternal hemoglobin in 1,180 women from Juruá Valley, the main malaria hotspot in Brazil. Antenatal malaria episodes, 74.6% of them due to Plasmodium vivax , were microscopically diagnosed in 8.0% of the women and were associated with an average reduction in birth weight z -scores of 0.35 (95% confidence interval [CI] = 0.14-0.57) and in birth length z -scores of 0.31 (95% CI = 0.08-0.54), compared with malaria-free pregnancies. Affected mothers had a mean decrease in hemoglobin concentration at delivery of 0.33 g/100 mL (95% CI = 0.05-0.62 g/100 mL); 51.6% were anemic. The timing and frequency of antenatal infections influenced pregnancy outcomes and first- or second-trimester infections were not associated with decreased birth weight and length and maternal hemoglobin at delivery. Although repeated antenatal vivax infections were associated with poorer birth outcomes, even a single vivax malaria episode was associated with a significant reduction in birth weight and length and maternal hemoglobin. Overall, 7.5% women had the parasite's DNA found in peripheral blood at delivery. Most (83.1%) of these 89 perinatal infections were due to P. vivax and only 7.9% of them progressed to symptomatic disease after delivery. Plasmodium vivax and Plasmodium falciparum DNA was found in 0.6% and 0.3% of 637 cord blood samples examined, respectively, but only one newborn developed clinical neonatal malaria. Our results further challenge the notion that vivax malaria is relatively benign during pregnancy and call for better strategies for its prevention.
Salinas, Jorge L.; Monteiro, Wuelton M.; Val, Fernando; Cordy, Regina J.; Liu, Ken; Melo, Gisely C.; Siqueira, Andre M.; Magalhaes, Belisa; Galinski, Mary R.; Lacerda, Marcus V. G.; Jones, Dean P.
2017-01-01
Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR. PMID:28813452
Vanstreels, Ralph Eric Thijl; Uhart, Marcela; Rago, Virginia; Hurtado, Renata; Epiphanio, Sabrina; Catão-Dias, José Luiz
2017-04-01
Magellanic penguins (Spheniscus magellanicus) are native to Argentina, Chile and the Falkland Islands. Magellanic penguins are highly susceptible to blood parasites such as the mosquito-borne Plasmodium spp., which have been documented causing high morbidity and mortality in zoos and rehabilitation centres. However, to date no blood parasites have been detected in wild Magellanic penguins, and it is not clear whether this is reflective of their true absence or is instead related to an insufficiency in sampling effort or a failure of the diagnostic methods. We examined blood smears of 284 Magellanic penguins from the Argentinean coast and tested their blood samples with nested polymerase chain reaction tests targeting Haemoproteus, Plasmodium, Leucocytozoon and Babesia. No blood parasites were detected. Analysing the sampling effort of previous studies and the climatogeography of the region, we found there is strong basis to conclude that haemosporidians do not infect wild Magellanic penguins on the Argentinean coast. However, at present it is not possible to determine whether such parasites occur on the Chilean coast and at the Falkland Islands. Furthermore, it is troubling that the northward distribution expansion of Magellanic penguins and the poleward distribution shift of vectors may lead to novel opportunities for the transmission of blood parasites.
Mòdol, Josep M; Roure, Sílvia; Smithson, Àlex; Fernández-Rivas, Gema; Esquerrà, Anna; Robert, Neus; Méndez, María; Ramos, Javier; Carreres, Anna; Valerio, Lluís
2017-09-11
Malaria remains a major source of morbi-mortality among travellers. In 2007, a consensual multicenter Primary Care-Hospital shared guideline on travel-prior chemoprophylaxis, diagnosis and clinical management of imported malaria was set up in the Barcelona North Metropolitan area. The aim of the study is to assess the evolution of malaria cases in the area as well as its clinical management over the 10 years of its implementation. A total of 190 malaria cases, all them imported, have been recorded. The overall estimated malaria crude incidence was of 0.47 cases per 10,000 population/year (95% CI 0.34-0.59) with a slight significant positive slope especially at the expense of an increase in Indian sub-continent Plasmodium vivax cases. The number of patients who attended the pre-travel consultation was low (13.7%) as well as those with prescribed chemoprophylaxis (10%). Severe malaria was diagnosed in 34 (17.9%) patients and ICU admittance was required in 2.6% of them. Organ sequelae (two renal failures and one post-acute distress respiratory syndrome) were recorded in 3 patients at hospital discharge, although all three were recovered at 30 days. None of the patients died. Patients complying with severity criteria were significantly males (p = 0.04), came from Africa (p = 0.02), were mainly non-immigrant travellers (p = 0.01) and were attended in a hospital setting (p < 0.001). The most frequently identified species was Plasmodium falciparum (64.2%), P. vivax (23.2%), Plasmodium malariae (1.6%) and Plasmodium ovale (1.1%). Those patients diagnosed with P. falciparum malaria came more often from sub-Saharan Africa (p < 0.001) and those with P. vivax came largely from the Indian sub-continent (p = 0.003). Among the 126 patients in whom an immunochromatographic antigenic test was performed, the result was interpreted as falsely negative in 12.1% of them. False negative results can be related to cases with <1% parasitaemia. After 10 years of surveillance, a moderate increase in malaria incidence was observed, mostly P. vivax cases imported from the Indian sub-continent. Although severe malaria cases have been frequently reported, none of the patients died and organ sequelae were rare. Conceivably, the participation of the Primary Care and the District and Third Level Hospital professionals defining surveillance, diagnostic tests, referral criteria and clinical management can be considered a useful tool to minimize malaria morbi-mortality.
Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.
Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C
2015-03-01
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections
Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.
2015-01-01
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890
NASA Astrophysics Data System (ADS)
Quillfeldt, Petra; Martínez, Javier; Hennicke, Janos; Ludynia, Katrin; Gladbach, Anja; Masello, Juan F.; Riou, Samuel; Merino, Santiago
2010-09-01
Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons.
Epidemiology and Clinical Burden of Malaria in the War-Torn Area, Orakzai Agency in Pakistan.
Karim, Asad Mustafa; Hussain, Irfan; Malik, Sumera Kausar; Lee, Jung Hun; Cho, Ill Hwan; Kim, Young Bae; Lee, Sang Hee
2016-01-01
Military conflict has been a major challenge in the detection and control of emerging infectious diseases such as malaria. It poses issues associated with enhancing emergence and transmission of infectious diseases by destroying infrastructure and collapsing healthcare systems. The Orakzai agency in Pakistan has witnessed a series of intense violence and destruction. Military conflicts and instability in Afghanistan have resulted in the migration of refugees into the area and possible introduction of many infectious disease epidemics. Due to the ongoing violence and Talibanization, it has been a challenge to conduct an epidemiological study. All patients were sampled within the transmission season. After a detailed clinical investigation of patients, data were recorded. Baseline venous blood samples were taken for microscopy and nested polymerase chain reaction (nPCR) analysis. Plasmodium species were detected using nested PCR (nPCR) and amplification of the small subunit ribosomal ribonucleic acid (ssrRNA) genes using the primer pairs. We report a clinical assessment of the epidemic situation of malaria caused by Plasmodium vivax (86.5%) and Plasmodium falciparum (11.79%) infections with analysis of complications in patients such as decompensated shock (41%), anemia (8.98%), hypoglycaemia (7.3%), multiple convulsions (6.7%), hyperpyrexia (6.17%), jaundice (5%), and hyperparasitaemia (4.49%). This overlooked distribution of P. vivax should be considered by malaria control strategy makers in the world and by the Government of Pakistan. In our study, children were the most susceptible population to malaria infection while they were the least expected to use satisfactory prevention strategies in such a war-torn deprived region. Local health authorities should initiate malaria awareness programs in schools and malaria-related education should be further promoted at the local level reaching out to both children and parents.
Hematozoan parasites of Rio Grande wild turkeys from southern Texas (USA)
Castle, Marc D.; Christensen, Beth A.; Rocke, Tonie E.
1988-01-01
One hundred twenty-three of 300 blood samples (41%) taken from Rio Grande wild turkeys (Meleagris gallopavo intermedia) from three locations in southern Texas (Welder Wildlife Refuge, Chaparrosa Ranch, and Campo Alegre Ranch) and subinoculated into domestic broad-breasted white turkey poults were positive for a Plasmodium (Novyella) sp. Analysis of blood films from 350 turkeys revealed Haemoproteus meleagridis in 76% of the birds. A significantly greater mean parasite intensity was observed in birds from Welder Wildlife Refuge. Birds from the Campo Alegre Ranch exhibited a significantly higher prevalence of H. meleagridis than birds from Chaparrosa. The Plasmodium sp. was infective for canaries (Serinus canaria), bobwhites (Colinus virginianus), and ring-necked pheasants (Phasianus colchicus), but would not produce infection in white leghorn chickens (Gallus gallus) or Coturnix quail (Coturnix coturnix). Attempts to infect Culex tarsalis and C. pipiens pipiens were unsuccessful. Asexual erythrocytic synchrony was not observed when blood-induced infections were monitored in two domestic turkey poults every 4 hr for 72 hr. Exoerythrocytic stages were not found upon examination of impression smears and tissue samples taken from brain, liver, spleen, kidney, lung, and bone marrow. The Plasmodium sp. is most similar morphologically to three species in the subgenus Novyella, P. hexamerium, P. vaughani, and P. kempi. The most striking similarities are to P. hexamerium, and involve mean merozoite number, erythrocytic schizont location, and vertebrate host susceptibility. It differs from P. vaughani in being able to infect turkeys and in type of parasitized erythrocytes. Differences to P. kempi include mean merozoite number, and ability to infect pheasants, and its inability to develop inC. pipiens and C. tarsalis.
Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi
2014-05-08
Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.
Handayuni, Irene; Trianty, Leily; Utami, Retno A. S.; Tirta, Yusrifar Kharisma; Kenangalem, Enny; Lampah, Daniel; Kusuma, Andreas; Wirjanata, Grennady; Kho, Steven; Simpson, Julie A.; Auburn, Sarah; Douglas, Nicholas M.; Noviyanti, Rintis; Anstey, Nicholas M.; Poespoprodjo, Jeanne R.; Marfurt, Jutta
2016-01-01
Submicroscopic Plasmodium infections are an important parasite reservoir, but their clinical relevance is poorly defined. A cross-sectional household survey was conducted in southern Papua, Indonesia, using cluster random sampling. Data were recorded using a standardized questionnaire. Blood samples were collected for haemoglobin measurement. Plasmodium parasitaemia was determined by blood film microscopy and PCR. Between April and July 2013, 800 households and 2,830 individuals were surveyed. Peripheral parasitaemia was detected in 37.7% (968/2,567) of individuals, 36.8% (357) of whom were identified by blood film examination. Overall the prevalence of P. falciparum parasitaemia was 15.4% (396/2567) and that of P. vivax 18.3% (471/2567). In parasitaemic individuals, submicroscopic infection was significantly more likely in adults (adjusted odds ratio (AOR): 3.82 [95%CI: 2.49–5.86], p<0.001) compared to children, females (AOR = 1.41 [1.07–1.86], p = 0.013), individuals not sleeping under a bednet (AOR = 1.4 [1.0–1.8], p = 0.035), and being afebrile (AOR = 3.2 [1.49–6.93], p = 0.003). The risk of anaemia (according to WHO guidelines) was 32.8% and significantly increased in those with asymptomatic parasitaemia (AOR 2.9 [95% 2.1–4.0], p = 0.007), and submicroscopic P. falciparum infections (AOR 2.5 [95% 1.7–3.6], p = 0.002). Asymptomatic and submicroscopic infections in this area co-endemic for P. falciparum and P. vivax constitute two thirds of detectable parasitaemia and are associated with a high risk of anaemia. Novel public health strategies are needed to detect and eliminate these parasite reservoirs, for the benefit both of the patient and the community. PMID:27788243
Martínez, Javier; Hennicke, Janos; Ludynia, Katrin; Gladbach, Anja; Masello, Juan F.; Riou, Samuel; Merino, Santiago
2010-01-01
Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons. PMID:20652673
Waltmann, Andreea; Darcy, Andrew W; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G Dennis; Barry, Alyssa E; Whittaker, Maxine; Kazura, James W; Mueller, Ivo
2015-05-01
Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0-38.5%, p<0.001) and across age groups (5.3-25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands with higher malaria endemicity remains.
Grigg, M J; William, T; Drakeley, C J; Jelip, J; von Seidlein, L; Barber, B E; Fornace, K M; Anstey, N M; Yeo, T W; Cox, J
2014-08-22
Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo
2015-01-01
Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands with higher malaria endemicity remains. PMID:25996619
Osorio-de-Castro, Claudia G S; Suárez-Mutis, Martha C; Miranda, Elaine S; Luz, Tatiana C B
2015-11-26
In Brazil, 99.7 % of malaria cases occur in the Amazon region. Although the number of cases is decreasing, the country accounted for almost 60 % of cases in the Americas Region, in 2013. Novel approaches for malaria treatment open the possibility of eliminating the disease, but suboptimal dispensing and lack of adherence influence treatment outcomes. The aim of this paper is to show the results on dispensing practices, non-adherence and determinants of non-adherence to treatment of non-complicated malaria. The study was conducted in six high-risk municipalities with Plasmodium vivax and Plasmodium falciparum transmission in the Brazilian Amazon and based on the theoretical framework of the Mafalda Project, which included investigation of dispensing and adherence. The World Health Organization Rapid Evaluation Method has been used to estimate sample size. Individuals over 15 years of age with malaria were approached at health facilities and invited to participate through informed consent. Data was collected in chart review forms focusing on diagnosis, Plasmodium type, prescribing, and dispensing (kind, quantity, labelling and procedures). Follow-up household interviews complemented data collection at health facility. Non-adherence was measured during the implementation phase, by self-reports and pill-counts. Analysis was descriptive and statistical tests were carried out. Determinants of non-adherence and quality of dispensing were assessed according to the literature. The study involved 165 patients. Dispensing was done according to the national guidelines. Labelling was adequate for P. vivax but inadequate for P. falciparum medicines. Non-adherent patients were 12.1 % according to self-reports and 21.8 % according to pill-counts. Results point to greater non-adherence among all P. falciparum patients and among malaria non-naîve patients. More patients informed understanding adverse effects than 'how to use' anti-malarials. Non-adherent patients were mostly those with a P. falciparum diagnosis and those in their second or more malaria episode. New taxonomies and concepts on adherence stress the importance of focusing on the individual patient. Interventions targeted to and tailored for malaria patients must be addressed by health policy and implemented by managers and clinicians.
2012-05-31
plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel ofPiasmodium species and strains prepared...AFMSA O&M FY10 ‘Plasmodium Project’, existing Plasmodium genus, P . falciparum , and P . vivax TaqMan assays were proposed for transfer to the RAPID...using P . vivax plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel of Plasmodium species and
1976-08-13
INFECTIONS WITH PLASMODIUM FALCIPARUM AND PLASMODIUM VIVAX (U) FINAL PROGRESS REPORT ( PROJECT 2284-XXIX) For the Period I May 1975 to 30 April...IT» IOC mit settiM I’jtf Section ^ I» ’■■■■• BisTtmunM/MWUiiun cooa DiJÜ iWBU. UK/» FINAL PROGRESS REPORT ( PROJECT 2284-XXIX) S...quinolinemethanols pyridinemethanols I ’As in previous years, the activities of this Project were focused on development of: (a) agents fully effective
Transmission of human and macaque Plasmodium spp. to ex-captive orangutans in Kalimantan, Indonesia.
Reid, Michael J C; Ursic, Raul; Cooper, Dawn; Nazzari, Hamed; Griffiths, Melinda; Galdikas, Birute M; Garriga, Rosa M; Skinner, Mark; Lowenberger, Carl
2006-12-01
Data are lacking on the specific diseases to which great apes are susceptible and the transmission dynamics and overall impact of these diseases. We examined the prevalence of Plasmodium spp. infections in semicaptive orangutans housed at the Orangutan Care Center and Quarantine, Central Kalimantan, Indonesia, by using a combination of microscopic and DNA molecular techniques to identify the Plasmodium spp. in each animal. Previous studies indicated 2 orangutan-specific Plasmodium spp., but our data show 4 Plasmodium spp. These findings provide evidence for P. vivax transmission between humans and orangutans and for P. cynomolgi transmission between macaques and orangutans. These data have potential implications for the conservation of orangutans and also for the bidirectional transmission of parasites between orangutans and humans visiting or living in the region.
Transmission of Human and Macaque Plasmodium spp. to Ex-Captive Orangutans in Kalimantan, Indonesia
Reid, Michael J.C.; Ursic, Raul; Cooper, Dawn; Nazzari, Hamed; Griffiths, Melinda; Galdikas, Birute M.; Garriga, Rosa M.; Skinner, Mark; Lowenberger, Carl
2006-01-01
Data are lacking on the specific diseases to which great apes are susceptible and the transmission dynamics and overall impact of these diseases. We examined the prevalence of Plasmodium spp. infections in semicaptive orangutans housed at the Orangutan Care Center and Quarantine, Central Kalimantan, Indonesia, by using a combination of microscopic and DNA molecular techniques to identify the Plasmodium spp. in each animal. Previous studies indicated 2 orangutan-specific Plasmodium spp., but our data show 4 Plasmodium spp. These findings provide evidence for P. vivax transmission between humans and orangutans and for P. cynomolgi transmission between macaques and orangutans. These data have potential implications for the conservation of orangutans and also for the bidirectional transmission of parasites between orangutans and humans visiting or living in the region. PMID:17326942
Systems Biology-Based Investigation of Host-Plasmodium Interactions.
Smith, Maren L; Styczynski, Mark P
2018-05-18
Malaria is a serious, complex disease caused by parasites of the genus Plasmodium. Plasmodium parasites affect multiple tissues as they evade immune responses, replicate, sexually reproduce, and transmit between vertebrate and invertebrate hosts. The explosion of omics technologies has enabled large-scale collection of Plasmodium infection data, revealing systems-scale patterns, mechanisms of pathogenesis, and the ways that host and pathogen affect each other. Here, we provide an overview of recent efforts using systems biology approaches to study host-Plasmodium interactions and the biological themes that have emerged from these efforts. We discuss some of the challenges in using systems biology for this goal, key research efforts needed to address those issues, and promising future malaria applications of systems biology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Coupled Oscillators System in the True Slime Mold
NASA Astrophysics Data System (ADS)
Takamatsu, A.; Fujii, T.; Endo, I.
The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.
Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun
2013-12-01
Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.
NASA Astrophysics Data System (ADS)
Dewi Siawanta, Shanti; Adi-Kusumo, Fajar; Irwan Endrayanto, Aluicius
2018-03-01
Malaria, which is caused by Plasmodium, is a common disease in tropical areas. There are three types of Plasmodium i.e. Plasmodium Vivax, Plasmodium Malariae, and Plasmodium Falciparum. The most dangerous cases of the Malaria are mainly caused by the Plasmodium Falciparum. One of the important characteristics for the Plasmodium infection is due to the immunity of erythrocyte that contains HbS (Haemoglobin Sickle-cell) genes. The individuals who has the HbS gene has better immunity against the disease. In this paper, we consider a model that shows the spread of malaria involving the interaction between the mosquitos population, the human who has HbS genes population and the human with normal gene population. We do some analytical and numerical simulation to study the basic reproduction ratio and the slow-fast dynamics of the phase-portrait. The slow dynamics in our model represents the response of the human population with HbS gene to the Malaria disease while the fast dynamics show the response of the human population with the normal gene to the disease. The slow and fast dynamics phenomena are due to the fact that the population of the individuals who have HbS gene is much smaller than the individuals who has normal genes.
2013-01-01
Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy performed by an experienced research microscopist, for the diagnosis of PCR-confirmed Plasmodium falciparum, P. knowlesi, and Plasmodium vivax malaria. Results A total of 304 patients with PCR-confirmed Plasmodium infection were enrolled, including 130 with P. knowlesi, 122 with P. falciparum, 43 with P. vivax, one with Plasmodium malariae and eight with mixed species infections. Among patients with P. knowlesi mono-infection, routine and cross-check microscopy both identified 94 (72%) patients as “P. malariae/P. knowlesi”; 17 (13%) and 28 (22%) respectively were identified as P. falciparum, and 13 (10%) and two (1.5%) as P. vivax. Among patients with PCR-confirmed P. falciparum, routine and cross-check microscopy identified 110/122 (90%) and 112/118 (95%) patients respectively as P. falciparum, and 8/122 (6.6%) and 5/118 (4.2%) as “P. malariae/P. knowlesi”. Among those with P. vivax, 23/43 (53%) and 34/40 (85%) were correctly diagnosed by routine and cross-check microscopy respectively, while 13/43 (30%) and 3/40 (7.5%) patients were diagnosed as “P. malariae/P. knowlesi”. Four of 13 patients with PCR-confirmed P. vivax and misdiagnosed by routine microscopy as “P. malariae/P. knowlesi” were subsequently re-admitted with P. vivax malaria. Conclusions Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur. Misdiagnosis of P. knowlesi as both P. vivax and P. falciparum, and vice versa, is common, potentially leading to inappropriate treatment, including chloroquine therapy for P. falciparum and a lack of anti-relapse therapy for P. vivax. The limitations of microscopy in P. knowlesi-endemic areas supports the use of unified blood-stage treatment strategies for all Plasmodium species, the development of accurate rapid diagnostic tests suitable for all species, and the use of PCR-confirmation for accurate surveillance. PMID:23294844
APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria.
Dirkzwager, Roderick M; Kinghorn, Andrew B; Richards, Jack S; Tanner, Julian A
2015-03-18
We report the rapid diagnosis of malaria by aptamer-tethered enzyme capture (APTEC) whereby an aptamer captures biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) then activity is measured colorimetrically. The robust test was sensitive (limit of detection = 4.9 ng mL(-1)) and could reliably diagnose malaria in clinical blood samples.
Can, Hüseyin; İnceboz, Tonay; Caner, Ayşe; Atalay Şahar, Esra; Karakavuk, Muhammet; Döşkaya, Mert; Çelebi, Fehmi; Değirmenci Döşkaya, Aysu; Gülçe İz, Sultan; Gürüz, Yüksel; Korkmaz, Metin
2016-04-01
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) caused by Echinococcus granulosus and Echinococcus multilocularis, respectively, are important helminthic diseases worldwide as well as in our country. Epidemiological studies conducted in Turkey showed that the prevalence of CE is 291-585/100.000. It has also been showed that the seroprevalence of AE is 3.5%. For the diagnosis of CE and AE, radiological (ultrasonography, computed tomography, magnetic resonance) and serological methods, in addition to clinical findings, are being used. The definitive diagnosis relies on pathological examination When the hydatid cysts are sterile or does not contain protoscolex, problems may occur during pathological discrimination of E.granulosus and E.multilocularis species. In this study, we aimed to develop a novel multiplex real-time polymerase chain reaction (M-RT-PCR) targeting mitochondrial 12S rRNA gene of E.granulosus and E.multilocularis using Echi S (5'-TTTATGAATATTGTGACCCTGAGAT-3') and Echi A (5'-GGTCTTAACTCAACTCATGGAG-3') primers and three different probes; Anchor Ech (5'-GTTTGCCACCTCGATGTTGACTTAG-fluoroscein-3'), Granulosus (5'-LC640-CTAAGGTTTTGGTGTAGTAATTGATATTTT-phosphate-3') and Multilocularis (5'-LC705-CTGTGATCTTGGTGTAGTAGTTGAGATT-phosphate-3') that will enable the diagnosis of CE and AE in same assay. During M-RTR-PCR, plasmids containing E.granulosus (GenBank: AF297617.1) and E.multilocularis (GenBank: NC_000928.2) mitochondrial 12S rRNA regions were used as positive controls. Cysts samples of patients which were pathologically confirmed to be CE (n: 10) and AE (n: 15) and healthy human DNA samples (n: 25) as negative control as well as DNA samples of 12 different parasites (Taenia saginata, Hymenolepis nana, Trichuris trichiura, Fasciola hepatica, Enterobius vermicularis, Toxoplasma gondii, Pneumocystis jirovecii, Trichomonas vaginalis, Cryptosporidium hominis, Strongyloides stercoralis, Plasmodium falciparum, Plasmodium vivax) were used to develop M-RT-PCR. E.granulosus and E.multilocularis control plasmids were constructed to detect analytic sensitivity of the test using TOPO cloning. Positive control plasmids were diluted to determine analytical sensitivity and specificity by distilled water at 10(6)-10(5)-10(4)-10(3)-10(2)-10(1)-1 plasmid copy of dilution in each reaction. According to the results, analytical sensitivity of the assay for E.granulosus and E.multilocularis was 1 copy plasmid/µl reaction. The non-existence of cross reactivity with 12 different parasites' DNA samples showed the analytical specificity of the assay. Displaying Echinococcus DNA in cyst samples among 25 patients and species discrimination as well as non-existence of cross reactivity with human DNA samples showed that the clinical sensitivity and specificity of the assay were 100%. As a result, the M-RT-PCR developed in the present study provided a sensitive, specific, rapid, and reliable method in the diagnosis of echinococcosis and the discrimination of E.granulosus and E.multilocularis from cyst samples.
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR.
Iwagami, Moritoshi; Keomalaphet, Sengdeuane; Khattignavong, Phonepadith; Soundala, Pheovaly; Lorphachan, Lavy; Matsumoto-Takahashi, Emilie; Strobel, Michel; Reinharz, Daniel; Phommasansack, Manisack; Hongvanthong, Bouasy; Brey, Paul T; Kano, Shigeyuki
2017-12-01
Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas. A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes. There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented.
Further evaluation of the NWF filter for the purification of Plasmodium vivax-infected erythrocytes.
Li, Jiangyan; Tao, Zhiyong; Li, Qian; Brashear, Awtum; Wang, Ying; Xia, Hui; Fang, Qiang; Cui, Liwang
2017-05-17
Isolation of Plasmodium-infected red blood cells (iRBCs) from clinical blood samples is often required for experiments, such as ex vivo drug assays, in vitro invasion assays and genome sequencing. Current methods for removing white blood cells (WBCs) from malaria-infected blood are time-consuming or costly. A prototype non-woven fabric (NWF) filter was developed for the purification of iRBCs, which showed great efficiency for removing WBCs in a pilot study. Previous work was performed with prototype filters optimized for processing 5-10 mL of blood. With the commercialization of the filters, this study aims to evaluate the efficiency and suitability of the commercial NWF filter for the purification of Plasmodium vivax-infected RBCs in smaller volumes of blood and to compare its performance with that of Plasmodipur ® filters. Forty-three clinical P. vivax blood samples taken from symptomatic patients attending malaria clinics at the China-Myanmar border were processed using the NWF filters in a nearby field laboratory. The numbers of WBCs and iRBCs and morphology of P. vivax parasites in the blood samples before and after NWF filtration were compared. The viability of P. vivax parasites after filtration from 27 blood samples was examined by in vitro short-term culture. In addition, the effectiveness of the NWF filter for removing WBCs was compared with that of the Plasmodipur ® filter in six P. vivax blood samples. Filtration of 1-2 mL of P. vivax-infected blood with the NWF filter removed 99.68% WBCs. The densities of total iRBCs, ring and trophozoite stages before and after filtration were not significantly different (P > 0.05). However, the recovery rates of schizont- and gametocyte-infected RBCs, which were minor parasite stages in the clinical samples, were relatively low. After filtration, the P. vivax parasites did not show apparent morphological changes. Culture of 27 P. vivax-infected blood samples after filtration showed that parasites successfully matured into the schizont stage. The WBC removal rates and iRBC recovery rates were not significantly different between the NWF and Plasmodipur ® filters (P > 0.05). When tested with 1-2 mL of P. vivax-infected blood, the NWF filter could effectively remove WBCs and the recovery rates for ring- and trophozoite-iRBCs were high. P. vivax parasites after filtration could be successfully cultured in vitro to reach maturity. The performance of the NWF and Plasmodipur ® filters for removing WBCs and recovering iRBCs was comparable.
Drug Evaluation in the Plasmodium falciparum - Aotus Model
1984-09-01
consecutive days to Colombian Aotus. Six amodiaquin analogues were evaluated for their capacity to cure in- fections of chloroquine -sensitive and...AMODIAQUIN ANALOGUES AND AMODIAQUIN AGAINST INFECTIONS OF CHLOROQUINE -SENSITIVE AND CHLOROQUINE -RESISTANT STRAINS OF PLASMODIUM FALCIPARUM 14...AMODIAQUIN ANALOGUES AND AMOOIAQUIN AGAINST INFECTIONS OF CHLOROQUINE -SENSITIVE AND CHLOROQUINE - RESISTANT STRAINS OF PLASMODIUM FALCIPARUM Following
Helminth parasites alter protection against Plasmodium infection.
Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam
2014-01-01
More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.
Tjitra, Emiliana; Suprianto, Sri; McBroom, James; Currie, Bart J.; Anstey, Nicholas M.
2001-01-01
A problem with rapid Plasmodium falciparum-specific antigen histidine-rich protein 2 (HRP2) detection tests for malaria is the persistence of antigen in blood after the disappearance of asexual-stage parasitemia and clinical symptoms, resulting in false-positive (FP) test results following treatment. The ICT P.f/P.v immunochromatographic test detects both HRP2 and a panmalarial antigen (PMA) found in both P. falciparum and Plasmodium vivax. To examine posttreatment antigen persistence with this test and whether persistent sexual-stage forms (gametocytes) are a cause of FP tests after treatment, we compared serial antigen test results with microscopy results from patients symptomatic with P. falciparum malaria in Indonesia for 28 days following treatment with chloroquine (CQ; n = 66), sulfadoxine-pyrimethamine (SP; n = 36), and artesunate plus sulfadoxine-pyrimethamine (ART + SP; n = 15). Persistent FP antigenemia following SP treatment occurred in 29% (HRP2) and 42% (PMA) of the patients on day 7 and in 10% (HRP2) and 23% (PMA) on day 14. The high rates of persistent HRP2 and PMA antigenemia following CQ and SP treatment were strongly associated with the presence of gametocytemia, with the proportion with gametocytes on day 7 posttreatment being significantly greater in those with FP results than in those with true-negative PMA and HRP2 results. Gametocyte frequency on day 14 post-SP treatment was also greater in those with FP PMA results. Following SP treatment, PMA persisted longer than HRP2, giving an FP diagnosis of P. vivax in up to 16% of patients on day 14, with all FP P. vivax diagnoses having gametocytemia. In contrast, PMA was rapidly cleared following ART + SP treatment in association with rapid clearance of gametocytemia. Gametocytes appear to be an important cause of persistent posttreatment panmalarial antigenemia in areas of endemicity and may also contribute in part to persistent HRP2 antigenemia following treatment. PMID:11230422
Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.
Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley
2013-01-01
The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865
Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.
Rosero, Doris A; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V; Torres, Carolina; Luckhart, Shirley; Correa, Margarita M
2013-01-01
The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia.
Puri, S K; Dutta, G P
2003-04-01
A new 8-aminoquinoline antimalarial WR 238605 (Tafenoquine), developed initially as a primaquine alternative for prevention of Plasmodium vivax relapses was evaluated for blood schizontocidal activity against two simian malaria infections namely Plasmodium cynomolgi B and Plasmodium fragile in rhesus monkeys. Treatment with WR 238605 at a dose of 3.16 mg(base)/kg/day x 7 days cured established trophozoite induced infections in monkeys with both these parasites. The lower dose of 1.00 mg/kg/day cured 9 out of 12 monkeys infected with P. cynomolgi B and 10 out of 11 monkeys infected with P. fragile. Primaquine was only partially curative at 10.0 mg(base)/kg/day x 7 dose regimen against both these infections. The potent blood schizontocidal activity of tafenoquine adds to the armoury of antimalarial drugs.
Ly, Alioune Badara; Tall, Adama; Perry, Robert; Baril, Laurence; Badiane, Abdoulaye; Faye, Joseph; Rogier, Christophe; Touré, Aissatou; Sokhna, Cheikh; Trape, Jean-François; Michel, Rémy
2010-06-04
In 2006, the Senegalese National Malaria Control Programme (NMCP) has recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria and, in 2007, mandated testing for all suspected cases of malaria with a Plasmodium falciparum HRP-2-based rapid diagnostic test for malaria (RDT(Paracheck). Given the higher cost of ACT compared to earlier anti-malarials, the objectives of the present study were i) to study the accuracy of Paracheck compared to the thick blood smear (TBS) in two areas with different levels of malaria endemicity and ii) analyse the cost-effectiveness of the strategy of the parasitological confirmation of clinically suspected malaria cases management recommended by the NMCP. A cross-sectional study was undertaken in the villages of Dielmo and Ndiop (Senegal) nested in a cohort study of about 800 inhabitants. For all the individuals consulting between October 2008 and January 2009 with a clinical diagnosis of malaria, a questionnaire was filled and finger-prick blood samples were taken both for microscopic examination and RDT. The estimated costs and cost-effectiveness analysis were made considering five scenarios, the recommendations of the NMCP being the reference scenario. In addition, a sensitivity analysis was performed assuming that all the RDT-positive patients and 50% of RDT-negative patients were treated with ACT. A total of 189 consultations for clinically suspected malaria occurred during the study period. The sensitivity, specificity, positive and negative predictive values were respectively 100%, 98.3%, 80.0% and 100%. The estimated cost of the reference scenario was close to 700 euros per 1000 episodes of illness, approximately twice as expensive as most of the other scenarios. Nevertheless, it appeared to us cost-effective while ensuring the diagnosis and the treatment of 100% of malaria attacks and an adequate management of 98.4% of episodes of illness. The present study also demonstrated that full compliance of health care providers with RDT results was required in order to avoid severe incremental costs. A rational use of ACT requires laboratory testing of all patients presenting with presumed malaria. Use of RDTs inevitably has incremental costs, but the strategy associating RDT use for all clinically suspected malaria and prescribing ACT only to patients tested positive is cost-effective in areas where microscopy is unavailable.
Cloning of Plasmodium falciparum by single-cell sorting
Miao, Jun; Li, Xiaolian; Cui, Liwang
2010-01-01
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038
Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas
2013-05-01
Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.
Testing for associations between hematozoa infection and mercury in wading bird nestlings.
Bryan, A Lawrence; Love, Cara N; Mills, Gary L; Borkhataria, Rena R; Lance, Stacey L
2015-01-01
Several wading bird species in the southeastern US have a history of infection by hematozoa/avian malaria as well as mercury accumulation through their diet, and thus may be exposed to two, generally sublethal, yet chronic, stressors. We analyzed nestling wading birds (n = 171) of varying size and trophic position from the southeastern US, and a smaller sample (n = 23) of older, free-ranging birds, to look for potential interrelationships between infection by hematozoa and mercury (Hg) uptake. Only one nestling was PCR positive for hematozoa (Plasmodium/Haemoproteus) whereas nine (39%) of the older wading birds were positive. Sequencing indicated that both nestling and adult positives were infected with Plasmodium. Given the low infection rate of the nestlings, there was no association between Hg and malaria. The older birds exhibited a possible malaria/Hg association, but it may be confounded by their greater potential exposure period and large-scale movements.
Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia
Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P
2013-01-01
We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling
2016-08-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia
Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.
2016-01-01
Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965
K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa.
Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A
2015-04-15
Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Genetic Structure of Plasmodium falciparum and Elimination of Malaria, Comoros Archipelago
Rebaudet, Stanislas; Bogreau, Hervé; Silaï, Rahamatou; Lepère, Jean-François; Bertaux, Lionel; Pradines, Bruno; Delmont, Jean; Gautret, Philippe; Parola, Philippe
2010-01-01
The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands. PMID:21029525
Thuma, Philip E.; Mharakurwa, Sungano; Norris, Douglas E.
2014-01-01
Transmission of Plasmodium falciparum is hyperendemic in southern Zambia. However, no data on the entomologic aspects of malaria transmission have been published from Zambia in more than 25 years. We evaluated seasonal malaria transmission by Anopheles arabiensis and An. funestus s.s. and characterized the blood feeding behavior of An. arabiensis in two village areas. Transmission during the 2004–2005 rainy season was nearly zero because of widespread drought. During 2005–2006, the estimated entomologic inoculation rate values were 1.6 and 18.3 infective bites per person per transmission season in each of the two village areas, respectively. Finally, with a human blood index of 0.923, An. arabiensis was substantially more anthropophilic in our study area than comparable samples of indoor-resting An. arabiensis throughout Africa and was the primary vector responsible for transmission of P. falciparum. PMID:17297034
Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing
Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.
2013-01-01
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859
Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi
Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.
2017-01-01
Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705
Genomic analysis of local variation and recent evolution in Plasmodium vivax
Pearson, Richard D; Miotto, Olivo; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Suon, Seila; Mao, Sivanna; Noviyanti, Rintis; Trimarsanto, Hidayat; Marfurt, Jutta; Anstey, Nicholas M; William, Timothy; Boni, Maciej F; Dolecek, Christiane; Hien, Tinh Tran; White, Nicholas J; Michon, Pascal; Siba, Peter; Tavul, Livingstone; Harrison, Gabrielle; Barry, Alyssa; Mueller, Ivo; Ferreira, Marcelo U; Karunaweera, Nadira; Randrianarivelojosia, Milijaona; Gao, Qi; Hubbart, Christina; Hart, Lee; Jeffery, Ben; Drury, Eleanor; Mead, Daniel; Kekre, Mihir; Campino, Susana; Manske, Magnus; Cornelius, Victoria J; MacInnis, Bronwyn; Rockett, Kirk A; Miles, Alistair; Rayner, Julian C; Fairhurst, Rick M; Nosten, Francois; Price, Ric N; Kwiatkowski, Dominic P
2016-01-01
The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for malaria elimination. To characterise the genetic diversity of this parasite within individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region, and analysed data on >300,000 SNPs and 9 regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at novel loci, and these varied markedly between geographical locations. These findings reveal a dynamic landscape of local evolutionary adaptation in P. vivax populations, and provide a foundation for genomic surveillance to guide effective strategies for control and elimination. PMID:27348299
Getnet, Gebeyaw; Getie, Sisay; Srivastava, Mitaly; Birhan, Wubet; Fola, Abebe A; Noedl, Harald
2015-11-01
To assess the performance of RDTs against nested polymerase chain reaction (nPCR) for the diagnosis of malaria in public health facilities in north-western Ethiopia. Cross-sectional study at public health facilities in North Gondar, Ethiopia, of 359 febrile patients with signs and symptoms consistent with malaria. Finger prick blood samples were collected for testing in a P. falciparum/pan-malaria RDTs and for molecular analysis. Sensitivity, specificity and predictive values were determined for the RDTs using nPCR as reference diagnostic method. Kappa value was determined to demonstrate the consistency of the results between the diagnostic tools. By RDTs, 22.28% (80/359) of patients tested positive for malaria, and by nPCR, 27.02% (97/359) did. In nPCR, 1.67% (6/359) and 0.28% (1/359) samples were positive for P. ovale and P. malariae, which had almost all tested negative in the RDTs. The sensitivity, specificity, positive and negative predictive values of RDTs for the diagnosis of malaria were 62.9%, 92.7%, 76.3% and 87.1%, respectively, with 0.589 measurement agreement between RDTs and nPCR. The sensitivity and specificity of RDTs for P. falciparum identification only were 70.8% and 95.2%, and 65.2% and 93.1% for P. vivax. Although RDTs are commonly used at health posts in resource-limited environments, their sensitivity and specificity for the detection and species identification of Plasmodium parasites were poor compared to nPCR, suggesting caution in interpreting RDTs results. Particularly, in the light of expanded efforts to eliminate malaria in the country, more sensitive diagnostic procedures will be needed. © 2015 John Wiley & Sons Ltd.
Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L
2009-10-12
This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.
Blood parasites from California ducks and geese
Herman, C.M.
1951-01-01
Blood smears were procured from 1,011 geese and ducks of 19 species from various locations in California. Parasites were found in 28 individuals. The parasites observed included Haemoproteus hermani, Leucocytozoon simondi, microfilaria, Plasmodium relictum (=P. biziurae), and Plasmodium sp. with elongate gametocytes. This is the first report of a natural infection with a Plasmodium in North American wild ducks.
2011-01-01
Background Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative. Methods HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental Plasmodium falciparum malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques. Results Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral P. falciparum malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental P. falciparum infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's X 2> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's X 2< 3.84). Presence of malaria in pregnancy and active placental malaria infection were 38% and 12% respectively. Placental infections were associated with poor pregnancy outcome [pre-term, still birth and low birth weight] (aOR = 37.9) and late pregnancy malaria infection (aOR = 20.9). Mosquito net use (aOR 2.1) and increasing parity (aOR 2.7) were associated with lower risk for malaria in pregnancy. Conclusion Use of HRP-2 RDTs to detect malaria in pregnancy in symptomatic women was accurate when performed by midwives. A combination of RDTs and microscopy provided the best means of detecting placental malaria. RDTs were not superior to microscopy in detecting placental infection. With a high sensitivity and specificity, RDTs could be a useful tool for assessing malaria in pregnancy, with further (cost-) effectiveness studies. PMID:22004666
Drug Evaluation in the Plasmodium Falciparum - Aotus Model
1994-03-15
falciparum infections. Althogh erythromycin is inactive against chloroquine -resistant falciparum infections, an analogue , azithromycin, is effective in vitro...response to chloroquine , and then expand the evaluation of WR 238605, a primaquine analogue against infections. Each cyopreserved sample was thawed rapidly...confirmedo.4 chloroquine -sensitive p. via -strai-n[as not Infective for unaltered Panamanian Aotus. 14. SUBJECT TERMS 15. NUMBER OF PAGES Malaria
Herman, C.M.; Knisley, J.O.; Knipling, G.D.
1971-01-01
Examination of blood films from wood ducks (Aix sponsa) from several northeastern states revealed Haemoproteus, Leucocytozoon, Plasmodium and a typanosome. Haemoproteus occurred in all areas sampled and birds of the year from Massachusetts demonstrated the highest incidence during the last 2 weeks in August. Leucocytozoon was most prevalent in more northern areas. P. circumflexum and a trypanosome are reported for the first time from this host.
Restoration with smoke-dependent species
Keeley, J.E.; Keeley, M.B.
2000-01-01
Examination of blood films from wood ducks (Aix sponsa) from several northeastern states revealed Haemoproteus, Leucocytozoon, Plasmodium and a typanosome. Haemoproteus occurred in all areas sampled and birds of the year from Massachusetts demonstrated the highest incidence during the last 2 weeks in August. Leucocytozoon was most prevalent in more northern areas. P. circumflexum and a trypanosome are reported for the first time from this host.
Silveira, Henrique; Ramos, Susana; Abrantes, Patrícia; Lopes, Luís Filipe; do Rosario, Virgílio E; Abrahamsen, Mitchell S
2007-01-01
Background The anti-malarial chloroquine can modulate the outcome of infection during the Plasmodium sporogonic development, interfering with Plasmodium gene expression and subsequently, with transmission. The present study sets to identify Plasmodium genes that might be regulated by chloroquine in the mosquito vector. Methods Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. Anopheles stephensi mosquitoes were fed on Plasmodium yoelii nigeriensis-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed Plasmodium transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis. Results Both transcripts were represented in Plasmodium EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine. Conclusion Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two Plasmodium genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling. PMID:17605769
Djaman, Joseph Allico; Olefongo, Dagnogo; Ako, Aristide Berenger; Roman, Jocelyne; Ngane, Vincent Foumane; Basco, Leonardo K; Tahar, Rachida
2017-07-01
Artemisinin-resistant malaria has not been reported from Africa, but resistance can possibly spread from Asia or arise independently in Africa. The emergence of artemisinin resistance in Africa can be monitored by molecular assay of Kelch 13 (K13) propeller sequences. A total of 251 archived DNA samples of Plasmodium falciparum isolates collected in 2002, 2003, and 2006 in Yaounde, Cameroon, and 47 samples collected in 2006 and 2013 in Abidjan, Côte d'Ivoire, were analyzed for K13-propeller sequence polymorphism. Only one isolate carried a mutant K13-propeller allele (E602D). None of the isolates carried the key mutant alleles (Y493H, R539T, I543T, and C580Y) associated with artemisinin resistance in Cambodia. The presence of the mutant allele was not correlated with in vitro response to dihydroartemisinin determined by the classical hypoxanthine incorporation assay. There was no evidence of K13 mutations associated with artemisinin resistance before and soon after the introduction of artemisinin-based combination therapies in Cameroon and Côte d'Ivoire.
Alam, Mohammad Shafiul; Elahi, Rubayet; Mohon, Abu Naser; Al-Amin, Hasan Mohammad; Kibria, Mohammad Golam; Khan, Wasif A.; Khanum, Hamida; Haque, Rashidul
2016-01-01
Despite the recommendation for the use of merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2), and glutamate-rich protein (glurp) genes as markers in drug efficacy studies by World Health Organization and their limited use in Bangladesh, the circulating Plasmodium falciparum population genetic structure has not yet been assessed in Bangladesh. This study presents a comprehensive report on the circulating P. falciparum population structure based on msp1, msp2, and glurp polymorphic gene markers in Bangladesh. Among the 130 pretreatment (day 0) P. falciparum samples from seven malaria-endemic districts, 14 distinct genotypes were observed for msp1, 20 for msp2, and 13 for glurp. Polyclonal infection was reported in 94.6% (N = 123) of the samples. Multiplicity of infection (MOI) for msp1 was the highest (1.5) among the MOIs of the markers. The heterozygosity for msp1, msp2, and glurp was 0.89, 0.93, and 0.83, respectively. Data according to different malaria-endemic areas are also presented and discussed. Bangladesh is considered as a malaria-hypoendemic country. However, the prevalence of polyclonal infection and the genetic diversity of P. falciparum do not represent hypoendemicity. PMID:27139455
Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax
Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile
2013-01-01
Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621
Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; DeOliveira, Rosane B.; Garrett, Wendy S.; Lu, Xi; O’Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N.; Kayatani, Alexander K. K.; Maira-Litràn, Tomas; Gening, Marina L.; Tsvetkov, Yury E.; Nifantiev, Nikolay E.; Bakaletz, Lauren O.; Pelton, Stephen I.; Golenbock, Douglas T.; Pier, Gerald B.
2013-01-01
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)–linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675
Delhaye, Jessica; Glaizot, Olivier; Christe, Philippe
2018-05-09
Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission.
Falq, Grégoire; Van Den Bergh, Rafael; De Smet, Martin; Etienne, William; Nguon, Chea; Rekol, Huy; Imwong, Mallika; Dondorp, Arjen; Kindermans, Jean-Marie
2016-09-01
In Cambodia, elimination of artemisinin resistance through direct elimination of the Plasmodium falciparum parasite may be the only strategy. Prevalence and incidence at district and village levels were assessed in Chey Saen district, Preah Vihear province, North of Cambodia. Molecular and clinical indicators for artemisinin resistance were documented. A cross sectional prevalence survey was conducted at village level in the district of Chey Saen from September to October 2014. Plasmodium spp. was assessed with high volume quantitative real-time polymerase chain reaction (qPCR). Plasmodium falciparum-positive samples were screened for mutations in the k13-propeller domain gene. Treatment effectiveness was established after 28 days (D28) using the same qPCR technique. Data from the provincial surveillance system targeting symptomatic cases, supported by Médecins Sans Frontières (MSF), were used to assess incidence. District P. falciparum prevalence was of 0.74 % [0.41; 1.21]; village prevalence ranged from 0 to 4.6 % [1.4; 10.5]. The annual incidence of P. falciparum was 16.8 cases per 1000 inhabitants in the district; village incidence ranged from 1.3 to 54.9 for 1000 inhabitants. Two geographical clusters with high number of cases were identified by both approaches. The marker for artemisinin resistance was found in six samples out of the 11 tested (55 %). 34.9 % of qPCR blood analysis of symptomatic patients were still positive at D28. The overall low prevalence of P. falciparum was confirmed in Chey Saen district in Cambodia, while there were important variations between villages. Symptomatic cases had a different pattern and were likely acquired outside the villages. It illustrates the importance of prevalence surveys in targeting interventions for elimination. Mutations in the k13-propeller domain gene (C580Y), conferring artemisinin resistance, were highly prevalent in both symptomatic and asymptomatic cases (realizing the absolute figures remain low). Asymptomatic individuals could be an additional reservoir for artemisinin resistance. The low effectiveness of dihydroartemisinin-piperaquine (DHA-PPQ) for symptomatic cases indicates that PPQ is no longer able to complement the reduced potency of DHA to treat falciparum malaria and highlights the need for an alternative first-line treatment.
Tadesse, Fitsum G; van den Hoogen, Lotus; Lanke, Kjerstin; Schildkraut, Jodie; Tetteh, Kevin; Aseffa, Abraham; Mamo, Hassen; Sauerwein, Robert; Felger, Ingrid; Drakeley, Chris; Gadissa, Endalamaw; Bousema, Teun
2017-03-03
The widespread presence of low-density asymptomatic infections with concurrent gametocytes may be a stumbling block for malaria elimination. This study investigated the asymptomatic reservoir of Plasmodium falciparum and Plasmodium vivax infections in schoolchildren from five settings in northwest Ethiopia. Two cross-sectional surveys were conducted in June and November 2015, enrolling 551 students from five schools and 294 students from three schools, respectively. Finger prick whole blood and plasma samples were collected. The prevalence and density of P. falciparum and P. vivax parasitaemia and gametocytaemia were determined by 18S rRNA quantitative PCR (qPCR) and pfs25 and pvs25 reverse transcriptase qPCR. Antibodies against blood stage antigens apical membrane antigen-1 (AMA-1) and merozoite surface protein-1 (MSP-1 19 ) were measured for both species. Whilst only 6 infections were detected by microscopy in 881 slides (0.7%), 107 of 845 blood samples (12.7%) were parasite positive by (DNA-based) qPCR. qPCR parasite prevalence between sites and surveys ranged from 3.8 to 19.0% for P. falciparum and 0.0 to 9.0% for P. vivax. The median density of P. falciparum infections (n = 85) was 24.4 parasites/µL (IQR 18.0-34.0) and the median density of P. vivax infections (n = 28) was 16.4 parasites/µL (IQR 8.8-55.1). Gametocyte densities by (mRNA-based) qRT-PCR were strongly associated with total parasite densities for both P. falciparum (correlation coefficient = 0.83, p = 0.010) and P. vivax (correlation coefficient = 0.58, p = 0.010). Antibody titers against P. falciparum AMA-1 and MSP-1 19 were higher in individuals who were P. falciparum parasite positive in both surveys (p < 0.001 for both comparisons). This study adds to the available evidence on the wide-scale presence of submicroscopic parasitaemia by quantifying submicroscopic parasite densities and concurrent gametocyte densities. There was considerable heterogeneity in the occurrence of P. falciparum and P. vivax infections and serological markers of parasite exposure between the examined low endemic settings in Ethiopia.
[The diagnosis of malaria by the thick film and the QBC: a comparative study of both technics].
Cabezos, J; Bada, J L
1993-06-12
The diagnosis of paludism is important because of the severity of the clinical picture caused by Plasmodium falciparum, the increasing number of travellers to endemic zones and the emigration from these zones. A comparative study of the QBC techniques (staining with acridin orange and observation with ultraviolet light) and the thick film with Giemsa staining was carried out. The QBC and thick film were performed parallelly for 17 months in a total of 623 samples pertaining to subjects from endemic zones of paludism (emigrants, immigrants and travellers). Of the 623 samples studied 49 were positive for paludism by both techniques. Ten were positive with only the thick film and six were positive only with QBC. The sensitivity of QBC versus thick film was 83% and specificity 98.9%. The time used to determine diagnosis with the QBC technique ranged from 6 to 12 minutes from withdrawal of the sample, while with the thick film the time spent was more than 2 hours. The cases positive by thick film and negative with QBC corresponded to patients with very low parasitation. The intensity of parasitation was difficult to determine quantitatively by QBC. Although the QBC technique has the advantage of speed it is inexact with respect to the quantification of parasitemia. Moreover, it is less sensitive than the thick film in patient with very low parasitations and cannot thus substitute the thick film.
Torres, J R; Villegas, L; Perez, H; Suarez, L; Torres V, M A; Campos, M
2003-03-01
A cluster of 16 cases of hyper-reactive malarious splenomegaly (HMS) with severe, acute haemolysis, from an isolated, Venezuelan, Yanomami population, was prospectively investigated. Nine (69%) of the 13 HMS sera investigated but only one (7%) of 14 control sera (P < 0.005) contained elevated titres (of at least 1:32) of complement-fixing IgM cold agglutinins (CA). The CA detected had specificity for both the I and i blood-group antigens (with a relative predominance of anti-I) and wide thermal stability. The mean reciprocal CA titre was much higher for the HMS sera than for the control samples (59.16 v. 2.28; P < 0.001). Indirect tests for antiglobulin were positive for two of the 13 HMS cases (but none of 14 controls) investigated; all of the direct tests for antiglobulin gave negative results. The seven HMS cases checked, using an assay based on a nested PCR which amplified species-specific ribosomal sequences from Plasmodium vivax or P. falciparum, each yielded the PCR product that indicated P. vivax infection. However, only six (25%) of the 24 control samples (collected, at the same time as the HMS samples, from asymptomatic adults from the same Yanomami population) were PCR-positive (P < 0.001). In some cases at least, the acute severe episodes of haemolysis occasionally seen in HMS appear to be associated with an auto-immune, cold-agglutinin-mediated response triggered by non-patent parasitaemias.
A Plasmodium falciparum copper-binding membrane protein with copper transport motifs
2012-01-01
Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769
Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.
Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas
2010-12-15
Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production of edible vaccines can be genetically produced in Chlamydomonas.
Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity
Matar, Caline G.; Anthony, Neil R.; O’Flaherty, Brigid M.; Jacobs, Nathan T.; Priyamvada, Lalita; Engwerda, Christian R.; Speck, Samuel H.; Lamb, Tracey J.
2015-01-01
Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission. PMID:25996913
Vo Duy, S; Besteiro, S; Berry, L; Perigaud, C; Bressolle, F; Vial, H J; Lefebvre-Tournier, I
2012-08-20
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-(13)C(4) and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d(9)-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r(2)>0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50pmol to 100fmol/3×10(7)cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites. Copyright © 2012 Elsevier B.V. All rights reserved.
Roh, Michelle E.; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Mwanga-Amumpaire, Juliet; Boum, Yap; Kiwanuka, Gertrude N.; Parikh, Sunil
2016-01-01
Despite the potential benefit of primaquine in reducing Plasmodium falciparum transmission and radical cure of Plasmodium vivax and Plasmodium ovale infections, concerns over risk of hemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) have hampered its deployment. A cross-sectional survey was conducted in 2014 to assess the G6PDd prevalence among 631 children between 6 and 59 months of age in southwestern Uganda, an area where primaquine may be a promising control measure. G6PDd prevalence was determined using three detection methods: a quantitative G6PD enzyme activity assay (Trinity Biotech® G-6-PDH kit), a qualitative point-of-care test (CareStart™ G6PD rapid diagnostic test [RDT]), and molecular detection of the G6PD A− G202A allele. Qualitative tests were compared with the gold standard quantitative assay. G6PDd prevalence was higher by RDT (8.6%) than by quantitative assay (6.8%), using a < 60% activity threshold. The RDT performed optimally at a < 60% threshold and demonstrated high sensitivity (≥ 90%) and negative predictive values (100%) across three activity thresholds (below 60%, 30%, and 40%). G202A allele frequency was 6.4%, 7.9%, and 6.8% among females, males, and overall, respectively. Notably, over half of the G202A homo-/hemizygous children expressed ≥ 60% enzyme activity. Overall, the CareStart™ G6PD RDT appears to be a viable screening test to accurately identify individuals with enzyme activities below 60%. The low prevalence of G6PDd across all three diagnostic modalities and absence of severe deficiency in our study suggests that there is little barrier to the use of single-dose primaquine in this region. PMID:27672207
Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea
Zimmerman, Peter A.; Woolley, Ian; Masinde, Godfred L.; Miller, Stephanie M.; McNamara, David T.; Hazlett, Fred; Mgone, Charles S.; Alpers, Michael P.; Genton, Blaise; Boatin, B. A.; Kazura, James W.
1999-01-01
In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria. PMID:10570183
Biodiversity can help prevent malaria outbreaks in tropical forests.
Laporta, Gabriel Zorello; Lopez de Prado, Paulo Inácio Knegt; Kraenkel, Roberto André; Coutinho, Renato Mendes; Sallum, Maria Anice Mureb
2013-01-01
Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text]) estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration.
Pereira, Virginia Araujo; Sánchez-Arcila, Juan Camilo; Vasconcelos, Mariana Pinheiro Alves; Ferreira, Amanda Ribeiro; de Souza Videira, Lorene; Teva, Antonio; Perce-da-Silva, Daiana; Marques, Maria Teresa Queiroz; de Carvalho, Luzia Helena; Banic, Dalma Maria; Pôrto, Luiz Cristóvão Sobrino; Oliveira-Ferreira, Joseli
2018-05-14
Brazil has seen a great decline in malaria and the country is moving towards elimination. However, for eventual elimination, the control program needs efficient tools in order to monitor malaria exposure and transmission. In this study, we aimed to evaluate whether seroprevalence to the circumsporozoite protein (CSP) is a good tool for monitoring the exposure to and/or evaluating the burden and distribution of Plasmodium species in the Brazilian Amazon. Cross-sectional surveys were conducted in a rural area of Porto Velho, Rondônia state. Parasite infection was detected by microscopy and polymerase chain reaction. Antibodies to the sporozoite CSP repeats of Plasmodium vivax, P. falciparum, and P. malariae (PvCS, PfCS, and PmCS) were detected using the enzyme-linked immunosorbent assay technique. Human leukocyte antigen (HLA)-DRB1 and DQB1 genes were typed using Luminex® xMAP® technology. The prevalence of immunoglobulin G against P. vivax CSP peptide (62%) was higher than P. falciparum (49%) and P. malariae (46%) CSP peptide. Most of the studied individuals had antibodies to at least one of the three peptides (72%), 34% had antibodies to all three peptides and 28% were non-responders. Although the majority of the population was not infected at the time of the survey, 74.3% of parasite-negative individuals had antibodies to at least one of the CSPs. Importantly, among individuals carrying the haplotypes DRB1*04~DQB1*03, there was a significantly higher frequency of PfCS responders, and DRB1*16~DQB1*03 haplotype for PvCS and PfCS responders. In contrast, HLA-DRB1*01 and HLA-DQB1*05 allelic groups were associated with a lack of antibodies to P. vivax and P. falciparum CSP repeats, and the haplotype DRB1*01~DQB1*05 was also associated with non-responders, including non-responders to P. malariae. Our results show that in low transmission settings, naturally acquired antibody responses against the CSP repeats of P. vivax, P. falciparum, and P. malariae in a single cross-sectional study may not represent a valuable marker for monitoring recent malaria exposure, especially in an area with a high prevalence of P. vivax. Furthermore, HLA class II molecules play an important role in antibody response and require further study with a larger sample size. It will be of interest to consider HLA analysis when using serosurveillance to monitor malaria exposure among genetically diverse populations.