Science.gov

Sample records for plasmodium vivax population

  1. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  2. Genetic variation and recurrent parasitaemia in Peruvian Plasmodium vivax populations

    PubMed Central

    2014-01-01

    Background Plasmodium vivax is a predominant species of malaria in parts of South America and there is increasing resistance to drugs to treat infections by P. vivax. The existence of latent hypnozoites further complicates the ability to classify recurrent infections as treatment failures due to relapse, recrudescence of hyponozoites or re-infections. Antigen loci are putatively under natural selection and may not be an optimal molecular marker to define parasite haplotypes in paired samples. Putatively neutral microsatellite loci, however, offer an assessment of neutral haplotypes. The objective here was to assess the utility of neutral microsatellite loci to reconcile cases of recurrent parasitaemia in Amazonian P. vivax populations in Peru. Methods Patient blood samples were collected from three locations in or around Iquitos in the Peruvian Amazon. Five putatively neutral microsatellite loci were characterized from 445 samples to ascertain the within and amongst population variation. A total of 30 day 0 and day of recurrent parasitaemia samples were characterized at microsatellite loci and five polymorphic antigen loci for haplotype classification. Results The genetic diversity at microsatellite loci was consistent with neutral levels of variation measured in other South American P. vivax populations. Results between antigen and microsatellite loci for the 30 day 0 and day of recurrent parasitaemia samples were the same for 80% of the pairs. The majority of non-concordant results were the result of differing alleles at microsatellite loci. This analysis estimates that 90% of the paired samples with the same microsatellite haplotype are unlikely to be due to a new infection. Conclusions A population-level approach was used to yield a better estimate of the probability of a new infection versus relapse or recrudescence of homologous hypnozoites; hypnozoite activation was common for this cohort. Population studies are critical with the evaluation of genetic

  3. Plasmodium vivax Diversity and Population Structure across Four Continents

    PubMed Central

    Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  4. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax

    PubMed Central

    Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M

    2017-01-01

    Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally. PMID:27348298

  5. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax.

    PubMed

    Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M

    2016-08-01

    Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally.

  6. Plasmodium vivax populations revisited: mitochondrial genomes of temperate strains in Asia suggest ancient population expansion

    PubMed Central

    2012-01-01

    Background Plasmodium vivax is the most widely distributed human malaria parasite outside of Africa, and its range extends well into the temperate zones. Previous studies provided evidence for vivax population differentiation, but temperate vivax parasites were not well represented in these analyses. Here we address this deficit by using complete mitochondrial (mt) genome sequences to elucidate the broad genetic diversity and population structure of P. vivax from temperate regions in East and Southeast Asia. Results From the complete mtDNA sequences of 99 clinical samples collected in China, Myanmar and Korea, a total of 30 different haplotypes were identified from 26 polymorphic sites. Significant differentiation between different East and Southeast Asian parasite populations was observed except for the comparison between populations from Korea and southern China. Haplotype patterns and structure diversity analysis showed coexistence of two different groups in East Asia, which were genetically related to the Southeast Asian population and Myanmar population, respectively. The demographic history of P. vivax, examined using neutrality tests and mismatch distribution analyses, revealed population expansion events across the entire P. vivax range and the Myanmar population. Bayesian skyline analysis further supported the occurrence of ancient P. vivax population expansion. Conclusions This study provided further resolution of the population structure and evolution of P. vivax, especially in temperate/warm-temperate endemic areas of Asia. The results revealed divergence of the P. vivax populations in temperate regions of China and Korea from other populations. Multiple analyses confirmed ancient population expansion of this parasite. The extensive genetic diversity of the P. vivax populations is consistent with phenotypic plasticity of the parasites, which has implications for malaria control. PMID:22340143

  7. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination

    PubMed Central

    2012-01-01

    Traditionally, infection with Plasmodium vivax was thought to be benign and self-limiting, however, recent evidence has demonstrated that infection with P. vivax can also result in severe illness and death. Research into P. vivax has been relatively neglected and much remains unknown regarding the biology, pathogenesis and epidemiology of this parasite. One of the fundamental factors governing transmission and immunity is parasite diversity. An understanding of parasite population genetic structure is necessary to understand the epidemiology, diversity, distribution and dynamics of natural P. vivax populations. In addition, studying the population structure of genes under immune selection also enables investigation of the dynamic interplay between transmission and immunity, which is crucial for vaccine development. A lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of Plasmodium falciparum, yet P. vivax remains as a substantial obstacle. With malaria elimination back on the global agenda, mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the roll-out of interventions. A detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured. This paper presents an overview of what is known and what is yet to be fully understood regarding P. vivax population genetics, as well as the importance and application of P. vivax population genetics studies. PMID:22233585

  8. Population Genetics of Plasmodium vivax in the Peruvian Amazon

    PubMed Central

    Delgado-Ratto, Christopher; Gamboa, Dionicia; Soto-Calle, Veronica E.; Van den Eede, Peter; Torres, Eliana; Sánchez-Martínez, Luis; Contreras-Mancilla, Juan; Rosanas-Urgell, Anna; Rodriguez Ferrucci, Hugo; Llanos-Cuentas, Alejandro; Erhart, Annette

    2016-01-01

    Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas (IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described

  9. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    PubMed

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  10. Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria

    PubMed Central

    Gonzalez-Ceron, Lilia; Carlton, Jane M.; Gueye, Amy; Fay, Michael; McCutchan, Thomas F.; Su, Xin-zhuan

    2008-01-01

    Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control. PMID:18385220

  11. Plasmodium vivax: who cares?

    PubMed Central

    Galinski, Mary R; Barnwell, John W

    2008-01-01

    More attention is being focused on malaria today than any time since the world's last efforts to achieve eradication over 40 years ago. The global community is now discussing strategies aimed at dramatically reducing malarial disease burden and the eventual eradication of all types of malaria, everywhere. As a consequence, Plasmodium vivax, which has long been neglected and mistakenly considered inconsequential, is now entering into the strategic debates taking place on malaria epidemiology and control, drug resistance, pathogenesis and vaccines. Thus, contrary to the past, the malaria research community is becoming more aware and concerned about the widespread spectrum of illness and death caused by up to a couple of hundred million cases of vivax malaria each year. This review brings these issues to light and provides an overview of P. vivax vaccine development, then and now. Progress had been slow, given inherent research challenges and minimal support in the past, but prospects are looking better for making headway in the next few years. P. vivax, known to invade the youngest red blood cells, the reticulocytes, presents a strong challenge towards developing a reliable long-term culture system to facilitate needed research. The P. vivax genome was published recently, and vivax researchers now need to coordinate efforts to discover new vaccine candidates, establish new vaccine approaches, capitalize on non-human primate models for testing, and investigate the unique biological features of P. vivax, including the elusive P. vivax hypnozoites. Comparative studies on both P. falciparum and P. vivax in many areas of research will be essential to eradicate malaria. And to this end, the education and training of future generations of dedicated "malariologists" to advance our knowledge, understanding and the development of new interventions against each of the malaria species infecting humans also will be essential. PMID:19091043

  12. Genetic diversity of Plasmodium vivax population in Anhui province of China

    PubMed Central

    2014-01-01

    Background Although the numbers of malaria cases in China have been declining in recent years, outbreaks of Plasmodium vivax malaria were still being reported in rural areas south of the Yellow River. To better understand the transmission dynamics of P. vivax parasites in China, the extent of genetic diversity of P. vivax populations circulating in Bozhou of Anhui province of China were investigated using three polymorphic genetic markers: merozoite surface proteins 1 and 3α (pvmsp-1 and pvmsp-3α) and circumsporozoite protein (pvcsp). Methods Forty-five P. vivax clinical isolates from Bouzhou of Anhui province were collected from 2009 to 2010 and were analysed using PCR/RFLP or DNA sequencing. Results Seven and six distinct allelic variants were identified using PCR/RFLP analysis of pvmsp-3α with HhaI and AluI, respectively. DNA sequence analysis of pvmsp-1 (variable block 5) revealed that there were Sal-I and recombinant types but not Belem type, and seven distinct allelic variants in pvmsp-1 were detected, with recombinant subtype 2 (R2) being predominant (66.7%). All the isolates carried pvcsp with VK210 type but not VK247 or P. vivax-like types in the samples. Sequence analysis of pvcsp gene revealed 12 distinct allelic variants, with VK210-1 being predominant (41.5%). Conclusions The present data indicate that there is some degree of genetic diversity among P. vivax populations in Anhui province of China. The genetic data obtained may assist in the surveillance of P. vivax infection in endemic areas or in tracking potential future disease outbreak. PMID:24401153

  13. Attacking Plasmodium vivax

    PubMed Central

    Baird, J. Kevin

    2016-01-01

    Discussions beginning in 2012 ultimately led to a landmark document from the World Health Organization (WHO) titled, Control and Elimination of Plasmodium vivax: A Technical Brief, published in July 2015. That body of work represents multiple expert consultations coordinated by the WHO Global Malaria Program, along with technical consensus gathering from national malaria control programs via the WHO regional offices around the globe. That document thus represents thoroughly vetted state-of-the-art recommendations for dealing specifically with P. vivax, the first assembly of such by the WHO. This supplement to the journal was commissioned by the WHO and compiles the very substantial body of evidence and analysis informing those recommendations. This introductory narrative to the supplement provides the historical and technological context of global strategy for combatting P. vivax and reducing the burdens of morbidity and mortality it imposes. PMID:27708186

  14. Genetic diversity and population structure of Plasmodium vivax in Central China

    PubMed Central

    2014-01-01

    Background In Central China the declining incidence of Plasmodium vivax has been interrupted by epidemic expansions and imported cases. The impact of these changes on the local parasite population, and concurrent risks of future resurgence, was assessed. Methods Plasmodium vivax isolates collected from Anhui and Jiangsu provinces, Central China between 2007 and 2010 were genotyped using capillary electrophoresis at seven polymorphic short tandem repeat markers. Spatial and temporal analyses of within-host and population diversity, population structure, and relatedness were conducted on these isolates. Results Polyclonal infections were infrequent in the 94 isolates from Anhui (4%) and 25 from Jiangsu (12%), with a trend for increasing frequency from 2008 to 2010 (2 to 19%) when combined. Population diversity was high in both provinces and across the years tested (HE = 0.8 – 0.85). Differentiation between Anhui and Jiangsu was modest (F’ ST  = 0.1). Several clusters of isolates with identical multi-locus haplotypes were observed across both Anhui and Jiangsu. Linkage disequilibrium was strong in both populations and in each year tested (IAS = 0.2 – 0.4), but declined two- to four-fold when identical haplotypes were accounted for, indicative of occasional epidemic transmission dynamics. None of five imported isolates shared identical haplotypes to any of the central Chinese isolates. Conclusions The population genetic structure of P. vivax in Central China highlights unstable transmission, with limited barriers to gene flow between the central provinces. Despite low endemicity, population diversity remained high, but the reservoirs sustaining this diversity remain unclear. The challenge of imported cases and risks of resurgence emphasize the need for continued surveillance to detect early warning signals. Although parasite genotyping has potential to inform the management of outbreaks, further studies are required to identify suitable marker panels

  15. The anaemia of Plasmodium vivax malaria.

    PubMed

    Douglas, Nicholas M; Anstey, Nicholas M; Buffet, Pierre A; Poespoprodjo, Jeanne R; Yeo, Tsin W; White, Nicholas J; Price, Ric N

    2012-04-27

    Plasmodium vivax threatens nearly half the world's population and is a significant impediment to achievement of the millennium development goals. It is an important, but incompletely understood, cause of anaemia. This review synthesizes current evidence on the epidemiology, pathogenesis, treatment and consequences of vivax-associated anaemia. Young children are at high risk of clinically significant and potentially severe vivax-associated anaemia, particularly in countries where transmission is intense and relapses are frequent. Despite reaching lower densities than Plasmodium falciparum, Plasmodium vivax causes similar absolute reduction in red blood cell mass because it results in proportionately greater removal of uninfected red blood cells. Severe vivax anaemia is associated with substantial indirect mortality and morbidity through impaired resilience to co-morbidities, obstetric complications and requirement for blood transfusion. Anaemia can be averted by early and effective anti-malarial treatment.

  16. Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon

    PubMed Central

    2010-01-01

    Background Peru is one of the Latin American countries with the highest malaria burden, mainly due to Plasmodium vivax infections. However, little is known about P. vivax transmission dynamics in the Peruvian Amazon, where most malaria cases occur. The genetic diversity and population structure of P. vivax isolates collected in different communities around Iquitos city, the capital of the Peruvian Amazon, was determined. Methods Plasmodium vivax population structure was determined by multilocus genotyping with 16 microsatellites on 159 P. vivax infected blood samples (mono-infections) collected in four sites around Iquitos city. The population characteristics were assessed only in samples with monoclonal infections (n = 94), and the genetic diversity was determined by calculating the expected heterozygosity and allelic richness. Both linkage disequilibrium and the genetic differentiation (θ) were estimated. Results The proportion of polyclonal infections varied substantially by site (11% - 70%), with the expected heterozygosity ranging between 0.44 and 0.69; no haplotypes were shared between the different populations. Linkage disequilibrium was present in all populations (IAS 0.14 - 0.61) but was higher in those with fewer polyclonal infections, suggesting inbreeding and a clonal population structure. Strong population differentiation (θ = 0.45) was found and the Bayesian inference cluster analysis identified six clusters based on distinctive allele frequencies. Conclusion The P. vivax populations circulating in the Peruvian Amazon basin are genetically diverse, strongly differentiated and they have a low effective recombination rate. These results are in line with the low and clustered pattern of malaria transmission observed in the region around Iquitos city. PMID:20525233

  17. The International Limits and Population at Risk of Plasmodium vivax Transmission in 2009

    PubMed Central

    Guerra, Carlos A.; Howes, Rosalind E.; Patil, Anand P.; Gething, Peter W.; Van Boeckel, Thomas P.; Temperley, William H.; Kabaria, Caroline W.; Tatem, Andrew J.; Manh, Bui H.; Elyazar, Iqbal R. F.; Baird, J. Kevin; Snow, Robert W.; Hay, Simon I.

    2010-01-01

    Background A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009. Methodology The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (<0.1 case per 1,000 people per annum (p.a.)) and stable (≥0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially. Conclusions After more than a century of

  18. Effects of transmission-blocking immunity on Plasmodium vivax infections in Anopheles albimanus populations.

    PubMed

    Ramsey, J M; Salinas, E; Rodriguez, M H; Beaudoin, R L

    1994-02-01

    Two colonized populations of Anopheles albimanus isolated from the Suchiate region, Chiapas State, Mexico, were compared for their susceptibility to coindigenous Plasmodium vivax. Groups of mosquitoes were fed in vitro with either autologous donor blood or the same blood cells substituted with serum negative for anti-gametocyte antibody. Significant differences in susceptibility between the 2 colonies were encountered if the autologous blood from a patient was fed to mosquitoes: mean infection rates of AnA2-positive groups was double that in AnA1 mosquitoes. Consistent for both colonies, only 23.6% of samples positive from malaria-negative serum-substituted blood were infected with an autologous blood feed. Vector competence in these mosquito populations was partially linked to the human populations's immune response to the parasite.

  19. Diagnosis and Treatment of Plasmodium vivax Malaria

    PubMed Central

    Baird, J. Kevin; Valecha, Neena; Duparc, Stephan; White, Nicholas J.; Price, Ric N.

    2016-01-01

    The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P. vivax malaria. PMID:27708191

  20. Acquired transmission-blocking immunity to Plasmodium vivax in a population of southern coastal Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Rodríguez, M H

    1996-05-01

    Naturally acquired transmission-blocking immunity to Plasmodium vivax was studied in three groups of patients from the southern coast of Mexico: primary cases (Group A, 61% of the study population), secondary cases with the prior infection seven or more months earlier (Group B, 23%), and secondary cases with the previous malaria experience within six months of the present study (Group C, 16%). Anopheles albimanus mosquitoes were fed with patients' infected blood cells in the presence of autologous or control serum, with or without heat-inactivation. Patients from all three groups had transmission-blocking immunity, although the quality and quantity of this blocking activity was significantly higher in the two secondary patient groups (B and C). Only primary malaria cases produced transmission-enhancing activity (23% of the cases), which was dependent on heat-labile serum components. The levels of patient group transmission-blocking immunity and mosquito infectivity were used to calculate the probabilities of a mosquito becoming infective after taking a blood meal from a P. vivax-infected patient from any one of the three groups. This probability was 0.025, with Group A patients providing the major source of these infections (92% risk from Group A and 4% risk for Groups B and C).

  1. The Plasmodium vivax Merozoite Surface Protein 3β Sequence Reveals Contrasting Parasite Populations in Southern and Northwestern Thailand

    PubMed Central

    Kuamsab, Napaporn; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Jongwutiwes, Somchai; Cui, Liwang

    2014-01-01

    Background Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand. Methodology We employed the P. vivax merozoite surface protein 3β (PvMSP3β) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3β gene and examined its genetic diversity and molecular evolution between the parasite populations. Principal Findings Of 58 isolates containing single PvMSP3β alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77±0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3β (HD = 1.0). In contrast, the southern parasite population displayed a single PvMSP3β allele (HD = 0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas. Conclusion Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax

  2. Plasmodium vivax Malaria in Cambodia

    PubMed Central

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  3. Global Epidemiology of Plasmodium vivax

    PubMed Central

    Howes, Rosalind E.; Battle, Katherine E.; Mendis, Kamini N.; Smith, David L.; Cibulskis, Richard E.; Baird, J. Kevin; Hay, Simon I.

    2016-01-01

    Plasmodium vivax is the most widespread human malaria, putting 2.5 billion people at risk of infection. Its unique biological and epidemiological characteristics pose challenges to control strategies that have been principally targeted against Plasmodium falciparum. Unlike P. falciparum, P. vivax infections have typically low blood-stage parasitemia with gametocytes emerging before illness manifests, and dormant liver stages causing relapses. These traits affect both its geographic distribution and transmission patterns. Asymptomatic infections, high-risk groups, and resulting case burdens are described in this review. Despite relatively low prevalence measurements and parasitemia levels, along with high proportions of asymptomatic cases, this parasite is not benign. Plasmodium vivax can be associated with severe and even fatal illness. Spreading resistance to chloroquine against the acute attack, and the operational inadequacy of primaquine against the multiple attacks of relapse, exacerbates the risk of poor outcomes among the tens of millions suffering from infection each year. Without strategies accounting for these P. vivax-specific characteristics, progress toward elimination of endemic malaria transmission will be substantially impeded. PMID:27402513

  4. Population genetics and natural selection in the gene encoding the Duffy binding protein II in Iranian Plasmodium vivax wild isolates.

    PubMed

    Valizadeh, Vahideh; Zakeri, Sedigheh; Mehrizi, Akram Abouie; Djadid, Navid Dinparast

    2014-01-01

    Region II of Duffy binding protein (PvDBP-II) is one of the most promising blood-stage vaccine candidate antigens against Plasmodium vivax and having knowledge of the nature and genetic polymorphism of PvDBP-II among global P. vivax isolates is important for developing a DBP-based vaccine. By using PCR and sequencing, the present molecular population genetic approach was carried out to investigate sequence diversity and natural selection of dbp-II gene in 63 P. vivax isolates collected from unstable and low transmission malaria-endemic areas of Iran during 2008-2012. Also, phylogenetic analysis, the diversifying natural selection, and recombination across the pvdbp-II gene, including regions containing B-cell epitopes were analyzed using the DnaSP and MEGA4 programs. Twenty two single nucleotide polymorphisms (SNPs, including 20 non-synonymous and 2 synonymous) were identified in PvDBP-II, resulting in 16 different PvDBP-II haplotypes among the Iranian P. vivax isolates. High binding inhibitory B-cell epitope (H3) overlapping with intrinsically unstructured/disordered region (aa: 384-392) appeared to be highly polymorphic (D384G/E385K/ K386N/Q/R390H), and positive selective pressure acted on this region. Most of the polymorphic amino acids, which are located on the surface of the protein, are under selective pressure that implies increased recombination events and exposure to the human immune system. In summary, PvDBP-II gene displays genetic polymorphism among Iranian P. vivax isolates and it is under selective pressure. Mutations, recombination, and positive selection seem to play a role in the resulting genetic diversity, and phylogenetic analysis of DNA sequences demonstrates that Iranian isolates represent a sample of the global population. These results are useful for understanding the nature of the P. vivax population in Iran and also for development of PvDBP-II-based malaria vaccine.

  5. Functional Antibodies against VAR2CSA in Nonpregnant Populations from Colombia Exposed to Plasmodium falciparum and Plasmodium vivax

    PubMed Central

    Doritchamou, Justin; Arango, Eliana M.; Cabrera, Ana; Arroyo, Maria Isabel; Kain, Kevin C.; Ndam, Nicaise Tuikue; Maestre, Amanda

    2014-01-01

    In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region. PMID:24686068

  6. Plasmodium vivax Transmission in Africa

    PubMed Central

    Howes, Rosalind E.; Reiner Jr., Robert C.; Battle, Katherine E.; Longbottom, Joshua; Mappin, Bonnie; Ordanovich, Dariya; Tatem, Andrew J.; Drakeley, Chris; Gething, Peter W.; Zimmerman, Peter A.; Smith, David L.; Hay, Simon I.

    2015-01-01

    Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well

  7. Plasmodium vivax Transmission in Africa.

    PubMed

    Howes, Rosalind E; Reiner, Robert C; Battle, Katherine E; Longbottom, Joshua; Mappin, Bonnie; Ordanovich, Dariya; Tatem, Andrew J; Drakeley, Chris; Gething, Peter W; Zimmerman, Peter A; Smith, David L; Hay, Simon I

    2015-11-01

    Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well

  8. Epidemiology of Plasmodium vivax Malaria in Peru.

    PubMed

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E; Moreno, Marta; Lescano, Andres G; Sanchez, Juan F; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2016-12-28

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.

  9. Epidemiology of Plasmodium vivax Malaria in Peru

    PubMed Central

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E.; Moreno, Marta; Lescano, Andres G.; Sanchez, Juan F.; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2016-01-01

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. PMID:27799639

  10. Plasmodium vivax but Not Plasmodium falciparum Blood-Stage Infection in Humans Is Associated with the Expansion of a CD8+ T Cell Population with Cytotoxic Potential

    PubMed Central

    Burel, Julie G.; Apte, Simon H.; McCarthy, James S.; Doolan, Denise L.

    2016-01-01

    P. vivax and P. falciparum parasites display different tropism for host cells and induce very different clinical symptoms and pathology, suggesting that the immune responses required for protection may differ between these two species. However, no study has qualitatively compared the immune responses to P. falciparum or P. vivax in humans following primary exposure and infection. Here, we show that the two species differ in terms of the cellular immune responses elicited following primary infection. Specifically, P. vivax induced the expansion of a subset of CD8+ T cells expressing the activation marker CD38, whereas P. falciparum induced the expansion of CD38+ CD4+ T cells. The CD38+ CD8+ T cell population that expanded following P. vivax infection displayed greater cytotoxic potential compared to CD38- CD8+ T cells, and compared to CD38+ CD8+ T cells circulating during P. falciparum infection. We hypothesize that P. vivax infection leads to a stronger CD38+ CD8+ T cell activation because of its preferred tropism for MHC-I-expressing reticulocytes that, unlike mature red blood cells, can present antigen directly to CD8+ T cells. This study provides the first line of evidence to suggest an effector role for CD8+ T cells in P. vivax blood-stage immunity. It is also the first report of species-specific differences in the subset of T cells that are expanded following primary Plasmodium infection, suggesting that malaria vaccine development may require optimization according to the target parasite. Trial Registration anzctr.org.au ACTRN12612000814875; anzctr.org.au ACTRN12613000565741; anzctr.org.au ACTRN12613001040752; ClinicalTrials.gov NCT02281344; anzctr.org.au ACTRN12612001096842; anzctr.org.au ACTRN12613001008718 PMID:27930660

  11. Epidemiology of Plasmodium vivax in Indonesia

    PubMed Central

    Surjadjaja, Claudia; Surya, Asik; Baird, J. Kevin

    2016-01-01

    Endemic malaria occurs across much of the vast Indonesian archipelago. All five species of Plasmodium known to naturally infect humans occur here, along with 20 species of Anopheles mosquitoes confirmed as carriers of malaria. Two species of plasmodia cause the overwhelming majority and virtually equal shares of malaria infections in Indonesia: Plasmodium falciparum and Plasmodium vivax. The challenge posed by P. vivax is especially steep in Indonesia because chloroquine-resistant strains predominate, along with Chesson-like strains that relapse quickly and multiple times at short intervals in almost all patients. Indonesia's hugely diverse human population carries many variants of glucose-6-phosphate dehydrogenase (G6PD) deficiency, most of them exhibiting severely impaired enzyme activity. Therefore, the patients most likely to benefit from primaquine therapy by preventing aggressive relapse, may also be most likely to suffer harm without G6PD deficiency screening. Indonesia faces the challenge of controlling and eventually eliminating malaria across > 13,500 islands stretching > 5,000 km and an enormous diversity of ecological, ethnographic, and socioeconomic settings, and extensive human migrations. This article describes the occurrence of P. vivax in Indonesia and the obstacles faced in eliminating its transmission. PMID:27708185

  12. Genotype comparison of Plasmodium vivax and Plasmodium falciparum clones from pregnant and non-pregnant populations in North-west Colombia

    PubMed Central

    2012-01-01

    Background Placental malaria is the predominant pathology secondary to malaria in pregnancy, causing substantial maternal and infant morbidity and mortality in tropical areas. While it is clear that placental parasites are phenotypically different from those in the peripheral circulation, it is not known whether unique genotypes are associated specifically with placental infection or perhaps more generally with pregnancy. In this study, genetic analysis was performed on Plasmodium vivax and Plasmodium falciparum parasites isolated from peripheral and placental blood in pregnant women living in North-west Colombia, and compared with parasites causing acute malaria in non-pregnant populations. Methods A total of 57 pregnant women at delivery with malaria infection confirmed by real-time PCR in peripheral or placental blood were included, as well as 50 pregnant women in antenatal care and 80 men or non-pregnant women with acute malaria confirmed by a positive thick smear for P. vivax or P. falciparum. Five molecular markers per species were genotyped by nested PCR and capillary electrophoresis. Genetic diversity and the fixation index FST per species and study group were calculated and compared. Results Almost all infections at delivery were asymptomatic with significantly lower levels of infection compared with the groups with acute malaria. Expected heterozygosity for P. vivax molecular markers ranged from 0.765 to 0.928 and for P. falciparum markers ranged from 0.331 to 0.604. For P. vivax infections, the genetic diversity was similar amongst the four study groups and the fixation index from each pairwise comparison failed to show significant genetic differentiation. For P. falciparum, no genetic differentiation was observed between placental and peripheral parasites from the same woman at delivery, but the parasites isolated at delivery showed significant genetic differentiation compared with parasites isolated from subjects with acute malaria. Conclusions In

  13. Epidemiology of Plasmodium vivax Malaria in India.

    PubMed

    Anvikar, Anupkumar R; Shah, Naman; Dhariwal, Akshay C; Sonal, Gagan Singh; Pradhan, Madan Mohan; Ghosh, Susanta K; Valecha, Neena

    2016-12-28

    Historically, malaria in India was predominantly caused by Plasmodium vivax, accounting for 53% of the estimated cases. After the spread of drug-resistant Plasmodium falciparum in the 1990s, the prevalence of the two species remained equivalent at the national level for a decade. By 2014, the proportion of P. vivax has decreased to 34% nationally, but with high regional variation. In 2014, P. vivax accounted for around 380,000 malaria cases in India; almost a sixth of all P. vivax cases reported globally. Plasmodium vivax has remained resistant to control measures, particularly in urban areas. Urban malaria is predominantly caused by P. vivax and is subject to outbreaks, often associated with increased mortality, and triggered by bursts of migration and construction. The epidemiology of P. vivax varies substantially within India, including multiple relapse phenotypes with varying latencies between primary infection and relapse. Moreover, the hypnozoite reservoir maintains transmission potential and enables reestablishment of the parasite in areas in which it was thought eradicated. The burden of malaria in India is complex because of the highly variable malaria eco-epidemiological profiles, transmission factors, and the presence of multiple Plasmodium species and Anopheles vectors. This review of P. vivax malaria in India describes epidemiological trends with particular attention to four states: Gujarat, Karnataka, Haryana, and Odisha.

  14. Epidemiology of Plasmodium vivax Malaria in India

    PubMed Central

    Anvikar, Anupkumar R.; Shah, Naman; Dhariwal, Akshay C.; Sonal, Gagan Singh; Pradhan, Madan Mohan; Ghosh, Susanta K.; Valecha, Neena

    2016-01-01

    Historically, malaria in India was predominantly caused by Plasmodium vivax, accounting for 53% of the estimated cases. After the spread of drug-resistant Plasmodium falciparum in the 1990s, the prevalence of the two species remained equivalent at the national level for a decade. By 2014, the proportion of P. vivax has decreased to 34% nationally, but with high regional variation. In 2014, P. vivax accounted for around 380,000 malaria cases in India; almost a sixth of all P. vivax cases reported globally. Plasmodium vivax has remained resistant to control measures, particularly in urban areas. Urban malaria is predominantly caused by P. vivax and is subject to outbreaks, often associated with increased mortality, and triggered by bursts of migration and construction. The epidemiology of P. vivax varies substantially within India, including multiple relapse phenotypes with varying latencies between primary infection and relapse. Moreover, the hypnozoite reservoir maintains transmission potential and enables reestablishment of the parasite in areas in which it was thought eradicated. The burden of malaria in India is complex because of the highly variable malaria eco-epidemiological profiles, transmission factors, and the presence of multiple Plasmodium species and Anopheles vectors. This review of P. vivax malaria in India describes epidemiological trends with particular attention to four states: Gujarat, Karnataka, Haryana, and Odisha. PMID:27708188

  15. Development of vaccines for Plasmodium vivax malaria.

    PubMed

    Mueller, Ivo; Shakri, Ahmad Rushdi; Chitnis, Chetan E

    2015-12-22

    Plasmodium vivax continues to cause significant morbidity outside Africa with more than 50% of malaria cases in many parts of South and South-east Asia, Pacific islands, Central and South America being attributed to P. vivax infections. The unique biology of P. vivax, including its ability to form latent hypnozoites that emerge months to years later to cause blood stage infections, early appearance of gametocytes before clinical symptoms are apparent and a shorter development cycle in the vector makes elimination of P. vivax using standard control tools difficult. The availability of an effective vaccine that provides protection and prevents transmission would be a valuable tool in efforts to eliminate P. vivax. Here, we review the latest developments related to P. vivax malaria vaccines and discuss the challenges as well as directions toward the goal of developing highly efficacious vaccines against P. vivax malaria.

  16. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade

    PubMed Central

    Tachibana, Shin-Ichiro; Sullivan, Steven A.; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R.; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M. Q.; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L.; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W.; Escalante, Ananias A.; Carlton, Jane M.; Tanabe, Kazuyuki

    2013-01-01

    Plasmodium cynomolgi, a malaria parasite of Asian Old World monkeys, is the sister taxon of Plasmodium vivax, the most prevalent human malaria species outside Africa. Since P. cynomolgi shares many phenotypic, biologic and genetic characteristics of P. vivax, we generated draft genome sequences of three P. cynomolgi strains and performed comparative genomic analysis between them and P. vivax, as well as a third previously sequenced simian parasite, Plasmodium knowlesi. Here we show that genomes of the monkey malaria clade can be characterized by CNVs in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites, and CNVs in the P. cynomolgi genome, providing a map of genetic variation for mapping parasite traits and studying parasite populations. The P. cynomolgi genome is a critical step in developing a model system for P. vivax research, and to counteract the neglect of P. vivax. PMID:22863735

  17. Nucleotide sequence polymorphism at the apical membrane antigen-1 locus reveals population history of Plasmodium vivax in Thailand

    PubMed Central

    Putaporntip, Chaturong; Jongwutiwes, Somchai; Grynberg, Priscila; Cui, Liwang; Hughes, Austin L.

    2009-01-01

    Apical membrane antigen-1 is a candidate for inclusion in a vaccine for the human malaria parasite Plasmodium vivax. We collected 231 complete sequences of the gene encoding this antigen (pvama-1) from three regions of Thailand, the most extensive collection to date of sequences at this locus. The domain II loop (previously mentioned as a potential vaccine component) was almost completely conserved, with a single amino acid variant (I313R) observed in a single sequence. The 3′ portion of the gene (domain II through the stop codon) showed significantly lower nucleotide diversity than the 5′ portion (start codon through domain I); and a given domain I sequence might be found in a haplotype with more than one domain II sequence. These results imply a hotspot of recombination between domains I and II. We found significant geographic subdivision among the three regions of Thailand (NW, East, and South) in which collections were made in 2007. Numbers of P. vivax infections have experienced overall declines since 1990 in all three regions; but the decline has been most recent in the NW, and there has been a rebound in numbers of infections in the South since 2000. Consistent with population history, amino acid sequence diversity was greatest in the NW. The South, which had by far the lowest sequence diversity of the three regions, showed signs of a population that has expanded from a small number of founders after a bottleneck. PMID:19643205

  18. Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax

    PubMed Central

    Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile

    2013-01-01

    Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621

  19. Plasmodium vivax trophozoites insensitive to chloroquine

    PubMed Central

    Sharrock, Wesley W; Suwanarusk, Rossarin; Lek-Uthai, Usa; Edstein, Michael D; Kosaisavee, Varakorn; Travers, Thomas; Jaidee, Anchalee; Sriprawat, Kanlaya; Price, Ric N; Nosten, François; Russell, Bruce

    2008-01-01

    Background Plasmodium vivax is a major cause of malaria and is still primarily treated with chloroquine. Chloroquine inhibits the polymerization of haem to inert haemozoin. Free haem monomers are thought to catalyze oxidative damage to the Plasmodium spp. trophozoite, the stage when haemoglobin catabolism is maximal. However preliminary in vitro observations on P. vivax clinical isolates suggest that only ring stages (early trophozoites) are sensitive to chloroquine. In this study, the stage specific action of chloroquine was investigated in synchronous cryopreserved isolates of P. vivax. Methods The in vitro chloroquine sensitivity of paired ring and trophozoite stages from 11 cryopreserved P. vivax clinical isolates from Thailand and two Plasmodium falciparum clones (chloroquine resistant K1 and chloroquine sensitive FC27) was measured using a modified WHO microtest method and fluorometric SYBR Green I Assay. The time each stage was exposed to chloroquine treatment was controlled by washing the chloroquine off at 20 hours after the beginning of treatment. Results Plasmodium vivax isolates added to the assay at ring stage had significantly lower median IC50s to chloroquine than the same isolates added at trophozoite stage (median IC50 12 nM vs 415 nM p < 0.01). Although only 36% (4/11) of the SYBR Green I assays for P. vivax were successful, both microscopy and SYBR Green I assays indicated that only P. vivax trophozoites were able to develop to schizonts at chloroquine concentrations above 100 nM. Conclusion Data from this study confirms the diminished sensitivity of P. vivax trophozoites to chloroquine, the stage thought to be the target of this drug. These results raise important questions about the pharmacodynamic action of chloroquine, and highlight a fundamental difference in the activity of chloroquine between P. vivax and P. falciparum. PMID:18505560

  20. Multiplicity of Infection and Disease Severity in Plasmodium vivax

    PubMed Central

    Pacheco, M. Andreína; Lopez-Perez, Mary; Vallejo, Andrés F.; Herrera, Sócrates; Arévalo-Herrera, Myriam; Escalante, Ananias A.

    2016-01-01

    Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired

  1. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations

    PubMed Central

    2010-01-01

    Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion. PMID:21092207

  2. Determinants of relapse periodicity in Plasmodium vivax malaria

    PubMed Central

    2011-01-01

    Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important

  3. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon

    PubMed Central

    2014-01-01

    Background Despite the large burden of Plasmodium vivax, little is known about its transmission dynamics. This study explored the population structure and spatio-temporal dynamics of P. vivax recurrent infections after radical cure in a two-year cohort study carried out in a rural community of the Peruvian Amazon. Methods A total of 37 P. vivax participants recruited in San Carlos community (Peru) between April and December 2008 were treated radically with chloroquine and primaquine and followed up monthly for two years with systematic blood sampling. All samples were screened for malaria parasites and subsequently all P. vivax infections genotyped using 15 microsatellites. Parasite population structure and dynamics were determined by computing different genetic indices and using spatio-temporal statistics. Results After radical cure, 76% of the study participants experienced one or more recurrent P. vivax infections, most of them sub-patent and asymptomatic. The parasite population displayed limited genetic diversity (He = 0.49) and clonal structure, with most infections (84%) being monoclonal. Spatio-temporal clusters of specific haplotypes were found throughout the study and persistence of highly frequent haplotypes were observed over several months within the same participants/households. Conclusions In San Carlos community, P. vivax recurrences were commonly observed after radical treatment, and characterized by asymptomatic, sub-patent and clustered infections (within and between individuals from a few neighbouring households). Moreover low genetic diversity as well as parasite inbreeding are likely to define a clonal parasite population which has important implications on the malaria epidemiology of the study area. PMID:24393454

  4. Plasmodium vivax Malaria Endemicity in Indonesia in 2010

    PubMed Central

    Elyazar, Iqbal R. F.; Gething, Peter W.; Patil, Anand P.; Rogayah, Hanifah; Sariwati, Elvieda; Palupi, Niken W.; Tarmizi, Siti N.; Kusriastuti, Rita; Baird, J. Kevin; Hay, Simon I.

    2012-01-01

    Background Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. Methods Plasmodium vivax Annual Parasite Incidence data (2006–2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985–2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1–99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR1–99 endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. Results We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. Conclusion Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy

  5. Genetic diversity and natural selection of three blood-stage 6-Cys proteins in Plasmodium vivax populations from the China-Myanmar endemic border.

    PubMed

    Wang, Yue; Ma, An; Chen, Shen-Bo; Yang, Ying-Chao; Chen, Jun-Hu; Yin, Ming-Bo

    2014-12-01

    Pv12, Pv38 and Pv41, the three 6-Cys family proteins which are expressed in the blood-stage of vivax malaria, might be involved in merozoite invasion activity and thus be potential vaccine candidate antigens of Plasmodium vivax. However, little information is available concerning the genetic diversity and natural selection of these three proteins. In the present study, we analyzed the amino acid sequences of P. vivax blood-stage 6-Cys family proteins in comparison with the homologue proteins of Plasmodium cynomolgi strain B using bioinformatic methods. We also investigated genetic polymorphisms and natural selection of these three genes in P. vivax populations from the China-Myanmar endemic border. The three P. vivax blood-stage 6-Cys proteins were shown to possess a signal peptide at the N-terminus, containing two s48/45 domains, and Pv12 and Pv38 have a GPI-anchor motif at the C-terminus. Then, 22, 21 and 29 haplotypes of pv12, pv38 and pv41 were identified out of 45, 38 and 40 isolates, respectively. The dN/dS values for Domain II of pv38 and pv41 were 3.33880 and 5.99829, respectively, suggesting positive balancing selection for these regions. Meanwhile, the C-terminus of pv41 showed high nucleotide diversity, and Tajima's D test suggested that this fragment could be under positive balancing selection. Overall, our results have significant implications, providing a genetic basis for blood-stage malaria vaccine development based on these three 6-Cys proteins.

  6. Orangutans not infected with Plasmodium vivax or P. cynomolgi, Indonesia.

    PubMed

    Singh, Balbir; Simon Divis, Paul Cliff

    2009-10-01

    After orangutans in Indonesia were reported as infected with Plasmodium cynomolgi and P. vivax, we conducted phylogenetic analyses of small subunit ribosomal RNA gene sequences of Plasmodium spp. We found that these orangutans are not hosts of P. cynomolgi and P. vivax. Analysis of >or=1 genes is needed to identify Plasmodium spp. infecting orangutans.

  7. A focus of hyperendemic Plasmodium malariae—P. vivax with no P. falciparum in a primitive population in the Peruvian Amazon jungle

    PubMed Central

    Sulzer, Alexander J.; Cantella, Raul; Colichon, Alejandro; Gleason, Neva N.; Walls, K. W.

    1975-01-01

    Findings in a sample population in southeastern Peru with a very high rate of malaria infection, due to Plasmodium malariae and P. vivax with apparently no P. falciparum, are described. The proportion of persons with P. malariae in this sample population, as determined by slide examination, appears to be the greatest ever reported for any area before the introduction of control measures. Although very few P. vivax were found on stained slides, results of the indirect immunofluorescence test indicated that this species was probably as prevalent as P. malariae; the absence of P. falciparum was supported by results of serologic tests. Possible reasons for this focus of malaria with no P. falciparum are discussed. PMID:779996

  8. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax

    PubMed Central

    Friedrich, Lindsey R.; Popovici, Jean; Kim, Saorin; Dysoley, Lek; Zimmerman, Peter A.; Menard, Didier; Serre, David

    2016-01-01

    Background Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. Methodology/Principal Findings We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. Conclusions/Significance Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites. PMID:27018585

  9. Primaquine treatment and relapse in Plasmodium vivax malaria.

    PubMed

    Rishikesh, Kumar; Saravu, Kavitha

    2016-01-01

    The relapsing peculiarity of Plasmodium vivax is one of the prime reasons for sustained global malaria transmission. Global containment of P. vivax is more challenging and crucial compared to other species for achieving total malaria control/elimination. Primaquine (PQ) failure and P. vivax relapse is a major global public health concern. Identification and characterization of different relapse strains of P. vivax prevalent across the globe should be one of the thrust areas in malaria research. Despite renewed and rising global concern by researchers on this once 'neglected' species, research and development on the very topic of P. vivax reappearance remains inadequate. Many malaria endemic countries have not mandated routine glucose-6-phosphate dehydrogenase (G6PD) testing before initiating PQ radical cure in P. vivax malaria. This results in either no PQ prescription or thoughtless prescription and administration of PQ to P. vivax patients by healthcare providers without being concerned about patients' G6PD status and associated complications. It is imperative to ascertain the G6PD status and optimum dissemination of PQ radical cure in all cases of P. vivax malaria across the globe. There persists a compelling need to develop/validate a rapid, easy-to-perform, easy-to-interpret, quality controllable, robust, and cost-effective G6PD assay. High-dose PQ of both standard and short duration appears to be safe and more effective for preventing relapses and should be practiced among patients with normal G6PD activity. Multicentric studies involving adequately representative populations across the globe with reference PQ dose must be carried out to determine the true distribution of PQ failure. Study proving role of cytochrome P450-2D6 gene in PQ metabolism and association of CYP2D6 metabolizer phenotypes and P. vivax relapse is of prime importance and should be carried forward in multicentric systems across the globe.

  10. Primaquine treatment and relapse in Plasmodium vivax malaria

    PubMed Central

    2016-01-01

    The relapsing peculiarity of Plasmodium vivax is one of the prime reasons for sustained global malaria transmission. Global containment of P. vivax is more challenging and crucial compared to other species for achieving total malaria control/elimination. Primaquine (PQ) failure and P. vivax relapse is a major global public health concern. Identification and characterization of different relapse strains of P. vivax prevalent across the globe should be one of the thrust areas in malaria research. Despite renewed and rising global concern by researchers on this once ‘neglected’ species, research and development on the very topic of P. vivax reappearance remains inadequate. Many malaria endemic countries have not mandated routine glucose-6-phosphate dehydrogenase (G6PD) testing before initiating PQ radical cure in P. vivax malaria. This results in either no PQ prescription or thoughtless prescription and administration of PQ to P. vivax patients by healthcare providers without being concerned about patients’ G6PD status and associated complications. It is imperative to ascertain the G6PD status and optimum dissemination of PQ radical cure in all cases of P. vivax malaria across the globe. There persists a compelling need to develop/validate a rapid, easy-to-perform, easy-to-interpret, quality controllable, robust, and cost-effective G6PD assay. High-dose PQ of both standard and short duration appears to be safe and more effective for preventing relapses and should be practiced among patients with normal G6PD activity. Multicentric studies involving adequately representative populations across the globe with reference PQ dose must be carried out to determine the true distribution of PQ failure. Study proving role of cytochrome P450-2D6 gene in PQ metabolism and association of CYP2D6 metabolizer phenotypes and P. vivax relapse is of prime importance and should be carried forward in multicentric systems across the globe. PMID:27077309

  11. Elimination of Plasmodium vivax Malaria in Azerbaijan

    PubMed Central

    Mammadov, Suleyman; Gasimov, Elkhan; Kurdova-Mintcheva, Rossitza; Wongsrichanalai, Chansuda

    2016-01-01

    Azerbaijan in the south caucasus region of far southeastern Europe has a long history of malaria endemicity but just successfully eliminated local transmission. After a period of relatively stable malaria situation (1960–1970), the country witnessed an epidemic followed by a series of outbreaks of various magnitudes in the following two decades, all caused by Plasmodium vivax. Compared with 1993, the number of malaria cases in the country jumped 29 times in 1994, 123 times in 1995, and 571 times in 1996 at the peak of the epidemic, when 13,135 cases were officially registered. Incidence rate increased dramatically from 0.2/100,000 population in 1991 to over 17/100,000 population in 1996. Scaled-up malaria control led to the containment of the epidemic and to a dramatic decrease of malaria burden nationwide. Azerbaijan has applied contemporary, complex control and surveillance strategies and approaches and is currently in the prevention of reintroduction phase. This article describes Azerbaijan's public health experience in conducting malaria control and elimination interventions over several decades until 2013 when the country reached an important milestone—no indigenous malaria cases were recorded. PMID:27708184

  12. Optimal Control Strategy of Plasmodium vivax Malaria Transmission in Korea

    PubMed Central

    Kim, Byul Nim; Nah, Kyeongah; Chu, Chaeshin; Ryu, Sang Uk; Kang, Yong Han; Kim, Yongkuk

    2012-01-01

    Objective To investigate the optimal control strategy for Plasmodium vivax malaria transmission in Korea. Methods A Plasmodium vivax malaria transmission model with optimal control terms using a deterministic system of differential equations is presented, and analyzed mathematically and numerically. Results If the cost of reducing the reproduction rate of the mosquito population is more than that of prevention measures to minimize mosquito-human contacts, the control of mosquito-human contacts needs to be taken for a longer time, comparing the other situations. More knowledge about the actual effectiveness and costs of control intervention measures would give more realistic control strategies. Conclusion Mathematical model and numerical simulations suggest that the use of mosquito-reduction strategies is more effective than personal protection in some cases but not always. PMID:24159504

  13. Plasmodium vivax malaria associated with acute post infectious glomerulonephritis.

    PubMed

    Kanodia, Kamal V; Vanikar, Aruna V; Kute, Vivek Balkrishna; Trivedi, Hargovind L

    2013-08-01

    Malaria remains a major health problem in many parts of the world leading to high morbidity and mortality related to renal dysfunction and relapsing nature of Plasmodium vivax malaria. Acute renal failure occurs commonly in Plasmodium falciparum malaria, although its rare occurrences have been reported in P. vivax malaria also. We reported a rare case of P. vivax malaria monoinfection associated with acute post infectious glomerulonephritis.

  14. Management of relapsing Plasmodium vivax malaria

    PubMed Central

    Chu, Cindy S; White, Nicholas J

    2016-01-01

    ABSTRACT Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely. PMID:27530139

  15. Epidemiology and Control of Plasmodium vivax in Afghanistan

    PubMed Central

    Leslie, Toby; Nahzat, Sami; Sediqi, Walid

    2016-01-01

    Around half of the population of Afghanistan resides in areas at risk of malaria transmission. Two species of malaria (Plasmodium vivax and Plasmodium falciparum) account for a high burden of disease—in 2011, there were more than 300,000 confirmed cases. Around 80–95% of malaria is P. vivax. Transmission is seasonal and focal, below 2,000 m in altitude, and in irrigated areas which allow breeding of anopheline mosquito vectors. Malaria risk is stratified to improve targeting of interventions. Sixty-three of 400 districts account for ∼85% of cases, and are the target of more intense control efforts. Pressure on the disease is maintained through case management, surveillance, and use of long-lasting insecticide-treated nets. Plasmodium vivax treatment is hampered by the inability to safely treat latent hypnozoites with primaquine because G6PD deficiency affects up to 10% of males in some ethnic groups. The risk of vivax malaria recurrence (which may be as a result of reinfection or relapse) is around 30–45% in groups not treated with primaquine but 3–20% in those given 14-day or 8-week courses of primaquine. Greater access to G6PD testing and radical treatment would reduce the number of incident cases, reduce the infectious reservoir in the population, and has the potential to reduce transmission as a result. Alongside the lack of G6PD testing, under-resourcing and poor security hamper the control of malaria. Recent gains in reducing the burden of disease are fragile and at risk of reversal if pressure on the disease is not maintained. PMID:27708189

  16. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    PubMed Central

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  17. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis.

    PubMed

    Anstey, Nicholas M; Douglas, Nicholas M; Poespoprodjo, Jeanne R; Price, Ric N

    2012-01-01

    Vivax malaria was historically described as 'benign tertian malaria' because individual clinical episodes were less likely to cause severe illness than Plasmodium falciparum. Despite this, Plasmodium vivax was, and remains, responsible for major morbidity and significant mortality in vivax-endemic areas. Single infections causing febrile illness in otherwise healthy individuals rarely progress to severe disease. Nevertheless, in the presence of co-morbidities, P. vivax can cause severe illness and fatal outcomes. Recurrent or chronic infections in endemic areas can cause severe anaemia and malnutrition, particularly in early childhood. Other severe manifestations include acute lung injury, acute kidney injury and uncommonly, coma. Multiorgan failure and shock are described but further studies are needed to investigate the role of bacterial and other co-infections in these syndromes. In pregnancy, P. vivax infection can cause maternal anaemia, miscarriage, low birth weight and congenital malaria. Compared to P. falciparum, P. vivax has a greater capacity to elicit an inflammatory response, resulting in a lower pyrogenic threshold. Conversely, cytoadherence of P. vivax to endothelial cells is less frequent and parasite sequestration is not thought to be a significant cause of severe illness in vivax malaria. With a predilection for young red cells, P. vivax does not result in the high parasite biomass associated with severe disease in P. falciparum, but a four to fivefold greater removal of uninfected red cells from the circulation relative to P. falciparum is associated with a similar risk of severe anaemia. Mechanisms underlying the pathogenesis of severe vivax syndromes remain incompletely understood.

  18. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade.

    PubMed

    Tachibana, Shin-Ichiro; Sullivan, Steven A; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M Q; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W; Escalante, Ananias A; Carlton, Jane M; Tanabe, Kazuyuki

    2012-09-01

    P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.

  19. Meetings on Plasmodium vivax and Schistosoma japonicum in Asia.

    PubMed

    1999-10-01

    Manila hosted two meetings on malaria and schistosomiasis for Asian scientists in June 1999. Efforts in developing a vaccine for Plasmodium vivax, precursor of 40-50% of malaria in Latin America and Asia, were emphasized: 1) the need for greater understanding of the epidemiology of the vivax malaria, development of immunity, and interactions between the two main species of plasmodium; 2) the role of primate models of vivax malaria; 3) unique biological questions posed by P. vivax; and 4) the large production of existing vivax candidate vaccines for clinical trials. Moreover, the Philippines and China continue to be affected by Schistosoma japonicum despite extensive control efforts and availability of praziquantel. Diversity of opinion over the expected vaccine was discussed. Technical expertise in the production of vaccines has improved while links between researchers and vaccine manufacturers need to be improved.

  20. Modeling Plasmodium vivax: relapses, treatment, seasonality, and G6PD deficiency.

    PubMed

    Chamchod, Farida; Beier, John C

    2013-01-07

    Plasmodium vivax (P. vivax) is one of the most important human malaria species that is geographically widely endemic and causes social and economic burden globally. However, its consequences have long been neglected and underestimated as it has been mistakenly considered a benign and inconsequential malaria species as compared to Plasmodium falciparum. One of the important differences between P. falciparum and P. vivax is the formation of P. vivax latent-stage parasites (hypnozoites) that can cause relapses after a course of treatment. In this work, mathematical modeling is employed to investigate how patterns of incubation periods and relapses of P. vivax, variation in treatment, and seasonal abundance of mosquitoes influence the number of humans infected with P. vivax and the mean age at infection of humans in tropical and temperate regions. The model predicts that: (i) the number of humans infected with P. vivax may increase when an incubation period of parasites in humans and a latent period of hypnozoites decrease; (ii) without primaquine, the only licensed drug to prevent relapses, P. vivax may be highly prevalent; (iii) the mean age at infection of humans may increase when a latent period of hypnozoites increases; (iv) the number of infectious humans may peak at a few months before the middle of each dry season and the number of hypnozoite carriers may peak at nearly the middle of each dry season. In addition, glucose-6-phosphate-dehydrogenase (G6PD) deficiency, which is the most common enzyme defect in humans that may provide some protection against P. vivax infection and severity, is taken into account to study its impact on the number of humans infected with P. vivax. Modeling results indicate that the increased number of infected humans may result from a combination of a larger proportion of humans with G6PD deficiency in the population, a lesser protection of G6PD deficiency to P. vivax infection, and a shorter latent period of hypnozoites.

  1. Plasmodium vivax malaria: a re-emerging threat for temperate climate zones?

    PubMed

    Petersen, Eskild; Severini, Carlo; Picot, Stephane

    2013-01-01

    Plasmodium vivax was endemic in temperate areas in historic times up to the middle of last century. Temperate climate P. vivax has a long incubation time of up to 8-10 months, which partly explain how it can be endemic in temperate areas with a could winter. P. vivax disappeared from Europe within the last 40-60 years, and this change was not related to climatic changes. The surge of P. vivax in Northern Europe after the second world war was related to displacement of refugees and large movement of military personnel exposed to malaria. Lately P. vivax has been seen along the demilitarized zone in South Korea replication a high endemicity in North Korea. The potential of transmission of P. vivax still exist in temperate zones, but reintroduction in a larger scale of P. vivax to areas without present transmission require large population movements of P. vivax infected people. The highest threat at present is refugees from P. vivax endemic North Korea entering China and South Korea in large numbers.

  2. Plasmodium vivax vaccine research - we've only just begun.

    PubMed

    Tham, Wai-Hong; Beeson, James G; Rayner, Julian C

    2017-02-01

    Plasmodium vivax parasites cause the majority of malaria cases outside Africa, and are increasingly being acknowledged as a cause of severe disease. The unique attributes of P. vivax biology, particularly the capacity of the dormant liver stage, the hypnozoite, to maintain blood-stage infections even in the absence of active transmission, make blood-stage vaccines particularly attractive for this species. However, P. vivax vaccine development remains resolutely in first gear, with only a single blood-stage candidate having been evaluated in any depth. Experience with Plasmodium falciparum suggests that a much broader search for new candidates and a deeper understanding of high priority targets will be required to make significant advances. This review discusses some of the particular challenges of P. vivax blood-stage vaccine development, highlighting both recent advances and key remaining barriers to overcome in order to move development forward.

  3. Placental histopathological changes associated with Plasmodium vivax infection during pregnancy.

    PubMed

    Souza, Rodrigo M; Ataíde, Ricardo; Dombrowski, Jamille G; Ippólito, Vanessa; Aitken, Elizabeth H; Valle, Suiane N; Álvarez, José M; Epiphanio, Sabrina; Epiphânio, Sabrina; Marinho, Claudio R F

    2013-01-01

    Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41), P. vivax exposure (n = 59) or P. falciparum exposure (n = 19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045), placental barrier thickness (OR, 25.59, P = 0.021) and mononuclear cells (OR, 4.02, P = 0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was

  4. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    PubMed

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics.

  5. PLASMODIUM VIVAX BLOOD-STAGE DYNAMICS

    PubMed Central

    McKenzie, F. Ellis; Jeffery, Geoffrey M.; Collins, William E.

    2008-01-01

    We examine the dynamics of parasitemia and gametocytemia reflected in the preintervention charts of 221 malaria-naive U.S. neurosyphilis patients infected with the St. Elizabeth strain of Plasmodium vivax, for malariatherapy, focusing on the 109 charts for which 15 or more days of patency preceded intervention and daily records encompassed an average 98% of the duration of each infection. Our approximations of merogony cycles (via “local peaks” in parasitemia) seldom fit patterns that correspond to “textbook” tertian brood structures. Peak parasitemia was higher in trophozoite-induced infections than in sporozoite-induced ones. Relative densities of male and female gametocytes appeared to alternate, though without a discernably regular period. Successful transmission to mosquitoes did not depend on detectable gametocytemia or on absence of fever. When gametocytes were detected, transmission success depended on densities of only male gametocytes. Successful feeds occurred on average 4.7 days later in an infection than did failures. Parasitemia was lower in homologous reinfection, gametocytemia lower or absent. PMID:12099421

  6. Renal cortical necrosis: A rare complication of Plasmodium vivax malaria.

    PubMed

    Kumar, R; Bansal, N; Jhorawat, R; Kimmatkar, P D; Malhotra, V

    2014-11-01

    A young female with Plasmodium vivax malaria presented with anemia, hyperbilirubinemia, thrombocytopenia, and advanced renal failure. She remained anuric for more than 3 weeks. Kidney biopsy confirmed the diagnosis of acute cortical necrosis. During follow-up, she became dialysis independent, but remained in stage 4 chronic kidney disease (CKD) at 3 month. P. vivax is supposed to be benign in nature, but can lead to rare and severe complication like renal cortical necrosis and progress to CKD.

  7. In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia.

    PubMed

    Baird, J K; Wiady, I; Fryauff, D J; Sutanihardja, M A; Leksana, B; Widjaya, H; Kysdarmanto; Subianto, B

    1997-06-01

    A survey of resistance to chloroquine by Plasmodium vivax and P. falciparum was conducted during May 1995 at three mesoendemic villages 30 km southeast of Nabire, near the central northern coast of Irian Jaya, Indonesia. The prevalence of malaria at Urusumu (n = 157), Margajaya (n = 573), and Topo (n = 199) was 18%. 9%, and 9%, respectively, with spleen rates among children of 79%, 10%, and 27%. Infected patients among those screened formed a study population of 64 subjects eligible for a 28-day in vivo test of resistance to chloroquine. Sixty-three patients successfully completed the test; 45 males and 18 females 1-60 years of age, of whom 29 were Javanese transmigrants of five years residence in Irian Jaya and 34 were native to Irian Jaya. The seven-day day cumulative incidence of therapeutic failure for P. vivax and P. falciparum was 15% (n = 34) and 30% (n = 37). The 14- and 28-day estimates of cumulative incidence were 45% and 64% for P. vivax and 58% and 89% for P. falciparum. Almost all recurrences appeared in the face of ordinarily effective levels of chloroquine and its major metabolite, desethylchloroquine, in whole blood (> or = 100 ng/ml). Four infections by P. malariae in subjects enrolled in this study cleared by day 2 and none reappeared within 28 days. Chloroquine no longer provides effective therapy for falciparum or vivax malaria along the northern coast of Irian Jaya, Indonesia.

  8. Acute Disseminated Encephalomyelitis in a Child Following Plasmodium vivax Malaria.

    PubMed

    Purkait, Radheshyam; Mukherji, Aritra; Sinhamahapatra, Tapankumar; Bhadra, Ramchandra

    2015-07-01

    Acute Disseminated Encephalomyelitis (ADEM) is a multifocal, monophasic, acute demyelinating disease of the brain and spinal cord, which is commonly preceded by viral infections and occasionally bacterial infections or immunizations. Its occurrence following malarial infection, especially Plasmodium vivax Malaria is very uncommon. We report an 11-year girl who presented with clinical features of encephalopathy and generalized convulsions, 10 days following complete recovery from the Plasmodium vivax Malaria. Diagnosis of ADEM as a complication of Plasmodium vivax Malaria was made based on acute onset of neurological events, characteristic findings on Magnetic Resonance Imaging (MRI) of brain and prompt response to corticosteroid therapy. Follow-up MRI, 6 months after discharge, showed complete resolution of change found on the initial MRI. To the best of our knowledge, only two such cases have been reported in the English literature till date.

  9. Costs and Cost-Effectiveness of Plasmodium vivax Control

    PubMed Central

    White, Michael T.; Yeung, Shunmay; Patouillard, Edith; Cibulskis, Richard

    2016-01-01

    The continued success of efforts to reduce the global malaria burden will require sustained funding for interventions specifically targeting Plasmodium vivax. The optimal use of limited financial resources necessitates cost and cost-effectiveness analyses of strategies for diagnosing and treating P. vivax and vector control tools. Herein, we review the existing published evidence on the costs and cost-effectiveness of interventions for controlling P. vivax, identifying nine studies focused on diagnosis and treatment and seven studies focused on vector control. Although many of the results from the much more extensive P. falciparum literature can be applied to P. vivax, it is not always possible to extrapolate results from P. falciparum–specific cost-effectiveness analyses. Notably, there is a need for additional studies to evaluate the potential cost-effectiveness of radical cure with primaquine for the prevention of P. vivax relapses with glucose-6-phosphate dehydrogenase testing. PMID:28025283

  10. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  11. Augmented plasma microparticles during acute Plasmodium vivax infection

    PubMed Central

    2010-01-01

    Background In the last few years, the study of microparticles (MPs) - submicron vesicles released from cells upon activation or apoptosis - has gained growing interest in the field of inflammation and in infectious diseases. Their role in the human malaria parasite Plasmodium vivax remains unexplored. Because acute vivax malaria has been related to pro-inflammatory responses, the main hypothesis investigated in this study was that Plasmodium vivax infection is associated with elevated levels of circulating MPs, which may play a role during acute disease in non-immune patients. Methods Plasma MPs were analysed among thirty-seven uncomplicated P. vivax infections from an area of unstable malaria transmission in the Brazilian Amazon. The MP phenotype was analysed by flow cytometry using the classical MP marker, annexin, and fluorochrome-labeled monoclonal antibodies against specific cell surface markers. The frequencies of plasma MPs in P. vivax patients (n = 37) were further compared to malaria-unexposed controls (n = 15) and ovarian carcinoma patients (n = 12), a known MPs-inducing disease non-related to malaria. Results The frequencies of plasma circulating MPs were markedly increased in P. vivax patients, as compared to healthy age-matched malaria-unexposed controls. Although platelets, erythrocytes and leukocytes were the main cellular sources of MPs during vivax malaria, platelet derived-MPs (PMPs) increased in a linear fashion with the presence of fever at the time of blood collection (β = 0.06, p < 0.0001) and length of acute symptoms (β = 0.36, p < 0.0001). Finally, the results suggest that plasma levels of PMPs diminish as patient experience more episodes of clinical malaria (β = 0.07, p < 0.003). Conclusions Abundant circulating MPs are present during acute P. vivax infection, and platelet derived-MPs may play a role on the acute inflammatory symptoms of malaria vivax. PMID:21080932

  12. Microsatellite Genotyping of Plasmodium vivax Isolates from Pregnant Women in Four Malaria Endemic Countries

    PubMed Central

    Menegon, Michela; Bardají, Azucena; Martínez-Espinosa, Flor; Bôtto-Menezes, Camila; Ome-Kaius, Maria; Mueller, Ivo; Betuela, Inoni; Arévalo-Herrera, Myriam; Kochar, Swati; Kochar, Sanjay K.; Jaju, Puneet; Hans, Dhiraj; Chitnis, Chetan; Padilla, Norma; Castellanos, María Eugenia; Ortiz, Lucía; Sanz, Sergi; Piqueras, Mireia; Desai, Meghna; Mayor, Alfredo; del Portillo, Hernando; Menéndez, Clara; Severini, Carlo

    2016-01-01

    Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied. PMID:27011010

  13. Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria.

    PubMed

    Douglas, Nicholas M; John, George K; von Seidlein, Lorenz; Anstey, Nicholas M; Price, Ric N

    2012-01-01

    Effective use of anti-malarial drugs is key to reducing the transmission potential of Plasmodium vivax. In patients presenting with symptomatic disease, treatment with potent and relatively slowly eliminated blood schizontocidal regimens administered concurrently with a supervised course of 7 mg/kg primaquine over 7-14 days has potential to exert the greatest transmission-blocking benefit. Given the spread of chloroquine-resistant P. vivax strains, the artemisinin combination therapies dihydroartemisinin + piperaquine and artesunate + mefloquine are currently the most assured means of preventing P. vivax recrudescence. Preliminary evidence suggests that, like chloroquine, these combinations potentiate the hypnozoitocidal effect of primaquine, but further supportive evidence is required. In view of the high rate of P. vivax relapse following falciparum infections in co-endemic regions, there is a strong argument for broadening current radical cure policy to include the administration of hypnozoitocidal doses of primaquine to patients with Plasmodium falciparum malaria. The most important reservoir for P. vivax transmission is likely to be very low-density, asymptomatic infections, the majority of which will arise from liver-stage relapses. Therefore, judicious mass administration of hypnozoitocidal therapy will reduce transmission of P. vivax to a greater extent than strategies focused on treatment of symptomatic patients. An efficacious hypnozoitocidal agent with a short curative treatment course would be particularly useful in mass drug administration campaigns.

  14. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  15. Genetic diversity of Plasmodium vivax isolates from Azerbaijan

    PubMed Central

    Leclerc, Marie Claude; Menegon, Michela; Cligny, Alexandra; Noyer, Jean Louis; Mammadov, Suleyman; Aliyev, Namig; Gasimov, Elkhan; Majori, Giancarlo; Severini, Carlo

    2004-01-01

    Background Plasmodium vivax, although causing a less serious disease than Plasmodium falciparum, is the most widespread of the four human malarial species. Further to the recent recrudescence of P. vivax cases in the Newly Independent States (NIS) of central Asia, a survey on the genetic diversity and dissemination in Azerbaijan was undertaken. Azerbaijan is at the crossroads of Asia and, as such, could see a rise in the number of cases, although an effective malaria control programme has been established in the country. Methods Thirty-six P. vivax isolates from Central Azerbaijan were characterized by analysing the genetic polymorphism of the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1) genes, using PCR amplifications and amplicons sequencing. Results Analysis of CSP sequences showed that all the processed isolates belong to the VK 210 type, with variations in the alternation of alanine residue (A) or aspartic acid residue (D) in the repeat motif GDRA(A/D)GQPA along the sequence. As far as MSP-1 genotyping is concerned, it was found that the majority of isolates analysed belong to Belem and Sal I types. Five recombinant isolates were also identified. Combined analysis with the two genetic markers allowed the identification of 19 plasmodial sub-types. Conclusion The results obtained in the present study indicate that there are several P. vivax clones circulating in Azerbaijan and, consequently, a careful malaria surveillance could be of paramount importance to identify, at early stage, the occurrence of possible P. vivax malaria outbreaks. PMID:15535878

  16. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation.

    PubMed

    Perez-Leal, Oscar; Sierra, Adriana Y; Barrero, Carlos A; Moncada, Camilo; Martinez, Pilar; Cortes, Jimena; Lopez, Yolanda; Torres, Elizabeth; Salazar, Luz M; Patarroyo, Manuel A

    2004-11-26

    Plasmodium vivax, one of the four parasite species causing malaria in humans, is the most widespread throughout the world, leading to nearly 80 million cases per year, mainly in Latin-America and Asia. An open reading frame encoding the Plasmodium falciparum merozoite surface protein 8 P. vivax homologue has been identified in the present study by screening the current data obtained from this parasite's partially sequenced genome. This new protein contains 487 amino-acids, two epidermal growth factor like domains, hydrophobic regions at the N- and C-termini compatible with a signal peptide, and a glycosylphosphatidylinositol anchor site, respectively. This gene's transcription and its encoded protein expression have been assessed, as well as its recognition by P. vivax-infected patients' sera. Based on this recognition, and a previous study showing that mice immunised with the Plasmodium yoelii homologous protein were protected, we consider the PvMSP8 a good candidate to be included in a multi-stage multi-antigen P. vivax vaccine.

  17. Genetic diversity of Plasmodium Vivax in South of Iran: A cross-sectional study

    PubMed Central

    Sharifi-Sarasiabi, K; Hosseiniteshnizi, S; Dehghan, F; Madani, A

    2015-01-01

    Despite declining the number of malaria cases in Iran, increased prevalence of malaria is supposed to be due to migration from eastern neighboring countries of Iran, which are abundant in Plasmodium vivax (P. vivax). The circumsporozoite protein (CSP) of the P. vivax, is one of the candidate antigens for antimalaria vaccine. The diversity of P. vivax populations circulating in Iran has been investigated by using circumsporozoite protein (CSP) in this study. A hundred and eighteen blood samples were collected from patients diagnosed with P. vivax malaria from south of Iran during 2007-2008. All samples were analyzed by using nested PCR/ RFLP and 18 were sequenced. Genotyping of Pvcsp gene showed that VK210 type was predominant (95%) in south of Iran. Sequence analysis of Pvcsp gene revealed 6 distinct allelic variants in VK210 type. The present data indicate that there is some degree of genetic diversity among P. vivax populations in Hormozgan province of Iran. It seems that in neighbors of Iran, VK210 type is predominant, probably due to similar vector of malaria in these regions.

  18. Morbidity and mortality associated with Plasmodium vivax and Plasmodium falciparum infection in a tertiary care kidney hospital.

    PubMed

    Imtiaz, Salman; Drohlia, Murtaza F; Nasir, Kiran; Hussain, Mehwish; Ahmad, Aasim

    2015-11-01

    Malaria is a disease of tropical regions and both types of plasmodia, i.e. Plasmodium falciparum and Plasmodium vivax, cause significant morbidity and mortality. P. vivax was thought to be benign and cause less morbidity and mortality. Many reports showed the devastating effect of vivax malaria too. We compared the clinical symptoms, laboratory markers, treatment and outcome of both the plasmodia. This is a retrospective analysis of 95 patients admitted to The Kidney Center, Karachi in a duration of 15 years (1997-2012); 45 patients with falciparum malaria and 50 patients with vivax malaria, and compared the clinical presentation, laboratory workup, treatment and outcome in both groups. The two groups constitute a mixed population of diabetes, chronic kidney disease (CKD) and hemodialysis patients. Both plasmodia have an equal clinical impact in terms of fever and rigors, anorexia, nausea, feeling of dyspnea, change in the mental status, changes in the urine color, diarrhea, volume depletion and pedal edema. However, patients with falciparum had significantly more vomiting (P = 0.02), oliguria (P = 0.003) and jaundice (P = 0.003). Laboratory parameters also showed a severe impact of falciparum, as there was more severe anemia and kidney and liver dysfunction. More patients were treated with dialysis and blood transfusion in the falciparum group. The outcome in the two groups was not significantly different in terms of death and days of hospitalization. Falciparum malaria has a higher clinical impact than the vivax malaria, but vivax is not as benign as it was once thought to be. It also has devastating effects on vulnerable populations like patients with CKD and diabetes.

  19. Plasmodium vivax Landscape in Brazil: Scenario and Challenges.

    PubMed

    Siqueira, Andre M; Mesones-Lapouble, Oscar; Marchesini, Paola; Sampaio, Vanderson de Souza; Brasil, Patricia; Tauil, Pedro L; Fontes, Cor Jesus; Costa, Fabio T M; Daniel-Ribeiro, Cláudio Tadeu; Lacerda, Marcus V G; Damasceno, Camila P; Santelli, Ana Carolina S

    2016-12-28

    Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes.

  20. Platform for Plasmodium vivax vaccine discovery and development

    PubMed Central

    Valencia/, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2016-01-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80–100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development. PMID:21881773

  1. Platform for Plasmodium vivax vaccine discovery and development.

    PubMed

    Valencia, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2011-08-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.

  2. Comparative analysis of field-isolate and monkey-adapted Plasmodium vivax genomes.

    PubMed

    Chan, Ernest R; Barnwell, John W; Zimmerman, Peter A; Serre, David

    2015-03-01

    Significant insights into the biology of Plasmodium vivax have been gained from the ability to successfully adapt human infections to non-human primates. P. vivax strains grown in monkeys serve as a renewable source of parasites for in vitro and ex vivo experimental studies and functional assays, or for studying in vivo the relapse characteristics, mosquito species compatibilities, drug susceptibility profiles or immune responses towards potential vaccine candidates. Despite the importance of these studies, little is known as to how adaptation to a different host species may influence the genome of P. vivax. In addition, it is unclear whether these monkey-adapted strains consist of a single clonal population of parasites or if they retain the multiclonal complexity commonly observed in field isolates. Here we compare the genome sequences of seven P. vivax strains adapted to New World monkeys with those of six human clinical isolates collected directly in the field. We show that the adaptation of P. vivax parasites to monkey hosts, and their subsequent propagation, did not result in significant modifications of their genome sequence and that these monkey-adapted strains recapitulate the genomic diversity of field isolates. Our analyses also reveal that these strains are not always genetically homogeneous and should be analyzed cautiously. Overall, our study provides a framework to better leverage this important research material and fully utilize this resource for improving our understanding of P. vivax biology.

  3. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies.

    PubMed

    Chan, Chim W; Sakihama, Naoko; Tachibana, Shin-Ichiro; Idris, Zulkarnain Md; Lum, J Koji; Tanabe, Kazuyuki; Kaneko, Akira

    2015-01-01

    Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81-31.23%) than in P. vivax (-0.53-3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.

  4. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest

    PubMed Central

    Costa, Daniela Camargos; da Cunha, Vanessa Pecini; de Assis, Gabriela Maria Pereira; de Souza, Júlio César; Hirano, Zelinda Maria Braga; de Arruda, Mércia Eliane; Kano, Flora Satiko; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves

    2014-01-01

    Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease. PMID:25099335

  5. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest.

    PubMed

    Costa, Daniela Camargos; da Cunha, Vanessa Pecini; de Assis, Gabriela Maria Pereira; de Souza Junior, Júlio César; Hirano, Zelinda Maria Braga; de Arruda, Mércia Eliane; Kano, Flora Satiko; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves

    2014-08-01

    Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.

  6. Contribution of inflammasome genetics in Plasmodium vivax malaria.

    PubMed

    Santos, Marina L S; Reis, Edione Cristina; Bricher, Pamela N; Sousa, Tais N; Brito, Cristiana F A; Lacerda, Marcus V G; Fontes, Cor J F; Carvalho, Luzia H; Pontillo, Alessandra

    2016-06-01

    Recent reports showed that, in mice, symptomatic Plasmodium infection triggers NLRP3/NLRP12-dependent inflammasome formation and caspase-1 activation in monocytes. In humans, few works demonstrated that inflammasome is activated in malaria. As Plasmodiumvivax is a potent inducer of inflammatory response we hypothesised that inflammasome genetics might affect P. vivax malaria clinical presentation. For this purpose, selected SNPs in inflammasome genes were analysed among patients with symptomatic P. vivax malaria. 157 Brazilian Amazon patients with P. vivax malaria were genotyped for 10 single nucleotide polymorphisms (SNPs) in inflammasome genes NLRP1, NLRP3, AIM2, CARD8, IL1B, IL18 and MEFV. Effect of SNPs on hematologic and clinical parameters was analysed by multivariate analysis. Our data suggested an important role of NLRP1 inflammasome receptor in shaping the clinical presentation of P. vivax malaria, in term of presence of fever, anaemia and thrombocytopenia. Moreover IL1B rs1143634 resulted significantly associated to patients' parasitaemia, while IL18 rs5744256 plays a protective role against the development of anaemia. Polymorphisms in inflammasome genes could affect one or other aspects of malaria pathogenesis. Moreover, these data reveal novel aspects of P.vivax/host interaction that involved NLRP1-inflammasome.

  7. Postrenal transplant Plasmodium vivax malaria: neglected and not benign.

    PubMed

    Kute, Vivek B; Vanikar, Aruna V; Shah, Pankaj R; Shrimali, Jigar D; Gumber, Manoj R; Patel, Himanshu V; Modi, Pranjal R; Trivedi, Hargovind L

    2013-04-01

    Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. We reported a case of postrenal transplantation acute kidney injury (AKI) associated with P. vivax, a neglected human malaria parasite. The diagnosis of P. vivax monoinfection was confirmed by direct visualization of the parasite in blood smear and rapid diagnostic test. On admission, serum creatinine (SCr.) increased from 1.45 to 3.7 mg/dl. The other etiologies of fever and AKI were ruled out. He responded to prompt therapy with antimalarial drugs. There was no change in tacrolimus trough level before and after antimalarial drugs. Two weeks after discharge, his SCr. was 1.43 mg/dl. Our patient lived in an endemic malarial area and the transplant took place in December 2010. The patient subsequently presented with clinical malaria in June 2012, so we thought that posttransplantation transmission by the mosquito was a possibility and very less likely that other dormant form of the parasite had been the source of the clinical infection. P. vivax can lead to as AKI in renal transplant recipient. P. vivax should be considered in the differential diagnosis of fever in transplant recipients who had received organs or blood products from malaria-endemic area to facilitate a prompt diagnosis and adequate treatment.

  8. Resistance to Therapies for Infection by Plasmodium vivax

    PubMed Central

    Baird, J. Kevin

    2009-01-01

    The gravity of the threat posed by vivax malaria to public health has been poorly appreciated. The widely held misperception of Plasmodium vivax as being relatively infrequent, benign, and easily treated explains its nearly complete neglect across the range of biological and clinical research. Recent evidence suggests a far higher and more-severe disease burden imposed by increasingly drug-resistant parasites. The two frontline therapies against vivax malaria, chloroquine and primaquine, may be failing. Despite 60 years of nearly continuous use of these drugs, their respective mechanisms of activity, resistance, and toxicity remain unknown. Although standardized means of assessing therapeutic efficacy against blood and liver stages have not been developed, this review examines the provisional in vivo, ex vivo, and animal model systems for doing so. The rationale, design, and interpretation of clinical trials of therapies for vivax malaria are discussed in the context of the nuance and ambiguity imposed by the hypnozoite. Fielding new drug therapies against real-world vivax malaria may require a reworking of the strategic framework of drug development, namely, the conception, testing, and evaluation of sets of drugs designed for the cure of both blood and liver asexual stages as well as the sexual blood stages within a single therapeutic regimen. PMID:19597012

  9. Thrombocytopenia in Plasmodium vivax Malaria: How Significant?

    PubMed Central

    Muley, Arti; Lakhani, Jitendra; Bhirud, Saurabh; Patel, Abhinam

    2014-01-01

    Introduction. Thrombocytopenia is frequently noticed with P. falciparum malaria but is less reported and studied with P. vivax. Materials and Methods. The study was conducted in the Department of Medicine, SBKS MI & RC, Pipariya. We included patients who were diagnosed with vivax malaria. The data regarding their clinical and hematological profile was collected and analysed. Result. A total of 66 patients were included. 42 (63%) had platelet count <100000/mm3. Mean platelet count was 1,18,650, range being 8000/mm3–6,10,000/mm3. Amongst those with thrombocytopenia, 16 (38.09%) had anemia, 14 (33.33%) had serum creatinine >1.2 gm/dL, 15 (35.71%) had jaundice (s. bilirubin > 1.2), 2 (4.76%) had altered sensorium, 6 (14.28%) had ARDS, 2 needed ventilator support, and 1 expired. Amongst those with normal platelet count, 5 (20.83%) had anemia and 1 had jaundice whereas none had elevated s. creatinine, altered sensorium, or lung involvement. Conclusion. Thrombocytopenia is now being seen more commonly with vivax malaria. Patients with platelet count <1 lac/cumm have more severe disease. PMID:25045358

  10. Thrombocytopenia in Plasmodium vivax Malaria: How Significant?

    PubMed

    Muley, Arti; Lakhani, Jitendra; Bhirud, Saurabh; Patel, Abhinam

    2014-01-01

    Introduction. Thrombocytopenia is frequently noticed with P. falciparum malaria but is less reported and studied with P. vivax. Materials and Methods. The study was conducted in the Department of Medicine, SBKS MI & RC, Pipariya. We included patients who were diagnosed with vivax malaria. The data regarding their clinical and hematological profile was collected and analysed. Result. A total of 66 patients were included. 42 (63%) had platelet count <100000/mm(3). Mean platelet count was 1,18,650, range being 8000/mm(3)-6,10,000/mm(3). Amongst those with thrombocytopenia, 16 (38.09%) had anemia, 14 (33.33%) had serum creatinine >1.2 gm/dL, 15 (35.71%) had jaundice (s. bilirubin > 1.2), 2 (4.76%) had altered sensorium, 6 (14.28%) had ARDS, 2 needed ventilator support, and 1 expired. Amongst those with normal platelet count, 5 (20.83%) had anemia and 1 had jaundice whereas none had elevated s. creatinine, altered sensorium, or lung involvement. Conclusion. Thrombocytopenia is now being seen more commonly with vivax malaria. Patients with platelet count <1 lac/cumm have more severe disease.

  11. Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs

    DTIC Science & Technology

    2008-10-02

    Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs PRINCIPAL INVESTIGATOR: Dr...AND SUBTITLE 5a. CONTRACT NUMBER Proteomic Study of Human Malaria Parasite Plasmodium Vivax 5b. GRANT NUMBER W81XWH-07-2-0090 Liver Stages...3. Production of sporozoite and preparation for transcriptome and proteomic analysis: Sporozoites harvested from salivary gland, haemolymph

  12. Confirmed Plasmodium vivax Resistance to Chloroquine in Central Vietnam.

    PubMed

    Thanh, Pham Vinh; Hong, Nguyen Van; Van, Nguyen Van; Louisa, Melva; Baird, Kevin; Xa, Nguyen Xuan; Peeters Grietens, Koen; Hung, Le Xuan; Duong, Tran Thanh; Rosanas-Urgell, Anna; Speybroeck, Niko; D'Alessandro, Umberto; Erhart, Annette

    2015-12-01

    Plasmodium vivax resistance to chloroquine (CQ) is currently reported in almost all countries where P. vivax is endemic. In Vietnam, despite a first report on P. vivax resistance to chloroquine published in the early 2000s, P. vivax was still considered sensitive to CQ. Between May 2009 and December 2011, a 2-year cohort study was conducted in central Vietnam to assess the recommended radical cure regimen based on a 10-day course of primaquine (0.5 mg/kg/day) together with 3 days of CQ (25 mg/kg). Here we report the results of the first 28-day follow-up estimating the cumulative risk of P. vivax recurrences together with the corresponding CQ blood concentrations, among other endpoints. Out of 260 recruited P. vivax patients, 240 completed treatment and were followed up to day 28 according to the WHO guidelines. Eight patients (3.45%) had a recurrent P. vivax infection, at day 14 (n = 2), day 21 (n = 1), and day 28 (n = 5). Chloroquine blood concentrations, available for 3/8 recurrent infections (days 14, 21, and 28), were above the MIC (>100 ng/ml whole blood) in all of these cases. Fever and parasitemia (both sexual and asexual stages) were cleared by day 3. Anemia was common at day 0 (35.8%), especially in children under 10 years (50%), and hemoglobin (Hb) recovery at day 28 was substantial among anemic patients (median change from day 0 to 28, +1.7 g/dl; interquartile range [IQR], +0.7 to +3.2). This report, based on CQ blood levels measured at the time of recurrences, confirms for the first time P. vivax CQ resistance in central Vietnam and calls for further studies using standardized protocols for accurately monitoring the extent and evolution of P. vivax resistance to chloroquine in Vietnam. These results, together with the mounting evidence of artemisinin resistance in central Vietnam, further highlight the increasing threat of antimalarial drug resistance to malaria elimination in Vietnam.

  13. In silico comparative genome analysis of malaria parasite Plasmodium falciparum and Plasmodium vivax chromosome 4.

    PubMed

    Taherian Fard, Atefeh; Salman, Amna; Kazemi, Bahram; Bokhari, Habib

    2009-06-01

    Malarial parasite has long been a subject of research for a large community of scientists and has yet to be conquered. One of the main obstacles to effectively control this disease is rapidly evolving genetic structure of Plasmodium parasite itself. In this study, we focused on chromosome 4 of the Plasmodium falciparum and Plasmodium vivax species and carried out comparative studies of genes that are responsible for antigenic variation in respective species. Comparative analysis of genes responsible for antigenic variation (var and vir genes in P. falciparum and P. vivax, respectively) showed significant difference in their respective nucleotide sequence lengths as well as amino acid composition. The possible association of exon's length on pathogenecity of respective Plasmodium species was also investigated, and analysis of gene structure showed that on the whole, exon lengths in P. falciparum are larger compared to P. vivax. Analysis of tandem repeats across the genome has shown that the size of repetitive sequences has a direct effect on chromosomes length, which can also be a potential reason for P. falciparum's greater variability and hence pathogenecity than P. vivax.

  14. Plasmodium falciparum and Plasmodium vivax specific lactate dehydrogenase: genetic polymorphism study from Indian isolates.

    PubMed

    Keluskar, Priyadarshan; Singh, Vineeta; Gupta, Purva; Ingle, Sanjay

    2014-08-01

    Control and eradication of malaria is hindered by the acquisition of drug resistance by Plasmodium species. This has necessitated a persistent search for novel drugs and more efficient targets. Plasmodium species specific lactate dehydrogenase is one of the potential therapeutic and diagnostic targets, because of its indispensable role in endoerythrocytic stage of the parasite. A target molecule that is highly conserved in the parasite population can be more effectively used in diagnostics and therapeutics, hence, in the present study polymorphism in PfLDH (Plasmodiumfalciparum specific LDH) and PvLDH (Plasmodiumvivax specific LDH) genes was analyzed using PCR-single strand confirmation polymorphism (PCR-SSCP) and sequencing. Forty-six P. falciparum and thirty-five P. vivax samples were screened from different states of India. Our findings have revealed presence of a single PfLDH genotype and six PvLDH genotypes among the studied samples. Interestingly, along with synonymous substitutions, nonsynonymous substitutions were reported to be present for the first time in the PvLDH genotypes. Further, through amino acid sequence alignment and homology modeling studies we observed that the catalytic residues were conserved in all PvLDH genotypes and the nonsynonymous substitutions have not altered the enzyme structure significantly. Evolutionary genetics studies have confirmed that PfLDH and PvLDH loci are under strong purifying selection. Phylogenetic analysis of the pLDH gene sequences revealed that P. falciparum compared to P. vivax, has recent origin. The study therefore supports PfLDH and PvLDH as suitable therapeutic and diagnostic targets as well as phylogenetic markers to understand the genealogy of malaria species.

  15. Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia

    PubMed Central

    Teka, Hiwot; Petros, Beyene; Yamuah, Lawrence; Tesfaye, Gezahegn; Elhassan, Ibrahim; Muchohi, Simon; Kokwaro, Gilbert; Aseffa, Abraham; Engers, Howard

    2008-01-01

    Background Plasmodium vivax accounts for about 40% of all malaria infection in Ethiopia. Chloroquine (CQ) is the first line treatment for confirmed P. vivax malaria in the country. The first report of CQ treatment failure in P. vivax was from Debre Zeit, which suggested the presence of chloroquine resistance. Methods An in vivo drug efficacy study was conducted in Debre Zeit from June to August 2006. Eighty-seven patients with microscopically confirmed P. vivax malaria, aged between 8 months and 52 years, were recruited and treated under supervision with CQ (25 mg/kg over three days). Clinical and parasitological parameters were assessed during the 28 day follow-up period. CQ and desethylchloroquine (DCQ) blood and serum concentrations were determined with high performance liquid chromatography (HPLC) in patients who showed recurrent parasitaemia. Results Of the 87 patients recruited in the study, one was lost to follow-up and three were excluded due to P. falciparum infection during follow-up. A total of 83 (95%) of the study participants completed the follow-up. On enrolment, 39.8% had documented fever and 60.2% had a history of fever. The geometric mean parasite density of the patients was 7045 parasites/μl. Among these, four patients had recurrent parasitaemia on Day 28. The blood CQ plus DCQ concentrations of these four patients were all above the minimal effective concentration (> 100 ng/ml). Conclusion Chloroquine-resistant P. vivax parasites are emerging in Debre Zeit, Ethiopia. A multi-centre national survey is needed to better understand the extent of P. vivax resistance to CQ in Ethiopia. PMID:18959774

  16. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection

    PubMed Central

    Lima-Junior, Josué da Costa; Pratt-Riccio, Lilian Rose

    2016-01-01

    The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite’s enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host–pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally

  17. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    PubMed Central

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  18. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea

    PubMed Central

    Zimmerman, Peter A.; Woolley, Ian; Masinde, Godfred L.; Miller, Stephanie M.; McNamara, David T.; Hazlett, Fred; Mgone, Charles S.; Alpers, Michael P.; Genton, Blaise; Boatin, B. A.; Kazura, James W.

    1999-01-01

    In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria. PMID:10570183

  19. Key Knowledge Gaps for Plasmodium vivax Control and Elimination

    PubMed Central

    Bassat, Quique; Velarde, Mar; Mueller, Ivo; Lin, Jessica; Leslie, Toby; Wongsrichanalai, Chansuda; Baird, J. Kevin

    2016-01-01

    There is inadequate understanding of the biology, pathology, transmission, and control of Plasmodium vivax, the geographically most widespread cause of human malaria. During the last decades, study of this species was neglected, in part due to the erroneous belief that it is intrinsically benign. In addition, many technical challenges in culturing the parasite also hampered understanding its fundamental biology and molecular and cellular responses to chemotherapeutics. Research on vivax malaria needs to be substantially expanded over the next decade to accelerate its elimination and eradication. This article summarizes key knowledge gaps identified by researchers, national malaria control programs, and other stakeholders assembled by the World Health Organization to develop strategies for controlling and eliminating vivax malaria. The priorities presented in this article emerged in these technical discussions, and were adopted by expert consensus of the authors. All involved understood the priority placed upon pragmatism in this research agenda, that is, focus upon tools delivering better prevention, diagnosis, treatment, and surveillance of P. vivax. PMID:27430544

  20. Effects of mefloquine use on Plasmodium vivax multidrug resistance.

    PubMed

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y M; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile; Ménard, Didier

    2014-10-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non-P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites.

  1. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes.

    PubMed

    Malleret, Benoit; Li, Ang; Zhang, Rou; Tan, Kevin S W; Suwanarusk, Rossarin; Claser, Carla; Cho, Jee Sun; Koh, Esther Geok Liang; Chu, Cindy S; Pukrittayakamee, Sasithon; Ng, Mah Lee; Ginhoux, Florent; Ng, Lai Guan; Lim, Chwee Teck; Nosten, François; Snounou, Georges; Rénia, Laurent; Russell, Bruce

    2015-02-19

    Plasmodium vivax merozoites only invade reticulocytes, a minor though heterogeneous population of red blood cell precursors that can be graded by levels of transferrin receptor (CD71) expression. The development of a protocol that allows sorting reticulocytes into defined developmental stages and a robust ex vivo P vivax invasion assay has made it possible for the first time to investigate the fine-scale invasion preference of P vivax merozoites. Surprisingly, it was the immature reticulocytes (CD71(+)) that are generally restricted to the bone marrow that were preferentially invaded, whereas older reticulocytes (CD71(-)), principally found in the peripheral blood, were rarely invaded. Invasion assays based on the CD71(+) reticulocyte fraction revealed substantial postinvasion modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD71(+) reticulocytes convert into a highly deformable CD71(-) infected red blood cell devoid of host reticular matter, a process that normally spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection.

  2. Spontaneous Subdural Haemorrhage: A Rare Association with Plasmodium Vivax Malaria

    PubMed Central

    Hariprasad, Shetty; Koya, Rohini; Acharya, Vasudev; Krishna, Shastry Barkur Anantha

    2016-01-01

    Malaria is an endemic disease in tropical countries and disease of universal importance. Central Nervous System (CNS) complications of malaria are severe and associated with significant mortality. Thrombocytopaenia in malaria causing haemorrhagic CNS complications is rare. We report a case of 35-year-old male patient presented with headache, vomiting and was diagnosed to have subdural haemorrhage (SDH). On examination patient was found to be febrile with peripheral smear showing evidence of Plasmodium vivax (P.vivax) infection with severe thrombocytopaenia. In endemic regions with malaria, SDH being rare presentation of malaria should be considered as a differential diagnosis in febrile patients with neurological manifestations. Rarity of spontaneous SDH in malaria and raising awareness amongst treating physicians about the same is the driving factor for reporting this case. PMID:26894111

  3. Characteristic age distribution of Plasmodium vivax infections after malaria elimination on Aneityum Island, Vanuatu.

    PubMed

    Kaneko, Akira; Chaves, Luis F; Taleo, George; Kalkoa, Morris; Isozumi, Rie; Wickremasinghe, Renu; Perlmann, Hedvig; Takeo, Satoru; Tsuboi, Takafumi; Tachibana, Shin-ichiro; Kimura, Masatsugu; Björkman, Anders; Troye-Blomberg, Marita; Tanabe, Kazuyuki; Drakeley, Chris

    2014-01-01

    Resurgence is a major concern after malaria elimination. After the initiation of the elimination program on Aneityum Island in 1991, microscopy showed that Plasmodium falciparum disappeared immediately, whereas P. vivax disappeared from 1996 onward, until P. vivax cases were reported in January 2002. By conducting malariometric surveys of the entire population of Aneityum, we investigated the age distribution of individuals with parasites during this epidemic in the context of antimalarial antibody levels and parasite antigen diversity. In July 2002, P. vivax infections were detected by microscopy in 22/759 individuals: 20/298 born after the beginning of the elimination program in 1991, 2/126 born between 1982 and 1991, and none of 335 born before 1982. PCR increased the number of infections detected to 77, distributed among all age groups. Prevalences were 12.1%, 16.7%, and 6.0%, respectively (P < 0.001). In November, a similar age pattern was found, but with fewer infections: 6/746 and 39/741 individuals were found to be infected by microscopy and PCR, respectively. The frequencies of antibody responses to P. vivax were significantly higher in individuals born before 1991 than in younger age groups and were similar to those on Malakula Island, an area of endemicity. Remarkably low antigen diversity (h, 0.15) of P. vivax infections was observed on Aneityum compared with the other islands (h, 0.89 to 1.0). A P. vivax resurgence was observed among children and teenagers on Aneityum, an age distribution similar to those before elimination and on islands where P. vivax is endemic, suggesting that in the absence of significant exposure, immunity may persist, limiting infection levels in adults. The limited parasite gene pool on islands may contribute to this protection.

  4. Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications

    PubMed Central

    Hostetler, Jessica B.; Lo, Eugenia; Kanjee, Usheer; Amaratunga, Chanaki; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Yewhalaw, Delenasaw; Mascarenhas, Anjali; Kwiatkowski, Dominic P.; Ferreira, Marcelo U.; Rathod, Pradipsinh K.; Yan, Guiyun; Fairhurst, Rick M.; Duraisingh, Manoj T.; Rayner, Julian C.

    2016-01-01

    Background Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite’s ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP) in merozoites and the Duffy antigen receptor for chemokines (DARC) on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown. Methodology/Principal Findings Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India. Conclusions/Significance PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests

  5. Clinico-pathological studies of Plasmodium falciparum and Plasmodium vivax - malaria in India and Saudi Arabia.

    PubMed

    Khan, Wajihullah; Zakai, Haytham A; Umm-E-Asma

    2014-06-01

    Malaria is one of the most devastating diseases of tropical countries with clinical manifestations such as anaemia, splenomegaly, thrombocytopenia, hepatomegaly and acute renal failures. In this study, cases of thrombocytopenia and haemoglobinemia were more prominent in subjects infected with Plasmodium falciparum (Welch, 1897) than those with Plasmodium vivax (Grassi et Feletti, 1890). However, anaemia, jaundice, convulsions and acute renal failure were significantly high (3-4 times) in subjects infected with P. falciparum than those infected with P. vivax. The incidence of splenomegaly and neurological sequelae were 2 and 6 times higher in P. falciparum infections compared to the infections of P. vivax. Both in P. vivax and P. falciparum malaria, the cases of splenomegaly, jaundice and neurological sequelae were almost double in children (<10 years) compared to older patients. The liver enzymes were generally in normal range in cases of low and mild infections. However, the AST, ALT, ALP activities and serum bilirubin, creatinine, and the urea content were increased in P. falciparum and P. vivax malaria patients having high parasitaemia, confirming liver dysfunction and renal failures in few cases of severe malaria both in India and Saudi Arabia.

  6. Increasing Prevalence of Plasmodium vivax among Febrile Patients in Nouakchott, Mauritania

    PubMed Central

    Salem, Mohamed Salem Ould Ahmedou; Lekweiry, Khadijetou Mint; Deida, Jemila Mint; Emouh, Ahmed Ould; Weddady, Mohamed Ould; Boukhary, Ali Ould Mohamed Salem; Basco, Leonardo K.

    2015-01-01

    The occurrence of Plasmodium vivax malaria was reported in Nouakchott, Mauritania in the 1990s. Several studies have suggested the frequent occurrence of P. vivax malaria among Nouakchott residents, including those without recent travel history to the southern part of the country where malaria is known to be endemic. To further consolidate the evidence for P. vivax endemicity and the extent of malaria burden in one district in the city of Nouakchott, febrile illnesses were monitored in 2012–2013 in the Teyarett health center. The number of laboratory-confirmed P. vivax cases has attained more than 2,000 cases in 2013. Malaria transmission occurs locally, and P. vivax is diagnosed throughout the year. Plasmodium vivax malaria is endemic in Nouakchott and largely predominates over Plasmodium falciparum. PMID:25582695

  7. Severe Plasmodium falciparum and Plasmodium vivax malaria among adults at Kassala Hospital, eastern Sudan

    PubMed Central

    2013-01-01

    Background There have been few published reports on severe Plasmodium falciparum and Plasmodium vivax malaria among adults in Africa. Methods Clinical pattern/manifestations of severe P. falciparum and P. vivax (according to World Health Organization 2000 criteria) were described in adult patients admitted to Kassala Hospital, eastern Sudan. Results A total of 139 adult patients (80 males, 57.6%) with a mean (SD) age of 37.2 (1.5) years presented with severe P. falciparum (113, 81.3%) or P. vivax (26, 18.7%) malaria. Manifestations among the 139 patients included hypotension (38, 27.3%), cerebral malaria (23, 16.5%), repeated convulsions (18, 13.0%), hypoglycaemia (15, 10.8%), hyperparasitaemia (14, 10.1%), jaundice (14, 10.1%), severe anaemia (10, 7.2%), bleeding (six, 4.3%), renal impairment (one, 0.7%) and more than one criteria (27, 19.4%). While the geometric mean of the parasite count was significantly higher in patients with severe P. vivax than with severe P. falciparum malaria (5,934.2 vs 13,906.6 asexual stage parasitaemia per μL, p = 0.013), the different disease manifestations were not significantly different between patients with P. falciparum or P. vivax malaria. Three patients (2.2%) died due to severe P. falciparum malaria. One had cerebral malaria, the second had renal impairment, jaundice and hypoglycaemia, and the third had repeated convulsions and hypotension. Conclusions Severe malaria due to P. falciparum and P. vivax malaria is an existing entity among adults in eastern Sudan. Patients with severe P. falciparum and P. vivax develop similar disease manifestations. PMID:23634728

  8. Genomic analysis of local variation and recent evolution in Plasmodium vivax

    PubMed Central

    Pearson, Richard D; Miotto, Olivo; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Suon, Seila; Mao, Sivanna; Noviyanti, Rintis; Trimarsanto, Hidayat; Marfurt, Jutta; Anstey, Nicholas M; William, Timothy; Boni, Maciej F; Dolecek, Christiane; Hien, Tinh Tran; White, Nicholas J; Michon, Pascal; Siba, Peter; Tavul, Livingstone; Harrison, Gabrielle; Barry, Alyssa; Mueller, Ivo; Ferreira, Marcelo U; Karunaweera, Nadira; Randrianarivelojosia, Milijaona; Gao, Qi; Hubbart, Christina; Hart, Lee; Jeffery, Ben; Drury, Eleanor; Mead, Daniel; Kekre, Mihir; Campino, Susana; Manske, Magnus; Cornelius, Victoria J; MacInnis, Bronwyn; Rockett, Kirk A; Miles, Alistair; Rayner, Julian C; Fairhurst, Rick M; Nosten, Francois; Price, Ric N; Kwiatkowski, Dominic P

    2016-01-01

    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for malaria elimination. To characterise the genetic diversity of this parasite within individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region, and analysed data on >300,000 SNPs and 9 regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at novel loci, and these varied markedly between geographical locations. These findings reveal a dynamic landscape of local evolutionary adaptation in P. vivax populations, and provide a foundation for genomic surveillance to guide effective strategies for control and elimination. PMID:27348299

  9. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas.

    PubMed

    Taylor, Jesse E; Pacheco, M Andreína; Bacon, David J; Beg, Mohammad A; Machado, Ricardo Luiz; Fairhurst, Rick M; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A

    2013-09-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

  10. The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas

    PubMed Central

    Taylor, Jesse E.; Pacheco, M. Andreína; Bacon, David J.; Beg, Mohammad A.; Machado, Ricardo Luiz; Fairhurst, Rick M.; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A.

    2013-01-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination. PMID:23733143

  11. Plasmodium vivax Landscape in Brazil: Scenario and Challenges

    PubMed Central

    Siqueira, Andre M.; Mesones-Lapouble, Oscar; Marchesini, Paola; Sampaio, Vanderson de Souza; Brasil, Patricia; Tauil, Pedro L.; Fontes, Cor Jesus; Costa, Fabio T. M.; Daniel-Ribeiro, Cláudio Tadeu; Lacerda, Marcus V. G.; Damasceno, Camila P.; Santelli, Ana Carolina S.

    2016-01-01

    Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes. PMID:27708190

  12. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting.

    PubMed

    Charnaud, Sarah C; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S; Gilson, Paul R; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L; Pimanpanarak, Mupawjay; Simpson, Julie A; Beeson, James G; Nosten, François; Fowkes, Freya J I

    2016-02-10

    During pregnancy immunoglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57-0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33-0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09-0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women.

  13. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    PubMed Central

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  14. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    PubMed Central

    2011-01-01

    Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence

  15. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Karyana, Muhammad; Burdarm, Lenny; Yeung, Shunmay; Kenangalem, Enny; Wariker, Noah; Maristela, Rilia; Umana, Ketut Gde; Vemuri, Ram; Okoseray, Maurits J; Penttinen, Pasi M; Ebsworth, Peter; Sugiarto, Paulus; Anstey, Nicholas M; Tjitra, Emiliana; Price, Richard N

    2008-01-01

    Background Multidrug resistance has emerged to both Plasmodium vivax and Plasmodium falciparum and yet the comparative epidemiology of these infections is poorly defined. Methods All laboratory-confirmed episodes of malaria in Timika, Papua, Indonesia, presenting to community primary care clinics and an inpatient facility were reviewed over a two-year period. In addition information was gathered from a house-to-house survey to quantify the prevalence of malaria and treatment-seeking behaviour of people with fever. Results Between January 2004 and December 2005, 99,158 laboratory-confirmed episodes of malaria were reported, of which 58% (57,938) were attributable to P. falciparum and 37% (36,471) to P. vivax. Malaria was most likely to be attributable to pure P. vivax in children under one year of age (55% 2,684/4,889). In the household survey, the prevalence of asexual parasitaemia was 7.5% (290/3,890) for P. falciparum and 6.4% (248/3,890) for P. vivax. The prevalence of P. falciparum infection peaked in young adults aged 15–25 years (9.8% 69/707), compared to P. vivax infection which peaked in children aged 1 to 4 years (9.5% 61/642). Overall 35% (1,813/5,255) of people questioned reported a febrile episode in the preceding month. Of the 60% of people who were estimated to have had malaria, only 39% would have been detected by the surveillance network. The overall incidence of malaria was therefore estimated as 876 per 1,000 per year (Range: 711–906). Conclusion In this region of multidrug-resistant P. vivax and P. falciparum, both species are associated with substantial morbidity, but with significant differences in the age-related risk of infection. PMID:18673572

  16. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  17. Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony. Methods Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients. The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis. Results All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis

  18. An enzyme-linked immunosorbent assay using detergent-soluble Plasmodium vivax antigen for seroepidemiological surveys.

    PubMed

    González-Cerón, L; Rodríguez, M H

    1991-01-01

    An enzyme-linked immunosorbent assay (ELISA) to detect antibodies to Plasmodium vivax parasites in human sera was developed using P. vivax-infected erythrocytes from local malarious patients in southern Mexico. Infected cells were concentrated using a discontinuous Percoll gradient and detergent-soluble antigens obtained using Triton X100. The use of detergent and the addition of protease inhibitors to the antigen preparation ensured high sensitivity and reproducibility of the assay. No cross reactions were observed in sera immune to other protozoan, helmintic and bacterial infections, although some cross reactivity was seen in P. falciparum immune sera. A strong correlation between antibody titre values obtained by the ELISA and those obtained using an IFAT was observed. In a small field trial, carried out in a village where malaria transmission occurs, both ELISA and IFAT produced similar seroepidemiological profiles with regard to frequency of positive antibody titres and their distribution among the different age groups of the population.

  19. Plasmodium vivax sporozoite rates from Anopheles albimanus in southern Chiapas, Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Bown, D N; Rodriguez, M H

    1994-06-01

    Anopheles albimanus mosquitoes were collected from August 1984 to November 1987 on intra- and peridomicile human bait in Rancheria El Gancho, Chiapas, Mexico. The mosquitoes were desiccated and stored in silicon chambers from 3 mo to 3 yr post-collection prior to being assayed using a direct enzyme-linked immunosorbent assay to detect Plasmodium vivax predominant-type sporozoite protein. Peridomicile-collected mosquitoes had a 10-fold higher sporozoite rate than those collected indoors, but only the latter correlate significantly with the seasonal human parasite index. Mosquito sporozoite burden was also significantly higher in the peridomicile-collected population.

  20. Plasmodium vivax malaria-associated acute kidney injury, India, 2010-2011.

    PubMed

    Kute, Vivek B; Trivedi, Hargovind L; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Goswami, Jitendra G; Kanodia, Kamal V

    2012-05-01

    Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. Among 25 cases in India during 2010-2011, associated conditions were renal failure, thrombocytopenia, jaundice, severe anemia, acute respiratory distress syndrome, shock, cerebral malaria, hypoglycemia, and death. Further studies are needed to determine why P. vivax malaria is becoming more severe.

  1. A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010

    PubMed Central

    Gething, Peter W.; Elyazar, Iqbal R. F.; Moyes, Catherine L.; Smith, David L.; Battle, Katherine E.; Guerra, Carlos A.; Patil, Anand P.; Tatem, Andrew J.; Howes, Rosalind E.; Myers, Monica F.; George, Dylan B.; Horby, Peter; Wertheim, Heiman F. L.; Price, Ric N.; Müeller, Ivo; Baird, J. Kevin; Hay, Simon I.

    2012-01-01

    Background Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. Methodology and Findings We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 5×5 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR. Conclusions and Significance This detailed depiction of spatially varying endemicity is intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. vivax control and elimination. PMID:22970336

  2. Estimation of the Antirelapse Efficacy of Tafenoquine, Using Plasmodium vivax Genotyping

    PubMed Central

    Beck, Hans-Peter; Wampfler, Rahel; Carter, Nick; Koh, Gavin; Osorio, Lyda; Rueangweerayut, Ronnatrai; Krudsood, Srivcha; Lacerda, Marcus V.; Llanos-Cuentas, Alejandro; Duparc, Stephan; Rubio, Justin P.; Green, Justin A.

    2016-01-01

    Prevention of relapse of Plasmodium vivax infection is a key treatment goal in malaria. Use of P. vivax genotyping in a multicenter, double-blind, randomized, placebo-controlled phase 2b study in Peru, India, Thailand, and Brazil allowed determination of genetically heterologous or homologous P. vivax infection recurrence following receipt of chloroquine plus one of 4 doses of tafenoquine (50, 100, 300, or 600 mg) or chloroquine plus primaquine, compared with receipt of chloroquine alone. The antihypnozoite efficacy of tafenoquine was evident as a reduction in homologous recurrences of P. vivax infection as drug doses were increased. No clear dose-response pattern was evident for heterologous recurrences of P. vivax infection. Rates of homologous recurrence of P. vivax infection appear to be clinically useful for comparing drug efficacy for the prevention of P. vivax infection relapse. Clinical Trials Registration. NCT01376167. PMID:26500351

  3. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.

    PubMed

    Mikolajczak, Sebastian A; Vaughan, Ashley M; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E; Adams, John H; Sattabongkot, Jetsumon; Prachumsri, Jetsumon; Kappe, Stefan H I

    2015-04-08

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.

  4. The epidemiology of Plasmodium vivax circumsporozoite protein polymorphs in Thailand.

    PubMed

    Suwanabun, N; Sattabongkot, J; Wirtz, R A; Rosenberg, R

    1994-04-01

    Enzyme-linked immunosorbent assays (ELISAs) highly specific for the characteristic repeat units of the circumsporozoite proteins of the VK 247 and VK 210 polymorphs of Plasmodium vivax were used to test sporozoites produced by feeding mosquitoes on 1,711 human volunteers presenting at four locations in Thailand over five years. There was no evidence for the existence of any polymorph other than the two already described. Based on the ELISAs, the overall prevalence of the VK 247 type was 29.5%, including those found mixed with VK 210. Relative proportions of VK 210 and VK 247 differed between collection sites. At all places, the ratio of VK 210 to VK 247 was significantly higher at the end of the nontransmission season than it was later during the annual monsoon, suggesting that there may be intrinsic biological differences between the polymorphs that affect their survival.

  5. The effects of urbanization on global Plasmodium vivax malaria transmission

    PubMed Central

    2012-01-01

    Background Many recent studies have examined the impact of urbanization on Plasmodium falciparum malaria endemicity and found a general trend of reduced transmission in urban areas. However, none has examined the effect of urbanization on Plasmodium vivax malaria, which is the most widely distributed malaria species and can also cause severe clinical syndromes in humans. In this study, a set of 10,003 community-based P. vivax parasite rate (PvPR) surveys are used to explore the relationships between PvPR in urban and rural settings. Methods The PvPR surveys were overlaid onto a map of global urban extents to derive an urban/rural assignment. The differences in PvPR values between urban and rural areas were then examined. Groups of PvPR surveys inside individual city extents (urban) and surrounding areas (rural) were identified to examine the local variations in PvPR values. Finally, the relationships of PvPR between urban and rural areas within the ranges of 41 dominant Anopheles vectors were examined. Results Significantly higher PvPR values in rural areas were found globally. The relationship was consistent at continental scales when focusing on Africa and Asia only, but in the Americas, significantly lower values of PvPR in rural areas were found, though the numbers of surveys were small. Moreover, except for the countries in the Americas, the same trends were found at national scales in African and Asian countries, with significantly lower values of PvPR in urban areas. However, the patterns at city scales among 20 specific cities where sufficient data were available were less clear, with seven cities having significantly lower PvPR values in urban areas and two cities showing significantly lower PvPR in rural areas. The urban–rural PvPR differences within the ranges of the dominant Anopheles vectors were generally, in agreement with the regional patterns found. Conclusions Except for the Americas, the patterns of significantly lower P. vivax transmission in

  6. Insights into the naturally acquired immune response to Plasmodium vivax malaria.

    PubMed

    Longley, Rhea J; Sattabongkot, Jetsumon; Mueller, Ivo

    2016-02-01

    Plasmodium vivax is the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared with Plasmodium falciparum. In this article we review what is known about naturally acquired immunity to P. vivax, and importantly, how this differs to that acquired against P. falciparum. Immunity to clinical P. vivax infection is acquired more quickly than to P. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successful P. vivax vaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity to P. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.

  7. An unusual case of Plasmodium vivax malaria monoinfection associated with crescentic glomerulonephritis: a need for vigilance.

    PubMed

    Patel, Mohan P; Kute, Vivek B; Gumber, Manoj R; Gera, Dinesh N; Shah, Pankaj R; Patel, Himanshu V; Trivedi, Hargovind L; Vanikar, Aruna V

    2013-01-01

    Plasmodium vivax infection is increasingly a major public health burden and the second most frequent human malaria. Higher levels of clinical severity and chloroquine resistance are major factors responsible for such increases. Malarial glomerular injury is uncommon and mainly observed in Plasmodium malariae-infected patients. Occasionally, transient immune complex-mediated glomerulonephritis is associated with Plasmodium falciparum infection. Coexistent crescentic glomerulonephritis and vivax malaria have not previously been reported. We report a fatal case of P. vivax malaria, who presented with acute renal failure. P. vivax monoinfection status was diagnosed with peripheral blood smear and rapid antigen test. Further evaluation for renal failure related to systemic illness and immunological markers were inconclusive. He was treated with antimalarial drugs, hemodialysis, and supportive therapy. Renal biopsy performed for nonrecovering renal failure reveled crescentic glomerulonephritis. This case highlights the need to thoroughly search for malaria-associated crescentic glomerulonephritis using renal biopsy after nonrecovering renal failure.

  8. Unusual presentation of Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Goswami, Jitendra G; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Kanodia, Kamal V; Trivedi, Hargovind L

    2012-06-01

    Severe and complicated malaria is usually caused by Plasmodium falciparum malaria (PF) but it has been increasingly observed that Plasmodium vivax malaria (PV), which was otherwise considered to be benign malaria, with a low case-fatality ratio, can also occasionally result in severe disease as with PF malaria. There is an urgent need to re-examine the clinical spectrum and burden of PV so that adequate control measures can be implemented against this emerging but neglected disease. We report a case of severe PV malaria with multi-organ dysfunction. Patients exhibited acute kidney injury, severe anemia/thrombocytopenia, jaundice, hypoglycemia, hyponatremia, and pulmonary edema. Peripheral blood microscopy by trained and expert pathologist and rapid diagnostic test showed the presence of PV and absence of PF. The patient recovered completely with anti-malarial drugs, supportive measures, and hemodialysis.Recent microrheologic research that analyzed malaria severity in PV clearly demonstrated enhanced aggregation, erythrocyte clumping, and reduced deformability affecting microcirculation. Our case report highlights the fact that PV malaria is benign by name but not always by nature. PV can lead to unusual and potentially life-threatening complications. Further large-scale multi-centric studies are needed to define this less known entity.

  9. In vivo responses to antimalarials by Plasmodium falciparum and Plasmodium vivax from isolated Gag Island off northwest Irian Jaya, Indonesia.

    PubMed

    Fryauff, D J; Sumawinata, I; Purnomo; Richie, T L; Tjitra, E; Bangs, M J; Kadir, A; Ingkokusumo, G

    1999-04-01

    There is renewed interest in the rich nickel and cobalt deposits of Pulau Gag, an isolated but malarious island off the northwest coast of Irian Jaya. In preparation for an expanded workforce, an environmental assessment of malaria risk was made, focusing upon malaria prevalence in the small indigenous population, and the in vivo sensitivity of Plasmodium falciparum and P. vivax to chloroquine (CQ) and sulfadoxine/pyrimethamine (S/P), the respective first- and second-line drugs for uncomplicated malaria in Indonesia. During April-June 1997, mildly symptomatic or asymptomatic malaria infections were found in 24% of 456 native residents. Infections by P. falciparum accounted for 60% of the cases. Respective day 28 cure rates for CQ (10 mg base/kg on days 0 and 1; 5 mg/kg on day 2) in children and adults were 14% and 55% (P < 0.005). Type RII and RIII resistance characterized only 5% of the CQ failures. Re-treatment of 36 P. falciparum CQ treatment failures with S/P (25 mg/kg and 1.25 mg/kg, respectively) demonstrated rapid clearance and complete sensitivity during the 28-day follow-up period. More than 97% of the P. vivax malaria cases treated with CQ cleared parasitemia within 48 hr. Three cases of P. vivax malaria recurred between days 21 and 28, but against low drug levels in the blood. The low frequency of RII and RIII P. falciparum resistance to CQ, the complete sensitivity of this species to S/P, and the absence of CQ resistance by P. vivax are in contrast to in vivo and in vitro test results from sites on mainland Irian Jaya.

  10. Plasmodium vivax Pre-Erythrocytic–Stage Antigen Discovery: Exploiting Naturally Acquired Humoral Responses

    PubMed Central

    Molina, Douglas M.; Finney, Olivia C.; Arevalo-Herrera, Myriam; Herrera, Socrates; Felgner, Philip L.; Gardner, Malcolm J.; Liang, Xiaowu; Wang, Ruobing

    2012-01-01

    The development of pre-erythrocytic Plasmodium vivax vaccines is hindered by the lack of in vitro culture systems or experimental rodent models. To help bypass these roadblocks, we exploited the fact that naturally exposed Fy− individuals who lack the Duffy blood antigen (Fy) receptor are less likely to develop blood-stage infections; therefore, they preferentially develop immune responses to pre-erythrocytic–stage parasites, whereas Fy+ individuals experience both liver- and blood-stage infections and develop immune responses to both pre-erythrocytic and erythrocytic parasites. We screened 60 endemic sera from P. vivax-exposed Fy+ or Fy− donors against a protein microarray containing 91 P. vivax proteins with P. falciparum orthologs that were up-regulated in sporozoites. Antibodies against 10 P. vivax antigens were identified in sera from P. vivax-exposed individuals but not unexposed controls. This technology has promising implications in the discovery of potential vaccine candidates against P. vivax malaria. PMID:22826492

  11. Acquisition and Longevity of Antibodies to Plasmodium vivax Preerythrocytic Antigens in Western Thailand.

    PubMed

    Longley, Rhea J; Reyes-Sandoval, Arturo; Montoya-Díaz, Eduardo; Dunachie, Susanna; Kumpitak, Chalermpon; Nguitragool, Wang; Mueller, Ivo; Sattabongkot, Jetsumon

    2015-12-09

    Plasmodium vivax is now the dominant Plasmodium species causing malaria in Thailand, yet little is known about naturally acquired immune responses to this parasite in this low-transmission region. The preerythrocytic stage of the P. vivax life cycle is considered an excellent target for a malaria vaccine, and in this study, we assessed the stability of the seropositivity and the magnitude of IgG responses to three different preerythrocytic P. vivax proteins in two groups of adults from a region of western Thailand where malaria is endemic. These individuals were enrolled in a yearlong cohort study, which comprised one group that remained P. vivax free (by quantitative PCR [qPCR] detection, n = 31) and another that experienced two or more blood-stage P. vivax infections during the year of follow up (n = 31). Despite overall low levels of seropositivity, IgG positivity and magnitude were long-lived over the 1-year period in the absence of qPCR-detectable blood-stage P. vivax infections. In contrast, in the adults with two or more P. vivax infections during the year, IgG positivity was maintained, but the magnitude of the response to P. vivax circumsporozoite protein 210 (CSP210) decreased over time. These findings demonstrate that long-term humoral immunity can develop in low-transmission regions.

  12. Acquisition and Longevity of Antibodies to Plasmodium vivax Preerythrocytic Antigens in Western Thailand

    PubMed Central

    Longley, Rhea J.; Reyes-Sandoval, Arturo; Montoya-Díaz, Eduardo; Dunachie, Susanna; Kumpitak, Chalermpon; Nguitragool, Wang; Mueller, Ivo

    2015-01-01

    Plasmodium vivax is now the dominant Plasmodium species causing malaria in Thailand, yet little is known about naturally acquired immune responses to this parasite in this low-transmission region. The preerythrocytic stage of the P. vivax life cycle is considered an excellent target for a malaria vaccine, and in this study, we assessed the stability of the seropositivity and the magnitude of IgG responses to three different preerythrocytic P. vivax proteins in two groups of adults from a region of western Thailand where malaria is endemic. These individuals were enrolled in a yearlong cohort study, which comprised one group that remained P. vivax free (by quantitative PCR [qPCR] detection, n = 31) and another that experienced two or more blood-stage P. vivax infections during the year of follow up (n = 31). Despite overall low levels of seropositivity, IgG positivity and magnitude were long-lived over the 1-year period in the absence of qPCR-detectable blood-stage P. vivax infections. In contrast, in the adults with two or more P. vivax infections during the year, IgG positivity was maintained, but the magnitude of the response to P. vivax circumsporozoite protein 210 (CSP210) decreased over time. These findings demonstrate that long-term humoral immunity can develop in low-transmission regions. PMID:26656115

  13. Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection

    PubMed Central

    Chuquiyauri, Raul; Molina, Douglas M.; Moss, Eli L.; Wang, Ruobing; Gardner, Malcolm J.; Brouwer, Kimberly C.; Torres, Sonia; Gilman, Robert H.; Llanos-Cuentas, Alejandro; Neafsey, Daniel E.; Felgner, Philip; Liang, Xiaowu; Vinetz, Joseph M.

    2015-01-01

    Large scale antibody responses in Plasmodium vivax malaria remains unexplored in the endemic setting. Protein microarray analysis of asexual-stage P. vivax was used to identify antigens recognized in sera from residents of hypoendemic Peruvian Amazon. Over 24 months, of 106 participants, 91 had two symptomatic P. vivax malaria episodes, 11 had three episodes, 3 had four episodes, and 1 had five episodes. Plasmodium vivax relapse was distinguished from reinfection by a merozoite surface protein-3α restriction fragment length polymorphism polymerase chain reaction (MSP3α PCR-RFLP) assay. Notably, P. vivax reinfection subjects did not have higher reactivity to the entire set of recognized P. vivax blood-stage antigens than relapse subjects, regardless of the number of malaria episodes. The most highly recognized P. vivax proteins were MSP 4, 7, 8, and 10 (PVX_003775, PVX_082650, PVX_097625, and PVX_114145); sexual-stage antigen s16 (PVX_000930); early transcribed membrane protein (PVX_090230); tryptophan-rich antigen (Pv-fam-a) (PVX_092995); apical merozoite antigen 1 (PVX_092275); and proteins of unknown function (PVX_081830, PVX_117680, PVX_118705, PVX_121935, PVX_097730, PVX_110935, PVX_115450, and PVX_082475). Genes encoding reactive proteins exhibited a significant enrichment of non-synonymous nucleotide variation, an observation suggesting immune selection. These data identify candidates for seroepidemiological tools to support malaria elimination efforts in P. vivax-endemic regions. PMID:26149860

  14. Purification Methodology for Viable and Infective Plasmodium vivax Gametocytes That Is Compatible with Transmission-Blocking Assays

    PubMed Central

    Vera, Omaira; Brelas de Brito, Paula; Albrecht, Letusa; Martins-Campos, Keillen Monick; Pimenta, Paulo F. P.; Monteiro, Wuelton M.; Lacerda, Marcus V. G.

    2015-01-01

    Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies. PMID:26239989

  15. Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia

    PubMed Central

    2013-01-01

    Background For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. Methods Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. Results The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. Conclusions Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology. PMID:24080027

  16. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice

    PubMed Central

    Mikolajczak, Sebastian A.; Vaughan, Ashley M.; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E.; Adams, John H.; Prachumsri, Jetsumon; Kappe, Stefan H.I.

    2017-01-01

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites -hypnozoites. The lack of tractable animal models for P. vivax constitutes a severe obstacle to investigate this unique aspect of its biology and to test drug efficacy against liver stages. We show that the FRG KO huHep liver-humanized mice support P. vivax sporozoite infection, development of liver stages, and the formation of small non-replicating hypnozoites. Cellular characterization of P. vivax liver stage development in vivo demonstrates complete maturation into infectious exo-erythrocytic merozoites and continuing persistence of hypnozoites. Primaquine prophylaxis or treatment prevents and eliminates liver stage infection. Thus, the P. vivax/FRG KO huHep mouse infection model constitutes an important new tool to investigate the biology of liver stage development and dormancy and might aid in the discovery of new drugs for the prevention of relapsing malaria. PMID:25800544

  17. Acute pancreatitis, ascites, and acute renal failure in Plasmodium vivax malaria infection, a rare complication

    PubMed Central

    Lakhotia, Manoj; Pahadiya, Hans Raj; Kumar, Harish; Singh, Jagdish; Sangappa, Jainapur Ravi; Choudhary, Prakash Kumar

    2015-01-01

    A 22-year-old male presented with 6 days history of intermittent fever with chills, 2 days history of upper abdomen pain, distension of abdomen, and decreased urine output. He was diagnosed to have Plasmodium vivax malaria, acute pancreatitis, ascites, and acute renal failure. These constellations of complications in P. vivax infection have never been reported in the past. The patient responded to intravenous chloroquine and supportive treatment. For renal failure, he required hemodialysis. Acute pancreatitis, ascites, and acute renal failure form an unusual combination in P. vivax infection. PMID:26629455

  18. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination

    PubMed Central

    Bousema, Teun; Drakeley, Chris

    2011-01-01

    Summary: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed. PMID:21482730

  19. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans.

    PubMed

    Gunalan, Karthigayan; Lo, Eugenia; Hostetler, Jessica B; Yewhalaw, Delenasaw; Mu, Jianbing; Neafsey, Daniel E; Yan, Guiyun; Miller, Louis H

    2016-05-31

    The ability of the malaria parasite Plasmodium vivax to invade erythrocytes is dependent on the expression of the Duffy blood group antigen on erythrocytes. Consequently, Africans who are null for the Duffy antigen are not susceptible to P. vivax infections. Recently, P. vivax infections in Duffy-null Africans have been documented, raising the possibility that P. vivax, a virulent pathogen in other parts of the world, may expand malarial disease in Africa. P. vivax binds the Duffy blood group antigen through its Duffy-binding protein 1 (DBP1). To determine if mutations in DBP1 resulted in the ability of P. vivax to bind Duffy-null erythrocytes, we analyzed P. vivax parasites obtained from two Duffy-null individuals living in Ethiopia where Duffy-null and -positive Africans live side-by-side. We determined that, although the DBP1s from these parasites contained unique sequences, they failed to bind Duffy-null erythrocytes, indicating that mutations in DBP1 did not account for the ability of P. vivax to infect Duffy-null Africans. However, an unusual DNA expansion of DBP1 (three and eight copies) in the two Duffy-null P. vivax infections suggests that an expansion of DBP1 may have been selected to allow low-affinity binding to another receptor on Duffy-null erythrocytes. Indeed, we show that Salvador (Sal) I P. vivax infects Squirrel monkeys independently of DBP1 binding to Squirrel monkey erythrocytes. We conclude that P. vivax Sal I and perhaps P. vivax in Duffy-null patients may have adapted to use new ligand-receptor pairs for invasion.

  20. Therapeutic efficacy of artemether-lumefantrine for Plasmodium vivax infections in a prospective study in Guyana

    PubMed Central

    2012-01-01

    Background In Guyana, chloroquine + primaquine is used for the treatment of vivax malaria. A worldwide increase of chloroquine resistance in Plasmodium vivax led to questioning of the current malaria treatment guidelines. A therapeutic efficacy study was conducted using artemether-lumefantrine + primaquine against P. vivax to evaluate a treatment alternative for chloroquine. Methods From 2009 to 2010, a non-controlled study in two hospitals in Guyana was conducted. A total 61 patients with P. vivax infection were treated with artemether-lumefantrine as a six-dose regimen twice a day for three days with additional 0.25 mg/kg/d primaquine at day 0 for 14 days. Clinical and parasitological parameters were followed on days 0,1,2,3,7,14 and 28 in agreement with WHO guidelines. Plasmodium vivax DNA from eight patients was analysed for pvmdr1, molecular marker of resistance. Results Artemether-lumefantrine cleared 100% of parasites on day 1, but two patients (3%) had recurrence of parasites on day 28, suggesting relapse. No pvmdr1 Y976F polymorphism was detected. The treatment regimen was well tolerated. Conclusions In Guyana, artemether-lumefantrine represents an adequate treatment option against P. vivax when combined with primaquine. Availability of this alternative will be of great importance in case of emerging chloroquine resistance against P. vivax. PMID:23083017

  1. Plasmodium vivax Invasion of Human Erythrocytes Inhibited by Antibodies Directed against the Duffy Binding Protein

    PubMed Central

    Grimberg, Brian T; Udomsangpetch, Rachanee; Xainli, Jia; McHenry, Amy; Panichakul, Tasanee; Sattabongkot, Jetsumon; Cui, Liwang; Bockarie, Moses; Chitnis, Chetan; Adams, John; Zimmerman, Peter A; King, Christopher L

    2007-01-01

    Background Plasmodium vivax invasion requires interaction between the human Duffy antigen on the surface of erythrocytes and the P. vivax Duffy binding protein (PvDBP) expressed by the parasite. Given that Duffy-negative individuals are resistant and that Duffy-negative heterozygotes show reduced susceptibility to blood-stage infection, we hypothesized that antibodies directed against region two of P. vivax Duffy binding protein (PvDBPII) would inhibit P. vivax invasion of human erythrocytes. Methods and Findings Using a recombinant region two of the P. vivax Duffy binding protein (rPvDBPII), polyclonal antibodies were generated from immunized rabbits and affinity purified from the pooled sera of 14 P. vivax–exposed Papua New Guineans. It was determined by ELISA and by flow cytometry, respectively, that both rabbit and human antibodies inhibited binding of rPvDBPII to the Duffy antigen N-terminal region and to Duffy-positive human erythrocytes. Additionally, using immunofluorescent microscopy, the antibodies were shown to attach to native PvDBP on the apical end of the P. vivax merozoite. In vitro invasion assays, using blood isolates from individuals in the Mae Sot district of Thailand, showed that addition of rabbit anti-PvDBPII Ab or serum (antibodies against, or serum containing antibodies against, region two of the Plasmodium vivax Duffy binding protein) (1:100) reduced the number of parasite invasions by up to 64%, while pooled PvDBPII antisera from P. vivax–exposed people reduced P. vivax invasion by up to 54%. Conclusions These results show, for what we believe to be the first time, that both rabbit and human antibodies directed against PvDBPII reduce invasion efficiency of wild P. vivax isolated from infected patients, and suggest that a PvDBP-based vaccine may reduce human blood-stage P. vivax infection. PMID:18092885

  2. Identification of Caucasian CD4 T cell epitopes on the circumsporozoite protein of Plasmodium vivax. T cell memory.

    PubMed

    Bilsborough, J; Carlisle, M; Good, M F

    1993-07-15

    We have identified a population of Caucasians with a defined past history of infection with Plasmodium vivax malaria. Using purified synthetic peptides overlapping the sequence of the circumsporozoite protein, we determined the percentage of individuals whose T cells proliferated or secreted IFN-gamma in response to peptide stimulation, for both this population and a population of nonmalaria-exposed control individuals. A number of peptides were recognized by both groups, but 11 peptides were uniquely recognized by the exposed population, and thus represented malaria-specific T cell epitopes. CD4 T cells were found to be responsible for the proliferative response. Humans last exposed to vivax sporozoites as long ago as 49 yr responded as well or better to these malaria-specific epitopes as individuals exposed within the previous month. Since such malaria-induced memory response may not be a feature of Plasmodium falciparum infections, and since P. falciparum does not have a persisting hypnozoite stage, our data argue that the persistence of T cell memory to vivax epitopes may result from antigenic persistence in the liver.

  3. Reduced polymorphism in the Kelch propeller domain in Plasmodium vivax isolates from Cambodia.

    PubMed

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin; Ménard, Didier

    2015-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism.

  4. Reduced Polymorphism in the Kelch Propeller Domain in Plasmodium vivax Isolates from Cambodia

    PubMed Central

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin

    2014-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism. PMID:25385109

  5. A qPCR-based Multiplex Assay for Detection of Wuchereria bancrofti, Plasmodium falciparum, and Plasmodium vivax DNA

    PubMed Central

    Rao, Ramakrishna U.; Huang, Yuefang; Bockarie, Moses J.; Susapu, Melinda; Laney, Sandra J.; Weil, Gary J.

    2009-01-01

    Summary The purpose of this study was to develop multiplex qPCR assays for simultaneous detection of Wuchereria bancrofti (Wb), Plasmodium falciparum (Pf) and P. vivax (Pv) in mosquitoes. We optimized the assays with purified DNA samples and then used these assays to test DNA samples isolated from Anopheles punctulatus mosquitoes collected in villages in Papua New Guinea where these infections are co-endemic. Singleplex assays detected Wb, Pf, and Pv DNA in 32%, 19% and 15% of the mosquito pools, respectively, either alone or together with other parasites. Multiplex assay results agreed with singleplex results in most cases. Overall parasite DNA rates in mosquitoes (estimated by the Poolscreen2) for Wb, Pf, and Pv were 4.9%, 2.7%, and 2.1%, respectively. Parasite DNA rates were consistently higher in blood fed mosquitoes than in host seeking mosquitoes. Our results show that multiplex qPCR can be used to detect and estimate prevalence rates for multiple parasite species in arthropod vectors. We believe that multiplex molecular xenodiagnosis has great potential as a tool for non-invasively assessing the distribution and prevalence of vector-borne pathogens such as W. bancrofti and Plasmodium spp. in human populations and for assessing the impact of interventions aimed at controlling or eliminating these diseases. PMID:18801545

  6. Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax.

    PubMed Central

    Baum, Jake; Thomas, Alan W; Conway, David J

    2003-01-01

    Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses. PMID:12702678

  7. New insights into the Plasmodium vivax transcriptome using RNA-Seq

    PubMed Central

    Zhu, Lei; Mok, Sachel; Imwong, Mallika; Jaidee, Anchalee; Russell, Bruce; Nosten, Francois; Day, Nicholas P.; White, Nicholas J.; Preiser, Peter R.; Bozdech, Zbynek

    2016-01-01

    Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5′ untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation. PMID:26858037

  8. A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings.

    PubMed

    Bright, Andrew Taylor; Manary, Micah J; Tewhey, Ryan; Arango, Eliana M; Wang, Tina; Schork, Nicholas J; Yanow, Stephanie K; Winzeler, Elizabeth A

    2014-06-01

    Plasmodium vivax infects a hundred million people annually and endangers 40% of the world's population. Unlike Plasmodium falciparum, P. vivax parasites can persist as a dormant stage in the liver, known as the hypnozoite, and these dormant forms can cause malaria relapses months or years after the initial mosquito bite. Here we analyze whole genome sequencing data from parasites in the blood of a patient who experienced consecutive P. vivax relapses over 33 months in a non-endemic country. By analyzing patterns of identity, read coverage, and the presence or absence of minor alleles in the initial polyclonal and subsequent monoclonal infections, we show that the parasites in the three infections are likely meiotic siblings. We infer that these siblings are descended from a single tetrad-like form that developed in the infecting mosquito midgut shortly after fertilization. In this natural cross we find the recombination rate for P. vivax to be 10 kb per centimorgan and we further observe areas of disequilibrium surrounding major drug resistance genes. Our data provide new strategies for studying multiclonal infections, which are common in all types of infectious diseases, and for distinguishing P. vivax relapses from reinfections in malaria endemic regions. This work provides a theoretical foundation for studies that aim to determine if new or existing drugs can provide a radical cure of P. vivax malaria.

  9. Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein.

    PubMed

    Mongui, Alvaro; Perez-Leal, Oscar; Soto, Sara C; Cortes, Jimena; Patarroyo, Manuel A

    2006-12-22

    Plasmodium vivax remains the most widespread Plasmodium parasite species around the world, producing about 75 million malaria cases, mainly in South America and Asia. A vaccine against this disease is of urgent need, making the identification of new antigens involved in target cell invasion, and thus potential vaccine candidates, a priority. A protein belonging to the P. vivax merozoite surface protein 7 (PvMSP7) family was identified in this study. This protein (named PvMSP7(1)) has 311 amino acids displaying an N-terminal region sharing high identity with P. falciparum MSP7, as well as a similar proteolytical cleavage pattern. This protein's expression in P. vivax asexual blood stages was revealed by immuno-histochemical and molecular techniques.

  10. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination.

    PubMed

    Wells, Timothy N C; Burrows, Jeremy N; Baird, J Kevin

    2010-03-01

    Plasmodium vivax is the major species of malaria parasite outside Africa. It is especially problematic in that the infection can relapse in the absence of mosquitoes by activation of dormant hypnozoites in the liver. Medicines that target the erythrocytic stages of Plasmodium falciparum are also active against P. vivax, except where these have been compromised by resistance. However, the only clinical therapy against relapse of vivax malaria is the 8-aminoquinoline, primaquine. This molecule has the drawback of causing haemolysis in genetically sensitive patients and requires 14 days of treatment. New, safer and more-easily administered drugs are urgently needed, and this is a crucial gap in the broader malaria-elimination agenda. New developments in cell biology are starting to open ways to the next generation of drugs against hypnozoites. This search is urgent, given the time needed to develop a new medication.

  11. High Degree of Plasmodium vivax Diversity in the Peruvian Amazon Demonstrated by Tandem Repeat Polymorphism Analysis

    PubMed Central

    Kosek, Margaret; Yori, Pablo P.; Gilman, Robert H.; Calderon, Maritza; Zimic, Mirko; Chuquiyauri, Raul; Jeri, Cesar; Pinedo-Cancino, Viviana; Matthias, Michael A.; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2012-01-01

    Molecular tools to distinguish strains of Plasmodium vivax are important for studying the epidemiology of malaria transmission. Two sets of markers—tandem repeat (TR) polymorphisms and MSP3α—were used to study Plasmodium vivax in patients in the Peruvian Amazon region of Iquitos. Of 110 patients, 90 distinct haplotypes were distinguished using 9 TR markers. An MSP3α polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using HhaI and AluI revealed 8 and 9 profiles, respectively, and 36 profiles when analyzed in combination. Combining TR and PCR-RFLP markers, 101 distinct molecular profiles were distinguished among these 110 patients. Nine TR markers arrayed along a 100 kB stretch of a P. vivax chromosome containing the gene for circumsporozoite protein showed non-linear linkage disequilibrium (ISA = 0.03, P = 0.001). These findings demonstrate the potential use of TR markers for molecular epidemiology studies. PMID:22492139

  12. Plasmodium vivax Malaria Presenting with Multifocal Hemorrhagic Brain Infarcts in a School-going Child.

    PubMed

    Rathia, Santosh Kumar; Sankar, Jhuma; Kandasamy, Devasenathipathy; Lodha, Rakesh

    2016-08-01

    Cerebral malaria is a well-known complication of Plasmodium falciparum malaria. Over recent years, however, Plasmodium vivax also has been reported to cause cerebral malaria with or without co-infection with P. falciparum Here, we report a boy aged 10 years presenting with acute febrile encephalopathy with raised intracranial pressure to the emergency, who was later diagnosed to have P. vivax malaria. His neurological status improved gradually during 6 weeks of pediatric intensive care unit stay. We report this case to highlight the unusual radiologic findings in the patient, such as multifocal hemorrhagic infarcts in the brainstem, bilateral thalami, frontal cortex and basal ganglia, which have not been reported with P. vivax malaria.

  13. Plasmodium vivax Malaria among military personnel, French Guiana, 1998-2008.

    PubMed

    Queyriaux, Benjamin; Texier, Gaetan; Ollivier, Lenaick; Galoisy-Guibal, Laurent; Michel, Remy; Meynard, Jean-Baptiste; Decam, Christophe; Verret, Catherine; Pommier de Santi, Vincent; Spiegel, Andre; Boutin, Jean-Paul; Migliani, Rene; Deparis, Xavier

    2011-07-01

    We obtained health surveillance epidemiologic data on malaria among French military personnel deployed to French Guiana during 1998-2008. Incidence of Plasmodium vivax malaria increased and that of P. falciparum remained stable. This new epidemiologic situation has led to modification of malaria treatment for deployed military personnel.

  14. Plasmodium vivax malaria presenting with severe thrombocytopenia, cerebral complications and hydrocephalus.

    PubMed

    Harish, Rekha; Gupta, Sanjeev

    2009-05-01

    Two cases of a one and 4 year old child of plasmodium vivax malaria are reported in association with CNS complications. Both presented with encephalopathy and seizures. One had severe thrombocytopenia, massive intracranial bleed and hydrocephalus requiring shunt surgery while the other had gastrointestinal manifestations, encephalopathy and hydrocephalus. Both responded to quinine but are left with sequelae.

  15. Transmission Risk from Imported Plasmodium vivax Malaria in the China-Myanmar Border Region.

    PubMed

    Wang, Duoquan; Li, Shengguo; Cheng, Zhibin; Xiao, Ning; Cotter, Chris; Hwang, Jimee; Li, Xishang; Yin, Shouqin; Wang, Jiazhi; Bai, Liang; Zheng, Zhi; Wang, Sibao

    2015-10-01

    Malaria importation and local vector susceptibility to imported Plasmodium vivax infection are a continuing risk along the China-Myanmar border. Malaria transmission has been prevented in 3 border villages in Tengchong County, Yunnan Province, China, by use of active fever surveillance, integrated vector control measures, and intensified surveillance and response.

  16. Imported chloroquine-resistant Plasmodium vivax in Singapore: case report and literature review.

    PubMed

    Lim, Poh Lian; Mok, Ying Juan; Lye, David C; Leo, Yee Sin

    2010-01-01

    Chloroquine-resistant Plasmodium vivax (CRPV) infection is emerging as a clinically significant problem. Detailed travel history is crucial to the management of imported malarial cases. We report a 58-year-old business traveler who returned from Indonesia and experienced relapse due to CRPV. The epidemiology and diagnostic challenges of CRPV for travel medicine clinicians are reviewed.

  17. Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region.

    PubMed

    Severini, Carlo; Menegon, Michela; Di Luca, Marco; Abdullaev, Iso; Majori, Giancarlo; Razakov, Shavkat A; Gradoni, Luigi

    2004-10-01

    Plasmodium vivax malaria was eradicated from Uzbekistan in 1961. Due to resurgence of the disease in neighbouring states and massive population migration, there has been an increase of P. vivax malaria, imported from Tajikistan, resulting in a number of indigenous cases being identified in areas bordering that country. A molecular study using the merozoite surface protein 1 (msp-1) gene as a marker was performed on 24 P. vivax genomic isolates from 12 indigenous and 10 imported malaria cases that occurred in the Surkhandarya region during the summer of 2002. Results have shown a significant difference in the frequency of msp-1 types between indigenous and imported isolates, the latter showing greater genetic heterogeneity. An entomological investigation in the area suggested that three Anopheles species, namely A. superpictus, A. pulcherrimus and A. hyrcanus may have a potential role in the endemic transmission of P. vivax.

  18. Quantifying effect of geographic location on epidemiology of Plasmodium vivax malaria.

    PubMed

    Lover, Andrew A; Coker, Richard J

    2013-07-01

    Recent autochthonous transmission of Plasmodium vivax malaria in previously malaria-free temperate regions has generated renewed interest in the epidemiology of this disease. Accurate estimates of the incubation period and time to relapse are required for effective malaria surveillance; however, this information is currently lacking. By using historical data from experimental human infections with diverse P. vivax strains, survival analysis models were used to obtain quantitative estimates of the incubation period and time to first relapse for P. vivax malaria in broad geographic regions. Results show that Eurasian strains from temperate regions have longer incubation periods, and Western Hemisphere strains from tropical and temperate regions have longer times to relapse compared with Eastern Hemisphere strains. The diversity in these estimates of key epidemiologic parameters for P. vivax supports the need for elucidating local epidemiology to inform clinical follow-up and to build an evidence base toward global elimination of malaria.

  19. Loop-Mediated Isothermal Amplification and LFD Combination for Detection of Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Kongkasuriyachai, Darin; Yongkiettrakul, Suganya; Kiatpathomchai, Wansika; Arunrut, Narong

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) has been used to detect several pathogens including malaria parasites from field and clinical samples. In this protocol, the malaria LAMP technology is developed to differentiate between Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) species by targeting the dihydrofolate reductase thymidylate synthase (dhfr-ts) gene, a known target for the antifolate class of drugs such as Pyrimethamine. LAMP primer sets are designed and validated for species specific amplification. Additionally, specific probes help improve detection and visualization of the products when combined with lateral flow dipstick-based (LFD) detection. The protocols are further simplified to eliminate tedious sample preparation steps, such that crude lysis prepared simply by diluting few microliter (μL) of blood sample with distilled water is sufficient. The LAMP-LFD malaria dhfr-ts protocols are sensitive and can detect as little as 1 picogram (pg) of PfDNA and 1 nanogram (ng) of PvDNA, or a few microliters of crude lysate from infected blood samples (Yongkiettrakul et al., Parasitol Int 63: 777-784, 2014). These simplified steps not only reduce cost but also increase the potential for large application in the fields and clinical settings.

  20. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand

    PubMed Central

    Auburn, Sarah; Serre, David; Pearson, Richard D.; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P.; Nosten, Francois; Price, Ric N.

    2016-01-01

    In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax. Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6–kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003–2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. PMID:27456706

  1. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles.

    PubMed

    Ding, Xavier C; Ade, Maria Paz; Baird, J Kevin; Cheng, Qin; Cunningham, Jane; Dhorda, Mehul; Drakeley, Chris; Felger, Ingrid; Gamboa, Dionicia; Harbers, Matthias; Herrera, Socrates; Lucchi, Naomi; Mayor, Alfredo; Mueller, Ivo; Sattabongkot, Jetsumon; Ratsimbason, Arsène; Richards, Jack; Tanner, Marcel; González, Iveth J

    2017-04-03

    The global prevalence of malaria has decreased over the past fifteen years, but similar gains have not been realized against Plasmodium vivax because this species is less responsive to conventional malaria control interventions aimed principally at P. falciparum. Approximately half of all malaria cases outside of Africa are caused by P. vivax. This species places dormant forms in human liver that cause repeated clinical attacks without involving another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To guide their development, FIND, in collaboration with P. vivax experts, identified the specific diagnostic needs associated with this species and defined a series of three distinct target product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii) ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance purposes. This report presents and discusses the rationale for these P. vivax-specific diagnostic target product profiles. These contribute to the rational development of fit-for-purpose diagnostic tests suitable for use the clinical management, control and elimination of P. vivax malaria.

  2. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays.

    PubMed

    Uplekar, Swapna; Rao, Pavitra Nagesh; Ramanathapuram, Lalitha; Awasthi, Vikky; Verma, Kalpana; Sutton, Patrick; Ali, Syed Zeeshan; Patel, Ankita; G, Sri Lakshmi Priya; Ravishankaran, Sangamithra; Desai, Nisha; Tandel, Nikunj; Choubey, Sandhya; Barla, Punam; Kanagaraj, Deena; Eapen, Alex; Pradhan, Khageswar; Singh, Ranvir; Jain, Aarti; Felgner, Philip L; Davies, D Huw; Carlton, Jane M; Das, Jyoti

    2017-01-01

    Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world.

  3. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays

    PubMed Central

    Awasthi, Vikky; Verma, Kalpana; Sutton, Patrick; Ali, Syed Zeeshan; Patel, Ankita; G., Sri Lakshmi Priya; Ravishankaran, Sangamithra; Desai, Nisha; Tandel, Nikunj; Choubey, Sandhya; Barla, Punam; Kanagaraj, Deena; Eapen, Alex; Pradhan, Khageswar; Singh, Ranvir; Jain, Aarti; Felgner, Philip L.; Davies, D. Huw; Das, Jyoti

    2017-01-01

    Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world. PMID:28118367

  4. Plasmodium vivax congenital malaria in an area of very low endemicity in Guatemala: implications for clinical and epidemiological surveillance in a malaria elimination context

    PubMed Central

    2012-01-01

    This is a report of the first Plasmodium vivax congenital malaria case in Guatemala and the first case in Latin America with genotypical, histological and clinical characterization. The findings show that maternal P. vivax infection still occurs in areas that are in the pathway towards malaria elimination, and can be associated with detrimental health effects for the neonate. It also highlights the need in very low transmission areas of not only maintaining, but increasing awareness of the problem and developing surveillance strategies, based on population risk, to detect the infection especially in this vulnerable group of the population. PMID:23217209

  5. EVALUATION OF CIRCUMSPOROZOITE PROTEIN OF Plasmodium vivax TO ESTIMATE ITS PREVALENCE IN OIAPOQUE , AMAPÁ STATE, BRAZIL, BORDERING FRENCH GUIANA.

    PubMed

    Gomes, Margarete do Socorro Mendonça; Vieira, José Luiz Fernandes; Cassiano, Gustavo Capatti; Musset, Lise; Legrand, Eric; Nacher, Mathieu; Couto, Vanja Suely Calvosa D'Almeida; Machado, Ricardo Luiz Dantas; Couto, Álvaro Augusto Ribeiro D'Almeida

    2016-09-22

    Malaria is a major health problem for people who live on the border between Brazil and French Guiana. Here we discuss Plasmodium vivax distribution pattern in the town of Oiapoque, Amapá State using the circumsporozoite (CS) gene as a marker. Ninety-one peripheral blood samples from P. vivax patients have been studied. Of these, 64 individuals were from the municipality of Oiapoque (Amapá State, Brazil) and 27 patients from French Guiana (August to December 2011). DNA extraction was performed, and a fragment of the P. vivax CS gene was subsequently analyzed using PCR/RFLP. The VK210 genotype was the most common in both countries (48.36% in Brazil and 14.28% in French Guiana), followed by the P. vivax-like (1.10% in both Brazil and French Guiana) and VK247 (1.10% only in Brazil) in single infections. We were able to detect all three CS genotypes simultaneously in mixed infections. There were no statistically significant differences either regarding infection site or parasitaemia among individuals with different genotypes. These results suggest that the same genotypes circulating in French Guiana are found in the municipality of Oiapoque in Brazil. These findings suggest that there may be a dispersion of parasitic populations occurring between the two countries. Most likely, this distribution is associated with prolonged and/or more complex transmission patterns of these genotypes in Brazil, bordering French Guiana.

  6. EVALUATION OF CIRCUMSPOROZOITE PROTEIN OF Plasmodium vivax TO ESTIMATE ITS PREVALENCE IN OIAPOQUE , AMAPÁ STATE, BRAZIL, BORDERING FRENCH GUIANA

    PubMed Central

    GOMES, Margarete do Socorro Mendonça; VIEIRA, José Luiz Fernandes; CASSIANO, Gustavo Capatti; MUSSET, Lise; LEGRAND, Eric; NACHER, Mathieu; COUTO, Vanja Suely Calvosa D'Almeida; MACHADO, Ricardo Luiz Dantas; COUTO, Álvaro Augusto Ribeiro D'Almeida

    2016-01-01

    SUMMARY Malaria is a major health problem for people who live on the border between Brazil and French Guiana. Here we discuss Plasmodium vivax distribution pattern in the town of Oiapoque, Amapá State using the circumsporozoite (CS) gene as a marker. Ninety-one peripheral blood samples from P. vivax patients have been studied. Of these, 64 individuals were from the municipality of Oiapoque (Amapá State, Brazil) and 27 patients from French Guiana (August to December 2011). DNA extraction was performed, and a fragment of the P. vivax CS gene was subsequently analyzed using PCR/RFLP. The VK210 genotype was the most common in both countries (48.36% in Brazil and 14.28% in French Guiana), followed by the P. vivax-like (1.10% in both Brazil and French Guiana) and VK247 (1.10% only in Brazil) in single infections. We were able to detect all three CS genotypes simultaneously in mixed infections. There were no statistically significant differences either regarding infection site or parasitaemia among individuals with different genotypes. These results suggest that the same genotypes circulating in French Guiana are found in the municipality of Oiapoque in Brazil. These findings suggest that there may be a dispersion of parasitic populations occurring between the two countries. Most likely, this distribution is associated with prolonged and/or more complex transmission patterns of these genotypes in Brazil, bordering French Guiana. PMID:27680177

  7. Characterization of the metacaspase 1 gene in Plasmodium vivax field isolates from southern Iran and Italian imported cases.

    PubMed

    Rezanezhad, H; Menegon, M; Sarkari, B; Hatam, G R; Severini, C

    2011-07-01

    Plasmodium vivax is still the more prevalent human Plasmodium outside Africa and despite this fact, there is still a deep lack of knowledge on its biology. Metacaspases are cysteine proteases related to metazoan caspases, involved in programmed cell death. Here, we have characterized the P. vivax metacaspase 1 gene in a total of 63 vivax isolates, 32 isolates collected in southern Iran and 31 Italian imported isolates originating from 12 different endemic countries. We have firstly identified DNA size polymorphism in P. vivax metacaspase 1 gene. A total of four different allelic sizes were found, resulting from the insertion of 1 to 4 tandem repeat units located within the intronic region of the P. vivax metacaspase 1. Similarly, we also have identified four distinct allelic types by using vivax merozoite surface protein-1 size polymorphism analysis.

  8. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model.

    PubMed

    Shaw-Saliba, Kathryn; Thomson-Luque, Richard; Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H M; Duraisingh, Manoj T; Adams, John H; Pasini, Erica M

    2016-07-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  9. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model

    PubMed Central

    Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H. M.; Duraisingh, Manoj T.; Adams, John H.; Pasini, Erica M.

    2016-01-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  10. Immune response to Plasmodium vivax has a potential to reduce malaria severity.

    PubMed

    Chuangchaiya, S; Jangpatarapongsa, K; Chootong, P; Sirichaisinthop, J; Sattabongkot, J; Pattanapanyasat, K; Chotivanich, K; Troye-Blomberg, M; Cui, L; Udomsangpetch, R

    2010-05-01

    Plasmodium falciparum infection causes transient immunosuppression during the parasitaemic stage. However, the immune response during simultaneous infections with both P. vivax and P. falciparum has been investigated rarely. In particular, it is not clear whether the host's immune response to malaria will be different when infected with a single or mixed malaria species. Phenotypes of T cells from mixed P. vivax-P. falciparum (PV-PF) infection were characterized by flow cytometry, and anti-malarial antibodies in the plasma were determined by an enzyme-linked immunosorbent assay. We found the percentage of CD3+delta2+-T cell receptor (TCR) T cells in the acute-mixed PV-PF infection and single P. vivax infection three times higher than in the single P. falciparum infection. This implied that P. vivax might lead to the host immune response to the production of effector T killer cells. During the parasitaemic stage, the mixed PV-PF infection had the highest number of plasma antibodies against both P. vivax and P. falciparum. Interestingly, plasma from the group of single P. vivax or P. falciparum malaria infections had both anti-P. vivax and anti-P. falciparum antibodies. In addition, antigenic cross-reactivity of P. vivax or P. falciparum resulting in antibodies against both malaria species was shown in the supernatant of lymphocyte cultures cross-stimulated with either antigen of P. vivax or P. falciparum. The role of delta2 +/- TCR T cells and the antibodies against both species during acute mixed malaria infection could have an impact on the immunity to malaria infection.

  11. A Plasmodium vivax vaccine candidate displays limited allele polymorphism, which does not restrict recognition by antibodies.

    PubMed Central

    Soares, I. S.; Barnwell, J. W.; Ferreira, M. U.; Gomes Da Cunha, M.; Laurino, J. P.; Castilho, B. A.; Rodrigues, M. M.

    1999-01-01

    BACKGROUND: The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP1(19) from Plasmodium vivax, a major human malaria parasite. MATERIALS AND METHODS: We cloned and sequenced 88 gene fragments representing the MSP1(19) from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP1(19) described thus far. RESULTS: We observed that DNA sequences encoding MSP1(19) were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein. CONCLUSIONS: Our findings suggest that the use of MSP1(19) as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies. Images Fig. 1 PMID:10449807

  12. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax.

    PubMed

    Lee, Jung-Yub; Song, Su-Min; Seok, Ji-Woong; Jha, Bijay Kumar; Han, Eun-Taek; Song, Hyun-Ouk; Yu, Hak-Sun; Hong, Yeonchul; Kong, Hyun-Hee; Chung, Dong-Il

    2010-03-01

    Amino acids derived from hemoglobin are essential to protein synthesis required for growth and development of the Plasmodium vivax malaria parasite. M17 leucine aminopeptidase (LAP) is a cytosolic metallo-exopeptidase that catalyzes the removal of amino acids from the peptide generated in the process of hemoglobin degradation. Inhibitors of the enzyme have shown promise as drugs against Plasmodium infections, implicating aminopeptidases as a novel potential anti-malarial chemotherapy target. In this study, we isolated a cDNA encoding a 68kDa P. vivax LAP (PvLAP). Deduced amino acid sequence of PvLAP exhibited significant sequence homology with LAP from Plasmodium falciparum. Biochemical analysis of the recombinant PvLAP protein produced in Escherichia coli demonstrated preferential substrate specificity for the fluorogenic peptide Leu-7-amido-4-methylcoumarin hydroxide and inhibition by EDTA, 1,10-phenanthroline, and bestatin, which are conserved characteristics of the M17 family of LAP. PvLAP was optimally active at slightly alkaline pH and its activity was dependent on divalent metal ions. Based on the biochemical properties and immunofluorescence localization, PvLAP is concluded to represent a LAP in P. vivax. The enzyme is most likely responsible for the catabolism of host hemoglobin and, hence, represents a potential target of both P. falciparum and P. vivax chemotherapy.

  13. Case Report: Successful Sporozoite Challenge Model in Human Volunteers with Plasmodium vivax Strain Derived from Human Donors

    DTIC Science & Technology

    2009-01-01

    Report: Successful Sporozoite Challenge Model in Human Volunteers with Plasmodium vivax Strain Derived from Human Donors Sócrates Herrera...Switzerland Abstract. Successful establishment of a Plasmodium vivax sporozoite challenge model in humans is described. Eighteen healthy adult...among groups (Kruskal-Wallis, P = 0.70). One volunteer exposed to eight mosquito bites did not develop a parasitemia. No dif- ferences in parasite

  14. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum.

    PubMed

    Auliff, Alyson M; Balu, Bharath; Chen, Nanhua; O'Neil, Michael T; Cheng, Qin; Adams, John H

    2012-01-01

    Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.

  15. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India).

    PubMed

    Kochar, Dhanpat Kumar; Das, Ashis; Kochar, Abhishek; Middha, Sheetal; Acharya, Jyoti; Tanwar, Gajanand Singh; Gupta, Anjana; Pakalapati, Deepak; Garg, Shilpi; Saxena, Vishal; Subudhi, Amit Kumar; Boopathi, P A; Sirohi, Parmendra; Kochar, Sanjay Kumar

    2010-01-01

    The occurrence, relation and magnitude of thrombocytopenia in different species of malaria are not clearly defined. This study included 1,064 patients admitted with malaria to study thrombocytopenia (platelet count <150,000 /cumm) in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) mono infection and mixed infection (Pf + Pv). The species diagnosis was done by peripheral blood film (PBF) and rapid diagnostic test (RDT). Validation by polymerase chain reaction (PCR) was done only in patients with severe thrombocytopenia (platelet count <20,000 /cumm). The breakup of patients was 525 (49.34%) Pf, 460 (43.23%) Pv and 79 (7.42%) mixed malaria (Pf + Pv). Thrombocytopenia was observed in 24.6% (262/1064) patients. The risk was greatest in the mixed infections in comparison to monoinfection individually (43.04% [34/79]; mixed vs Pv monoinfection: Odds Ratio [OR] = 1.675 [95% Confidence Interval (CI) 1.029-2.726], p < 0.0366; mixed vs Pf monoinfection: OR=3.911 [95% CI 2.367-6.463], p < 0.0001). Pv monoinfection (31.09% [143/460]) had greater risk compared to Pf monoinfection (16.19% [85/525]; OR = 2.335 [95% CI 1.722-3.167], p < 0.0001). The occurrence of severe thrombocytopenia was also higher in Pv monoinfection (18.18% [26/143]) in comparison to either Pf monoinfection (10.59% [9/85], OR = 1.877 (95% CI 0.834-4.223)) or mixed infection (11.76% [4/34]; OR = 1.667 (95% CI 0.540-5.142) but this association was statistically not significant. Six patients (3 Pv, 2 Pf and 1 mixed) developed severe epistaxis requiring platelet transfusion. There was no relation between parasite density and platelet count as many patients with severe thrombocytopenia had parasite density similar to patients without thrombocytopenia. We found that the association of thrombocytopenia was statistically more significant with P. vivax monoinfection as compared to P. falciparum.

  16. Hemolytic uremic syndrome associated with Plasmodium vivax malaria successfully treated with plasma exchange.

    PubMed

    Keskar, V S; Jamale, T E; Hase, N K

    2014-01-01

    We report a case of hemolytic uremic syndrome (HUS) in an adult patient with Plasmodium vivax malaria. The patient presented with worsening anemia, persistent thrombocytopenia and acute kidney injury. HUS was diagnosed based on the high serum lactate dehydrogenase, elevated reticulocyte count and presence of schistocytes on peripheral blood smear. Kidney biopsy showed features of thrombotic microangiopathy. Complete hematological remission was achieved after five sessions of therapeutic plasma exchange. Renal function partially recovered and stabilized at discharge. Vivax malaria, generally considered benign, may be rarely associated with HUS.

  17. Malaysian child infected with Plasmodium vivax via blood transfusion: a case report

    PubMed Central

    2013-01-01

    Malaria may be a serious complication of blood transfusion due to the asymptomatic persistence of parasites in some donors. This case report highlights the transfusion-transmitted malaria of Plasmodium vivax in a child diagnosed with germ cell tumour. This child had received blood transfusion from three donors and a week later started developing malaria like symptoms. Nested PCR and sequencing confirmed that one of the three donors was infected with P. vivax and this was transmitted to the 12-year-old child. To the best of the authors’ knowledge, this is the first reported transfusion-transmitted malaria case in Malaysia. PMID:24007496

  18. Renal cortical necrosis and acute kidney injury associated with Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Vanikar, Aruna V; Ghuge, Pramod P; Goswami, Jitendra G; Patel, Mohan P; Patel, Himanshu V; Gumber, Manoj R; Shah, Pankaj R; Trivedi, Hargovind L

    2012-11-01

    Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. There is an urgent need to reexamine the clinical spectrum and burden of P. vivax so that adequate control measures can be implemented against this emerging but neglected disease. Herein, we report a case of renal acute cortical necrosis and acute kidney injury (AKI) associated with P. vivax monoinfection. Her initial serum creatinine was 7.3 mg/dL on admission. Modification of Diet in Renal Disease (MDRD) Study glomerular filtration rate (GFR) value was 7 mL/min/1.73 m(2) (normal kidney function-GFR above 90 mL/min/1.73 m(2) and no proteinuria). On follow-up, 5 months later, her SCr. was 2.43 mg/dl with no proteinuria. MDRD GFR value was 24 mL/min/1.73 m(2) suggesting severe chronic kidney disease (CKD; GFR less than 60 or kidney damage for at least 3 months), stage 4. Our case report highlights the fact that P. vivax malaria is benign by name but not always by nature. AKI associated with P. vivax malaria can lead to CKD. Further studies are needed to determine why P. vivax infections are becoming more severe.

  19. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    PubMed Central

    Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877

  20. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    PubMed Central

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  1. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians.

    PubMed

    Ngassa Mbenda, Huguette Gaelle; Das, Aparup

    2014-01-01

    The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans.

  2. A comparative study of natural immune responses against Plasmodium vivax C-terminal merozoite surface protein-1 (PvMSP-1) and apical membrane antigen-1 (PvAMA-1) in two endemic settings

    PubMed Central

    Xia, Hui; Fang, Qiang; Jangpatarapongsa, Kulachart; Zhiyong, Tao; Cui, Liwang; Li, Baiqing; Udomsangpetch, Rachanee

    2015-01-01

    The mechanisms of cellular and humoral immune responses against P. vivax parasite remain poorly understood. Several malaria immunological studies have been conducted in endemic regions where both P. falciparum and P. vivax parasites co-exist. In this study, a comparative analysis of immunity to Plasmodium vivax antigens in different geography and incidence of Plasmodium spp. infection was performed. We characterised antibodies against two P. vivax antigens, PvMSP-1 and PvAMA-1, and the cross-reactivity between these antigens using plasma from acute malaria infected patients living in the central region of China and in the western border of Thailand. P. vivax endemicity is found in central China whereas both P. vivax and P. falciparum are endemic in Thailand. There was an increased level of anti-PvMSP-1/anti-PvAMA-1 in both populations. An elevated level of antibodies to total P. vivax proteins and low level of antibodies to total P. falciparum proteins was found in acute P. vivax infected Chinese, suggesting antibody cross-reactivity between the two species. P. vivax infected Thai patients had both anti-P. vivax and anti-P. falciparum antibodies as expected since both species are present in Thailand. More information on humoral and cell mediated immunity during acute P. vivax-infection in the area where only single P. vivax species existed is of great interest in the relation of building up anti-disease severity caused by P. falciparum. This knowledge will support vaccine development in the future. PMID:26713085

  3. El Niño and variations in the prevalence of Plasmodium vivax and P. falciparum in Vanuatu.

    PubMed

    Gilbert, M; Brindle, R

    2009-12-01

    Malaria, both Plasmodium falciparum and P. vivax, is a major cause of morbidity in Vanuatu. As P. vivax is more prevalent in seasonal climates and P. falciparum in areas of more consistent rainfall, it is postulated that there will be a correlation between the ratio of vivax:falciparum and the El Niño Southern Oscillation (ENSO), which affects sea surface temperatures and rainfall. With changes in global climate, the frequency, duration and strength of the ENSO are expected to alter, influencing the pattern of malaria. The data showed no obvious correlation between ENSO and either cases of malaria or the vivax:falciparum ratio.

  4. Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles

    PubMed Central

    Alnasser, Yossef; Ferradas, Cusi; Clark, Taryn; Calderon, Maritza; Gurbillon, Alejandro; Gamboa, Dionicia; McKakpo, Uri S.; Quakyi, Isabella A.; Bosompem, Kwabena M.; Sullivan, David J.; Vinetz, Joseph M.; Gilman, Robert H.

    2016-01-01

    Plasmodium vivax is the most prevalent cause of human malaria in the world and can lead to severe disease with high potential for relapse. Its genetic and geographic diversities make it challenging to control. P. vivax is understudied and to achieve control of malaria in endemic areas, a rapid, accurate, and simple diagnostic tool is necessary. In this pilot study, we found that a colorimetric system using AuNPs and MSP10 DNA detection in urine can provide fast, easy, and inexpensive identification of P. vivax. The test exhibited promising sensitivity (84%), high specificity (97%), and only mild cross-reactivity with P. falciparum (21%). It is simple to use, with a visible color change that negates the need for a spectrometer, making it suitable for use in austere conditions. Using urine eliminates the need for finger-prick, increasing both the safety profile and patient acceptance of this model. PMID:27706158

  5. Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax Reticulocyte Binding Proteins

    PubMed Central

    Hietanen, Jenni; Chim-ong, Anongruk; Chiramanewong, Thanprakorn; Gruszczyk, Jakub; Roobsoong, Wanlapa; Sattabongkot, Jetsumon

    2015-01-01

    Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion. PMID:26712206

  6. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates?

    PubMed Central

    López, Carolina; Yepes-Pérez, Yoelis; Hincapié-Escobar, Natalia; Díaz-Arévalo, Diana; Patarroyo, Manuel A.

    2017-01-01

    Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax. PMID:28243235

  7. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates?

    PubMed

    López, Carolina; Yepes-Pérez, Yoelis; Hincapié-Escobar, Natalia; Díaz-Arévalo, Diana; Patarroyo, Manuel A

    2017-01-01

    Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.

  8. Lipid Profile of Children with Malaria by Plasmodium vivax

    PubMed Central

    Dias, Rosa Maria; Cabral, Bianca da Conceição; da Silva, Isameriliam Rosaulem Pereira; Brasil, Laelia Maria Barra Feio; Araújo, Eliete da Cunha; de Andrade, Marcieni Ataíde

    2016-01-01

    Background. Changes in lipid profile are commonly reported in adult patients with malaria. However, a few studies evaluated lipid abnormalities in children continuously exposed to P. vivax. Objective. To evaluate lipid abnormalities in children with P. vivax infection and to assess if parasite count or the history of malaria correlates with lipid levels at admission. Methods. A total of 75 children were included in the study, from which 43 were slide confirmed infection by P. vivax. Serial blood samples were collected at admission and, on days 7 and 14, evaluated for the colorimetric measurements of triglycerides, very low-density lipoprotein (VLDL), total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Results. The levels of total cholesterol, LDL, and HDL were significantly lower in malaria cases. The levels of VLDL and triglycerides were significantly higher in children with malaria. Such changes were transient and were not associated with parasite counting as well as with the history of malaria of patients. Conclusion. There are significant lipid abnormalities in children with low level of P. vivax infection and mild signs and symptoms of the disease, which are not associated with parasitaemia and previous episodes of disease. PMID:28050172

  9. Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax

    PubMed Central

    Wang, Bo; Lu, Feng; Han, Jin-Hee; Lee, Seong-Kyun; Cheng, Yang; Nyunt, Myat Htut; Ha, Kwon-Soo; Hong, Seok-Ho; Park, Won Sun; Han, Eun-Taek

    2016-01-01

    Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, PcyPHIST/CVC-8195, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about PHIST/CVC-8195 protein in P. vivax. In this study, the recombinant PvPHIST/CVC-8195 N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of PvPHIST/CVC-8195 N and C termini in blood stage parasites was also determined. The antigenicity of recombinant PvPHIST/CVC-8195 N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of PvPHIST/CVC-8195 which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of PvPHIST/CVC-8195. These results suggest that the PvPHIST/CVC-8195 is localized on the CVCs and may be immunogenic in natural infection of P. vivax. PMID:28095657

  10. Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax.

    PubMed

    Wang, Bo; Lu, Feng; Han, Jin-Hee; Lee, Seong-Kyun; Cheng, Yang; Nyunt, Myat Htut; Ha, Kwon-Soo; Hong, Seok-Ho; Park, Won Sun; Han, Eun-Taek

    2016-12-01

    Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, PcyPHIST/CVC-8195, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about PHIST/CVC-8195 protein in P. vivax. In this study, the recombinant PvPHIST/CVC-8195 N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of PvPHIST/CVC-8195 N and C termini in blood stage parasites was also determined. The antigenicity of recombinant PvPHIST/CVC-8195 N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of PvPHIST/CVC-8195 which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of PvPHIST/CVC-8195. These results suggest that the PvPHIST/CVC-8195 is localized on the CVCs and may be immunogenic in natural infection of P. vivax.

  11. Limited Global Diversity of the Plasmodium vivax Merozoite Surface Protein 4 Gene

    PubMed Central

    Putaporntip, Chaturong; Jongwutiwes, Somchai; Ferreira, Marcelo U.; Kanbara, Hiroji; Udomsangpetch, Rachanee; Cui, Liwang

    2009-01-01

    Merozoite surface proteins (MSPs) of the malaria parasites are major candidates for vaccine development targeting asexual blood stages. However, the diverse antigenic repertoire of these antigens that induce strain-specific protective immunity in human is a major challenge for vaccine design and often determines the efficacy of a vaccine. Here we further assessed the genetic diversity of Plasmodium vivax MSP4 (PvMSP4) protein using 195 parasite samples collected mostly from Thailand, Indonesia and Brazil. Overall, PvMSP4 is highly conserved with only eight amino acid substitutions. The majority of the haplotype diversity was restricted to the two short tetrapeptide repeat arrays in exon 1 and 2, respectively. Selection and neutrality tests indicated that exon 1 and the entire coding region of PvMSP4 were under purifying selection. Despite the limited nucleotide polymorphism of PvMSP4, significant genetic differentiation among the three major parasite populations was detected. Moreover, microgeographical heterogeneity was also evident in the parasite populations from different endemic areas of Thailand. PMID:19409511

  12. Variable number of tandem repeats of 9 Plasmodium vivax genes among Southeast Asian isolates.

    PubMed

    Wang, Bo; Nyunt, Myat Htut; Yun, Seung-Gyu; Lu, Feng; Cheng, Yang; Han, Jin-Hee; Ha, Kwon-Soo; Park, Won Sun; Hong, Seok-Ho; Lim, Chae-Seung; Cao, Jun; Sattabongkot, Jetsumon; Kyaw, Myat Phone; Cui, Liwang; Han, Eun-Taek

    2017-01-22

    The variable number of tandem repeats (VNTRs) provides valuable information about both the functional and evolutionary aspects of genetic diversity. Comparative analysis of 3 Plasmodium falciparum genomes has shown that more than 9% of its open reading frames (ORFs) harbor VNTRs. Although microsatellites and VNTR genes of P. vivax were reported, the VNTR polymorphism of genes has not been examined widely. In this study, 230 P. vivax genes were analyzed for VNTRs by SERV, and 33 kinds of TR deletions or insertions from 29 P. vivax genes (12.6%) were found. Of these, 9 VNTR fragments from 8 P. vivax genes were used for PCR amplification and sequence analysis to examine the genetic diversity among 134 isolates from four Southeast Asian countries (China, Republic of Korea, Thailand, and Myanmar) with different malaria endemicity. We confirmed the existence of extensive polymorphism of VNTR fragments in field isolates. This detection provides several suitable markers for analysis of the molecular epidemiology of P. vivax field isolates.

  13. Chloroquine-resistant Plasmodium vivax in transmigration settlements of West Kalimantan, Indonesia.

    PubMed

    Fryauff, D J; Tuti, S; Mardi, A; Masbar, S; Patipelohi, R; Leksana, B; Kain, K C; Bangs, M J; Richie, T L; Baird, J K

    1998-10-01

    Malariometric surveys were conducted during July 1996 in native Dayak villages and predominantly Javanese transmigration settlements in Ketapang district of West Kalimantan, Indonesia. Malaria prevalence ranged from 0.9% to 2.7% in Dayak villages and from 1% to 20% in the transmigration settlements. Plasmodium falciparum accounted for 67% of the cases among Dayaks but P. vivax was dominant among transmigrants, accounting for more than 72% of the infections. Chloroquine sensitivity/resistance was assessed by 28-day in vivo testing of uncomplicated malaria infections and measurement of chloroquine blood levels in cases where parasitemias reappeared within the 28-day test period. Resistance was based on the appearance of asexual parasites against chloroquine plus desethylchloroquine levels exceeding the minimally effective whole blood concentrations proposed for sensitive parasite strains (P. vivax, 100 ng/ml; P. falciparum, 200 ng/ml). All parasitemias cleared initially within four days of beginning supervised chloroquine therapy (25 mg base/kg over a 48-hr period), but asexual parasites reappeared within 28 days in 27 of 52 P. vivax and three of 12 P. falciparum cases. Chloroquine blood levels at the time of recurrent parasitemias revealed resistance in 12 of the 27 P. vivax cases and in one of the three P. falciparum cases. Genotypes of nine of the 12 recurrent P. vivax isolates matched with their primary isolates and ruled out reinfection. These findings establish the presence of chloroquine-resistant P. vivax on the island of Borneo. The pattern of malaria and the high frequency of chloroquine resistance by P. vivax at the West Kalimantan location may relate to demographic, ecologic, agricultural, and socioeconomic changes associated with transmigration.

  14. An innovative shape equation to quantify the morphological characteristics of parasitized red blood cells by Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Motevalli Haghi, Afsaneh; Faghihi, Shahab

    2013-04-01

    The morphology of red blood cells is affected significantly during maturation of malaria parasites, Plasmodium falciparum and Plasmodium vivax. A novel shape equation is presented that defines shape of parasitized red blood cells by P. falciparum (Pf-red blood cells) and P. vivax (Pv-red blood cells) at four stages of infection. The Giemsa-stained thin blood films are prepared using blood samples collected from healthy donors, patients having P. falciparum and P. vivax malaria. The diameter and thickness of healthy red blood cells plus Pf-red blood cells and Pv-red blood cells at each stage of infection are measured from their optical images using Olysia and Scanning Probe Image Processor softwares, respectively. Using diameters and thicknesses of parasitized red blood cells, a shape equation is fitted and relative two-dimensional shapes are plotted using MATHEMATICA. The shape of Pf-red blood cell drastically changes at ring stage as its thickness increases by 82%, while Pv-red blood cell remains biconcave (30% increase in thickness). By trophozoite and subsequent schizont stage, the Pf-red blood cell entirely loses its biconcave shape and becomes near spherical (diameter and thickness of ~8 µm). The Pv-red blood cell remains biconcave throughout the parasite development even though its volume increases. These results could have practical use for faster diagnosis, prediction, and treatment of human malaria and sickle-cell diseases.

  15. Genetic Polymorphism of Plasmodium vivax msp1p, a Paralog of Merozoite Surface Protein 1, from Worldwide Isolates

    PubMed Central

    Wang, Yue; Kaneko, Osamu; Sattabongkot, Jetsumon; Chen, Jun-Hu; Lu, Feng; Chai, Jong-Yil; Takeo, Satoru; Tsuboi, Takafumi; Ayala, Francisco J.; Chen, Yong; Lim, Chae Seung; Han, Eun-Taek

    2011-01-01

    Plasmodium vivax msp1p, a paralog of the candidate vaccine antigen P. vivax merozoite surface protein 1, possesses a signal peptide at its N-terminus and two epidermal growth factor–like domains at its C-terminus with a glycosylphosphatidylinositol attachment site. The msp1p gene locus may have originated by a duplication of the msp1 gene locus in a common ancestor of the analyzed Plasmodium species and lost from P. yoelii, P. berghei, and P. falciparum during their evolutionary history. Full-length sequences of the msp1p gene were generally highly conserved; they had a few amino acid substitutions, one highly polymorphic E/Q-rich region, and a single-to-triple hepta-peptide repeat motif. Twenty-one distinguishable allelic types (A1–A21) of the E/Q-rich region were identified from worldwide isolates. Among them, four types were detected in isolates from South Korea. The length polymorphism of the E/Q-rich region might be useful as a genetic marker for population structure studies in malaria-endemic areas. PMID:21292901

  16. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species.

    PubMed Central

    del Portillo, H A; Longacre, S; Khouri, E; David, P H

    1991-01-01

    Merozoite surface antigen 1 (MSA1) of several species of plasmodia has been shown to be a promising candidate for a vaccine directed against the asexual blood stages of malaria. We report the cloning and characterization of the MSA1 gene of the human malaria parasite Plasmodium vivax. This gene, which we call Pv200, encodes a polypeptide of 1726 amino acids and displays features described for MSA1 genes of other species, such as signal peptide and anchoring sequences, conserved cysteine residues, number of potential N-glycosylation sites, and repeats consisting here of 23 glutamine residues in a row. When the nucleotide and deduced amino acid sequences of the MSA1 of P. vivax are compared to those of another human malaria parasite, Plasmodium falciparum, and to those of the rodent parasite Plasmodium yoelii, 10 regions of high amino acid similarity are observed despite the very different dG + dC contents of the corresponding genes. All of the interspecies conserved regions reside within the conserved or semiconserved blocks delimited by the sequences of different alleles of the MSA1 gene of P. falciparum. Images PMID:2023952

  17. Plasmodium falciparum and Plasmodium vivax infections in the owl monkey (Aotus trivirgatus). I. The courses of untreated infections.

    PubMed

    Schmidt, L H

    1978-07-01

    This study, the first of three designed to determine the feasibility of using owl monkeys infected with human plasmodia in the search for new, more broadly active antimalarial drugs, dealt with the characteristics of untreated infections with eight strains of Plasmodium falciparum and two strains of P. vivax. Such infections, induced by standardized inocula of these strains in 1,733 monkeys, all Aotus trivirgatus griseimembra, were followed from day of inoculation to death of self-cure. The virulence of the various strains differed strikingly. Incidences of fatal reactions, ranging from 24.4--89.4% and 8.1--45.8%, respectively, in infections with strains of P. falciparum and P. vivax, were closely related to the rate at which parasitemia evolved, the height of parasitemia in the primary attack, and/or the time period over which a high parasite level was sustained. Antemortem symptom complexes and gross tissue and organ reactions in infections with P. falciparum varied with survival time, but within that boundary, were the same for infections with all eight strains of this plasmodium. Morbidity in both fatal and self-limited infections with both plasmodial species was related to height of parasitemia; however, at comparable parasite levels, symptoms exhibited in infections with P. vivax were more severe than in infections with P. falciparum. Overall, the characteristics of infections with these plasmodia in owl monkeys were remarkably similar to those of human infections. With respect to biological features, infections with P. falciparum and P. vivax in this simian host appear to have much to offer in the search for new antimalarial drugs.

  18. Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.

    PubMed

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto

    2015-09-01

    Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development.

  19. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    PubMed

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance

  20. Thrombocytopenia in Plasmodium vivax Malaria Is Related to Platelets Phagocytosis

    PubMed Central

    Coelho, Helena Cristina C.; Lopes, Stefanie C. P.; Pimentel, João Paulo D.; Nogueira, Paulo A.; Costa, Fábio T. M.; Siqueira, André M.; Melo, Gisely C.; Monteiro, Wuelton M.; Malheiro, Adriana; Lacerda, Marcus V. G.

    2013-01-01

    Background Although thrombocytopenia is a hematological disorder commonly reported in malarial patients, its mechanisms are still poorly understood, with only a few studies focusing on the role of platelets phagocytosis. Methods and Findings Thirty-five malaria vivax patients and eight healthy volunteers (HV) were enrolled in the study. Among vivax malaria patients, thrombocytopenia (<150,000 platelets/µL) was found in 62.9% (22/35). Mean platelet volume (MPV) was higher in thrombocytopenic patients as compared to non- thrombocytopenic patients (p = 0.017) and a negative correlation was found between platelet count and MPV (r = −0.483; p = 0.003). Platelets from HV or patients were labeled with 5-chloromethyl fluorescein diacetate (CMFDA), incubated with human monocytic cell line (THP-1) and platelet phagocytosis index was analyzed by flow cytometry. The phagocytosis index was higher in thrombocytopenic patients compared to non-thrombocytopenic patients (p = 0.042) and HV (p = 0.048). A negative correlation was observed between platelet count and phagocytosis index (r = −0.402; p = 0.016). Platelet activation was assessed measuring the expression of P-selectin (CD62-P) in platelets’ surface by flow cytometry. No significant difference was found in the expression of P-selectin between thrombocytopenic patients and HV (p = 0.092). After evaluating the cytokine profile (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17) in the patients’ sera, levels of IL-6, IL-10 and IFN-γ were elevated in malaria patients compared to HV. Moreover, IL-6 and IL-10 values were higher in thrombocytopenic patients than non-thrombocytopenic ones (p = 0.044 and p = 0.017, respectively. In contrast, TNF-α levels were not different between the three groups, but a positive correlation was found between TNF-α and phagocytosis index (r = −0.305; p = 0.037). Conclusion/Significance Collectively, our findings indicate that platelet

  1. Plasmodium vivax apicoplast genome: a comparative analysis of major genes from Indian field isolates.

    PubMed

    Saxena, Vishal; Garg, Shilpi; Tripathi, Jyotsna; Sharma, Sonal; Pakalapati, Deepak; Subudhi, Amit K; Boopathi, P A; Saggu, Gagandeep S; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2012-04-01

    The apicomplexan parasite Plasmodium vivax is responsible for causing more than 70% of human malaria cases in Central and South America, Southeastern Asia and the Indian subcontinent. The rising severity of the disease and the increasing incidences of resistance shown by this parasite towards usual therapeutic regimens have necessitated investigation of putative novel drug targets to combat this disease. The apicoplast, an organelle of procaryotic origin, and its circular genome carrying genes of possible functional importance, are being looked upon as potential drug targets. The genes on this circular genome are believed to be highly conserved among all Plasmodium species. Till date, the plastid genome of P. falciparum, P. berghei and P. chabaudi have been detailed while partial sequences of some genes from other parasites including P. vivax have been studied for identifying evolutionary positions of these parasites. The functional aspects and significance of most of these genes are still hypothetical. In one of our previous reports, we have detailed the complete sequence, as well as structural and functional characteristics of the Elongation factor encoding tufA gene from the plastid genome of P. vivax. We present here the sequences of large and small subunit rRNA (lsu and ssu rRNA) genes, sufB (ORF470) gene, RNA polymerase (rpo B, C) subunit genes and clpC (casienolytic protease) gene from the plastid genome of P. vivax. A comparative analysis of these genes between P. vivax and P. falciparum reveals approximately 5-16% differences. A codon usage analysis of major plastid genes has shown a high frequency of codons rich in A/T at any or all of the three positions in all the species. TTA, AAT, AAA, TAT, and ATA are the major preferred codons. The sequences, functional domains and structural analysis of respective proteins do not show any variations in the active sites. A comparative analysis of these Indian P. vivax plastid genome encoded genes has also been done

  2. Risk factors for Plasmodium falciparum and Plasmodium vivax gametocyte carriage in Papua New Guinean children with uncomplicated malaria.

    PubMed

    Karl, Stephan; Laman, Moses; Moore, Brioni R; Benjamin, John M; Salib, Mary; Lorry, Lina; Maripal, Samuel; Siba, Peter; Robinson, Leanne J; Mueller, Ivo; Davis, Timothy M E

    2016-08-01

    There are limited data on gametocytaemia risk factors before/after treatment with artemisinin combination therapy in children from areas with transmission of multiple Plasmodium species. We utilised data from a randomised trial comparing artemether-lumefantrine (AL) and artemisinin-naphthoquine (AN) in 230 Papua New Guinean children aged 0.5-5 years with uncomplicated malaria in whom determinants of gametocytaemia by light microscopy were assessed at baseline using logistic regression and during follow-up using multilevel mixed effects modelling. Seventy-four (32%) and 18 (8%) children presented with P. falciparum and P. vivax gametocytaemia, respectively. Baseline P. falciparum gametocytaemia was associated with Hackett spleen grade 1 (odds ratio (95% CI) 4.01 (1.60-10.05) vs grade 0; P<0.001) and haemoglobin (0.95 (0.92-0.97) per 1g/L increase; P<0.001), and P. falciparum asexual parasitaemia in slide-positive cases (0.36 (0.19-0.68) for a 10-fold increase; P=0.002). Baseline P. vivax gametocytaemia was associated with Hackett grade 2 (12.66 (1.31-122.56); P=0.028), mixed P. falciparum/vivax infection (0.16 (0.03-1.00); P=0.050), P. vivax asexual parasitaemia (5.68 (0.98-33.04); P=0.053) and haemoglobin (0.94 (0.88-1.00); P=0.056). For post-treatment P. falciparum gametocytaemia, independent predictors were AN vs AL treatment (4.09 (1.43-11.65)), haemoglobin (0.95 (0.93-0.97)), presence/absence of P. falciparum asexual forms (3.40 (1.66-0.68)) and day post-treatment (0.086 (0.82-0.90)) (P<0.001). Post-treatment P. vivax gametocytaemia was predicted by presence of P. vivax asexual forms (596 (12-28,433); P<0.001). Consistent with slow P. falciparum gametocyte maturation, low haemoglobin, low asexual parasite density and higher spleen grading, markers of increased prior infection exposure/immunity, were strong associates of pre-treatment gametocyte positivity. The persistent inverse association between P. falciparum gametocytaemia and haemoglobin during follow

  3. Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note

    PubMed Central

    2013-01-01

    Background Plasmodium vivax is the most widespread of the human malaria parasites in terms of geography, and is thought to present unique challenges to local efforts aimed at control and elimination. Parasite molecular markers can provide much needed data on P. vivax populations, but few such markers have been critically evaluated. One marker that has seen extensive use is the gene encoding merozoite surface protein 3-alpha (MSP-3α), a blood-stage antigen known to be highly variable among P. vivax isolates. Here, a sample of complete msp-3α gene sequences is analysed in order to assess its utility as a molecular marker for epidemiologic investigations. Methods Amplification, cloning and sequencing of additional P. vivax isolates from different geographic locations, including a set of Venezuelan field isolates (n = 10), yielded a sample of 48 complete msp-3α coding sequences. Characterization of standard population genetic measures of diversity, phylogenetic analysis, and tests for recombination were performed. This allowed comparisons to patterns inferred from the in silico simulation of a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) protocol used widely. Results The larger sample of MSP-3α diversity revealed incongruence between the observed levels of nucleotide polymorphism, which were high in all populations, and the pattern of PCR-RFLP haplotype diversity. Indeed, PCR-RFLP haplotypes were not informative of a population’s genetic diversity and identical haplotypes could be produced from analogous bands in the commonly used protocol. Evidence of frequent and variable insertion-deletion mutations and recurrent recombination between MSP-3α haplotypes complicated the inference of genetic diversity patterns and reduced the phylogenetic signal. Conclusions The genetic diversity of P. vivax msp-3α involves intragenic recombination events. Whereas the high genetic diversity of msp-3α makes it a promising marker for some

  4. Molecular Evidence of High Proportion of Plasmodium vivax Malaria Infection in White Nile Area in Sudan

    PubMed Central

    Suliman, Makarim M. Adam; Hamad, Bushra M.; Albasheer, Musab M. Ali; Elhadi, Maytha; Elobied, Maha

    2016-01-01

    Plasmodium falciparum is a predominant malaria species that infects humans in the African continent. A recent WHO report estimated 95% and 5% of P. falciparum and P. vivax malaria cases, respectively, in Sudan. However many laboratory reports from different areas in Sudan indicated otherwise. In order to verify, we selected four hundred suspected malaria cases from Aljabalain area located in the White Nile state, central Sudan, and diagnosed them with quality insured microscopy and species-specific nested PCR. Our results indicated that the proportion of P. vivax infections among suspected malaria cases was high. We found that on average 20% and 36.5% of malaria infections in both study areas were caused by P. vivax using both microscopy and PCR, respectively. This change in pattern is likely due to the recent demographic changes and high rate of immigration from neighbouring countries in the recent years. This is the first extensive clinical study of its kind that shows rising trend in P. vivax malaria cases in White Nile area, Sudan. PMID:27980861

  5. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes.

    PubMed

    Prugnolle, Franck; Rougeron, Virginie; Becquart, Pierre; Berry, Antoine; Makanga, Boris; Rahola, Nil; Arnathau, Céline; Ngoubangoye, Barthélémy; Menard, Sandie; Willaume, Eric; Ayala, Francisco J; Fontenille, Didier; Ollomo, Benjamin; Durand, Patrick; Paupy, Christophe; Renaud, François

    2013-05-14

    Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade's parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed.

  6. Plasmodium vivax Sporozoite Production in Anopheles albimanus Mosquitoes for Vaccine Clinical Trials

    PubMed Central

    Solarte, Yezid; Manzano, María R.; Rocha, Leonardo; Hurtado, Hugo; James, Mark A.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    Vaccine development for Plasmodium vivax malaria is underway. A model to assess the protective efficacy of vaccine candidates in humans is urgently needed. Given the lack of continuous P. vivax cultures, we developed a system to infect Anopheles albimanus mosquitoes using blood from P. vivax-infected patients and determined parameters for challenge of malaria-naive volunteers by mosquito bite. Absence of co-infections in parasitized blood was confirmed by tests consistent with blood bank screening. A total of 119 experiments were conducted using batches of 900–4,500 mosquitoes fed by an artificial membrane feeding method. Optimal conditions for mosquito probing and infection were determined. Presence of oocyst and sporozoites were assessed on Days 7–8 and 14–15, respectively, and conditions to choose batches of infected mosquitoes for sporozoite challenge were established. Procedures to infect volunteers took a 2-hour period including verification of inoculum dose. Anopheles albimanus mosquitoes represent a valuable resource for P. vivax sporozoite challenge of volunteers. PMID:21292875

  7. Pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of Plasmodium vivax in human patients

    PubMed Central

    Merino, Emilio F; Fernandez-Becerra, Carmen; Madeira, Alda MBN; Machado, Ariane L; Durham, Alan; Gruber, Arthur; Hall, Neil; del Portillo, Hernando A

    2003-01-01

    Background Plasmodium vivax is the most widely distributed human malaria, responsible for 70–80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. Methods A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10-30 was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology Results A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. Conclusion These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite. PMID:12914668

  8. Potential Immune Mechanisms Associated with Anemia in Plasmodium vivax Malaria: a Puzzling Question

    PubMed Central

    Castro-Gomes, Thiago; Mourão, Luiza C.; Melo, Gisely C.; Monteiro, Wuelton M.

    2014-01-01

    The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in children and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-induced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies. Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in generating this clinical outcome during P. vivax infections. PMID:25092911

  9. Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: a puzzling question.

    PubMed

    Castro-Gomes, Thiago; Mourão, Luiza C; Melo, Gisely C; Monteiro, Wuelton M; Lacerda, Marcus V G; Braga, Érika M

    2014-10-01

    The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in children and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-induced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies. Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in generating this clinical outcome during P. vivax infections.

  10. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  11. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGES

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  12. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  13. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  14. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection

    PubMed Central

    França, Camila T.; Hostetler, Jessica B.; Sharma, Sumana; White, Michael T.; Lin, Enmoore; Kiniboro, Benson; Waltmann, Andreea; Darcy, Andrew W.; Li Wai Suen, Connie S. N.; Siba, Peter; King, Christopher L.; Rayner, Julian C.; Fairhurst, Rick M.; Mueller, Ivo

    2016-01-01

    Background Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design. Methodology/Principal Findings In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001–0.027). A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46–0.74; P<0.001–0.041). Conclusion/Significance These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both. PMID:27182597

  15. Biochemical Properties of a Novel Cysteine Protease of Plasmodium vivax, Vivapain-4

    PubMed Central

    Zo, Young-Gun; Choe, Youngchool; Kim, Seon-Hee; Desai, Prashant V.; Avery, Mitchell A.; Craik, Charles S.; Kim, Tong-Soo; Rosenthal, Philip J.; Kong, Yoon

    2010-01-01

    Background Multiple cysteine proteases of malaria parasites are required for maintenance of parasite metabolic homeostasis and egress from the host erythrocyte. In Plasmodium falciparum these proteases appear to mediate the processing of hemoglobin and aspartic proteases (plasmepsins) in the acidic food vacuole and the hydrolysis of erythrocyte structural proteins at neutral pH. Two cysteine proteases, vivapain (VX)-2 and VX-3 have been characterized in P. vivax, but comprehensive studies of P. vivax cysteine proteases remain elusive. Findings We characterized a novel cysteine protease of P. vivax, VX-4, of which orthologs appears to have evolved differentially in primate plasmodia with strong cladistic affinity toward those of rodent Plasmodium. Recombinant VX-4 demonstrated dual substrate specificity depending on the surrounding micro-environmental pH. Its hydrolyzing activity against benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA) and Z-Phe-Arg-MCA was highest at acidic pH (5.5), whereas that against Z-Arg-Arg-MCA was maximal at neutral pH (6.5–7.5). VX-4 preferred positively charged amino acids and Gln at the P1 position, with less strict specificity at P3 and P4. P2 preferences depended on pH (Leu at pH 5.5 and Arg at pH 7.5). Three amino acids that delineate the S2 pocket were substituted in VX-4 compared to VX-2 and VX-3 (Ala90, Gly157 and Glu180). Replacement of Glu180 abolished activity against Z-Arg-Arg-MCA at neutral pH, indicating the importance of this amino acid in the pH-dependent substrate preference. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. VX-4 showed maximal activity against actin at neutral pH, and that against P. vivax plasmepsin 4 and hemoglobin was detected at neutral/acidic and acidic pH, respectively. Conclusion VX-4 demonstrates pH-dependent substrate switching, which might offer an efficient mechanism for the specific cleavage of different substrates in different

  16. Revealing natural antisense transcripts from Plasmodium vivax isolates: evidence of genome regulation in complicated malaria.

    PubMed

    Boopathi, P A; Subudhi, Amit Kumar; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Pakalapati, Deepak; Saxena, Vishal; Aiyaz, Mohammed; Chand, Bipin; Mugasimangalam, Raja C; Kochar, Sanjay K; Sirohi, Parmendra; Kochar, Dhanpat K; Das, Ashis

    2013-12-01

    Plasmodium vivax is the most geographically widespread human malaria parasite causing approximately 130-435 million infections annually. It is an economic burden in many parts of the world and poses a public health challenge along with the other Plasmodium sp. The biology of this parasite is less studied and poorly understood, in spite of these facts. Emerging evidence of severe complications due to infections by this parasite provides an impetus to focus research on the same. Investigating the parasite directly from infected patients is the best way to study its biology and pathogenic mechanisms. Gene expression studies of this parasite directly obtained from the patients has provided evidence of gene regulation resulting in varying amount of transcript levels in the different blood stages. The mechanisms regulating gene expression in malaria parasites are not well understood. Discovery of Natural Antisense Transcripts (NATs) in Plasmodium falciparum has suggested that these might play an important role in regulating gene expression. We report here the genome-wide occurrence of NATs in P. vivax parasites from patients with differing clinical symptoms. A total of 1348 NATs against annotated gene loci have been detected using a custom designed microarray with strand specific probes. Majority of NATs identified from this study shows positive correlation with the expression pattern of the sense (S) transcript. Our data also shows condition specific expression patterns of varying S and antisense (AS) transcript levels. Genes with AS transcripts enrich to various biological processes. To our knowledge this is the first report on the presence of NATs from P. vivax obtained from infected patients with different disease complications. The data suggests differential regulation of gene expression in diverse clinical conditions, as shown by differing sense/antisense ratios and would lead to future detailed investigations of gene regulation.

  17. Reactive Case Detection for Plasmodium vivax Malaria Elimination in Rural Amazonia

    PubMed Central

    Fontoura, Pablo S.; Finco, Bruna F.; Lima, Nathália F.; de Carvalho, Jaques F.; Vinetz, Joseph M.

    2016-01-01

    Background Malaria burden in Brazil has reached its lowest levels in 35 years and Plasmodium vivax now accounts for 84% of cases countrywide. Targeting residual malaria transmission entrenched in the Amazon is the next major challenge for ongoing elimination efforts. Better strategies are urgently needed to address the vast reservoir of asymptomatic P. vivax carriers in this and other areas approaching malaria elimination. Methods We evaluated a reactive case detection (RCD) strategy tailored for P. vivax transmission in farming settlements in the Amazon Basin of Brazil. Over six months, 41 cases detected by passive surveillance triggered four rounds of RCD (0, 30, 60, and 180 days after index case enrollment), using microscopy- and quantitative real-time polymerase chain reaction (qPCR)-based diagnosis, comprising subjects sharing the household (HH) with the index case (n = 163), those living in the 5 nearest HHs within 3 km (n = 878), and individuals from 5 randomly chosen control HHs located > 5 km away from index cases (n = 841). Correlates of infection were identified with mixed-effects logistic regression models. Molecular genotyping was used to infer local parasite transmission networks. Principal findings/Conclusions Subjects in index and neighbor HHs were significantly more likely to be parasitemic than control HH members, after adjusting for potential confounders, and together harbored > 90% of the P. vivax biomass in study subjects. Clustering patterns were temporally stable. Four rounds of microscopy-based RCD would identify only 49.5% of the infections diagnosed by qPCR, but 76.8% of the total parasite biomass circulating in the proximity of index HHs. However, control HHs accounted for 27.6% of qPCR-positive samples, 92.6% of them from asymptomatic carriers beyond the reach of RCD. Molecular genotyping revealed high P. vivax diversity, consistent with complex transmission networks and multiple sources of infection within clusters, potentially

  18. Therapeutic responses of Plasmodium vivax malaria to chloroquine and primaquine treatment in northeastern Myanmar.

    PubMed

    Yuan, Lili; Wang, Ying; Parker, Daniel M; Gupta, Bhavna; Yang, Zhaoqing; Liu, Huaie; Fan, Qi; Cao, Yaming; Xiao, Yuping; Lee, Ming-chieh; Zhou, Guofa; Yan, Guiyun; Baird, J Kevin; Cui, Liwang

    2015-02-01

    Chloroquine-primaquine (CQ-PQ) continues to be the frontline therapy for radical cure of Plasmodium vivax malaria. Emergence of CQ-resistant (CQR) P. vivax parasites requires a shift to artemisinin combination therapies (ACTs), which imposes a significant financial, logistical, and safety burden. Monitoring the therapeutic efficacy of CQ is thus important. Here, we evaluated the therapeutic efficacy of CQ-PQ for P. vivax malaria in northeast Myanmar. We recruited 587 patients with P. vivax monoinfection attending local malaria clinics during 2012 to 2013. These patients received three daily doses of CQ at a total dose of 24 mg of base/kg of body weight and an 8-day PQ treatment (0.375 mg/kg/day) commencing at the same time as the first CQ dose. Of the 401 patients who finished the 28-day follow-up, the cumulative incidence of recurrent parasitemia was 5.20% (95% confidence interval [CI], 3.04% to 7.36%). Among 361 (61%) patients finishing a 42-day follow-up, the cumulative incidence of recurrent blood-stage infection reached 7.98% (95% CI, 5.20% to 10.76%). The cumulative risk of gametocyte carriage at days 28 and 42 was 2.21% (95% CI, 0.78% to 3.64%) and 3.93% (95% CI, 1.94% to 5.92%), respectively. Interestingly, for all 15 patients with recurrent gametocytemia, this was associated with concurrent asexual stages. Genotyping of recurrent parasites at the merozoite surface protein 3α gene locus from 12 patients with recurrent parasitemia within 28 days revealed that 10 of these were the same genotype as at day 0, suggesting recrudescence or relapse. Similar studies in 70 patients in the same area in 2007 showed no recurrent parasitemias within 28 days. The sensitivity to chloroquine of P. vivax in northeastern Myanmar may be deteriorating.

  19. Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia.

    PubMed

    Batista, Camilla L; Barbosa, Susana; Da Silva Bastos, Melissa; Viana, Susana Ariane S; Ferreira, Marcelo U

    2015-02-01

    To examine how community-level genetic diversity of the malaria parasite Plasmodium vivax varies across time and space, we investigated the dynamics of parasite polymorphisms during the early phases of occupation of a frontier settlement in the Amazon Basin of Brazil. Microsatellite characterization of 84 isolates of P. vivax sampled over 3 years revealed a moderate-to-high genetic diversity (mean expected heterozygosity, 0.699), with a large proportion (78.5%) of multiple-clone infections (MCI), but also a strong multilocus linkage disequilibrium (LD) consistent with rare outcrossing. Little temporal and no spatial clustering was observed in the distribution of parasite haplotypes. A single microsatellite haplotype was shared by 3 parasites collected during an outbreak; all other 81 haplotypes were recovered only once. The lowest parasite diversity, with the smallest proportion of MCI and the strongest LD, was observed at the time of the outbreak, providing a clear example of epidemic population structure in a human pathogen. Population genetic parameters returned to pre-outbreak values during last 2 years of study, despite the concomitant decline in malaria incidence. We suggest that parasite genotyping can be useful for tracking the spread of new parasite strains associated with outbreaks in areas approaching malaria elimination.

  20. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  1. Humoral immune responses against Plasmodium vivax MSP1 in humans living in a malaria endemic area in Flores, Indonesia.

    PubMed

    Ak, M; Jones, T R; Charoenvit, Y; Kumar, S; Kaslow, D C; Maris, D; Marwoto, H; Masbar, S; Hoffman, S L

    1998-12-01

    The aim of this study was to evaluate the relationship among age, parasitemia status, spleen size, hematocrit, and antibody levels to Plasmodium vivax merozoite surface protein 1 (MSP1) in individuals chronically exposed to P. vivax. Subjects were recruited from the population of three adjacent villages on the Island of Flores in Indonesia where malaria transmission is hyperendemic and tropical splenomegaly syndrome is highly prevalent. Subjects were evaluated for spleen size, hematocrit, presence of parasitemia, and presence of antibodies to a recombinant peptide consisting of 90 amino acids from the carboxy terminus of MSP1. Fifty-seven percent of 2-4 year olds, 45% of 5-9 years old, and 7% of > or = 15 years old were parasitemic; 99% of the > or = 15 years old had splenomegaly, and 31% of them had Hackett 4 or 5 spleens. The frequency of antibody positivity to MSP1 antigen in ELISA increased with age reaching a maximum of 89% in > or = 20 years old. The frequency of antibody positivity to MSPI also increased with spleen size, and with a decline in the prevalence of parasitemia.

  2. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date.

    PubMed

    Ebstie, Yehenew A; Abay, Solomon M; Tadesse, Wondmagegn T; Ejigu, Dawit A

    2016-01-01

    Despite declining global malaria incidence, the disease continues to be a threat to people living in endemic regions. In 2015, an estimated 214 million new malaria cases and 438,000 deaths due to malaria were recorded. Plasmodium vivax is the second most common cause of malaria next to Plasmodium falciparum. Vivax malaria is prevalent especially in Southeast Asia and the Horn of Africa, with enormous challenges in controlling the disease. Some of the challenges faced by vivax malaria-endemic countries include limited access to effective drugs treating liver stages of the parasite (schizonts and hypnozoites), emergence/spread of drug resistance, and misperception of vivax malaria as nonlethal. Primaquine, the only 8-aminoquinoline derivative approved by the US Food and Drug Administration, is intended to clear intrahepatic hypnozoites of P. vivax (radical cure). However, poor adherence to a prolonged treatment course, drug-induced hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency, and the emergence of resistance make it imperative to look for alternative drugs. Therefore, this review focuses on data accrued to date on tafenoquine and gives insight on the potential role of the drug in preventing relapse and radical cure of patients with vivax malaria.

  3. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date

    PubMed Central

    Ebstie, Yehenew A; Abay, Solomon M; Tadesse, Wondmagegn T; Ejigu, Dawit A

    2016-01-01

    Despite declining global malaria incidence, the disease continues to be a threat to people living in endemic regions. In 2015, an estimated 214 million new malaria cases and 438,000 deaths due to malaria were recorded. Plasmodium vivax is the second most common cause of malaria next to Plasmodium falciparum. Vivax malaria is prevalent especially in Southeast Asia and the Horn of Africa, with enormous challenges in controlling the disease. Some of the challenges faced by vivax malaria-endemic countries include limited access to effective drugs treating liver stages of the parasite (schizonts and hypnozoites), emergence/spread of drug resistance, and misperception of vivax malaria as nonlethal. Primaquine, the only 8-aminoquinoline derivative approved by the US Food and Drug Administration, is intended to clear intrahepatic hypnozoites of P. vivax (radical cure). However, poor adherence to a prolonged treatment course, drug-induced hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency, and the emergence of resistance make it imperative to look for alternative drugs. Therefore, this review focuses on data accrued to date on tafenoquine and gives insight on the potential role of the drug in preventing relapse and radical cure of patients with vivax malaria. PMID:27528800

  4. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    DOE PAGES

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining; ...

    2016-05-18

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less

  5. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    SciTech Connect

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining; Ntumngia, Francis; Plasencia, Manolo D.; Gross, Michael L.; Adams, John H.; Tolia, Niraj Harish

    2016-05-18

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.

  6. High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5).

    PubMed

    Gomez, A; Suarez, C F; Martinez, P; Saravia, C; Patarroyo, M A

    2006-12-01

    A key issue relating to developing multi-component anti-malarial vaccines, lies in studying Plasmodium vivax surface proteins' genetic variation. The present work was aimed at amplifying, cloning and sequencing the gene encoding P. vivax merozoite surface protein 5 (PvMSP5) in samples obtained from infected patients from Colombian areas having varying malaria transmission rates. Nucleotide sequence data reported in this paper are available in the GenBank, EMBL and DDBJ databases under Accessions numbers DQ341586 to DQ341601. Our results have revealed that PvMSP5 is one of the P. vivax surface proteins having greater polymorphism, this being restricted to specific protein regions. The intron and exon II (which includes the GPI anchor and EGF-like domain) were both highly conserved when compared to exon I; exon I displayed the greatest variation and most of the recombination events occurred within it. No geographical grouping was observed. The Nei-Gojobori test revealed significant positive selection in the samples analysed here, whereas Tajima and Fu and Li tests presented a neutral selection pattern. The results reflected a localized variation pattern, recombination between PvMSP5 alleles and also functional and immune pressures, where stronger selective forces might be acting on exon I than on exon II, suggesting that the latter could be an important region to be included in an anti-malarial vaccine.

  7. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein.

    PubMed

    Chen, Edwin; Salinas, Nichole D; Huang, Yining; Ntumngia, Francis; Plasencia, Manolo D; Gross, Michael L; Adams, John H; Tolia, Niraj Harish

    2016-05-31

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. The identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.

  8. Whole blood chloroquine concentrations with Plasmodium vivax infection in Irian Jaya, Indonesia.

    PubMed

    Baird, J K; Leksana, B; Masbar, S; Suradi; Sutanihardja, M A; Fryauff, D J; Subianto, B

    1997-06-01

    Whole blood concentrations of self-administered chloroquine (CQ) and its metabolite desethylchloroquine (DCQ) were measured in 168 patients with microscopically confirmed infection by Plasmodium vivax in northeastern Irian Jaya, Indonesia. The study consisted of both survey and passive case detection in four separate villages between 1992 and 1994. The subjects were Javanese people 4-51 years old who had lived in the Arso region for up to two years. The sum of CQ and DCQ ranged from 0 to 8,342 ng/ml of whole blood, and 122 subjects (73%) had > or = 100 ng/ml of CQ plus DCQ, the estimated minimally effective concentration (MEC) in whole blood against chloroquine-sensitive P. vivax. Among 56 subjects reporting to a clinic with symptoms of malaria, 53 (95%) had ordinarily effective levels of chloroquine in blood. Among 109 largely asymptomatic malaria patients found by survey case detection, 69 (63%) had chloroquine blood levels greater than the MEC. Virtually all clinical and most subclinical vivax malaria in this region occurs despite ordinarily effective levels of chloroquine in blood.

  9. Probable autochthonous Plasmodium vivax malaria transmission in Michigan: case report and epidemiological investigation.

    PubMed

    Sunstrum, J; Elliott, L J; Barat, L M; Walker, E D; Zucker, J R

    2001-12-01

    In September 1995, a Michigan resident with no history of international travel was diagnosed with Plasmodium vivax infection, and local mosquito-borne transmission was suspected. An epidemiological investigation did not identify additional cases of local transmission, and there was no apparent link to the 12 imported malaria cases detected in the region. Potential sites of nighttime outdoor exposure included a campground in a swampy area, close to a racetrack frequented by international travelers, some of whom were known to come from countries with malaria transmission. Entomological investigation identified Anopheles spp. larvae and adults near the campsite. Summer temperatures 4.2 degrees C above average would have contributed to shortened maturation time of P. vivax within the insect vector, increasing the likelihood of infectivity. These investigations indicated that this patient probably acquired P. vivax infection through the bite of a locally infected Anopheles spp. mosquito. Physicians need to consider malaria as a possible cause of unexplained febrile illness, even in the absence of international travel, particularly during the summer months.

  10. Plasmodium vivax and Mansonella ozzardi co-infection in north-western Argentina.

    PubMed

    Dantur Juri, María J; Veggiani Aybar, Cecilia A; Ortega, Eugenia S; Galante, Guillermina B; Zaidenberg, Mario O

    2013-07-17

    A case of co-infection with Plasmodium vivax and Mansonella ozzardi was detected in a blood sample from a person who had shown symptoms of malaria and lived in a city that was close to the Argentina/Bolivia border. The case was detected during a random revision of thick and thin smears from patients diagnosed with malaria from various towns and cities located in north-western Argentina between 1983 and 2001. Trophozoites of P. vivax were observed in the thin blood smear along with M. ozzardi microfilaria (larval form), which presented a long, slender, pointed anucleate tail and the absence of the sheath. This last characteristic is shared with Mansonella perstans, Mansonella streptocerca and Onchocerca volvulus. More rigorously controlled studies to detect other co-infection cases in the area as well as the possibility of importation from Bolivia into Argentina are currently ongoing. The relationship between the malaria parasite and microfilaria, the potential effect of malaria treatment on the development of M. ozzardi, and the possible impact of this microfilaria on the immunity of a person against P. vivax are all still unknown. This contribution constitutes a point of focus for future studies involving the interaction between the parasites and the potential risk that humans are exposed to.

  11. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria

    PubMed Central

    White, Michael T.; Shirreff, George; Karl, Stephan; Ghani, Azra C.; Mueller, Ivo

    2016-01-01

    There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes. PMID:27030414

  12. Real-Time PCR for Dihydrofolate Reductase Gene Single-Nucleotide Polymorphisms in Plasmodium vivax Isolates

    PubMed Central

    Brega, Sara; de Monbrison, Frédérique; Severini, Carlo; Udomsangpetch, Rachanee; Sutanto, Inge; Ruckert, Paul; Peyron, François; Picot, Stéphane

    2004-01-01

    Mutations in the dhfr gene of Plasmodium vivax (pvdhfr) are associated with resistance to the antifolate antimalarial drugs. Polymorphisms in the pvdhfr gene were assessed by hybridization probe technology on the LightCycler instrument with 134 P. vivax-infected blood samples from Turkey (n = 24), Azerbaijan (n = 39), Thailand (n = 16), Indonesia (n = 53), and travelers (n = 19). Double mutations (S58R and S117N) or quadruple mutations (F57L/I, S58R, T61M, and S117N) in the pvdhfr genes were found in all Thai samples (100%). pvdhfr mutant-type alleles were significantly more common in samples from travelers (42%) than in those from patients from Indonesia (5%). Surprisingly, the pvdhfr single-mutation allele (S117N) was identified at a high frequency in parasites from Turkey and Azerbaijan (71 and 36%, respectively), where sulfadoxine-pyrimethamine is not recommended for the treatment of P. vivax malaria by the World Health Organization and the Malaria National Programs. PMID:15215112

  13. Plasmodium vivax and Mansonella ozzardi co-infection in north-western Argentina

    PubMed Central

    2013-01-01

    A case of co-infection with Plasmodium vivax and Mansonella ozzardi was detected in a blood sample from a person who had shown symptoms of malaria and lived in a city that was close to the Argentina/Bolivia border. The case was detected during a random revision of thick and thin smears from patients diagnosed with malaria from various towns and cities located in north-western Argentina between 1983 and 2001. Trophozoites of P. vivax were observed in the thin blood smear along with M. ozzardi microfilaria (larval form), which presented a long, slender, pointed anucleate tail and the absence of the sheath. This last characteristic is shared with Mansonella perstans, Mansonella streptocerca and Onchocerca volvulus. More rigorously controlled studies to detect other co-infection cases in the area as well as the possibility of importation from Bolivia into Argentina are currently ongoing. The relationship between the malaria parasite and microfilaria, the potential effect of malaria treatment on the development of M. ozzardi, and the possible impact of this microfilaria on the immunity of a person against P. vivax are all still unknown. This contribution constitutes a point of focus for future studies involving the interaction between the parasites and the potential risk that humans are exposed to. PMID:23866313

  14. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria.

    PubMed

    White, Michael T; Shirreff, George; Karl, Stephan; Ghani, Azra C; Mueller, Ivo

    2016-03-30

    There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.

  15. Expression and biochemical characterization of a type I methionine aminopeptidase of Plasmodium vivax.

    PubMed

    Kang, Jung-Mi; Ju, Jung-Won; Kim, Jung-Yeon; Ju, Hye-Lim; Lee, Jinyoung; Lee, Kon Ho; Lee, Won-Ja; Sohn, Woon-Mok; Kim, Tong-Soo; Na, Byoung-Kuk

    2015-04-01

    Methionine aminopeptidases (MetAPs), ubiquitous enzymes that play an important role in nascent protein maturation, have been recognized as attractive targets for the development of drugs against pathogenic protozoa including Plasmodium spp. Here, we characterized partial biochemical properties of a type I MetAP of Plasmodium vivax (PvMetAP1). PvMetAP1 had the typical amino acid residues essential for metal binding and substrate binding sites, which are well conserved in the type I MetAP family enzymes. Recombinant PvMetAP1 showed activity in a broad range of neutral pHs, with optimum activity at pH 7.5. PvMetAP1 was stable under neutral and alkaline pHs, but was relatively unstable under acidic conditions. PvMetAP1 activity was highly increased in the presence of Mn(2+), and was effectively inhibited by a metal chelator, EDTA. Fumagillin and aminopeptidase inhibitors, amastatin and bestatin, also showed an inhibitory effect on PvMetAP1. The enzyme had a highly specific hydrolytic activity for N-terminal methionine. These results collectively suggest that PvMetAP1 belongs to the family of type I MetAPs and may play a pivotal role for the maintenance of P. vivax physiology by mediating protein maturation and processing of the parasite.

  16. Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers

    PubMed Central

    Herrera, Sócrates; Solarte, Yezid; Jordán-Villegas, Alejandro; Echavarría, Juan Fernando; Rocha, Leonardo; Palacios, Ricardo; Ramírez, Óscar; Vélez, Juan D.; Epstein, Judith E.; Richie, Thomas L.; Arévalo-Herrera, Myriam

    2011-01-01

    A safe and reproducible Plasmodium vivax infectious challenge method is required to evaluate the efficacy of malaria vaccine candidates. Seventeen healthy Duffy (+) and five Duffy (−) subjects were randomly allocated into three (A–C) groups and were exposed to the bites of 2–4 Anopheles albimanus mosquitoes infected with Plasmodium vivax derived from three donors. Duffy (−) subjects were included as controls for each group. Clinical manifestations of malaria and parasitemia were monitored beginning 7 days post-challenge. All Duffy (+) volunteers developed patent malaria infection within 16 days after challenge. Prepatent period determined by thick smear, was longer for Group A (median 14.5 d) than for Groups B and C (median 10 d/each). Infected volunteers recovered rapidly after treatment with no serious adverse events. The bite of as low as two P. vivax-infected mosquitoes provides safe and reliable infections in malaria-naive volunteers, suitable for assessing antimalarial and vaccine efficacy trials. PMID:21292872

  17. Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target

    PubMed Central

    Takeo, Satoru; Hisamori, Daisuke; Matsuda, Shusaku; Vinetz, Joseph; Sattabongkot, Jetsumon; Tsuboi, Takafumi

    2009-01-01

    The chitinase (EC 3.2.1.14) of the human malaria parasite Plasmodium falciparum, PfCHT1, has been validated as a malaria transmission-blocking vaccine (TBV). The present study aimed to delineate functional characteristics of the P. vivax chitinase PvCHT1, whose primary structure differs from that of PfCHT1 by having proenzyme and chitin-binding domains. The recombinant protein rPvCHT1 expressed with a wheat germ cell-free system hydrolyzed 4-methylumbelliferone (4MU) derivatives of chitin oligosaccharides (β-1,4-poly-N-acetyl glucosamine (GlcNAc)). An anti-rPvCHT1 polyclonal antiserum reacted with in vitro-obtained P. vivax ookinetes in anterior cytoplasm, showing uneven patchy distribution. Enzymatic activity of rPvCHT1 shared the exclusive endochitinase property with parallelly expressed rPfCHT1 as demonstrated by a marked substrate preference for 4MU-GlcNAc3 compared to shorter GlcNAc substrates. While rPvCHT1 was found to be sensitive to the general family-18 chitinase inhibitor, allosamidin, its pH (maximal in neutral environment) and temperature (max. at ~25 °C) activity profiles and sensitivity to allosamidin (IC50=6 μM) were different from rPfCHT1. The results in this first report of functional rPvCHT1 synthesis indicate that the P. vivax chitinase is enzymatically close to long form Plasmodium chitinases represented by P. gallinaceum PgCHT1. PMID:19427918

  18. Role of Plasmodium vivax Dihydropteroate Synthase Polymorphisms in Sulfa Drug Resistance.

    PubMed

    Pornthanakasem, Wichai; Riangrungroj, Pinpunya; Chitnumsub, Penchit; Ittarat, Wanwipa; Kongkasuriyachai, Darin; Uthaipibull, Chairat; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2016-08-01

    Dihydropteroate synthase (DHPS) is a known sulfa drug target in malaria treatment, existing as a bifunctional enzyme together with hydroxymethyldihydropterin pyrophosphokinase (HPPK). Polymorphisms in key residues of Plasmodium falciparum DHPS (PfDHPS) have been characterized and linked to sulfa drug resistance in malaria. Genetic sequencing of P. vivax dhps (Pvdhps) from clinical isolates has shown several polymorphisms at the positions equivalent to those in the Pfdhps genes conferring sulfa drug resistance, suggesting a mechanism for sulfa drug resistance in P. vivax similar to that seen in P. falciparum To characterize the role of polymorphisms in the PvDHPS in sulfa drug resistance, various mutants of recombinant PvHPPK-DHPS enzymes were expressed and characterized. Moreover, due to the lack of a continuous in vitro culture system for P. vivax parasites, a surrogate P. berghei model expressing Pvhppk-dhps genes was established to demonstrate the relationship between sequence polymorphisms and sulfa drug susceptibility and to test the activities of PvDHPS inhibitors on the transgenic parasites. Both enzyme activity and transgenic parasite growth were sensitive to sulfadoxine to different degrees, depending on the number of mutations that accumulated in DHPS. Ki values and 50% effective doses were higher for mutant PvDHPS enzymes than the wild-type enzymes. Altogether, the study provides the first evidence of sulfa drug resistance at the molecular level in P. vivax Furthermore, the enzyme inhibition assay and the in vivo screening system can be useful tools for screening new compounds for their activities against PvDHPS.

  19. Role of Plasmodium vivax Dihydropteroate Synthase Polymorphisms in Sulfa Drug Resistance

    PubMed Central

    Riangrungroj, Pinpunya; Chitnumsub, Penchit; Ittarat, Wanwipa; Kongkasuriyachai, Darin; Uthaipibull, Chairat; Yuthavong, Yongyuth

    2016-01-01

    Dihydropteroate synthase (DHPS) is a known sulfa drug target in malaria treatment, existing as a bifunctional enzyme together with hydroxymethyldihydropterin pyrophosphokinase (HPPK). Polymorphisms in key residues of Plasmodium falciparum DHPS (PfDHPS) have been characterized and linked to sulfa drug resistance in malaria. Genetic sequencing of P. vivax dhps (Pvdhps) from clinical isolates has shown several polymorphisms at the positions equivalent to those in the Pfdhps genes conferring sulfa drug resistance, suggesting a mechanism for sulfa drug resistance in P. vivax similar to that seen in P. falciparum. To characterize the role of polymorphisms in the PvDHPS in sulfa drug resistance, various mutants of recombinant PvHPPK-DHPS enzymes were expressed and characterized. Moreover, due to the lack of a continuous in vitro culture system for P. vivax parasites, a surrogate P. berghei model expressing Pvhppk-dhps genes was established to demonstrate the relationship between sequence polymorphisms and sulfa drug susceptibility and to test the activities of PvDHPS inhibitors on the transgenic parasites. Both enzyme activity and transgenic parasite growth were sensitive to sulfadoxine to different degrees, depending on the number of mutations that accumulated in DHPS. Ki values and 50% effective doses were higher for mutant PvDHPS enzymes than the wild-type enzymes. Altogether, the study provides the first evidence of sulfa drug resistance at the molecular level in P. vivax. Furthermore, the enzyme inhibition assay and the in vivo screening system can be useful tools for screening new compounds for their activities against PvDHPS. PMID:27161627

  20. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates.

    PubMed

    Boopathi, Pon Arunachalam; Subudhi, Amit Kumar; Middha, Sheetal; Acharya, Jyoti; Mugasimangalam, Raja Chinnadurai; Kochar, Sanjay Kumar; Kochar, Dhanpat Kumar; Das, Ashis

    2016-12-01

    High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r(2)=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.

  1. Further Evidence of Increasing Diversity of Plasmodium vivax in the Republic of Korea in Recent Years

    PubMed Central

    Kim, Jung-Yeon; Goo, Youn-Kyoung; Zo, Young-Gun; Ji, So-Young; Trimarsanto, Hidayat; To, Sheren; Clark, Taane G.; Price, Ric N.; Auburn, Sarah

    2016-01-01

    Background Vivax malaria was successfully eliminated from the Republic of Korea (ROK) in the late 1970s but re-emerged in 1993. Two decades later as the ROK enters the final stages of malaria elimination, dedicated surveillance of the local P. vivax population is critical. We apply a population genetic approach to gauge P. vivax transmission dynamics in the ROK between 2010 and 2012. Methodology/Principal Findings P. vivax positive blood samples from 98 autochthonous cases were collected from patients attending health centers in the ROK in 2010 (n = 27), 2011 (n = 48) and 2012 (n = 23). Parasite genotyping was undertaken at 9 tandem repeat markers. Although not reaching significance, a trend of increasing population diversity was observed from 2010 (HE = 0.50 ± 0.11) to 2011 (HE = 0.56 ± 0.08) and 2012 (HE = 0.60 ± 0.06). Conversely, linkage disequilibrium declined during the same period: IAS = 0.15 in 2010 (P = 0.010), 0.09 in 2011 (P = 0.010) and 0.05 in 2012 (P = 0.010). In combination with data from other ROK studies undertaken between 1994 and 2007, our results are consistent with increasing parasite divergence since re-emergence. Polyclonal infections were rare (3% infections) suggesting that local out-crossing alone was unlikely to explain the increased divergence. Cases introduced from an external reservoir may therefore have contributed to the increased diversity. Aside from one isolate, all infections carried a short MS20 allele (142 or 149 bp), not observed in other studies in tropical endemic countries despite high diversity, inferring that these regions are unlikely reservoirs. Conclusions Whilst a number of factors may explain the observed population genetic trends, the available evidence suggests that an external geographic reservoir with moderate diversity sustains the majority of P. vivax infection in the ROK, with important implications for malaria elimination. PMID:26990869

  2. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development

    PubMed Central

    Deniskin, Roman; Frame, I.J.; Sosa, Yvett; Akabas, Myles H.

    2015-01-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine) and pyrimidines ([3H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  3. Use of a colorimetric (DELI) test for the evaluation of chemoresistance of Plasmodium falciparum and Plasmodium vivax to commonly used anti-plasmodial drugs in the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background The emergence and spread of Plasmodium falciparum and Plasmodium vivax resistance to available anti-malarial drugs represents a major drawback in the control of malaria and its associated morbidity and mortality. The aim of this study was to evaluate the chemoresistance profile of P. falciparum and P. vivax to commonly used anti-plasmodial drugs in a malaria-endemic area in the Brazilian Amazon. Methods The study was carried out in Manaus (Amazonas state), in the Brazilian Amazon. A total of 88 P. falciparum and 178 P. vivax isolates was collected from 2004 to 2007. The sensitivity of P. falciparum isolates was determined to chloroquine, quinine, mefloquine and artesunate and the sensitivity of P. vivax isolates was determined to chloroquine and mefloquine, by using the colorimetric DELI test. Results As expected, a high prevalence of P. falciparum isolates resistant to chloroquine (78.1%) was observed. The prevalence of isolates with profile of resistance or decreased sensitivity for quinine, mefloquine and artesunate was 12.7, 21.2 and 11.7%, respectively. In the case of P. vivax, the prevalence of isolates with profile of resistance for chloroquine and mefloquine was 9.8 and 28%, respectively. No differences in the frequencies of isolates with profile of resistance or geometric mean IC50s were seen when comparing the data obtained in 2004, 2005, 2006 and 2007, for all tested anti-malarials. Conclusions The great majority of P. falciparum isolates in the Brazilian malaria-endemic area remain resistant to chloroquine, and the decreased sensitivity to quinine, mefloquine and artesunate observed in 10–20% of the isolates must be taken with concern, especially for artesunate. Plasmodium vivax isolates also showed a significant proportion of isolates with decreased sensitivity to chloroquine (first-line drug) and mainly to mefloquine. The data presented here also confirm the usefulness of the DELI test to generate results able to impact on public health

  4. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  5. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit.

    PubMed

    Valderrama-Aguirre, Augusto; Quintero, Gustavo; Gómez, Andrés; Castellanos, Alejandro; Pérez, Yobana; Méndez, Fabián; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2005-11-01

    The merozoite surface protein 1 (MSP-1) is expressed in all Plasmodium species and is considered a major malaria vaccine candidate. We found that MSP-1 from Plasmodium vivax (PvMSP-1) contains a region of significant sequence homology with the 190L subunit vaccine derived from the P. falciparum MSP-1. The fragment, termed Pv200L, was expressed as a recombinant protein in Escherichia coli (rPv200L) and used to asses its immunologic relevance as a vaccine target. A cross-sectional, seroepidemiologic study conducted in Buenaventura, Colombia showed that 52.2% (95% confidence interval [CI] = 39.8-64.3) of individuals previously exposed to P. vivax and 72.8% (95% CI = 61.8-82.1) of P. vivax-infected patients had IgG antibodies to rPv200L. Immunization of BALB/c mice and Aotus monkeys induced IgG antibodies (titer > 10(6)) that cross-reacted with P. vivax parasites. Immunized monkeys displayed partial protection against a challenge with P. vivax blood stages. Our results suggest that Pv200L is a new malaria vaccine subunit and deserves further testing.

  6. Cross-reactive anti-PfCLAG9 antibodies in the sera of asymptomatic parasite carriers of Plasmodium vivax

    PubMed Central

    Costa, Joana D'Arc Neves; Zanchi, Fernando Berton; Rodrigues, Francisco Lurdevanhe da Silva; Honda, Eduardo Rezende; Katsuragawa, Tony Hiroschi; Pereira, Dhélio Batista; Taborda, Roger Lafontaine Mesquita; Tada, Mauro Shugiro; Ferreira, Ricardo de Godoi Mattos; Pereira-da-Silva, Luiz Hildebrando

    2013-01-01

    The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections. PMID:23440122

  7. Adherence to Plasmodium vivax malaria treatment in the Brazilian Amazon Region

    PubMed Central

    2011-01-01

    Background Patients' adherence to malaria treatment is an important factor in determining the therapeutic response to anti-malarial drugs. It contributes to the patient's complete recovery and prevents the emergence of parasite resistance to anti-malarial drugs. In Brazil, the low compliance with malaria treatment probably explains the large number of Plasmodium vivax malaria relapses observed in the past years. The goal of this study was to estimate the proportion of patients adhering to the P. vivax malaria treatment with chloroquine + primaquine in the dosages recommended by the Brazilian Ministry of Health. Methods Patients who were being treated for P. vivax malaria with chloroquine plus primaquine were eligible for the study. On the seventh day of taking primaquine, they were visited at their home and were interviewed. The patients were classified as probably adherent, if they reported having taken all the medication as prescribed, in the correct period of time and dosage, and had no medication tablets remaining; probably non-adherent, if they reported not having taken the medication, in the correct period of time and dosage, and did not show any remaining tablets; and certainly non-adherent, if they showed any remaining medication tablets. Results 242 of the 280 patients reported having correctly followed the prescribed instructions and represented a treatment adherence frequency (CI95%) of 86.4% (81.7%-90.1%). Of the 38 patients who did not follow the recommendations, 27 (9.6%) were still taking the medication on the day of the interview and, therefore, still had primaquine tablets left in the blister pack. These patients were then classified as certainly non-adherent to treatment. Although 11 patients did not show any tablets left, they reported incorrect use of the prescribed therapy regimen and were considered as probably non-adherent to treatment. Conclusions Compliance with the P. vivax malaria treatment is a characteristic of 242/280 patients in the

  8. The Plasmodium vivax in China: decreased in local cases but increased imported cases from Southeast Asia and Africa.

    PubMed

    Feng, Jun; Xiao, Huihui; Zhang, Li; Yan, He; Feng, Xinyu; Fang, Wen; Xia, Zhigui

    2015-03-05

    Currently the local P. vivax was sharply decreased while the imported vivax malaria increased in China. Despite Southeast Asia was still the main import source of vivax malaria, the trend of Africa become serious, especially for west and central Africa. Herein we have clarified the trend of P. vivax in China from 2004-2012, and made some analysis for the differences of imported vivax back from different regions. There are significantly different of P. vivax between Southeast Asia and Africa, also the difference was observed for different regions in Africa. Additionally, we have explored the possibility for the difference of the P. vivax between migrant workers back from west and central Africa and the prevalence of local population. This reminds us that surveillance and training should be strengthened by medical staffs on the imported P. vivax cases reported especially from west and central Africa, in order to reduce the risk of malaria reintroduction and, specific tools should be developed, as well as the epidemiological study to avoid the misdiagnosis such as P. ovale and P. vivax.

  9. Vivax malaria

    PubMed Central

    Price, Ric N; Tjitra, Emiliana; Guerra, Carlos A; Yeung, Shunmay; White, Nicholas J; Anstey, Nicholas M

    2009-01-01

    Plasmodium vivax threatens almost 40% of the world’s population, resulting in 132 - 391 million clinical infections each year. Most of these cases originate from South East Asia and the Western Pacific, although a significant number also occur in Africa and South America. Although often regarded as causing a benign and self-limiting infection, there is increasing evidence that the overall burden, economic impact and severity of disease from P. vivax have been underestimated. Malaria control strategies have had limited success and are confounded by the lack of access to reliable diagnosis, emergence of multidrug resistant isolates and the parasite’s ability to transmit early in the course of disease and relapse from dormant liver stages at varying time intervals after the initial infection. Progress in reducing the burden of disease will require improved access to reliable diagnosis and effective treatment of both blood-stage and latent parasites, and more detailed characterization of the epidemiology, morbidity and economic impact of vivax malaria. Without these, vivax malaria will continue to be neglected by ministries of health, policy makers, researchers and funding bodies. PMID:18165478

  10. Molecular surveillance of Plasmodium vivax dhfr and dhps mutations in isolates from Afghanistan

    PubMed Central

    2010-01-01

    Background Analysis of dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutations in Plasmodium vivax wild isolates has been considered to be a valuable molecular approach for mapping resistance to sulphadoxine-pyrimethamine (SP). The present study investigates the frequency of SNPs-haplotypes in the dhfr and dhps genes in P. vivax clinical isolates circulating in two malaria endemic areas in Afghanistan. Methods P. vivax clinical isolates (n = 171) were collected in two different malaria endemic regions in north-west (Herat) and east (Nangarhar) Afghanistan in 2008. All collected isolates were analysed for SNP-haplotypes at positions 13, 33, 57, 58, 61, 117 and 173 of the pvdhfr and 383 and 553 of the pvdhps genes using PCR-RFLP methods. Results All 171 examined isolates were found to carry wild-type amino acids at positions 13, 33, 57, 61 and 173, while 58R and 117N mutations were detected among 4.1% and 12.3% of Afghan isolates, respectively. Based on the size polymorphism of pvdhfr genes at repeat region, type B was the most prevalent variant among Herat (86%) and Nangarhar (88.4%) isolates. Mixed genotype infections (type A/B and A/B/C) were detected in only 2.3% (2/86) of Herat and 1.2% (1/86) of Nangarhar isolates, respectively. The combination of pvdhfr and pvdhps haplotypes among all 171 samples demonstrated six distinct haplotypes. The two most prevalent haplotypes among all examined samples were wild-type (86%) and single mutant haplotype I13P33F57S58T61N 117I173/A383A553 (6.4%). Double (I13P33S57R58T61N117I173/A383A553) and triple mutant haplotypes (I13P33S57R 58T61N117I173/G383A553) were found in 1.7% and 1.2% of Afghan isolates, respectively. This triple mutant haplotype was only detected in isolates from Herat, but in none of the Nangarhar isolates. Conclusion The present study shows a limited polymorphism in pvdhfr from Afghan isolates and provides important basic information to establish an epidemiological map of drug

  11. Detection of Plasmodium falciparum and Plasmodium vivax subclinical infection in non-endemic region: implications for blood transfusion and malaria epidemiology

    PubMed Central

    2014-01-01

    Background In Brazil, malaria is endemic in the Amazon River basin and non-endemic in the extra-Amazon region, which includes areas of São Paulo state. In this state, a number of autochthonous cases of malaria occur annually, and the prevalence of subclinical infection is unknown. Asymptomatic infections may remain undetected, maintaining transmission of the pathogen, including by blood transfusion. In these report it has been described subclinical Plasmodium infection in blood donors from a blood transfusion centre in São Paulo, Brazil. Methods In this cross-sectional study, representative samples of blood were obtained from 1,108 healthy blood donors at the Fundação Pró-Sangue Hemocentro de São Paulo, the main blood transfusion centre in São Paulo. Malaria exposure was defined by the home region (exposed: forest region; non-exposed: non-forest region). Real-time PCR was used to detect Plasmodium falciparum and Plasmodium vivax. Subclinical malaria cases were geo-referenced. Results Eighty-four (7.41%) blood donors tested positive for Plasmodium; 57 of these were infected by P. falciparum, 25 by P. vivax, and 2 by both. The prevalence of P. falciparum and P. vivax was 5.14 and 2.26, respectively. The overall prevalence ratio (PR) was 3.23 (95% confidence interval (CI) 2.03, 5.13); P. falciparum PR was 16.11 (95% CI 5.87, 44.21) and P. vivax PR was 0.47 (95% CI 0.2, 1.12). Plasmodium falciparum subclinical malaria infection in the Atlantic Forest domain was present in the mountain regions while P. vivax infection was observed in cities from forest-surrounded areas. Conclusions The presence of Plasmodium in healthy blood donors from a region known as non-endemic, which is important in the context of transfusion biosafety, was described. Infected recipients may become asymptomatic carriers and a reservoir for parasites, maintaining their transmission. Furthermore, P. falciparum PR was positively associated with the forest environment, and P. vivax was

  12. Purification and characterization of a hemoglobin degrading aspartic protease from the malarial parasite Plasmodium vivax.

    PubMed

    Sharma, Arun; Eapen, Alex; Subbarao, Sarala K

    2005-07-01

    Aspartic proteases of human malarial parasites are thought to play key roles in essential pathways of merozoite release, invasion and host cell hemoglobin degradation during the intraerythrocytic stages of their life cycle. Therefore, we have purified and characterized Plasmodium vivax aspartic protease, to determine if this enzyme can be used as potential drug target/immunogen, and its inhibitors as potential antimalarial drug. The P. vivax aspartic protease has been purified by a combination of ion exchange and size exclusion chromatographies and HPLC. Its properties were examined in order to define a role in the hemoglobin degradation process. The purified enzyme migrated as a single band on native PAGE and SDS/PAGE with a molecular mass of 40 kDa. Gelatin zymogram analyses revealed a clear zone of proteolytic activity corresponding to the band obtained on native PAGE and SDS/PAGE. The enzyme has an optimal pH of 4.0 and exhibits its highest activity at 37 degrees C. The enzyme is inhibited by pepstatin, but not by other inhibitors including o-phenanthroline, EDTA, PMSF or E-64, supporting its designation as an aspartic protease; its IC50 value was found to be 3.0 microM. A Lineweaver Burk double reciprocal plot with pepstatin shows that the inhibition is competitive with respect to the substrate. Ca2+ and Mg2+ ions enhance the protease activity, whereas Cu2+ and Hg2+ ions were found to be inhibitory. The pivotal role of aspartic protease in initiating hemoglobin degradation in P. vivax malaria parasite is also demonstrated.

  13. Exposure-Response Analyses for Tafenoquine after Administration to Patients with Plasmodium vivax Malaria

    PubMed Central

    Green, Justin A.; Goyal, Navin

    2015-01-01

    Tafenoquine (TQ), a new 8-aminoquinoline with activity against all stages of the Plasmodium vivax life cycle, is being developed for the radical cure of acute P. vivax malaria in combination with chloroquine. The efficacy and exposure data from a pivotal phase 2b dose-ranging study were used to conduct exposure-response analyses for TQ after administration to subjects with P. vivax malaria. TQ exposure (i.e., area under the concentration-time curve [AUC]) and region (Thailand compared to Peru and Brazil) were found to be statistically significant predictors of clinical response based on multivariate logistic regression analyses. After accounting for region/country, the odds of being relapse free at 6 months increased by approximately 51% (95% confidence intervals [CI], 25%, 82%) for each 25-U increase in AUC above the median value of 54.5 μg · h/ml. TQ exposure was also a significant predictor of the time to relapse of the infection. The final parametric, time-to-event model for the time to relapse, included a Weibull distribution hazard function, AUC, and country as covariates. Based on the model, the risk of relapse decreased by 30% (95% CI, 17% to 42%) for every 25-U increase in AUC. Monte Carlo simulations indicated that the 300-mg dose of TQ would provide an AUC greater than the clinically relevant breakpoint obtained in a classification and regression tree (CART) analysis (56.4 μg · h/ml) in more than 90% of subjects and consequently result in a high probability of being relapse free at 6 months. This model-based approach was critical in selecting an appropriate phase 3 dose. (This study has been registered at ClinicalTrials.gov under registration no. NCT01376167.) PMID:26248362

  14. Local transmission of Plasmodium vivax malaria--Palm Beach County, Florida, 2003.

    PubMed

    2003-09-26

    The majority of malaria cases diagnosed in the United States are imported, usually by persons who travel to countries where malaria is endemic. However, small outbreaks of locally acquired mosquito-transmitted malaria continue to occur. Despite certification of malaria eradication in the United States in 1970, 11 outbreaks involving 20 cases of probable locally acquired mosquito-transmitted malaria have been reported to CDC since 1992, including two reported in July 1996 from Palm Beach County, Florida (Palm Beach County Health Department, unpublished data, 1998). This report describes the investigation of seven cases of locally acquired Plasmodium vivax malaria that occurred in Palm Beach County during July-August 2003. In addition to considering malaria in the differential diagnosis for febrile patients with a history of travel to malarious areas, health-care providers also should consider malaria as a possible cause of fever among patients who have not traveled but are experiencing alternating fevers, rigors, and sweats with no obvious cause.

  15. Risk factors for Plasmodium vivax infection in the Lacandon forest, southern Mexico.

    PubMed

    Danis-Lozano, R; Rodriguez, M H; Gonzalez-Ceron, L; Hernandez-Avila, M

    1999-06-01

    A study was conducted to characterize the risk of Plasmodium vivax infection in the Lacandon forest, southern Mexico. Blood samples and questionnaire data were collected in 1992. Malaria cases (n = 137) were identified by the presence of symptoms and a positive thick blood smear. The control group included individuals with negative antibody titres and no history of malaria (n = 4994). From 7628 individuals studied, 1006 had anti-P. vivax antibodies. Seroprevalence increased with age. Risk factors associated with infection included: place of birth outside the village of residence (odds ratio, OR 11.67; 95% CI 5.21-26.11); no use of medical services (OR 4.69, 95% CI 3.01-7.29), never using bed-nets (OR 3.98, 95 % CI 1.23-12.86) and poor knowledge of malaria transmission, prevention and treatment (OR 2.30, 95 % CI 1.30-4.07). Health education represents the best recommendation for controlling the disease in the area.

  16. Risk factors for Plasmodium vivax infection in the Lacandon forest, southern Mexico.

    PubMed Central

    Danis-Lozano, R.; Rodriguez, M. H.; Gonzalez-Ceron, L.; Hernandez-Avila, M.

    1999-01-01

    A study was conducted to characterize the risk of Plasmodium vivax infection in the Lacandon forest, southern Mexico. Blood samples and questionnaire data were collected in 1992. Malaria cases (n = 137) were identified by the presence of symptoms and a positive thick blood smear. The control group included individuals with negative antibody titres and no history of malaria (n = 4994). From 7628 individuals studied, 1006 had anti-P. vivax antibodies. Seroprevalence increased with age. Risk factors associated with infection included: place of birth outside the village of residence (odds ratio, OR 11.67; 95% CI 5.21-26.11); no use of medical services (OR 4.69, 95% CI 3.01-7.29), never using bed-nets (OR 3.98, 95 % CI 1.23-12.86) and poor knowledge of malaria transmission, prevention and treatment (OR 2.30, 95 % CI 1.30-4.07). Health education represents the best recommendation for controlling the disease in the area. PMID:10459651

  17. Microgeographical Differences of Plasmodium vivax Relapse and Re-Infection in the Peruvian Amazon

    PubMed Central

    Chuquiyauri, Raul; Peñataro, Pablo; Brouwer, Kimberly C.; Fasabi, Manuel; Calderon, Maritza; Torres, Sonia; Gilman, Robert H.; Kosek, Margaret; Vinetz, Joseph M.

    2013-01-01

    To determine the magnitude of Plasmodium vivax relapsing malaria in rural Amazonia, we carried out a study in four sites in northeastern Peru. Polymerase chain reaction-restriction fragment length polymorphism of PvMSP-3α and tandem repeat (TR) markers were compared for their ability to distinguish relapse versus reinfection. Of 1,507 subjects with P. vivax malaria, 354 developed > 1 episode during the study; 97 of 354 (27.5%) were defined as relapse using Pvmsp-3α alone. The addition of TR polymorphism analysis significantly reduced the number of definitively defined relapses to 26 of 354 (7.4%) (P < 0.05). Multivariate logistic regression modeling showed that the probability of having > 1 infection was associated with the following: subjects in Mazan (odds ratio [OR] = 2.56; 95% confidence interval [CI] 1.87, 3.51), 15–44 years of age (OR = 1.49; 95% CI 1.03, 2.15), traveling for job purposes (OR = 1.45; 95%CI 1.03, 2.06), and travel within past month (OR = 1.46; 95% CI 1.0, 2.14). The high discriminatory capacity of the molecular tools shown here is useful for understanding the micro-geography of malaria transmission. PMID:23836566

  18. Epidemiology of Plasmodium falciparum and P. vivax malaria endemic in northern Afghanistan.

    PubMed

    Faulde, Michael K; Hoffmann, Ralf; Fazilat, Khair M; Hoerauf, Achim

    2008-12-01

    In 2002, the total malaria burden in Afghanistan was estimated to be 3 million cases annually, mainly from Takhar and Kunduz Provinces. Field investigations from 2001 to 2007 revealed a rapid resurgence of Plasmodium falciparum & P. vivax malaria, with annual incidence rates between 0.0026 & 4.39, and between 0.88 & 13.37 episodes/1,000 person years, respectively. Both diseases peaked during 2002, and then declined independently, indicating two differing modes of transmission and epidemiology. Although control campaigns against malaria tropica, transmitted by the freshwater breeder Anopheles superpictus, were successful, malaria tertiana remained endemic and associated with rice-growing areas, transmitted by the anthropophilic, endophilic or exophilic rice-field breeder, A. pulcherrimus and A. hyrcanus. P. vivax polymorph VK 247 prevailed in 90% of infected mosquito pools. Data documented anthropogenically induced increases in rice-field malaria tertiana in the rice-growing areas of northern Afghanistan and the need for further control strategies, including large-scale larval mosquito eradication in rice-growing areas.

  19. Deforestation, agriculture and farm jobs: a good recipe for Plasmodium vivax in French Guiana

    PubMed Central

    2013-01-01

    Background In a malaria-endemic area the distribution of patients is neither constant in time nor homogeneous in space. The WHO recommends the stratification of malaria risk on a fine geographical scale. In the village of Cacao in French Guiana, the study of the spatial and temporal distribution of malaria cases, during an epidemic, allowed a better understanding of the environmental factors promoting malaria transmission. Methods A dynamic cohort of 839 persons living in 176 households (only people residing permanently in the village) was constituted between January1st, 2002 and December 31st, 2007. The information about the number of inhabitants per household, the number of confirmed cases of Plasmodium vivax and house GPS coordinates were collected to search for spatial or temporal clustering using Kurlldorff’s statistical method. Results Of the 839 persons living permanently in the village of Cacao, 359 persons presented at least one vivax malaria episode between 2002 and 2007. Five temporal clusters and four spatial clusters were identified during the study period. In all temporal clusters, April was included. Two spatial clusters were localized at the north of the village near the Comté River and two others localized close to orchards. Conclusion The spatial heterogeneity of malaria in the village may have been influenced by environmental disturbances due to local agricultural policies: deforestation, cultures of fresh produce, or drainage of water for agriculture. This study allowed generating behavioural, entomological, or environmental hypotheses that could be useful to improve prevention campaigns. PMID:23497050

  20. Plasmodium vivax: a monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Wirtz, R A; Sina, B J; Palomeque, O L; Nettel, J A; Tsutsumi, V

    1998-11-01

    The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells. Plasmodium vivax CS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with other Plasmodium species, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with all P. vivax sporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.

  1. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC.

    PubMed

    Batchelor, Joseph D; Malpede, Brian M; Omattage, Natalie S; DeKoster, Gregory T; Henzler-Wildman, Katherine A; Tolia, Niraj H

    2014-01-01

    Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.

  2. Therapeutic Assessment of Primaquine for Radical Cure of Plasmodium vivax Malaria at Primary and Tertiary Care Centres in Southwestern India

    PubMed Central

    Kumar, Rishikesh; Guddattu, Vasudeva; Saravu, Kavitha

    2016-01-01

    Acquaintance is scanty on primaquine (PQ) efficacy and Plasmodium vivax recurrence in Udupi district, Karnataka, India. We assessed the efficacy of 14 days PQ regimen (0.25 mg/kg/day) to prevent P. vivax recurrence. Microscopically, aparasitemic adults (≥18 years) after acute vivax malaria on day 28 were re-enrolled into 15 months’ long follow-up study. A peripheral blood smear examination was performed with participants at every 1–2 month interval. A nested PCR test was performed to confirm the mono-infection with P. vivax. Of 114 participants, 28 (24.6%) recurred subsequently. The median (IQR) duration of the first recurrence was 3.1 (2.2–5.8) months which ranged from 1.2 to 15.1 months, including initial 28 days. Participants with history of vivax malaria had significantly higher risk of recurrence, with hazard ratio (HR) (95% CI) of 2.62 (1.24–5.54) (P=0.012). Severity of disease (11.4%, 13/114) was not associated (P=1.00) with recurrence. Of 28 recurrence cases, the nPCR proved that P. vivax mono-infection recurrence rate was at least 72.7% (16/22) at first recurrence. In Udupi district, PQ dose of 0.25 mg/kg/day over 14 days seems inadequate to prevent recurrence in substantial proportion of vivax malaria. Patients with a history of vivax malaria are at high risk of recurrences. PMID:28095658

  3. Molecular genetic analysis of Plasmodium vivax isolates from Eastern and Central Sudan using pvcsp and pvmsp-3α genes as molecular markers.

    PubMed

    Talha, Albadawi Abdelbagi; Pirahmadi, Sekineh; Mehrizi, Akram Abouie; Djadid, Navid Dinparast; Nour, Bakri Y M; Zakeri, Sedigheh

    2015-06-01

    In Sudan, Plasmodium vivax accounts for approximately 5-10% of malaria cases. This study was carried out to determine the genetic diversity of P. vivax population from Sudan by analyzing the polymorphism of P. vivax csp (pvcsp) and pvmsp-3α genes. Blood samples (n=76) were taken from suspected malaria cases from 2012-2013 in three health centers of Eastern and Central Sudan. Parasite detection was performed by microscopy and molecular techniques, and genotyping of both genes was performed by PCR-RFLP followed by DNA sequence for only pvcsp gene (n=30). Based on microscopy analysis, 76 (%100) patients were infected with P. vivax, whereas nested-PCR results showed that 86.8% (n=66), 3.9% (n=3), and 3.9% (n=3) of tested samples had P. vivax as well as Plasmodium falciparum mono- and mixed infections, respectively. Four out of 76 samples had no results in molecular diagnosis. All sequenced samples were found to be of VK210 (100%) genotype with six distinct amino acid haplotypes, and 210A (66.7%) was the most prevalent haplotype. The Sudanese isolates displayed variations in the peptide repeat motifs (PRMs) ranging from 17 to 19 with GDRADGQPA (PRM1), GDRAAGQPA (PRM2) and DDRAAGQPA (PRM3). Also, 54 polymorphic sites with 56 mutations were found in repeat and post-repeat regions of the pvcsp and the overall nucleotide diversity (π) was 0.02149±0.00539. A negative value of dN-dS (-0.0344) was found that suggested a significant purifying selection of Sudanese pvcsp, (Z test, P<0.05). Regarding pvmsp-3α, three types were detected: types A (94.6%, 52/55), type C (3.6%, 2/55), and type B (1.8%, 1/55). No multiclonal infections were detected, and RFLP analysis identified 13 (Hha I, A1-A11, B1, and C1) and 16 (Alu I, A1-A14, B1, and C1) distinct allelic forms. In conclusion, genetic investigation among Sudanese P. vivax isolates indicated that this antigen showed limited antigenic diversity.

  4. Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination

    PubMed Central

    Noviyanti, Rintis; Coutrier, Farah; Utami, Retno A. S.; Trimarsanto, Hidayat; Tirta, Yusrifar K.; Trianty, Leily; Kusuma, Andreas; Sutanto, Inge; Kosasih, Ayleen; Kusriastuti, Rita; Hawley, William A.; Laihad, Ferdinand; Lobo, Neil; Marfurt, Jutta; Clark, Taane G.; Price, Ric N.; Auburn, Sarah

    2015-01-01

    Background Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. Methodology/ Principal Findings Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. Conclusions/ Significance Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given

  5. Plasmodium vivax infections in U.S. Army troops: failure of primaquine to prevent relapse in studies from Somalia.

    PubMed

    Smoak, B L; DeFraites, R F; Magill, A J; Kain, K C; Wellde, B T

    1997-02-01

    Different strains of Plasmodium vivax vary in their sensitivity to primaquine, the only drug that prevents relapses. Described are the clinical data and relapse pattern for 75 soldiers treated for vivax malaria since returning from Somalia. Following their initial attack of malaria, 60 of the 75 cases received a standard course of primaquine (15 mg base daily for 14 days). Twenty-six of the 60 soldiers subsequently relapsed for a failure rate of 43%. Eight soldiers had a second relapse following primaquine therapy after both the primary attack and first relapse. Three of these soldiers had received a higher dosage of primaquine (30 mg base daily for 14 days) after their second attack. The apparent ineffectiveness of primaquine therapy in preventing relapses suggests the presence of primaquine-resistant P. vivax strains in Somalia.

  6. Real-time PCR diagnosis of Plasmodium vivax among blood donors

    PubMed Central

    2012-01-01

    Background When selecting blood donors in transfusion centres, one important problem is to identify, during screening, individuals with infectious diseases that can be transmitted by blood, such as malaria, especially when the parasite densities are very low. This problem is particularly severe in endemic areas, such as the Brazilian Amazon. In the present study, molecular diagnostic (real-time PCR) of Plasmodium vivax was used to identify blood donors infected with malaria parasites. Methods Samples from 595 blood donors were collected in seven haemotherapy centres in northern Brazil located in areas at risk for malaria transmission, and the analyses were performed by real-time PCR with TaqMan probes on 7500 Real-Time PCR Systems, to genotype the mitochondrial DNA region specific to P. vivax. The experiment was designed for hybridization of the cytochrome c oxidase genes of the mitochondrial genome (GenBank GI63022502). The serological data were obtained using enzyme-linked immunosorbent assay - ELISA (Anti-HIV, Anti-HTLV I-II; Anti-HVC, HBsAg, Anti-HBc, Chagas disease) and VDRL (Syphilis) from the Blood Bank System of the Haematology and Haemotherapy Centre of Pará. Results The assay identified eight individuals in the sample (1.34%) infected with P. vivax at the time of blood donation. This percentage was higher than the altered serological results (reactive or inconclusive) of the prevalence of anti-HIV (0.67%), anti-hepatitis C virus (0.34%), anti-hepatitis B surface antigen (0.67%), anti-human T-lymphotropic virus I/II (1.18%), anti-Chagas disease (0.17%) and syphilis (VDRL) (0.50%), but not higher than anti-hepatitis B core antigen antibodies (4.37%). This result indicates the need to use more sensitive methods of diagnosing malaria in blood banks. Conclusion The real-time PCR with TaqMan probes enabled the identification of P. vivax in a high proportion of clinically healthy donors, highlighting the potential risk for transfusion-transmitted malaria

  7. Plasmodium vivax malaria relapses at a travel medicine centre in Rio de Janeiro, a non-endemic area in Brazil

    PubMed Central

    2012-01-01

    Background Malaria is a potentially severe disease widely distributed in tropical and subtropical regions worldwide. Clinically, the progression of the disease can be life-threatening if it is not promptly diagnosed and properly treated. Through treatment, the radical cure of Plasmodium vivax infection can be achieved, thus preventing potential relapses and the emergence of new cases outside the Amazon region in Brazil. Surveillance for therapeutic failure in non-endemic areas is advantageous, as it is unlikely that recurrence of the disease can be attributed to a new malaria infection in these regions. Methods An observational study of 53 cases of P. vivax and mixed (P. vivax and Plasmodium falciparum) malaria was conducted at a travel medicine centre between 2005 and 2011 in Rio de Janeiro and a descriptive analysis of the potential factors related to recurrence of P. vivax malaria was performed. Groups with different therapeutic responses were compared using survival analysis based on the length of time to recurrence and a set of independent variables thought to be associated with recurrence. Results Twenty-one relapses (39.6%) of P. vivax malaria were observed. The overall median time to relapse, obtained by the Kaplan-Meier method, was 108 days, and the survival analysis demonstrated an association between non-weight-adjusted primaquine dosing and the occurrence of relapse (p < 0.03). Primaquine total dose at 3.6 mg/kg gave improved results in preventing relapses. Conclusions A known challenge to individual cure and environmental control of malaria is the possibility of an inappropriate, non-weight-based primaquine dosing, which should be considered a potential cause of P. vivax malaria relapse. Indeed, the total dose of primaquine associated with non-occurrence of relapses was higher than recommended by Brazilian guidelines. PMID:22839416

  8. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses.

  9. A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP119

    PubMed Central

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Singh, Balwan; Oliveira-Ferreira, Joseli; da Costa Lima-Junior, Josué; Calvo-Calle, J. Mauricio; Lozano, Jose Manuel; Moreno, Alberto

    2016-01-01

    The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate. PMID:27708348

  10. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico.

    PubMed

    Chan, A S; Rodríguez, M H; Torres, J A; Rodríguez, M del C; Villarreal, C

    1994-05-01

    Three morphologically different pupal phenotypes (green, striped, brown) were selected from a parent strain of Anopheles albimanus Wiedemann collected from the Suchiate region in the state of Chiapas, Mexico. Significant differences in susceptibility to coindigenous Plasmodium vivax Grassi & Feletti were observed when striped was compared with the parent colony as well as with brown and with green phenotypes. Differences in susceptibility were not significant between the other phenotypes and the parent colony.

  11. Antibody Profiling in Naïve and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites

    PubMed Central

    Arévalo-Herrera, Myriam; Lopez-Perez, Mary; Dotsey, Emmanuel; Jain, Aarti; Rubiano, Kelly; Felgner, Philip L.; Davies, D. Huw; Herrera, Sócrates

    2016-01-01

    Background Acquisition of malaria immunity in low transmission areas usually occurs after relatively few exposures to the parasite. A recent Plasmodium vivax experimental challenge trial in malaria naïve and semi-immune volunteers from Colombia showed that all naïve individuals developed malaria symptoms, whereas semi-immune subjects were asymptomatic or displayed attenuated symptoms. Sera from these individuals were analyzed by protein microarray to identify antibodies associated with clinical protection. Methodology/Principal Findings Serum samples from naïve (n = 7) and semi-immune (n = 9) volunteers exposed to P. vivax sporozoite-infected mosquito bites were probed against a custom protein microarray displaying 515 P. vivax antigens. The array revealed higher serological responses in semi-immune individuals before the challenge, although malaria naïve individuals also had pre-existing antibodies, which were higher in Colombians than US adults (control group). In both experimental groups the response to the P. vivax challenge peaked at day 45 and returned to near baseline at day 145. Additional analysis indicated that semi-immune volunteers without fever displayed a lower response to the challenge, but recognized new antigens afterwards. Conclusion Clinical protection against experimental challenge in volunteers with previous P. vivax exposure was associated with elevated pre-existing antibodies, an attenuated serological response to the challenge and reactivity to new antigens. PMID:27014875

  12. A more appropriate white blood cell count for estimating malaria parasite density in Plasmodium vivax patients in northeastern Myanmar.

    PubMed

    Liu, Huaie; Feng, Guohua; Zeng, Weilin; Li, Xiaomei; Bai, Yao; Deng, Shuang; Ruan, Yonghua; Morris, James; Li, Siman; Yang, Zhaoqing; Cui, Liwang

    2016-04-01

    The conventional method of estimating parasite densities employ an assumption of 8000 white blood cells (WBCs)/μl. However, due to leucopenia in malaria patients, this number appears to overestimate parasite densities. In this study, we assessed the accuracy of parasite density estimated using this assumed WBC count in eastern Myanmar, where Plasmodium vivax has become increasingly prevalent. From 256 patients with uncomplicated P. vivax malaria, we estimated parasite density and counted WBCs by using an automated blood cell counter. It was found that WBC counts were not significantly different between patients of different gender, axillary temperature, and body mass index levels, whereas they were significantly different between age groups of patients and the time points of measurement. The median parasite densities calculated with the actual WBC counts (1903/μl) and the assumed WBC count of 8000/μl (2570/μl) were significantly different. We demonstrated that using the assumed WBC count of 8000 cells/μl to estimate parasite densities of P. vivax malaria patients in this area would lead to an overestimation. For P. vivax patients aged five years and older, an assumed WBC count of 5500/μl best estimated parasite densities. This study provides more realistic assumed WBC counts for estimating parasite densities in P. vivax patients from low-endemicity areas of Southeast Asia.

  13. Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine

    PubMed Central

    Moon, James J.; Suh, Heikyung; Polhemus, Mark E.; Ockenhouse, Christian F.; Yadava, Anjali; Irvine, Darrell J.

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) “enveloped” by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites. PMID:22328935

  14. Analysis of von Willebrand factor A domain-related protein (WARP) polymorphism in temperate and tropical Plasmodium vivax field isolates

    PubMed Central

    Gholizadeh, Saber; Djadid, Navid Dinparast; Basseri, Hamid Reza; Zakeri, Sedigheh; Ladoni, Hossein

    2009-01-01

    Background The identification of key molecules is crucial for designing transmission-blocking vaccines (TBVs), among those ookinete micronemal proteins are candidate as a general class of malaria transmission-blocking targets. Here, the sequence analysis of an extra-cellular malaria protein expressed in ookinetes, named von Willebrand factor A domain-related protein (WARP), is reported in 91 Plasmodium vivax isolates circulating in different regions of Iran. Methods Clinical isolates were collected from north temperate and southern tropical regions in Iran. Primers have been designed based on P. vivax sequence (ctg_6991) which amplified a fragment of about 1044 bp with no size variation. Direct sequencing of PCR products was used to determine polymorphism and further bioinformatics analysis in P. vivax sexual stage antigen, pvwarp. Results Amplified pvwarp gene showed 886 bp in size, with no intron. BLAST analysis showed a similarity of 98–100% to P. vivax Sal-I strain; however, Iranian isolates had 2 bp mismatches in 247 and 531 positions that were non-synonymous substitution [T (ACT) to A (GCT) and R (AGA) to S (AGT)] in comparison with the Sal-I sequence. Conclusion This study presents the first large-scale survey on pvwarp polymorphism in the world, which provides baseline data for developing WARP-based TBV against both temperate and tropical P. vivax isolates. PMID:19549316

  15. Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine

    PubMed Central

    Barnadas, Céline; Tichit, Magali; Bouchier, Christiane; Ratsimbasoa, Arsène; Randrianasolo, Laurence; Raherinjafy, Rogelin; Jahevitra, Martial; Picot, Stéphane; Ménard, Didier

    2008-01-01

    Background Four of five Plasmodium species infecting humans are present in Madagascar. Plasmodium vivax remains the second most prevalent species, but is understudied. No data is available on its susceptibility to sulphadoxine-pyrimethamine, the drug recommended for intermittent preventive treatment during pregnancy. In this study, the prevalence of P. vivax infection and the polymorphisms in the pvdhfr and pvdhps genes were investigated. The correlation between these polymorphisms and clinical and parasitological responses was also investigated in P. vivax-infected patients. Methods Plasmodium vivax clinical isolates were collected in eight sentinel sites from the four major epidemiological areas for malaria across Madagascar in 2006/2007. Pvdhfr and pvdhps genes were sequenced for polymorphism analysis. The therapeutic efficacy of SP in P. vivax infections was assessed in Tsiroanomandidy, in the foothill of the central highlands. An intention-to-treat analysis of treatment outcome was carried out. Results A total of 159 P. vivax samples were sequenced in the pvdhfr/pvdhps genes. Mutant-types in pvdhfr gene were found in 71% of samples, and in pvdhps gene in 16% of samples. Six non-synonymous mutations were identified in pvdhfr, including two novel mutations at codons 21 and 130. For pvdhps, beside the known mutation at codon 383, a new one was found at codon 422. For the two genes, different combinations were ranged from wild-type to quadruple mutant-type. Among the 16 patients enrolled in the sulphadoxine-pyrimethamine clinical trial (28 days of follow-up) and after adjustment by genotyping, 3 (19%, 95% CI: 5%–43%) of them were classified as treatment failure and were pvdhfr 58R/117N double mutant carriers with or without the pvdhps 383G mutation. Conclusion This study highlights (i) that genotyping in the pvdhfr and pvdhps genes remains a useful tool to monitor the emergence and the spread of P. vivax sulphadoxine-pyrimethamine resistant in order to improve

  16. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization.

    PubMed

    Tachibana, Mayumi; Suwanabun, Nantavadee; Kaneko, Osamu; Iriko, Hideyuki; Otsuki, Hitoshi; Sattabongkot, Jetsumon; Kaneko, Akira; Herrera, Socrates; Torii, Motomi; Tsuboi, Takafumi

    2015-04-15

    Malaria transmission-blocking vaccines (TBV) aim to interfere with the development of the malaria parasite in the mosquito vector, and thus prevent spread of transmission in a community. To date three TBV candidates have been identified in Plasmodium vivax; namely, the gametocyte/gamete protein Pvs230, and the ookinete surface proteins Pvs25 and Pvs28. The Plasmodium falciparum gametocyte/gamete stage proteins Pfs48/45 and Pfs47 have been studied as TBV candidates, and Pfs48/45 shown to induce transmission-blocking antibodies, but the candidacy of their orthologs in P. vivax, Pvs48/45 (PVX_083235) and Pvs47 (PVX_083240), for vivax TBV have not been tested. Herein we investigated whether targeting Pvs48/45 and Pvs47 can inhibit parasite transmission to mosquitoes, using P. vivax isolates obtained in Thailand. Mouse antisera directed against the products from plasmids expressing Pvs48/45 and Pvs47 detected proteins of approximately 45- and 40-kDa, respectively, in the P. vivax gametocyte lysate, by Western blot analysis under non-reducing conditions. In immunofluorescence assays Pvs48/45 was detected predominantly on the surface and Pvs47 was detected in the cytoplasm of gametocytes. Membrane feeding transmission assays demonstrated that anti-Pvs48/45 and -Pvs47 mouse sera significantly reduced the number of P. vivax oocysts developing in the mosquito midgut. Limited amino acid polymorphism of these proteins was observed among 27 P. vivax isolates obtained from Thailand, Vanuatu, and Colombia; suggesting that polymorphism may not be an impediment for the utilization of Pvs48/45 and Pvs47 as TBV antigens. In one Thai isolate we found that the fourth cysteine residue in the Pvs47 cysteine-rich domain (CRD) III (amino acid position 337) is substituted to phenylalanine. However, antibodies targeting Pvs47 CRDI-III showed a significant transmission-reducing activity against this isolate, suggesting that this substitution in Pvs47 was not critical for recognition by the

  17. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  18. Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening.

    PubMed

    Han, Jin-Hee; Li, Jian; Wang, Bo; Lee, Seong-Kyun; Nyunt, Myat Htut; Na, Sunghun; Park, Jeong-Hyun; Han, Eun-Taek

    2015-08-01

    Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

  19. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus

    PubMed Central

    Vallejo, Andrés F.; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R.; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2016-01-01

    Introduction Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. Methods/Principal Findings A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. Conclusions We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated

  20. Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model

    PubMed Central

    Robinson, Leanne J.; Wampfler, Rahel; Betuela, Inoni; Karl, Stephan; White, Michael T.; Li Wai Suen, Connie S. N.; Hofmann, Natalie E.; Kinboro, Benson; Waltmann, Andreea; Brewster, Jessica; Lorry, Lina; Tarongka, Nandao; Samol, Lornah; Silkey, Mariabeth; Bassat, Quique; Siba, Peter M.; Schofield, Louis; Felger, Ingrid; Mueller, Ivo

    2015-01-01

    Background The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children. Methods and Findings From 17 August 2009 to 20 May 2010, 524 children aged 5–10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of

  1. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines.

    PubMed

    Bickersmith, Sara A; Lainhart, William; Moreno, Marta; Chu, Virginia M; Vinetz, Joseph M; Conn, Jan E

    2015-06-01

    We describe a simple method for detection of Plasmodium vivax and Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed with Plasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochrome b-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.

  2. Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination

    PubMed Central

    Britton, Sumudu; Cheng, Qin; Grigg, Matthew J.; Poole, Catherine B.; Pasay, Cielo; William, Timothy; Fornace, Kimberley; Anstey, Nicholas M.; Sutherland, Colin J.; Drakeley, Chris; McCarthy, James S.

    2016-01-01

    Introduction Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. Methods A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. Results The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87–99%); 61/64), and specificity of 100% (95% CI 86–100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29–96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). Conclusion This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings. PMID:26870958

  3. Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control

    PubMed Central

    Chitnumsub, Penchit; Jaruwat, Aritsara; Riangrungroj, Pinpunya; Ittarat, Wanwipa; Noytanom, Krittikar; Oonanant, Worrapoj; Vanichthanankul, Jarunee; Chuankhayan, Phimonphan; Maenpuen, Somchart; Chen, Chun-Jung; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-01-01

    Plasmodium parasites, the causative agent of malaria, rely heavily on de novo folate biosynthesis, and the enzymes in this pathway have therefore been explored extensively for antimalarial development. Serine hydroxymethyltransferase (SHMT) from Plasmodium spp., an enzyme involved in folate recycling and dTMP synthesis, has been shown to catalyze the conversion of l- and d-serine to glycine (Gly) in a THF-dependent reaction, the mechanism of which is not yet fully understood. Here, the crystal structures of P. vivax SHMT (PvSHMT) in a binary complex with l-serine and in a ternary complex with d-serine (d-Ser) and (6R)-5-formyl­tetra­hydro­folate (5FTHF) provide clues to the mechanism underlying the control of enzyme activity. 5FTHF in the ternary-complex structure was found in the 6R form, thus differing from the previously reported structures of SHMT–Gly–(6S)-5FTHF from other organisms. This suggested that the presence of d-Ser in the active site can alter the folate-binding specificity. Investigation of binding in the presence of d-Ser and the (6R)- or (6S)-5FTHF enantiomers indicated that both forms of 5FTHF can bind to the enzyme but that only (6S)-5FTHF gives rise to a quinonoid intermediate. Likewise, a large surface area with a highly positively charged electrostatic potential surrounding the PvSHMT folate pocket suggested a preference for a polyglutamated folate substrate similar to the mammalian SHMTs. Furthermore, as in P. falciparum SHMT, a redox switch created from a cysteine pair (Cys125–Cys364) was observed. Overall, these results assert the importance of features such as stereoselectivity and redox status for control of the activity and specificity of PvSHMT. PMID:25478836

  4. Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status

    PubMed Central

    Cheng, Yang; Lu, Feng; Wang, Bo; Li, Jian; Han, Jin-Hee; Ito, Daisuke; Kong, Deok-Hoon; Jiang, Lubin; Wu, Jian; Ha, Kwon-Soo; Takashima, Eizo; Sattabongkot, Jetsumon; Cao, Jun; Nyunt, Myat Htut; Kyaw, Myat Phone; Desai, Sanjay A.; Miller, Louis H.; Tsuboi, Takafumi; Han, Eun-Taek

    2016-01-01

    Plasmodium vivax, a major agent of malaria in both temperate and tropical climates, has been thought to be unable to infect humans lacking the Duffy (Fy) blood group antigen because this receptor is critical for erythrocyte invasion. Recent surveys in various endemic regions, however, have reported P. vivax infections in Duffy-negative individuals, suggesting that the parasite may utilize alternative receptor-ligand pairs to complete the erythrocyte invasion. Here, we identified and characterized a novel parasite ligand, Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA), that bound human erythrocytes regardless of Duffy antigen status. PvGAMA was localized at the microneme in the mature schizont-stage parasites. The antibodies against PvGAMA fragments inhibited PvGAMA binding to erythrocytes in a dose-dependent manner. The erythrocyte-specific binding activities of PvGAMA were significantly reduced by chymotrypsin treatment. Thus, PvGAMA may be an adhesion molecule for the invasion of Duffy-positive and -negative human erythrocytes. PMID:27759110

  5. Antigenic Diversity of the Plasmodium vivax Circumsporozoite Protein in Parasite Isolates of Western Colombia

    PubMed Central

    Hernández-Martínez, Miguel Ángel; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2011-01-01

    Circumsporozoite (CS) protein is a malaria antigen involved in sporozoite invasion of hepatocytes, and thus considered to have good vaccine potential. We evaluated the polymorphism of the Plasmodium vivax CS gene in 24 parasite isolates collected from malaria-endemic areas of Colombia. We sequenced 27 alleles, most of which (25/27) corresponded to the VK247 genotype and the remainder to the VK210 type. All VK247 alleles presented a mutation (Gly → Asn) at position 28 in the N-terminal region, whereas the C-terminal presented three insertions: the ANKKAGDAG, which is common in all VK247 isolates; 12 alleles presented the insertion GAGGQAAGGNAANKKAGDAG; and 5 alleles presented the insertion GGNAGGNA. Both repeat regions were polymorphic in gene sequence and size. Sequences coding for B-, T-CD4+, and T-CD8+ cell epitopes were found to be conserved. This study confirms the high polymorphism of the repeat domain and the highly conserved nature of the flanking regions. PMID:21292878

  6. Methemoglobinemia and adverse events in Plasmodium vivax malaria patients associated with high doses of primaquine treatment.

    PubMed

    Carmona-Fonseca, Jaime; Alvarez, Gonzalo; Maestre, Amanda

    2009-02-01

    Primaquine (PQ) is recommended to prevent relapses in patients with Plasmodium vivax malaria infection. However, treatment with PQ causes methemoglobinemia. In this study, we measured the methemoglobin (MetHB) levels in three groups of subjects who received PQ treatment at 0.58, 0.83, or 1.17 mg/kg/d. A total of 112 subjects were studied. MetHB levels were detected at > or = 4% in 46-50% 1 day after PQ treatment in all three groups and 4-9% of subjects had MetHB levels > or = 4% 15 days after treatment. Only subjects receiving the highest doses of PQ had mild and brief adverse events, and 17% of them were associated with treatment. We conclude that when PQ is administered under certain conditions (i.e., normal glucose-6-phosphate dehydrogenase activity, in non-pregnant subjects and with a light meal), daily doses as high as 1.17 mg/kg do not represent a serious risk of high MetHB levels to patients.

  7. A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes

    PubMed Central

    Thomson-Luque, Richard; Torres, Letícia de Menezes; Gunalan, Karthigayan; Carvalho, Luzia H.

    2016-01-01

    ABSTRACT Erythrocyte invasion by malaria parasites is essential for blood-stage development and an important determinant of host range. In Plasmodium vivax, the interaction between the Duffy binding protein (DBP) and its cognate receptor, the Duffy antigen receptor for chemokines (DARC), on human erythrocytes is central to blood-stage infection. Contrary to this established pathway of invasion, there is growing evidence of P. vivax infections occurring in Duffy blood group-negative individuals, suggesting that the parasite might have gained an alternative pathway to infect this group of individuals. Supporting this concept, a second distinct erythrocyte binding protein (EBP2), representing a new member of the DBP family, was discovered in P. vivax and may be the ligand in an alternate invasion pathway. Our study characterizes this novel ligand and determines its potential role in reticulocyte invasion by P. vivax merozoites. EBP2 binds preferentially to young (CD71high) Duffy-positive (Fy+) reticulocytes and has minimal binding capacity for Duffy-negative reticulocytes. Importantly, EBP2 is antigenically distinct from DBP and cannot be functionally inhibited by anti-DBP antibodies. Consequently, our results do not support EBP2 as a ligand for invasion of Duffy-negative blood cells, but instead, EBP2 may represent a novel ligand for an alternate invasion pathway of Duffy-positive reticulocytes. PMID:27555313

  8. Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes

    PubMed Central

    Flannery, Erika L.; Wang, Tina; Akbari, Ali; Corey, Victoria C.; Gunawan, Felicia; Bright, A. Taylor; Abraham, Matthew; Sanchez, Juan F.; Santolalla, Meddly L.; Baldeviano, G. Christian; Edgel, Kimberly A.; Rosales, Luis A.; Lescano, Andrés G.; Bafna, Vineet; Vinetz, Joseph M.; Winzeler, Elizabeth A.

    2015-01-01

    Understanding the mechanisms of drug resistance in Plasmodium vivax, the parasite that causes the most widespread form of human malaria, is complicated by the lack of a suitable long-term cell culture system for this parasite. In contrast to P. falciparum, which can be more readily manipulated in the laboratory, insights about parasite biology need to be inferred from human studies. Here we analyze the genomes of parasites within 10 human P. vivax infections from the Peruvian Amazon. Using next-generation sequencing we show that some P. vivax infections analyzed from the region are likely polyclonal. Despite their polyclonality we observe limited parasite genetic diversity by showing that three or fewer haplotypes comprise 94% of the examined genomes, suggesting the recent introduction of parasites into this geographic region. In contrast we find more than three haplotypes in putative drug-resistance genes, including the gene encoding dihydrofolate reductase-thymidylate synthase and the P. vivax multidrug resistance associated transporter, suggesting that resistance mutations have arisen independently. Additionally, several drug-resistance genes are located in genomic regions with evidence of increased copy number. Our data suggest that whole genome sequencing of malaria parasites from patients may provide more insight about the evolution of drug resistance than genetic linkage or association studies, especially in geographical regions with limited parasite genetic diversity. PMID:26719854

  9. Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia

    PubMed Central

    Blair, Silvia; Akinyi Okoth, Sheila; Udhayakumar, Venkatachalam; Marcet, Paula L.; Escalante, Ananias A.; Alexander, Neal; Rojas, Carlos

    2016-01-01

    Plasmodium vivax recurrences help maintain malaria transmission. They are caused by recrudescence, reinfection, or relapse, which are not easily differentiated. A longitudinal observational study took place in Turbo municipality, Colombia. Participants with uncomplicated P. vivax infection received supervised treatment concomitantly with 25 mg/kg chloroquine and 0.25 mg/kg/day primaquine for 14 days. Incidence of recurrence was assessed over 180 days. Samples were genotyped, and origins of recurrences were established. A total of 134 participants were enrolled between February 2012 and July 2013, and 87 were followed for 180 days, during which 29 recurrences were detected. The cumulative incidence of first recurrence was 24.1% (21/87) (95% confidence interval [CI], 14.6 to 33.7%), and 86% (18/21) of these events occurred between days 51 and 110. High genetic diversity of P. vivax strains was found, and 12.5% (16/128) of the infections were polyclonal. Among detected recurrences, 93.1% (27/29) of strains were genotyped as genetically identical to the strain from the previous infection episode, and 65.5% (19/29) of infections were classified as relapses. Our results indicate that there is a high incidence of P. vivax malaria recurrence after treatment in Turbo municipality, Colombia, and that a large majority of these episodes are likely relapses from the previous infection. We attribute this to the primaquine regimen currently used in Colombia, which may be insufficient to eliminate hypnozoites. PMID:27185794

  10. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection

    PubMed Central

    Cornejo, Omar E.; Durrego, Ester; Stanley, Craig E.; Castillo, Andreína I.; Herrera, Sócrates; Escalante, Ananias A.

    2016-01-01

    Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. PMID:27347876

  11. Biochemical characterization of plasmepsin V from Plasmodium vivax Thailand isolates: Substrate specificity and enzyme inhibition.

    PubMed

    Sappakhaw, Khomkrit; Takasila, Ratchaneekorn; Sittikul, Pichamon; Wattana-Amorn, Pakorn; Assavalapsakul, Wanchai; Boonyalai, Nonlawat

    2015-12-01

    Plasmepsin V (PMV) is a Plasmodium aspartic protease responsible for the cleavage of the Plasmodium export element (PEXEL) motif, which is an essential step for export of PEXEL containing proteins and crucial for parasite viability. Here we describe the genetic polymorphism of Plasmodium vivax PMV (PvPMV) Thailand isolates, followed by cloning, expression, purification and characterization of PvPMV-Thai, presenting the pro- and mature-form of PvPMV-Thai. With our refolding and purification method, approximately 1mg of PvPMV-Thai was obtained from 1g of washed inclusion bodies. Unlike PvPMV-Ind and PvPMV-Sal-1, PvPMV-Thai contains a four-amino acid insertion (SVSE) at residues 246-249. We have confirmed that this insertion did not interfere with the catalytic activity as it is located in the long loop (R241-E272) pointing away from the substrate-binding pocket. PvPMV-Thai exhibited similar activity to PfPMV counterparts in which PfEMP2 could be hydrolyzed more efficiently than HRPII. Substrate specificity studies at P1' showed that replacing Ser by Val or Glu of the PfEMP2 peptide markedly reduced the enzyme activity of PvPMV similar to that of PfPMV whereas replacing His by Val or Ser of the HRPII peptide increased the cleavage activity. However, the substitution of amino acids at the P2 position with Glu dramatically reduced the cleavage efficiency by 80% in PvPMV in contrast to 30% in PfPMV, indicating subtle differences around the S2 binding pocket of both PfPMV and PvPMV. Four inhibitors were also evaluated for PvPMV-Thai activity including PMSF, pepstatin A, nelfinavir, and menisporopsin A-a macrocyclic polylactone. We are the first to show that menisporopsin A partially inhibits the PvPMV-Thai activity at high concentration. Taken together, these findings provide insights into recombinant production, substrate specificity and inhibition of PvPMV-Thai.

  12. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    PubMed

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru.

  13. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru

    PubMed Central

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M.; Llanos-Cuentas, Alejandro

    2015-01-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru. PMID:26483126

  14. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    PubMed

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.

  15. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax circumsporozoite protein phenotypes in southern Mexico.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Santillan, F V; Hernandez, J E; Wirtz, R A

    2000-05-01

    The susceptibility to two coindigenous Plasmodium vivax Grassi & Feletti phenotypes VK210 and VK247 of three colonized Anopheles albimanus Wiedemann strains (white-striped, green and brown) from southern Mexico was investigated. Mosquitoes of the three strains were simultaneously fed with P. vivax-infected patient blood and examined 1 wk later for the presence of oocysts. The circumsporozoite protein phenotype type (VK210 and VK247) was determined by immunoflorescence of salivary gland sporozoites using monoclonal antibodies. The proportions of specimens infected and the number of oocyst per mosquito indicated that all mosquito strains were more susceptible to the phenotype VK210 than to VK247, but the white-striped strain was more susceptible to both parasite phenotypes than the other two strains.

  16. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    PubMed Central

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family. PMID:17329808

  17. Crystal structure of Plasmodium vivax FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity.

    PubMed

    Rajan, Sreekanth; Austin, David; Harikishore, Amaravadhi; Nguyen, Quoc Toan; Baek, Kwanghee; Yoon, Ho Sup

    2014-07-01

    The malarial parasites currently remain one of the most dreadful parasites, which show increasing trend of drug resistance to the currently available antimalarial drugs. Thus, the need to identify and characterize new protein targets in these parasites can aid to design novel therapeutic strategies to combat malaria. Recently, the conserved FK506-binding protein family members with molecular weight of 35 kDa from Plasmodium falciparum and Plasmodium vivax (referred to as PfFKBP35 and PvFKBP35, respectively) were identified for drug targeting. Further data mining revealed a 25-kDa FKBP (FKBP25) family member present in the parasites. FKBP25 belongs to a unique class of FKBP, because it is a nuclear FKBP with multiple protein-binding partners. Apart from immune regulation, it is also known for its chaperoning role in various cellular processes such as transcription regulation and trafficking. Here, we present the biochemical characterization and 1.9-Å crystal structure of an N-terminal truncated FKBP25 from P. vivax (PvFKBP25(72-209)). The protein reveals the noncanonical nature with unique structural changes observed in the loops flanking the active site, concealing the binding pocket. Further, a potential calmodulin-binding domain, which is absent in human FKBP25, is observed in this protein. Although the functional implication of Plasmodium FKBP25 in malaria still remains elusive, we speculate that the notable conformational changes in its structure might serve as an overture in understanding its molecular mechanism.

  18. Genetic polymorphism and effect of natural selection at domain I of apical membrane antigen-1 (AMA-1) in Plasmodium vivax isolates from Myanmar.

    PubMed

    Moon, Sung-Ung; Na, Byoung-Kuk; Kang, Jung-Mi; Kim, Jung-Yeon; Cho, Shin-Hyeong; Park, Yun-Kyu; Sohn, Woon-Mok; Lin, Khin; Kim, Tong-Soo

    2010-05-01

    Malaria is endemic or hypoendemic in Myanmar and the country still contributes to the high level of malaria deaths in South-East Asia. Although information on the nature and extent of population diversity within malaria parasites in the country is essential not only for understanding the epidemic situation but also to establish a proper control strategy, very little data is currently available on the extent of genetic polymorphisms of the malaria parasites in Myanmar. In this study, we analyzed the genetic polymorphism and natural selection at domain I of the apical membrane antigen-1 (AMA-1) among Plasmodium vivax Myanmar isolates. A total of 34 distinguishable haplotypes were identified among the 76 isolates sequenced. Comparison with the previously available PvAMA-1 sequences in the GenBank database revealed that 21 of them were new haplotypes that have never been reported till date. The difference between the rate of nonsynonymous (dN) and synonymous (dS) mutations was positive (dN-dS, 0.013+/-0.005), suggesting the domain I is under positive natural selection. The Tajima's D statistics was found to be -0.74652, suggesting that the gene has evolved under population size expansion and/or positive selection. The minimum recombination events were also high, indicating that recombination may occur within the domain I resulting in allelic diversity of PvAMA-1. Our results collectively suggest that PvAMA-1 displays high genetic polymorphism among Myanmar P. vivax isolates with highly diversifying selection at domain I. These results have significant implications in understanding the nature of P. vivax population circulating in Myanmar as well as providing useful information for malaria vaccine development based on this antigen.

  19. Costs Associated with Malaria in Pregnancy in the Brazilian Amazon, a Low Endemic Area Where Plasmodium vivax Predominates

    PubMed Central

    Bôtto-Menezes, Camila; Bardají, Azucena; dos Santos Campos, Giselane; Fernandes, Silke; Hanson, Kara; Martínez-Espinosa, Flor Ernestina; Menéndez, Clara; Sicuri, Elisa

    2016-01-01

    Background Information on costs associated with malaria in pregnancy (MiP) in low transmission areas where Plasmodium vivax predominates is so far missing. This study estimates health system and patient costs of MiP in the Brazilian Amazon. Methods/Principal Findings Between January 2011 and March 2012 patient costs for the treatment of MiP were collected through an exit survey at a tertiary referral hospital and at a primary health care centre in the Manaus metropolitan area, Amazonas state. Pregnant and post-partum women diagnosed with malaria were interviewed after an outpatient consultation or at discharge after admission. Seventy-three interviews were included in the analysis. Ninety-six percent of episodes were due to P. vivax and 4% to Plasmodium falciparum. In 2010, the total median costs from the patient perspective were estimated at US $45.91 and US $216.29 for an outpatient consultation and an admission, respectively. When multiple P. vivax infections during the same pregnancy were considered, patient costs increased up to US $335.85, representing the costs of an admission plus an outpatient consultation. Provider direct and overhead cost data were obtained from several sources. The provider cost associated with an outpatient case, which includes several consultations at the tertiary hospital was US $103.51 for a P. vivax malaria episode and US $83.59 for a P. falciparum malaria episode. The cost of an inpatient day and average admission of 3 days was US $118.51 and US $355.53, respectively. Total provider costs for the diagnosis and treatment of all malaria cases reported in pregnant women in Manaus in 2010 (N = 364) were US $17,038.50, of which 92.4% (US$ 15,741.14) due to P. vivax infection. Conclusion Despite being an area of low risk malaria transmission, MiP is responsible for a significant economic burden in Manaus. Especially when multiple infections are considered, costs associated with P. vivax are higher than costs associated with P

  20. Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle

    PubMed Central

    Basseri, Hamid R; Doosti, Soghra; Akbarzadeh, Kamran; Nateghpour, Mehdi; Whitten, Miranda MA; Ladoni, Hossein

    2008-01-01

    Background Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of Plasmodium with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of Plasmodium vivax in a wild insecticide-resistant mysorensis strain of Anopheles stephensi, a major vector of vivax malaria in south-eastern Iran. The study subsequently demonstrates that host-parasite sugar binding interactions are critical to the development of this parasite in the salivary glands of its mosquito host. The identity of the receptors or sugars involved was revealed by a receptor "pre-saturation" strategy in which sugars fed to the mosquitoes inhibited normal host-parasite interactions. Methods Anopheles stephensi mysorensis mosquitoes were artificially infected with P. vivax by feeding on the blood of gametocytaemic volunteers reporting to local malaria clinics in the Sistan-Baluchistan province of south-eastern Iran. In order to determine the inhibitory effect of carbohydrates on sporogonic development, vector mosquitoes were allowed to ingest blood meals containing both gametocytes and added carbohydrates. The carbohydrates tested were GlcNAc, GalNAc, arabinose, fucose, mannose, lactose, glucose and galactose. Sporogonic development was assessed by survival of the parasite at both the oocyst and sporozoite stages. Results Oocyst development was observed among nearly 6% of the fed control mosquitoes but the overall number of mosquitoes exhibiting sporozoite invasion of the salivary glands was 47.5% lower than the number supporting oocysts in their midgut. Of the tested carbohydrates, only arabinose and fucose slightly perturbed the development of P. vivax oocysts at the basal side of the mosquito midgut, and the remaining sugars caused no reductions in oocyst development. Strikingly however, sporozoites were completely absent from the salivary glands of mosquitoes treated with mannose

  1. Primary infection by Plasmodium falciparum or P. vivax in a cohort of Javanese migrants to Indonesian Papua.

    PubMed

    Barcus, M J; Krisin; Elyazar, I R F; Marwoto, H; Richie, T L; Basri, H; Wiady, I; Fryauff, D J; Maguire, J D; Bangs, M J; Baird, J K

    2003-09-01

    The clinical and parasitological characteristics of the first naturally acquired malarial infection have rarely been documented in humans. When 243 migrants from non-endemic Java were followed from the day of their arrival in Indonesian Papua, 217 (89%) were found to become infected with Plasmodium falciparum and/or P. vivax before they were lost to follow-up. The incidence of malarial infection in the children investigated (who were aged 6-10 years) was indistinguishable from that in the adults (aged >20 years), with 1.10 and 1.14 P. falciparum infections/person-year (relative risk=0.97; 95% confidence interval=0.72-1.29) and 1.47 and 1.49 P. vivax infections/person-year (relative risk=0.99; 95% confidence interval=0.72-1.29), respectively. During their first infections, the children had higher P. falciparum parasitaemias than the adults (with geometric means of 1318 and 759 parasites/microl, respectively; P=0.04) but similar P. vivax parasitaemias (with geometric means of 355 and 331 parasites/microl, respectively; P=0.76). At first infection, 56% of the subjects were febrile and 90% complained of symptoms. There were no differences between children and adults with respect to these two parameters, either for P. falciparum or P. vivax. These findings indicate that, with promptly diagnosed and treated uncomplicated malaria, migrant children and adults in north-eastern Indonesian Papua have an equal risk of malarial infection and of disease following their first infections with P. falciparum and P. vivax.

  2. Protective Efficacy of Plasmodium vivax Radiation-Attenuated Sporozoites in Colombian Volunteers: A Randomized Controlled Trial

    PubMed Central

    Arévalo-Herrera, Myriam; Vásquez-Jiménez, Juan M.; Lopez-Perez, Mary; Vallejo, Andrés F.; Amado-Garavito, Andrés B.; Céspedes, Nora; Castellanos, Angélica; Molina, Karen; Trejos, Johanna; Oñate, José; Epstein, Judith E.; Richie, Thomas L.; Herrera, Sócrates

    2016-01-01

    Background Immunizing human volunteers by mosquito bite with radiation-attenuated Plasmodium falciparum sporozoites (RAS) results in high-level protection against infection. Only two volunteers have been similarly immunized with P. vivax (Pv) RAS, and both were protected. A phase 2 controlled clinical trial was conducted to assess the safety and protective efficacy of PvRAS immunization. Methodology/Principal Findings A randomized, single-blinded trial was conducted. Duffy positive (Fy+; Pv susceptible) individuals were enrolled: 14 received bites from irradiated (150 ± 10 cGy) Pv-infected Anopheles mosquitoes (RAS) and 7 from non-irradiated non-infected mosquitoes (Ctl). An additional group of seven Fy- (Pv refractory) volunteers was immunized with bites from non-irradiated Pv-infected mosquitoes. A total of seven immunizations were carried out at mean intervals of nine weeks. Eight weeks after last immunization, a controlled human malaria infection (CHMI) with non-irradiated Pv-infected mosquitoes was performed. Nineteen volunteers completed seven immunizations (12 RAS, 2 Ctl, and 5 Fy-) and received a CHMI. Five of 12 (42%) RAS volunteers were protected (receiving a median of 434 infective bites) compared with 0/2 Ctl. None of the Fy- volunteers developed infection by the seventh immunization or after CHMI. All non-protected volunteers developed symptoms 8–13 days after CHMI with a mean pre-patent period of 12.8 days. No serious adverse events related to the immunizations were observed. Specific IgG1 anti-PvCS response was associated with protection. Conclusion Immunization with PvRAS was safe, immunogenic, and induced sterile immunity in 42% of the Fy+ volunteers. Moreover, Fy- volunteers were refractory to Pv malaria. Trial registration Identifier: NCT01082341. PMID:27760143

  3. Spatial Variation in Genetic Diversity and Natural Selection on the Thrombospondin-Related Adhesive Protein Locus of Plasmodium vivax (PvTRAP)

    PubMed Central

    Kosuwin, Rattiporn; Putaporntip, Chaturong; Tachibana, Hiroshi; Jongwutiwes, Somchai

    2014-01-01

    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito’s salivary gland and vertebrate’s hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006–2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006–2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores

  4. Spatial variation in genetic diversity and natural selection on the thrombospondin-related adhesive protein locus of Plasmodium vivax (PvTRAP).

    PubMed

    Kosuwin, Rattiporn; Putaporntip, Chaturong; Tachibana, Hiroshi; Jongwutiwes, Somchai

    2014-01-01

    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006-2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006-2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge

  5. Prescribing Pattern of Anti-malarial Drugs with Particular Reference to the use of Artesunate in Complicated Plasmodium Vivax Cases

    PubMed Central

    Singh, Ashutosh Kumar; Khan, Mohd Sajid

    2014-01-01

    Background: In developing countries, Malaria has been found to be one of the most common cause of fever and morbidity, particularly among infants and young children. Therefore, its drug utilization studies should be carried out to know the rationality of treatment. Aim: To evaluate the use of antimalarial agents in children with a diagnosis of Malaria and visited to OPD & IPD Paediatric department of a tertiary care teaching hospital. Materials and Methods: This was a prospective six months study based on a Medication Utilization Form, which has been designed in consultation with the paediatrician. One hundred eighty three children <12 y of age were selected on the basis of inclusion and exclusion criteria. Results: Out of 183 patients, 110 were infected with Plasmodium falciparum (60.10%) and 73 with Plasmodium vivax (39.89%). Most of the patients were male, 56.83% and 43.16% were female patients. Most of the complicated cases were found from Plasmodium falciparum (n = 110) than Plasmodium vivax (n=15). In prescriptions with monotherapy, Artesunate (n=101) was found to be the most commonly prescribed drug and in prescriptions containing more than one drug, Artesunate – lumefantrine (n=125) combinations were frequently used. Most of the drugs were prescribed by oral route (n=285), than the parenteral route (n=140). The average number of drugs per encounter was 2.32 and only 4.50% drugs were prescribed by generic name. Average drug cost per prescription in complicated cases was found to be higher (185.5 INR) than uncomplicated cases (115 INR). Conclusion: Artemisinin were used as first line drugs irrespective of the causative agent for malaria, which is not recommended, however has been found to be effective in complicated cases of Plasmodium vivax also. The cost of the prescription was higher. Interventions to rectify over prescription of injectables necessary to further improve rational drug use in our facility. Also, there should be an awareness program

  6. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites

    PubMed Central

    Rice, Benjamin L.; Acosta, Mónica M.; Pacheco, M. Andreína; Carlton, Jane M.; Barnwell, John W.; Escalante, Ananias A.

    2014-01-01

    The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as “decoys”, via antigenic diversity, during the critical process of invading the host red blood cells. PMID:24862221

  7. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites.

    PubMed

    Rice, Benjamin L; Acosta, Mónica M; Pacheco, M Andreína; Carlton, Jane M; Barnwell, John W; Escalante, Ananias A

    2014-09-01

    The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as "decoys", via antigenic diversity, during the critical process of invading the host red blood cells.

  8. Micronutrient Deficiencies and Plasmodium vivax Malaria among Children in the Brazilian Amazon

    PubMed Central

    Benzecry, Silvana Gomes; Alexandre, Márcia Almeida; Vítor-Silva, Sheila; Salinas, Jorge Luis; de Melo, Gisely Cardoso; Marinho, Helyde Albuquerque; Paes, Ângela Tavares; de Siqueira, André Machado; Monteiro, Wuelton Marcelo; Lacerda, Marcus Vinícius Guimarães; Leite, Heitor Pons

    2016-01-01

    targeting larger populations to assess micronutrients levels in P. vivax endemic areas are warranted in order to validate these results. PMID:26963624

  9. The changing dynamics of Plasmodium vivax and P. falciparum in central India: trends over a 27-year period (1975--2002).

    PubMed

    Singh, Neeru; Kataria, Om; Singh, Mrigendra Pal

    2004-01-01

    The changing epidemiology of malaria since 1975 was studied in a tribal forested belt of central India, Chhattisgarh state, which is the second most highly malarious state in India. Chhattisgarh, which accounts for 2% of the total population of the country, contributed >16% of the total malaria cases, 23% of Plasmodium falciparum, and 7% of deaths due to malaria in the country. Retrospective analysis further revealed that, in 1975--76, P. vivax was the predominant species (58%); however, since 1979, P. falciparum showed a steady upward trend (50%), and in 2002. P. vivax reduced to 28%. Between 1986 and 2000, P. falciparum cases reported by the National Anti Malaria Programme have increased 500%, and the number of deaths also showed a similar alarming increase. From 2000 to 2002, though the number of malaria infections and number of deaths declined sharply as a result of intensive intervention measures (30% and 95%, respectively), which included new drugs like Sulfadoxine Pyrimethamine and Arteether under Enhanced Malaria Control Programme, the proportion of P. falciparum has held steady without any decline. Moreover, along with Anopheles fluviatilis, the traditional vector in the forest, An. culicifacies has also established itself in the forest. The comeback of malaria and establishment of new vectors was largely due to the deterioration of health services along with emergence of resistance in P. falciparum to Chloroquine and in An. culicifacies to DDT. Therefore, a more diversified malaria control program might be needed for sustainable malaria control.

  10. Development of a Polymerase Chain Reaction (PCR) method based on amplification of mitochondrial DNA to detect Plasmodium falciparum and Plasmodium vivax.

    PubMed

    Cunha, Maristela G; Medina, Tiago S; Oliveira, Salma G; Marinho, Anderson N; Póvoa, Marinete M; Ribeiro-dos-Santos, Andrea K C

    2009-07-01

    In this study we standardized a new technical approach in which the target mitochondrial DNA sequence (mtDNA) is amplified using a simple but sensitive PCR method as a tool to detect Plasmodium falciparum and Plasmodium vivax. Specific primers were designed to hybridize with cytochrome c oxidase genes of P. falciparum (cox III) and P. vivax (cox I). Amplification products were obtained for all positive samples, presenting homology only for species-specific mtDNA. Sensitivity and specificity were 100%. The applicability of the method was tested in a cross-sectional study, in which 88 blood samples from individuals naturally exposed to malaria in the Brazilian Amazon region were analyzed. Based on the results, the sensitivity and specificity were 100% and 88.3%, respectively. This simple and sensitive PCR method can be useful in specific situations and in different settings of malaria management, in endemic as well as non-endemic areas (travelers), and in clinical or epidemiological studies, with applications in malaria control programs.

  11. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    SciTech Connect

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-03-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.

  12. Case Report: Successful Sporozoite Challenge Model in Human Volunteers with Plasmodium vivax Strain Derived from Human Donors

    PubMed Central

    Herrera, Sócrates; Fernández, Olga; Manzano, María R.; Murrain, Bermans; Vergara, Juana; Blanco, Pedro; Palacios, Ricardo; Vélez, Juan D.; Epstein, Judith E.; Chen-Mok, Mario; Reed, Zarifah H.; Arévalo-Herrera, Myriam

    2010-01-01

    Successful establishment of a Plasmodium vivax sporozoite challenge model in humans is described. Eighteen healthy adult, malaria-naïve volunteers were randomly allocated to Groups A–C and exposed to 3 ± 1, 6 ± 1, and 9 ± 1 bites of Anopheles albimanus mosquitoes infected with P. vivax, respectively. Seventeen volunteers developed signs and symptoms consistent with malaria, and geometric mean prepatent periods of 11.1 days (9.3–11) for Group A; 10.8 days (9.8–11.9) for Group B; and 10.6 days (8.7–12.4) for Group C, with no statistically significant difference among groups (Kruskal-Wallis, P = 0.70). One volunteer exposed to eight mosquito bites did not develop a parasitemia. No differences in parasite density were observed and all individuals successfully recovered after anti-malarial treatment. None of the volunteers developed parasite relapses within an 18-month follow-up. In conclusion, malaria-naive volunteers can be safely and reproducibly infected with bites of 2–10 An. albimanus mosquitoes carrying P. vivax sporozoites. This challenge method is suitable for vaccine and anti-malarial drug testing. PMID:19861603

  13. Variation in Human Cytochrome P-450 Drug-Metabolism Genes: A Gateway to the Understanding of Plasmodium vivax Relapses

    PubMed Central

    Silvino, Ana Carolina Rios; Costa, Gabriel Luiz; de Araújo, Flávia Carolina Faustino; Ascher, David Benjamin; Pires, Douglas Eduardo Valente; Fontes, Cor Jesus Fernandes; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves; Sousa, Tais Nobrega

    2016-01-01

    Although Plasmodium vivax relapses are classically associated with hypnozoite activation, it has been proposed that a proportion of these cases are due to primaquine (PQ) treatment failure caused by polymorphisms in cytochrome P-450 2D6 (CYP2D6). Here, we present evidence that CYP2D6 polymorphisms are implicated in PQ failure, which was reinforced by findings in genetically similar parasites, and may explain a number of vivax relapses. Using a computational approach, these polymorphisms were predicted to affect the activity of CYP2D6 through changes in the structural stability that could lead to disruption of the PQ-enzyme interactions. Furthermore, because PQ is co-administered with chloroquine (CQ), we investigated whether CQ-impaired metabolism by cytochrome P-450 2C8 (CYP2C8) could also contribute to vivax recurrences. Our results show that CYP2C8-mutated patients frequently relapsed early (<42 days) and had a higher proportion of genetically similar parasites, suggesting the possibility of recrudescence due to CQ therapeutic failure. These results highlight the importance of pharmacogenetic studies as a tool to monitor the efficacy of antimalarial therapy. PMID:27467145

  14. Plasmodium simium, a Plasmodium vivax-Related Malaria Parasite: Genetic Variability of Duffy Binding Protein II and the Duffy Antigen/Receptor for Chemokines

    PubMed Central

    Camargos Costa, Daniela; Pereira de Assis, Gabriela Maíra; de Souza Silva, Flávia Alessandra; Araújo, Flávia Carolina; de Souza Junior, Júlio César; Braga Hirano, Zelinda Maria; Satiko Kano, Flora; Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Ferreira Alves de Brito, Cristiana

    2015-01-01

    Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells. PMID:26107662

  15. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines.

    PubMed

    Camargos Costa, Daniela; Pereira de Assis, Gabriela Maíra; de Souza Silva, Flávia Alessandra; Araújo, Flávia Carolina; de Souza Junior, Júlio César; Braga Hirano, Zelinda Maria; Satiko Kano, Flora; Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Ferreira Alves de Brito, Cristiana

    2015-01-01

    Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells.

  16. Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax.

    PubMed

    Srinivasan, Bharath; Kempaiah Nagappa, Lakshmeesha; Shukla, Arpit; Balaram, Hemalatha

    2015-01-01

    Members of the haloacid dehalogenase (HAD) superfamily are emerging as an important group of enzymes by virtue of their role in diverse chemical reactions. In different Plasmodium species their number varies from 16 to 21. One of the HAD superfamily members, PVX_123945, a hypothetical protein from Plasmodium vivax, was selected for examining its substrate specificity. Based on distant homology searches and structure comparisons, it was predicted to be a phosphatase. Thirty-eight metabolites were screened to identify potential substrates. Further, to validate the prediction, biochemical and kinetic studies were carried out that showed that the protein was a monomer with high catalytic efficiency for β-glycerophosphate followed by pyridoxal 5'-phosphate. The enzyme also exhibited moderate catalytic efficiencies for α-glycerophosphate, xanthosine 5'-monophosphate and adenosine 5'-monophosphate. It also hydrolyzed the artificial substrate p-nitrophenyl phosphate (pNPP). Mg(2+) was the most preferred divalent cation and phosphate inhibited the enzyme activity. The study is the first attempt at understanding the substrate specificity of a hypothetical protein belonging to HAD superfamily from the malarial parasite P. vivax.

  17. Genetic diversity of merozoite surface protein-1 gene of Plasmodium vivax isolates in mining villages of Venezuela (Bolivar State).

    PubMed

    Leclerc, Marie Claude; Gauthier, Céline; Villegas, Leopoldo; Urdaneta, Ludmel

    2005-07-01

    The merozoite surface protein-1 gene of Plasmodium vivax is highly polymorphic and so, currently used in epidemiological studies of P. vivax malaria. We sequenced the variable block 5 of the gene from 39 Venezuelan isolates, 18 of which were co-infected with Plasmodium falciparum. We observed a limited variability with 34 isolates belonging to the type Salvador I, none Belem type and only five recombinants. Among the recombinants, only two types of sequences were observed with, respectively, 18 and 21 poly-Q residues. Nucleotide substitutions explained the major differences of the 11 patterns observed. We could evidence neither specific MSP-1 genotype associated with co-infected samples, nor peculiar MSP-1 genotype distribution inside the investigated areas. In comparison with other low endemic regions in the world, our sampling has a lower genetic diversity, which could be mainly explained by the lack of Belem type. In fact, the variable repeats of poly-Q residues involved in the polymorphism of Belem type and recombinant isolates are responsible for a great part of variability observed in MSP-1 block 5.

  18. Development of Monoclonal Antibodies That Target 1-Cys Peroxiredoxin and Differentiate Plasmodium falciparum from P. vivax and P. knowlesi.

    PubMed

    Hakimi, Hassan; Nguyen, Thu-Thuy; Suganuma, Keisuke; Masuda-Suganuma, Hirono; Angeles, Jose Ma M; Inoue, Noboru; Kawazu, Shin-Ichiro

    2013-06-01

    Prompt and accurate diagnosis of malarial patients is a crucial factor in controlling the morbidity and mortality of the disease. Effective treatment decisions require a correct diagnosis among mixed-species malarial patients. Differential diagnosis is particularly important in cases of Plasmodium vivax, a species that shares endemicity with P. falciparum in most endemic areas. Moreover, it is difficult to identify P. knowlesi on the basis of morphology alone, and rapid diagnostic tests are still not available for this malaria species. Therefore, the development of diagnostic tests applicable to the field is urgently needed. 1-Cys peroxiredoxin (1-Cys-Prx) in P. falciparum is abundantly expressed in the mature asexual stages, making it a promising candidate as a diagnostic antigen. In this study, we produced five monoclonal antibodies (mAbs) against P. falciparum 1-Cys-Prx (Pf1-Cys-Prx) by immunizing BALB/c mice with recombinant Pf1-Cys-Prx and subsequent hybridoma production. Cross reactivity of established mAbs with the orthologous molecule of Pf1-Cys-Prx in P. vivax (Pv1-Cys-Prx) and P. knowlesi (Pk1-Cys-Prx) was examined. Western blot analyses showed that three mAbs reacted with Pv1-Cys-Prx and Pk1-Cys-Prx but two mAbs did not. These results indicate that the two mAbs were effective in differentiating P. falciparum from P. vivax and P. knowlesi and could be used in differential diagnosis as well as comparative molecular studies of human Plasmodium species.

  19. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes

    PubMed Central

    2016-01-01

    Plasmodium vivax is now the predominant cause of malaria in the Asia-Pacific, South America and Horn of Africa. Laboratory studies of this species are constrained by the inability to maintain the parasite in continuous ex vivo culture, but genomic approaches provide an alternative and complementary avenue to investigate the parasite’s biology and epidemiology. To date, molecular studies of P. vivax have relied on the Salvador-I reference genome sequence, derived from a monkey-adapted strain from South America. However, the Salvador-I reference remains highly fragmented with over 2500 unassembled scaffolds.  Using high-depth Illumina sequence data, we assembled and annotated a new reference sequence, PvP01, sourced directly from a patient from Papua Indonesia. Draft assemblies of isolates from China (PvC01) and Thailand (PvT01) were also prepared for comparative purposes. The quality of the PvP01 assembly is improved greatly over Salvador-I, with fragmentation reduced to 226 scaffolds. Detailed manual curation has ensured highly comprehensive annotation, with functions attributed to 58% core genes in PvP01 versus 38% in Salvador-I. The assemblies of PvP01, PvC01 and PvT01 are larger than that of Salvador-I (28-30 versus 27 Mb), owing to improved assembly of the subtelomeres.  An extensive repertoire of over 1200 Plasmodium interspersed repeat (pir) genes were identified in PvP01 compared to 346 in Salvador-I, suggesting a vital role in parasite survival or development. The manually curated PvP01 reference and PvC01 and PvT01 draft assemblies are important new resources to study vivax malaria. PvP01 is maintained at GeneDB and ongoing curation will ensure continual improvements in assembly and annotation quality. PMID:28008421

  20. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature.

    PubMed

    Lacerda, Marcus V G; Mourão, Maria P G; Alexandre, Márcia A A; Siqueira, André M; Magalhães, Belisa M L; Martinez-Espinosa, Flor E; Filho, Franklin S Santana; Brasil, Patrícia; Ventura, Ana M R S; Tada, Mauro S; Couto, Vanja S C D; Silva, Antônio R; Silva, Rita S U; Alecrim, Maria G C

    2012-01-09

    The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P

  1. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature

    PubMed Central

    2012-01-01

    The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P

  2. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: loop-mediated isothermal amplification for malaria diagnosis.

    PubMed

    Ghayour Najafabadi, Zahra; Oormazdi, Hormozd; Akhlaghi, Lame; Meamar, Ahmad Reza; Nateghpour, Mehdi; Farivar, Leila; Razmjou, Elham

    2014-08-01

    This study investigated loop-mediated isothermal amplification (LAMP) detection of Plasmodium falciparum and Plasmodium vivax in urine and saliva of malaria patients. From May to November 2011, 108 febrile patients referred to health centers in Sistan and Baluchestan Province of south-eastern Iran participated in the study. Saliva, urine, and blood samples were analyzed with nested PCR and LAMP targeting the species-specific nucleotide sequence of small subunit ribosomal RNA gene (18S rRNA) of P. falciparum and P. vivax and evaluated for diagnostic accuracy by comparison to blood nested PCR assay. When nested PCR of blood is used as standard, microscopy and nested PCR of saliva and urine samples showed sensitivity of 97.2%, 89.4% and 71% and specificity of 100%, 97.3% and 100%, respectively. LAMP sensitivity of blood, saliva, and urine was 95.8%, 47% and 29%, respectively, whereas LAMP specificity of these samples was 100%. Microscopy and nested PCR of saliva and LAMP of blood were comparable to nested PCR of blood (к=0.95, 0.83, and 0.94, respectively), but agreement for nested PCR of urine was moderate (к=0.64) and poor to fair for saliva LAMP and urine LAMP (к=0.38 and 0.23, respectively). LAMP assay showed low sensitivity for detection of Plasmodium DNA in human saliva and urine compared to results with blood and to nested PCR of blood, saliva, and urine. However, considering the advantages of LAMP technology and of saliva and urine sampling, further research into the method is worthwhile. LAMP protocol and precise preparation protocols need to be defined and optimized for template DNA of saliva and urine.

  3. Local population structure of Plasmodium: impact on malaria control and elimination

    PubMed Central

    2012-01-01

    Background Regardless of the growing interest in detecting population structures in malarial parasites, there have been limited discussions on how to use this concept in control programmes. In such context, the effects of the parasite population structures will depend on interventions’ spatial or temporal scales. This investigation explores the problem of identifying genetic markers, in this case microsatellites, to unveil Plasmodium genetic structures that could affect decisions in the context of elimination. The study was performed in a low-transmission area, which offers a good proxy to better understand problems associated with surveillance at the final stages of malaria elimination. Methods Plasmodium vivax samples collected in Tumeremo, Venezuela, between March 2003 and November 2004 were analysed. Since Plasmodium falciparum also circulates in many low endemic areas, P. falciparum samples from the same locality and time period were included for comparison. Plasmodium vivax samples were assayed for an original set of 25 microsatellites and P. falciparum samples were assayed for 12 microsatellites. Results Not all microsatellite loci assayed offered reliable local data. A complex temporal-cluster dynamics is found in both P. vivax and P. falciparum. Such dynamics affect the numbers and the type of microsatellites required for identifying individual parasites or parasite clusters when performing cross-sectional studies. The minimum number of microsatellites required to differentiate circulating P. vivax clusters differs from the minimum number of hyper-variable microsatellites required to distinguish individuals within these clusters. Regardless the extended number of microsatellites used in P. vivax, it was not possible to separate all individual infections. Conclusions Molecular surveillance has great potential; however, it requires preliminary local studies in order to properly interpret the emerging patterns in the context of elimination. Clonal

  4. Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group.

    PubMed

    Thriemer, Kamala; Ley, Benedikt; Bobogare, Albino; Dysoley, Lek; Alam, Mohammad Shafiul; Pasaribu, Ayodhia P; Sattabongkot, Jetsumon; Jambert, Elodie; Domingo, Gonzalo J; Commons, Robert; Auburn, Sarah; Marfurt, Jutta; Devine, Angela; Aktaruzzaman, Mohammad M; Sohel, Nayeem; Namgay, Rinzin; Drukpa, Tobgyel; Sharma, Surender Nath; Sarawati, Elvieda; Samad, Iriani; Theodora, Minerva; Nambanya, Simone; Ounekham, Sonesay; Mudin, Rose Nanti Binti; Da Thakur, Garib; Makita, Leo Sora; Deray, Raffy; Lee, Sang-Eun; Boaz, Leonard; Danansuriya, Manjula N; Mudiyanselage, Santha D; Chinanonwait, Nipon; Kitchakarn, Suravadee; Nausien, Johnny; Naket, Esau; Duc, Thang Ngo; Do Manh, Ha; Hong, Young S; Cheng, Qin; Richards, Jack S; Kusriastuti, Rita; Satyagraha, Ari; Noviyanti, Rintis; Ding, Xavier C; Khan, Wasif Ali; Swe Phru, Ching; Guoding, Zhu; Qi, Gao; Kaneko, Akira; Miotto, Olivo; Nguitragool, Wang; Roobsoong, Wanlapa; Battle, Katherine; Howes, Rosalind E; Roca-Feltrer, Arantxa; Duparc, Stephan; Bhowmick, Ipsita Pal; Kenangalem, Enny; Bibit, Jo-Anne; Barry, Alyssa; Sintasath, David; Abeyasinghe, Rabindra; Sibley, Carol H; McCarthy, James; von Seidlein, Lorenz; Baird, J Kevin; Price, Ric N

    2017-04-05

    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.

  5. Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia

    PubMed Central

    2014-01-01

    Background Massive implementation of malaria diagnostics in low-resource countries is regarded as a pivotal strategy in control and elimination efforts. Although malaria rapid diagnostic tests (RDTs) are considered a viable alternative, there are still obstacles to the widespread implementation of this strategy, such as reporting constraints and lack of proper quality assurance of RDT-based programmes at point-of-care (POC). Methods A prospective cohort of patients, seeking routine care for febrile episodes at health centres in malaria-endemic areas of Colombia, was used to assess the diagnostic performance of a device based on smartphone technology (Deki ReaderTM, former codename “GenZero”), that assists users at POC to process RDTs. After informed consent, patients were enrolled into the study and blood samples were collected for thick blood smear (TBS) and RDT. The RDT results were interpreted by both visual inspection and Deki Reader device and concordance between visual and device interpretation was measured. Microscopy corrected by real-time polymerase chain reaction (PCR) and microscopy were “gold standard” tests to assess the diagnostic performance. Results In total, 1,807 patients were enrolled at seven health centres in malaria-endemic areas of Colombia. Thirty-three Plasmodium falciparum and 100 Plasmodium vivax cases were positive by corrected microscopy. Both sensitivity and specificity were 93.9% (95% CI 69.7-95.2) and 98.7% (95% CI 98.5-99.4) for P. falciparum, and 98.0% (95% CI 90.3-98.9) and 97.9% (95% CI 97.1-98.5) for P. vivax. Percentage concordance between visual and device interpretation of RDT was 98.5% and 99.0% for P. vivax and P. falciparum, respectively.The RDT, when compared to TBS, showed high sensitivity and specificity for P. falciparum in both visual and device interpretation, and good overall diagnostic performance for P. vivax. Comparison between PCR as gold standard and visual and device interpretation showed acceptable

  6. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia.

    PubMed

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  7. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia

    PubMed Central

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  8. Vector sequence contamination of the Plasmodium vivax sequence database in PlasmoDB and In silico correction of 26 parasite sequences.

    PubMed

    Tao, Zhi-Yong; Sui, Xu; Jun, Cao; Culleton, Richard; Fang, Qiang; Xia, Hui; Gao, Qi

    2015-06-12

    We found a 47 aa protein sequence that occurs 17 times in the Plasmodium vivax nucleotide database published on PlasmoDB. Coding sequence analysis showed multiple restriction enzyme sites within the 141 bp nucleotide sequence, and a His6 tag attached to the 3' end, suggesting cloning vector origins. Sequences with vector contamination were submitted to NCBI, and BLASTN was used to cross-examine whole-genome shotgun contigs (WGS) from four recently deposited P. vivax whole genome sequencing projects. There are at least 26 genes listed in the PlasmoDB database that incorporate this cloning vector sequence into their predicted provisional protein products.

  9. Various pfcrt and pfmdr1 Genotypes of Plasmodium falciparum Cocirculate with P. malariae, P. ovale spp., and P. vivax in Northern Angola

    PubMed Central

    Fançony, Cláudia; Gamboa, Dina; Sebastião, Yuri; Hallett, Rachel; Sutherland, Colin; Sousa-Figueiredo, José Carlos

    2012-01-01

    Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies. PMID:22850519

  10. A new ELISA kit which uses a combination of Plasmodium falciparum extract and recombinant Plasmodium vivax antigens as an alternative to IFAT for detection of malaria antibodies

    PubMed Central

    Doderer, Cecile; Heschung, Aurelie; Guntz, Phillippe; Cazenave, Jean-Pierre; Hansmann, Yves; Senegas, Alexandre; Pfaff, Alexander W; Abdelrahman, Tamer; Candolfi, Ermanno

    2007-01-01

    Background The methods most commonly used to measure malarial antibody titres are the Indirect Fluorescence Antibody Test (IFAT), regarded as the gold standard, and the Enzyme-Linked ImmunoSorbent Assay (ELISA). The objective here was to assess the diagnostic performance, i.e. the sensitivity and specificity, of a new malaria antibody ELISA kit in comparison to IFAT. This new ELISA kit, the ELISA malaria antibody test (DiaMed), uses a combination of crude soluble Plasmodium falciparum extract and recombinant Plasmodium vivax antigens. Methods Two groups were used: 95 samples from malaria patients to assess the clinical sensitivity and 2,152 samples from blood donors, who had not been exposed to malaria, to assess the clinical specificity. Results The DiaMed ELISA test kit had a clinical sensitivity of 84.2% and a clinical specificity of 99.6% as compared with 70.5% and 99.6% respectively, using the IFAT method. The ELISA method was more sensitive than the IFAT method for P. vivax infections (75% vs. 25%). However, in 923 malaria risk donors the analytical sensitivity of the ELISA test was 40% and its specificity 98.3%, performances impaired by large numbers of equivocal results non-concordant between ELISA and IFAT. When the overall analytical performances of ELISA was compared to IFAT, the ELISA efficiency J index was 0.84 versus 0.71 for IFAT. Overall analytical sensitivity was 93.1% and the analytical specificity 96.7%. Overall agreement between the two methods reached 0.97 with a reliability k index of 0.64. Conclusion The DiaMed ELISA test kit shows a good correlation with IFAT for analytical and clinical parameters. It may be an interesting method to replace the IFAT especially in blood banks, but further extensive investigations are needed to examine the analytical performance of the assay, especially in a blood bank setting. PMID:17313669

  11. Amplification of pfmdr1, pfcrt, pvmdr1, and K13 propeller polymorphisms associated with Plasmodium falciparum and Plasmodium vivax isolates from the China-Myanmar border.

    PubMed

    Feng, Jun; Zhou, Daili; Lin, Yingxue; Xiao, Huihui; Yan, He; Xia, Zhigui

    2015-05-01

    Malaria in the China-Myanmar border region is still severe; local transmission of both falciparum and vivax malaria persists, and there is a risk of geographically expanding antimalarial resistance. In this research, the pfmdr1, pfcrt, pvmdr1, and K13-propeller genotypes were determined in 26 Plasmodium falciparum and 64 Plasmodium vivax isolates from Yingjiang county of Yunnan province. The pfmdr1 (11.5%), pfcrt (34.6%), and pvmdr1 (3.1%) mutations were prevalent at the China-Myanmar border. The indigenous samples exhibited prevalences of 14.3%, 28.6%, and 14.3% for pfmdr1 N86Y, pfcrt K76T, and pfcrt M74I, respectively, whereas the samples from Myanmar showed prevalences of 10.5%, 21.1%, and 5.3%, respectively. The most prevalent genotypes of pfmdr1 and pfcrt were Y86Y184 and M74N75T76, respectively. No pvmdr1 mutation occurred in the indigenous samples but was observed in two cases coming from Myanmar. In addition, we are the first to report on 10 patients (38.5%) with five different K13 point mutations. The F446I allele is predominant (19.2%), and its prevalence was 28.6% in the indigenous samples of Yingjiang county and 15.8% in samples from Myanmar. The present data might be helpful for enrichment of the molecular surveillance of antimalarial resistance and useful for developing and updating guidance for the use of antimalarials in this region.

  12. A Randomized Comparison of Chloroquine versus Dihydroartemisinin–Piperaquine for the Treatment of Plasmodium vivax Infection in Vietnam

    PubMed Central

    Thuan, Phung Duc; Ca, Nguyen Thuy Nha; Van Toi, Pham; Nhien, Nguyen Thanh Thuy; Thanh, Ngo Viet; Anh, Nguyen Duc; Phu, Nguyen Hoan; Thai, Cao Quang; Hong Thai, Le; Hoa, Nhu Thi; Thanh Dong, Le; Loi, Mai Anh; Son, Do Hung; Khanh, Tran Tinh Ngoc; Dolecek, Christiane; Nhan, Ho Thi; Wolbers, Marcel; Thwaites, Guy; Farrar, Jeremy; White, Nicholas J.; Hien, Tran Tinh

    2016-01-01

    A total of 128 Vietnamese patients with symptomatic Plasmodium vivax mono-infections were enrolled in a prospective, open-label, randomized trial to receive either chloroquine or dihydroartemisinin–piperaquine (DHA-PPQ). The proportions of patients with adequate clinical and parasitological responses were 47% in the chloroquine arm (31 of 65 patients) and 66% in the DHA-PPQ arm (42 of 63 patients) in the Kaplan–Meier intention-to-treat analysis (absolute difference 19%, 95% confidence interval = 0–37%), thus establishing non-inferiority of DHA-PPQ. Fever clearance time (median 24 versus 12 hours, P = 0.02), parasite clearance time (median 36 versus 18 hours, P < 0.001), and parasite clearance half-life (mean 3.98 versus 1.80 hours, P < 0.001) were all significantly shorter in the DHA-PPQ arm. All cases of recurrent parasitemia in the chloroquine arm occurred from day 33 onward, with corresponding whole blood chloroquine concentration lower than 100 ng/mL in all patients. Chloroquine thus remains efficacious for the treatment of P. vivax malaria in southern Vietnam, but DHA-PPQ provides more rapid symptomatic and parasitological recovery. PMID:26856909

  13. Origins and implications of neglect of G6PD deficiency and primaquine toxicity in Plasmodium vivax malaria

    PubMed Central

    Baird, Kevin

    2015-01-01

    Most of the tens of millions of clinical attacks caused by Plasmodium vivax each year likely originate from dormant liver forms called hypnozoites. We do not systematically attack that reservoir because the only drug available, primaquine, is poorly suited to doing so. Primaquine was licenced for anti-relapse therapy in 1952 and became available despite threatening patients having an inborn deficiency of glucose-6-phosphate dehydrogenase (G6PD) with acute haemolytic anaemia. The standard method for screening G6PD deficiency, the fluorescent spot test, has proved impractical where most malaria patients live. The blind administration of daily primaquine is dangerous, but so too are the relapses invited by withholding treatment. Absent G6PD screening, providers must choose between risking harm by the parasite or its treatment. How did this dilemma escape redress in science, clinical medicine and public health? This review offers critical historic reflection on the neglect of this serious problem in the chemotherapy of P. vivax. PMID:25943156

  14. Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protein-1 delivered via the intranasal route.

    PubMed

    Bargieri, Daniel Y; Rosa, Daniela S; Lasaro, Melissa Ang Simões; Ferreira, Luis Carlos S; Soares, Irene S; Rodrigues, Mauricio M

    2007-06-01

    Recently, we generated two bacterial recombinant proteins expressing 89 amino acids of the C-terminal domain of the Plasmodium vivax merozoite surface protein-1 and the hexa-histidine tag (His6MSP1(19)). One of these recombinant proteins contained also the amino acid sequence of the universal pan allelic T-cell epitope (His6MSP1(19)-PADRE). In the present study, we evaluated the immunogenic properties of these antigens when administered via the intra-nasal route in the presence of distinct adjuvant formulations. We found that C57BL/6 mice immunized with either recombinant proteins in the presence of the adjuvants cholera toxin (CT) or the Escherichia coli heat labile toxin (LT) developed high and long lasting titers of specific serum antibodies. The induced immune responses reached maximum levels after three immunizing doses with a prevailing IgG1 subclass response. In contrast, mice immunized by intranasal route with His6MSP1(19)-PADRE in the presence of the synthetic oligonucleotides adjuvant CpG ODN 1826 developed lower antibody titers but when combined to CT, CpG addition resulted in enhanced IgG responses characterized by lower IgG1 levels. Considering the limitations of antigens formulations that can be used in humans, mucosal adjuvants can be a reliable alternative for the development of new strategies of immunization using recombinant proteins of P. vivax.

  15. The Effects of Plasmodium vivax Gestational Malaria on the Clinical and Immune Status of Pregnant Women in Northwestern Colombia

    PubMed Central

    Perkins, Douglas Jay; Corredor, Mauricio; Yanow, Stephanie; Carmona-Fonseca, Jaime; Maestre, Amanda

    2013-01-01

    Objetive: The study explored the effects of Plasmodium vivax infection on the balance of pro- versus anti- inflammatory cytokines and chemokines and their relationship with some clinical and epidemiology outcomes. Methods: Thirty-five pregnant women were recruited. Of these, 15 subjects had malaria at delivery (GM+), and 20 had no exposition to infection throughout the pregnancy (GM-) and at delivery. Epidemiological and clinical data were recorded after reviewing the clinical records. At delivery, whole blood from the mother as well as placental tissue was collected. Diagnosis of infection was performed by thick smear and a polymerase chain reaction (PCR). Expression of pro-inflammatory and anti-inflammatory cytokines and chemokines was measured by a real time PCR. Results: The clinical and epidemiological variables explored were similar in both groups, with the exception of gestational age. When comparing the GM+ group with the GM- group, it is clear that although the differences generally are not significant, pro- inflammatory cytokines are elevated in both maternal blood and placental; anti-inflammatory ones are elevated in the mother and reduced in the placenta, and the chemokines are reduced in both compartments, except for MCP-1 which is elevated in all. Conclusion: The results appear to be strongly affected by the small number of women with GM by P. vivax at childbirth. Additional studies are needed with larger groups in this and other regions of the country PMID:24892615

  16. In Silico Screening on the Three-dimensional Model of the Plasmodium vivax SUB1 Protease Leads to the Validation of a Novel Anti-parasite Compound*

    PubMed Central

    Bouillon, Anthony; Giganti, David; Benedet, Christophe; Gorgette, Olivier; Pêtres, Stéphane; Crublet, Elodie; Girard-Blanc, Christine; Witkowski, Benoit; Ménard, Didier; Nilges, Michael; Mercereau-Puijalon, Odile; Stoven, Véronique; Barale, Jean-Christophe

    2013-01-01

    Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μm for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial. PMID:23653352

  17. Structural and functional characterization of an iron-sulfur cluster assembly scaffold protein-SufA from Plasmodium vivax.

    PubMed

    Pala, Zarna Rajeshkumar; Saxena, Vishal; Saggu, Gagandeep Singh; Yadav, Sushil Kumar; Pareek, R P; Kochar, Sanjay Kumar; Kochar, Dhanpat Kumar; Garg, Shilpi

    2016-07-01

    Iron-sulfur (Fe-S) clusters are utilized as prosthetic groups in all living organisms for diverse range of cellular processes including electron transport in respiration and photosynthesis, sensing of ambient conditions, regulation of gene expression and catalysis. In Plasmodium, two Fe-S cluster biogenesis pathways are reported, of which the Suf pathway in the apicoplast has been shown essential for the erythrocytic stages of the parasite. While the initial components of this pathway detailing the sulfur mobilization have been elucidated, the components required for the assembly and transfer of Fe-S clusters are not reported from the parasite. In Escherichia coli, SufB acts as a scaffold protein and SufA traffics the assembled Fe-S cluster from SufB to target apo-proteins. However, in Plasmodium, the homologs of these proteins are yet to be characterized for their function. Here, we report a putative SufA protein from Plasmodium vivax with signature motifs of A-type scaffold proteins, which is evolutionarily conserved. The presence of the [Fe4S4](3+) cluster under reduced conditions was confirmed by UV-visible and EPR spectroscopy and the interaction of these clusters with the conserved cysteine residues of chains A and B of PvSufA, validates its existence as a dimer, similar to that in E. coli. The H-bond interactions at the PvSufA-SufB interface demonstrate SufA as a scaffold protein in conjunction with SufB for the pre-assembly of Fe-S clusters and their transfer to the target proteins. Co-localization of the protein to the apicoplast further provides an experimental evidence of a functional scaffold protein SufA for the biogenesis of Fe-S clusters in apicoplast of Plasmodium.

  18. Mapping and comparison of the B-cell epitopes recognized on the Plasmodium vivax circumsporozoite protein by immune Colombians and immunized Aotus monkeys.

    PubMed

    Arévalo-Herrera, M; Roggero, M A; Gonzalez, J M; Vergara, J; Corradin, G; López, J A; Herrera, S

    1998-07-01

    Plasma samples of individuals from two malaria-endemic villages on the Colombian Pacific coast and synthetic peptides representing different fragments of the central and flanking regions of the Plasmodium vivax circumsporozoite protein (CSP) were used to perform a fine mapping of the B-cell epitopes on the whole CSP. In addition, the immunogenicity of long polypeptides corresponding to the amino (N) and carboxyl (C) regions was evaluated in Aotus monkeys. The epitopes recognized after natural infection of humans and after immunization of Aotus with these synthetic peptides were compared. Human samples more frequently contained specific antibodies to the central region. The type-I repeat region of the CSP was predominantly recognized by the human sera (by 68% of those from the village of Zacarías and 75% of those from Bajo Calima), a significantly smaller population reacting with the type-II repeat (20% and 11%, respectively). Most of the sera reacting with the type-I repeat recognized the minimal epitope AGDR. Although the N- and C-terminal polypeptides were both highly immunogenic in Aotus and induced long-lasting antibodies, titres of antibodies to the C-terminal polypeptide were higher than those of antibodies to the N-terminal. Competitive inhibition assays performed using human and monkey plasma allowed the identification of dominant B-cell epitopes on sequence 71-90 (p8) from the amino region and sequence 332-361 (p24/p25) from the carboxyl region. The high prevalence of naturally induced antibodies to the three epitopes, the possible functional role of the corresponding sequences, and the high immunogenicity of these epitopes in Aotus could be of great importance in the development of a malaria vaccine based on P. vivax CSP.

  19. Influence of Plasmodium vivax malaria on the relations between the osmotic stability of human erythrocyte membrane and hematological and biochemical variables.

    PubMed

    Mascarenhas Netto, Rita de Cássia; Fabbri, Camila; de Freitas, Mariana Vaini; Bernardino Neto, Morun; Garrote-Filho, Mário Silva; Lacerda, Marcus Vinícius Guimarães; Lima, Emerson Silva; Penha-Silva, Nilson

    2014-03-01

    This study evaluated the influence of infection by Plasmodium vivax on the relations between hematological and biochemical variables and the osmotic stability of the erythrocyte membrane in a Brazilian Amazon population. A total of 72 patients with P. vivax malaria were included in the study and invited to return after 14 days, post-treatment with chloroquine and primaquine, for clinical and laboratorial reevaluations. The osmotic stability of the erythrocyte membrane was analyzed by nonlinear regression of the dependency of the absorbance of hemoglobin, released with hemolysis, as a function of the salt concentration, and it was represented by the inverse of the salt concentration at the midpoint of the curve (1/H 50) and by the variation of salt concentration, which promotes lysis (dX). Bivariate and multivariate methods were used in the analysis of the results. Prior to treatment of the disease, the erythrocytes showed greater stability, probably due to the natural selection of young and also more stable erythrocytes. The bivariate analysis showed that 1/H 50 was positively correlated with red cell distribution width (RDW), urea, triglycerides, and very low-density lipoprotein (VLDL)-cholesterol, but negatively associated with albumin, HDL-cholesterol, and indirect bilirubin, while dX was negatively associated with the mean corpuscular hemoglobin concentration. These associations were confirmed by canonical correlation analysis. Stepwise multiple linear regression showed that albumin, urea, triglycerides, and VLDL-cholesterol are the variables with the highest abilities of predicting erythrocyte stability. The bivariate analysis also showed that the hematological index RDW was related to elevated levels of bilirubin and decreased levels of albumin and urea, associated with liver damage resulting from malaria.

  20. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Nettel, J C; Villarreal, C; Kain, K C; Hernandez, J E

    1999-01-01

    The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247.

  1. LAP-like process as an immune mechanism downstream of IFN-γ in control of the human malaria Plasmodium vivax liver stage

    PubMed Central

    Boonhok, Rachasak; Rachaphaew, Nattawan; Duangmanee, Apisak; Chobson, Pornpimol; Pattaradilokrat, Sittiporn; Utaisincharoen, Pongsak; Sattabongkot, Jetsumon

    2016-01-01

    IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ–mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria. PMID:27185909

  2. Plasmodium vivax induced hemolytic uremic syndrome: An uncommon manifestation that leads to a grave complication and treated successfully with renal transplantation.

    PubMed

    Jhorawat, Rajesh; Beniwal, Pankaj; Malhotra, Vinay

    2015-01-01

    We are reporting a case of hemolytic uremic syndrome, a rare manifestation of Plasmodium vivax malaria. A young driver was admitted with acute febrile illness, decreased urine output, anemia, thrombocytopenia, jaundice, and increased serum lactate dehydrogenase. He showed a partial response to antimalarial drugs. However, he was readmitted with worsening renal parameters. His kidney biopsy revealed chronic thrombotic microangiopathy. He remained dialysis dependent and later underwent renal transplantation successfully, with excellent graft function at 1-year.

  3. LAP-like process as an immune mechanism downstream of IFN-γ in control of the human malaria Plasmodium vivax liver stage.

    PubMed

    Boonhok, Rachasak; Rachaphaew, Nattawan; Duangmanee, Apisak; Chobson, Pornpimol; Pattaradilokrat, Sittiporn; Utaisincharoen, Pongsak; Sattabongkot, Jetsumon; Ponpuak, Marisa

    2016-06-21

    IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ-mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria.

  4. Severe and benign Plasmodium vivax malaria in Emberá (Amerindian) children and adolescents from an endemic municipality in Western Colombia.

    PubMed

    Medina-Morales, Diego A; Montoya-Franco, Estefanía; Sanchez-Aristizabal, Viviana D P; Machado-Alba, Jorge E; Rodríguez-Morales, Alfonso J

    2016-01-01

    Malaria in children is still an important public health problem in endemic areas of South-East Asia and Latin America. Certain forms of the disease, such as Plasmodium vivax severe malaria, are still neglected. This descriptive study assessed the frequency of severe and benign P. vivax infection in Emberá children (<14 years of age) from an endemic municipality in Colombia in 2013, using the WHO criteria. During 2013, 270 Emberá children presented 349 episodes of malaria. From them, 22 (8.1%) presented at least one of the criteria for severe malaria. Some patients with P. vivax presented with severe malaria (severe anemia, renal dysfunction, respiratory distress and seizure). Mixed malaria cases presented more complications than those with monoinfection (OR=5.535; 95%CI 1.81-16.9). In Colombia, few data are available about severe P. vivax malaria in children, especially in the Amerindian ethnic groups. Mixed infections were associated with increased risk of severe malaria. At the same time, detailed and prospective studies are needed to measure the real impact of severe vivax malaria, as was evidenced in this paper.

  5. Prevalence of mutations in the antifolates resistance-associated genes (dhfr and dhps) in Plasmodium vivax parasites from Eastern and Central Sudan.

    PubMed

    Pirahmadi, Sekineh; Talha, Badawi Abdelbagi; Nour, Bakri Y M; Zakeri, Sedigheh

    2014-08-01

    Plasmodium vivax is the most geographically widespread species, and its burden has been increasingly documented in Eastern and Central Sudan. P. vivax becomes the crucial challenge during elimination programs; thus an effective treatment is necessary to prevent the development and the spread of resistant parasites. Therefore, the main objective of the present study was to provide data on the prevalence of molecular markers in two genes (pvdhfr and pvdhps) associated with SP resistance after nine years of AS+SP deployment among P. vivax parasites from Eastern and Central Sudan using PCR-RFLP. During 2012-2013, a number of 66 blood spots were obtained on filter paper. The samples were collected before treatment from febrile patients who were microscopically positive for P. vivax, from three states in Eastern and Central Sudan (Gezira, Gedarif, and Kassala). Mutations were detected in three codons of pvdhfr (I13L, S58R, and S117N) and none in pvdhps. The majority of P. vivax parasites had double mutations (58R/117N, 58%) in dhfr gene, while all parasites were wild type in dhps gene. In addition, limited distinct haplotypes (n=4) were detected. In conclusion, the prevalence of mutations associated with SP resistance is low in Eastern and Central Sudan. Such information is necessary for guiding malaria control measures in the frame of Roll Back Malaria strategies for the elimination of malaria in the world.

  6. Therapeutic efficacy of alternative primaquine regimens to standard treatment in preventing relapses by Plasmodium vivax

    PubMed Central

    Tamayo Perez, María-Eulalia; Aguirre-Acevedo, Daniel Camilo

    2015-01-01

    Objective: To compare efficacy and safety of primaquine regimens currently used to prevent relapses by P. vivax. Methods: A systematic review was carried out to identify clinical trials evaluating efficacy and safety to prevent malaria recurrences by P. vivax of primaquine regimen 0.5 mg/kg/ day for 7 or 14 days compared to standard regimen of 0.25 mg/kg/day for 14 days. Efficacy of primaquine according to cumulative incidence of recurrences after 28 days was determined. The overall relative risk with fixed-effects meta-analysis was estimated. Results: For the regimen 0.5 mg/kg/day/7 days were identified 7 studies, which showed an incidence of recurrence between 0% and 20% with follow-up 60-210 days; only 4 studies comparing with the standard regimen 0.25 mg/kg/day/14 days and no difference in recurrences between both regimens (RR= 0.977, 95% CI= 0.670 to 1.423) were found. 3 clinical trials using regimen 0.5 mg/kg/day/14 days with an incidence of recurrences between 1.8% and 18.0% during 330-365 days were identified; only one study comparing with the standard regimen (RR= 0.846, 95% CI= 0.484 to 1.477). High risk of bias and differences in handling of included studies were found. Conclusion: Available evidence is insufficient to determine whether currently PQ regimens used as alternative rather than standard treatment have better efficacy and safety in preventing relapse of P. vivax. Clinical trials are required to guide changes in treatment regimen of malaria vivax. PMID:26848199

  7. Immune Responses and Protection of Aotus Monkeys Immunized with Irradiated Plasmodium vivax Sporozoites

    DTIC Science & Technology

    2011-01-01

    responses and protective efficacy induced by vacci- nation with irradiated P vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups...received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that...responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner.l11ese findings suggest that the

  8. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Santillan, F; Chavez, B; Nettel, J A; Hernandez-Avila, J E; Kain, K C

    2001-07-01

    Anopheles albimanus and An. pseudopunctipennis differ in their susceptibilities to Plasmodium vivax circumsporozoite phenotypes. An. pseudopunctipennis is susceptible to phenotype VK247 but almost refractory to VK210. In contrast, An. albimanus is almost refractory to VK247 but susceptible to VK210. To investigate the site in the mosquito and the parasite stage at which resistance mechanisms affect VK247 development in An. albimanus, parasite development was followed in a series of experiments in which both mosquitoes species were simultaneously infected with blood from patients. Parasite phenotype was determined in mature oocysts and salivary gland sporozoites by use of immunofluorescence and Western blot assays and/or gene identification. Ookinete maturation and their densities within the bloodmeal bolus were similar in both mosquito species. Ookinete densities on the internal midgut surface of An. albimanus were 4.7 times higher than those in An. pseudopunctipennis; however, the densities of developing oocysts on the external midgut surface were 6.12 times higher in the latter species. Electron microscopy observation of ookinetes in An. albimanus midgut epithelium indicated severe parasite damage. These results indicate that P. vivax VK247 parasites are destroyed at different parasite stages during migration in An. albimanus midguts. A portion, accumulated on the internal midgut surface, is probably destroyed by the mosquito's digestive enzymes and another portion is most likely destroyed by mosquito defense molecules within the midgut epithelium. A third group, reaching the external midgut surface, initiates oocyst development, but over 90% of them interrupt their development and die. The identification of mechanisms that participate in parasite destruction could provide new elements to construct transgenic mosquitoes resistant to malaria parasites.

  9. Identification of a Highly Antigenic Linear B Cell Epitope within Plasmodium vivax Apical Membrane Antigen 1 (AMA-1)

    PubMed Central

    Bueno, Lilian Lacerda; Lobo, Francisco Pereira; Morais, Cristiane Guimarães; Mourão, Luíza Carvalho; de Ávila, Ricardo Andrez Machado; Soares, Irene Silva; Fontes, Cor Jesus; Lacerda, Marcus Vinícius; Olórtegui, Carlos Chavez; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio; Braga, Érika Martins

    2011-01-01

    Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290–307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies. PMID:21713006

  10. Killing the hypnozoite – drug discovery approaches to prevent relapse in Plasmodium vivax

    PubMed Central

    Campo, Brice; Vandal, Omar; Wesche, David L.; Burrows, Jeremy N.

    2015-01-01

    The eradication of malaria will only be possible if effective, well-tolerated medicines kill hypnozoites in vivax and ovale malaria, and thus prevent relapses in patients. Despite progress in the 8-aminoquinoline series, with tafenoquine in Phase III showing clear benefits over primaquine, the drug discovery challenge to identify hypnozoiticidal or hypnozoite-activating compounds has been hampered by the dearth of biological tools and assays, which in turn has been limited by the immense scientific and logistical challenges associated with accessing relevant human tissue and sporozoites. This review summarises the existing drug discovery series and approaches concerning the goal to block relapse. PMID:25891812

  11. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples.

    PubMed

    Cowell, Annie N; Loy, Dorothy E; Sundararaman, Sesh A; Valdivia, Hugo; Fisch, Kathleen; Lescano, Andres G; Baldeviano, G Christian; Durand, Salomon; Gerbasi, Vince; Sutherland, Colin J; Nolder, Debbie; Vinetz, Joseph M; Hahn, Beatrice H; Winzeler, Elizabeth A

    2017-02-07

    Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens.

  12. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples

    PubMed Central

    Loy, Dorothy E.; Sundararaman, Sesh A.; Valdivia, Hugo; Fisch, Kathleen; Lescano, Andres G.; Baldeviano, G. Christian; Durand, Salomon; Gerbasi, Vince; Sutherland, Colin J.; Nolder, Debbie; Vinetz, Joseph M.; Hahn, Beatrice H.

    2017-01-01

    ABSTRACT Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. PMID:28174312

  13. Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    PubMed Central

    2014-01-01

    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization. PMID:24641010

  14. Detection of Mixed-Species Infections of Plasmodium falciparum and Plasmodium vivax by Nested PCR and Rapid Diagnostic Tests in Southeastern Iran

    PubMed Central

    Ehtesham, Reyhaneh; Fazaeli, Asghar; Raeisi, Ahmad; Keshavarz, Hossein; Heidari, Aliehsan

    2015-01-01

    Coexistence of two species of Plasmodium in a single host has disrupted the diagnosis and treatment of malaria. This study was designed to evaluate the ability of rapid diagnostic test (RDT) kits for the diagnosis of mixed-species malaria infections in southeastern Iran. A total of 100 malaria patients were included in the study out of 164 randomly suspected symptomatic malaria patients from May to November 2012. Nested polymerase chain reaction (PCR) was also used to judge the ability of microscopy versus RDT kits for detecting mixed species. The sensitivity of light microscopy for the detection of mixed-species malaria infections was 16.6% (95% confidence interval [CI] = 3–49.1). Nested PCR revealed 12 patients with mixed-species infection. The CareStart Pv/Pf Combo kit detected 58% of the mixed-species infections, which were determined by nested PCR (sensitivity = 58.3%; 95% CI = 28.5–83.5). For identifying P. falciparum, P. vivax, and mixed-species infections, the concordance rates (kappa statistics) of microscopy and CareStart Pv/Pf Combo kit with nested PCR were 0.76 and 0.79, respectively (P = 0.001). This study underlines the effectiveness of RDT kits to improve the differentiation of mixed-species malaria infections in endemic areas where the prevalence of chloroquine resistance is high. PMID:25962771

  15. Evidence and Implications of Mortality Associated with Acute Plasmodium vivax Malaria

    PubMed Central

    2013-01-01

    Vivax malaria threatens patients despite relatively low-grade parasitemias in peripheral blood. The tenet of death as a rare outcome, derived from antiquated and flawed clinical classifications, disregarded key clinical evidence, including (i) high rates of mortality in neurosyphilis patients treated with vivax malaria; (ii) significant mortality from zones of endemicity; and (iii) the physiological threat inherent in repeated, very severe paroxysms in any patient, healthy or otherwise. The very well-documented course of this infection, with the exception of parasitemia, carries all of the attributes of “perniciousness” historically linked to falciparum malaria, including severe disease and fatal outcomes. A systematic analysis of the parasite biomass in severely ill patients that includes blood, marrow, and spleen may ultimately explain this historic misunderstanding. Regardless of how this parasite is pernicious, recent data demonstrate that the infection comes with a significant burden of morbidity and associated mortality. The extraordinary burden of malaria is not heavily weighted upon any single continent by a single species of parasite—it is a complex problem for the entire endemic world, and both species are of fundamental importance. Humanity must rally substantial resources, intellect, and energy to counter this daunting but profound threat. PMID:23297258

  16. Comparative test of DNA probes for detection of Plasmodium vivax circumsporozoite protein polymorphs VK 247 and VK 210.

    PubMed

    Sattabongkot, J; Suwanabun, N; Rongnoparut, P; Wirtz, R A; Kain, K C; Rosenberg, R

    1994-02-01

    Oligonucleotide probes specific to the characteristic repeat sequences of two alleles of the circumsporozoite protein gene of Plasmodium vivax (VK 210 and VK 247) were selected, synthesized, and tested on matched blood and sporozoite DNA amplified by polymerase chain reaction from 182 cases naturally acquired in Thailand. Probe results were compared to those of circumsporozoite phenotype-specific ELISAs used to evaluate sporozoites from the same cases. There was a 96% agreement between probe results for blood and for sporozoites. Although there was also a nearly complete agreement between probe and ELISA results for cases producing only VK 210 or VK 247 sporozoites, the probes detected 45% more mixed infections than did the ELISAs when used to test specimens from western and southern Thailand; there was no discrepancy when mixed cases from Cambodia were tested. Examination of Southern blots from ambiguous mixed cases demonstrated the presence of both genes, suggesting suppression of VK 247 in some mixed cases to numbers below those detectable by the ELISA.

  17. High levels of anti-phospholipid antibodies in uncomplicated and severe Plasmodium falciparum and in P. vivax malaria.

    PubMed Central

    Facer, C A; Agiostratidou, G

    1994-01-01

    The majority (75%) of adult patients with uncomplicated Plasmodium falciparum and P. vivax malaria are positive for anti-phospholipid antibodies (aPLA) as demonstrated by ELISA using a panel of anionic and cationic phospholipids. The highest IgG and IgM binding was to the anionic phospholipids, phosphatidylserine (PS), phosphatidic acid (PA) and cardiolipin (CL), but excluding phosphatidylinositol (PI) to which only low antibody levels were found. Comparison of the mean IgG and IgM aPLA showed a trend for anti-PA > CL > PS > PC > PE > PI. Anti-PI levels were compared in two groups of African children, one group with non-severe and the other with severe (cerebral) falciparum malaria. Children with cerebral disease had significantly lower IgM anti-PI. The results are discussed with the view that serum-derived aPLA may have a role in 'anti-disease' immune responses. Their possible role in the opsonization and phagocytosis of parasitized erythrocytes and in thrombocytopenia is also considered. PMID:8306506

  18. Plasmodium vivax infection induces expansion of activated naïve/memory T cells and differentiation into a central memory profile.

    PubMed

    Silva, Ana Luiza Teixeira; Lacerda, Marcus Vinícius; Fujiwara, Ricardo Toshio; Bueno, Lilian Lacerda; Braga, Erika Martins

    2013-11-01

    Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we characterized the profile of circulating naïve and memory (including central and effector) CD4⁺ T cells responses of individuals naturally infected by Plasmodium vivax. In the current study, we demonstrated that acute P. vivax infection induces a significant increase in the absolute number of both naïve and memory cells, which were responsible for the production of anti-inflammatory (IL-10) and pro-inflammatory (IFN-γ) cytokines. Finally, we described the profile of memory cell subtypes (T(CM)-CD45RO(high)CCR7⁺ and T(EM)-CD45RO(high)CCR7⁻), as well as the pattern of cell migration based on CD62L selectin expression, demonstrating that P. vivax-infected donors presented with a predominantly central memory cell profile. Our results indicate that the expansion of both naïve and memory T cells, responsible for the production of both pro-inflammatory and regulatory cytokines, which might also contribute to the modulation of immune responses during P. vivax infection.

  19. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study.

    PubMed

    Requena, Pilar; Arévalo-Herrera, Myriam; Menegon, Michela; Martínez-Espinosa, Flor E; Padilla, Norma; Bôtto-Menezes, Camila; Malheiro, Adriana; Hans, Dhiraj; Castellanos, Maria Eugenia; Robinson, Leanne; Samol, Paula; Kochar, Swati; Kochar, Sanjay K; Kochar, Dhanpat K; Desai, Meghna; Sanz, Sergi; Quintó, Llorenç; Mayor, Alfredo; Rogerson, Stephen; Mueller, Ivo; Severini, Carlo; Del Portillo, Hernando A; Bardají, Azucena; Chitnis, Chetan C; Menéndez, Clara; Dobaño, Carlota

    2017-01-01

    A vaccine to eliminate malaria would need a multi-stage and multi-species composition to achieve robust protection, but the lack of knowledge about antigen targets and mechanisms of protection precludes the development of fully efficacious malaria vaccines, especially for Plasmodium vivax (Pv). Pregnant women constitute a risk population who would greatly benefit from a vaccine preventing the adverse events of Plasmodium infection during gestation. We hypothesized that functional immune responses against putative targets of naturally acquired immunity to malaria and vaccine candidates will be associated with protection against malaria infection and/or poor outcomes during pregnancy. We measured (i) IgG responses to a large panel of Pv and Plasmodium falciparum (Pf) antigens, (ii) the capacity of anti-Pv ligand Duffy binding protein (PvDBP) antibodies to inhibit binding to Duffy antigen, and (iii) cellular immune responses to two Pv antigens, in a subset of 1,056 pregnant women from Brazil, Colombia, Guatemala, India, and Papua New Guinea (PNG). There were significant intraspecies and interspecies correlations for most antibody responses (e.g., PfMSP119 versus PfAMA1, Spearman's rho = 0.81). Women from PNG and Colombia had the highest levels of IgG overall. Submicroscopic infections seemed sufficient to boost antibody responses in Guatemala but not antigen-specific cellular responses in PNG. Brazil had the highest percentage of Duffy binding inhibition (p-values versus Colombia: 0.040; Guatemala: 0.047; India: 0.003, and PNG: 0.153) despite having low anti-PvDBP IgG levels. Almost all antibodies had a positive association with present infection, and coinfection with the other species increased this association. Anti-PvDBP, anti-PfMSP1, and anti-PfAMA1 IgG levels at recruitment were positively associated with infection at delivery (p-values: 0.010, 0.003, and 0.023, respectively), suggesting that they are markers of malaria exposure. Peripheral blood mononuclear

  20. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study

    PubMed Central

    Requena, Pilar; Arévalo-Herrera, Myriam; Menegon, Michela; Martínez-Espinosa, Flor E.; Padilla, Norma; Bôtto-Menezes, Camila; Malheiro, Adriana; Hans, Dhiraj; Castellanos, Maria Eugenia; Robinson, Leanne; Samol, Paula; Kochar, Swati; Kochar, Sanjay K.; Kochar, Dhanpat K.; Desai, Meghna; Sanz, Sergi; Quintó, Llorenç; Mayor, Alfredo; Rogerson, Stephen; Mueller, Ivo; Severini, Carlo; del Portillo, Hernando A.; Bardají, Azucena; Chitnis, Chetan C.; Menéndez, Clara; Dobaño, Carlota

    2017-01-01

    A vaccine to eliminate malaria would need a multi-stage and multi-species composition to achieve robust protection, but the lack of knowledge about antigen targets and mechanisms of protection precludes the development of fully efficacious malaria vaccines, especially for Plasmodium vivax (Pv). Pregnant women constitute a risk population who would greatly benefit from a vaccine preventing the adverse events of Plasmodium infection during gestation. We hypothesized that functional immune responses against putative targets of naturally acquired immunity to malaria and vaccine candidates will be associated with protection against malaria infection and/or poor outcomes during pregnancy. We measured (i) IgG responses to a large panel of Pv and Plasmodium falciparum (Pf) antigens, (ii) the capacity of anti-Pv ligand Duffy binding protein (PvDBP) antibodies to inhibit binding to Duffy antigen, and (iii) cellular immune responses to two Pv antigens, in a subset of 1,056 pregnant women from Brazil, Colombia, Guatemala, India, and Papua New Guinea (PNG). There were significant intraspecies and interspecies correlations for most antibody responses (e.g., PfMSP119 versus PfAMA1, Spearman’s rho = 0.81). Women from PNG and Colombia had the highest levels of IgG overall. Submicroscopic infections seemed sufficient to boost antibody responses in Guatemala but not antigen-specific cellular responses in PNG. Brazil had the highest percentage of Duffy binding inhibition (p-values versus Colombia: 0.040; Guatemala: 0.047; India: 0.003, and PNG: 0.153) despite having low anti-PvDBP IgG levels. Almost all antibodies had a positive association with present infection, and coinfection with the other species increased this association. Anti-PvDBP, anti-PfMSP1, and anti-PfAMA1 IgG levels at recruitment were positively associated with infection at delivery (p-values: 0.010, 0.003, and 0.023, respectively), suggesting that they are markers of malaria exposure. Peripheral blood

  1. Field Evaluation of the ICT Malaria P.f/P.v Immunochromatographic Test for Detection of Plasmodium falciparum and Plasmodium vivax in Patients with a Presumptive Clinical Diagnosis of Malaria in Eastern Indonesia

    PubMed Central

    Tjitra, Emiliana; Suprianto, Sri; Dyer, Mary; Currie, Bart J.; Anstey, Nicholas M.

    1999-01-01

    In areas such as eastern Indonesia where both Plasmodium falciparum and Plasmodium vivax occur, rapid antigen detection tests for malaria need to be able to detect both species. We evaluated the new combined P. falciparum-P. vivax immunochromatographic test (ICT Malaria P.f/P.v.) in Radamata Primary Health Centre, Sumba, Indonesia, from February to May 1998 with 560 symptomatic adults and children with a presumptive clinical diagnosis of malaria. Blinded microscopy was used as the “gold standard,” with all discordant and 20% of concordant results cross-checked blindly. Only 50% of those with a presumptive clinical diagnosis of malaria were parasitemic. The ICT Malaria P.f/P.v immunochromatographic test was sensitive (95.5%) and specific (89.8%) for the diagnosis of falciparum malaria, with a positive predictive value (PPV) and a negative predictive value (NPV) of 88.1 and 96.2%, respectively. HRP2 and panmalarial antigen line intensities were associated with parasitemia density for both species. Although the specificity and NPV for the diagnosis of vivax malaria were 94.8 and 98.2%, respectively, the overall sensitivity (75%) and PPV (50%) for the diagnosis of vivax malaria were less than the desirable levels. The sensitivity for the diagnosis of P. vivax malaria was 96% with parasitemias of >500/μl but only 29% with parasitemias of <500/μl. Nevertheless, compared with the test with HRP2 alone, use of the combined antigen detection test would reduce the rate of undertreatment from 14.7 to 3.6% for microscopy-positive patients, and this would be at the expense of only a modest increase in the rate of overtreatment of microscopy-negative patients from 7.1 to 15.4%. Cost remains a major obstacle to widespread use in areas of endemicity. PMID:10405377

  2. Field evaluation of the ICT malaria P.f/P.v immunochromatographic test for detection of Plasmodium falciparum and Plasmodium vivax in patients with a presumptive clinical diagnosis of malaria in eastern Indonesia.

    PubMed

    Tjitra, E; Suprianto, S; Dyer, M; Currie, B J; Anstey, N M

    1999-08-01

    In areas such as eastern Indonesia where both Plasmodium falciparum and Plasmodium vivax occur, rapid antigen detection tests for malaria need to be able to detect both species. We evaluated the new combined P. falciparum-P. vivax immunochromatographic test (ICT Malaria P.f/P.v.) in Radamata Primary Health Centre, Sumba, Indonesia, from February to May 1998 with 560 symptomatic adults and children with a presumptive clinical diagnosis of malaria. Blinded microscopy was used as the "gold standard," with all discordant and 20% of concordant results cross-checked blindly. Only 50% of those with a presumptive clinical diagnosis of malaria were parasitemic. The ICT Malaria P.f/P.v immunochromatographic test was sensitive (95. 5%) and specific (89.8%) for the diagnosis of falciparum malaria, with a positive predictive value (PPV) and a negative predictive value (NPV) of 88.1 and 96.2%, respectively. HRP2 and panmalarial antigen line intensities were associated with parasitemia density for both species. Although the specificity and NPV for the diagnosis of vivax malaria were 94.8 and 98.2%, respectively, the overall sensitivity (75%) and PPV (50%) for the diagnosis of vivax malaria were less than the desirable levels. The sensitivity for the diagnosis of P. vivax malaria was 96% with parasitemias of >500/microl but only 29% with parasitemias of <500/microl. Nevertheless, compared with the test with HRP2 alone, use of the combined antigen detection test would reduce the rate of undertreatment from 14.7 to 3.6% for microscopy-positive patients, and this would be at the expense of only a modest increase in the rate of overtreatment of microscopy-negative patients from 7.1 to 15. 4%. Cost remains a major obstacle to widespread use in areas of endemicity.

  3. Developmentally Regulated Ribosomal rDNA Genes in Plasmodium vivax: Biological Implications and Practical Applications

    DTIC Science & Technology

    1994-08-10

    microgametes are released from one microgametocyte during exflagellation while only one female macrogamete differentiates from a macrogametocyte...protein synthesis. In contrast to other eukaryotes, the rRNA genes in Plasmodium species are unique in terms of their genomic arrangement and...development and evolution. In this study, three structurally distinct rRNA genes, including one novel" type, have been characterized from the genomic DNA of

  4. Immunogenicity of recombinant proteins consisting of Plasmodium vivax circumsporozoite protein allelic variant-derived epitopes fused with Salmonella enterica Serovar Typhimurium flagellin.

    PubMed

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida; Rodrigues, Mauricio M

    2013-09-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax.

  5. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain

    PubMed Central

    Gelabert, Pere; Sandoval-Velasco, Marcela; Olalde, Iñigo; Fregel, Rosa; Rieux, Adrien; Escosa, Raül; Aranda, Carles; Paaijmans, Krijn; Mueller, Ivo; Gilbert, M. Thomas P.; Lalueza-Fox, Carles

    2016-01-01

    Phylogenetic analysis of Plasmodium parasites has indicated that their modern-day distribution is a result of a series of human-mediated dispersals involving transport between Africa, Europe, America, and Asia. A major outstanding question is the phylogenetic affinity of the malaria causing parasites Plasmodium vivax and falciparum in historic southern Europe—where it was endemic until the mid-20th century, after which it was eradicated across the region. Resolving the identity of these parasites will be critical for answering several hypotheses on the malaria dispersal. Recently, a set of slides with blood stains of malaria-affected people from the Ebro Delta (Spain), dated between 1942 and 1944, have been found in a local medical collection. We extracted DNA from three slides, two of them stained with Giemsa (on which Plasmodium parasites could still be seen under the microscope) and another one consisting of dried blood spots. We generated the data using Illumina sequencing after using several strategies aimed at increasing the Plasmodium DNA yield: depletion of the human genomic (g)DNA content through hybridization with human gDNA baits, and capture-enrichment using gDNA derived from P. falciparum. Plasmodium mitochondrial genome sequences were subsequently reconstructed from the resulting data. Phylogenetic analysis of the eradicated European P. vivax mtDNA genome indicates that the European isolate is closely related to the most common present-day American haplotype and likely entered the American continent post-Columbian contact. Furthermore, the European P. falciparum mtDNA indicates a link with current Indian strains that is in agreement with historical accounts. PMID:27671660

  6. Estimates of short- and long-term incubation periods of Plasmodium vivax malaria in the Republic of Korea.

    PubMed

    Nishiura, Hiroshi; Lee, Hyeong-Woo; Cho, Shin-Hyeong; Lee, Wook-Gyo; In, Tae-Suk; Moon, Sung-Ung; Chung, Gyung Tae; Kim, Tong-Soo

    2007-04-01

    With the current epidemic of vivax malaria closely associated with the demilitarised zone along the border between North and South Korea, it has been suggested that the incubation period tends, in part, to be prolonged. Based on the detailed travel history of cases from 2000 to 2003 who reside in non-malarious areas, statistical estimates of the incubation periods were obtained. The data suggest that cases fall into two categories with short- and long-term incubation periods, respectively. Of 416 cases with available information, 72 and 79 successfully met our criteria for inferring the durations of short- and long-term incubation periods. The mean short- and long-term incubation periods were estimated to be 26.6 days (95% CI 21.0-32.2) and 48.2 weeks (95% CI 46.8-49.5), respectively. The maximum likelihood method was used to fit gamma and normal distributions to the short- and long-term incubation periods, assisting prediction of the frequency distribution of the overall incubation period, which exhibited a bimodal pattern. We postulate that the observed distribution reflects adaptation of the parasite to the seasonal population dynamics of the vector, Anopheles sinensis, ensuring continued transmission of vivax malaria in this temperate zone.

  7. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin.

    PubMed

    Bargieri, Daniel Y; Rosa, Daniela S; Braga, Catarina J M; Carvalho, Bruna O; Costa, Fabio T M; Espíndola, Noeli Maria; Vaz, Adelaide José; Soares, Irene S; Ferreira, Luis C S; Rodrigues, Mauricio M

    2008-11-11

    The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FliC), a Toll-like receptor 5 (TLR5) agonist. FliC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P. vivax MSP1(19) in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSP1(19)-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malarial antigens and the innate immunity agonist FliC. It contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants.

  8. Plasmodium vivax Malaria in Pregnant Women in the Brazilian Amazon and the Risk Factors Associated with Prematurity and Low Birth Weight: A Descriptive Study

    PubMed Central

    Bôtto-Menezes, Camila; Silva dos Santos, Mônica Caroline; Lopes Simplício, Janicéia; Menezes de Medeiros, Jandira; Barroso Gomes, Kelly Cristina; de Carvalho Costa, Isabel Cristina; Batista-Silva, Eva; Teixeira do Nascimento, Cristiana; da Silva Chagas, Eda Cristina; Jardim Sardinha, José Felipe; Simões de Santana Filho, Franklin; Brock, Marianna

    2015-01-01

    Introduction Plasmodium vivax is the most prevalent malaria species in the American region. Brazil accounts for the higher number of the malaria cases reported in pregnant women in the Americas. This study aims to describe the characteristics of pregnant women with malaria in an endemic area of the Brazilian Amazon and the risk factors associated with prematurity and low birth weight (LBW). Methods/Principal Findings Between December 2005 and March 2008, 503 pregnant women with malaria that attended a tertiary health centre were enrolled and followed up until delivery and reported a total of 1016 malaria episodes. More than half of study women (54%) were between 20–29 years old, and almost a third were adolescents. The prevalence of anaemia at enrolment was 59%. Most women (286/503) reported more than one malaria episode and most malaria episodes (84.5%, 846/1001) were due to P. vivax infection. Among women with only P. vivax malaria, the risk of preterm birth and low birth weight decreased in multigravidae (OR, 0.36 [95% CI, 0.16–0.82]; p = 0.015 and OR 0.24 [95% CI, 0.10–0.58]; p = 0.001, respectively). The risk of preterm birth decreased with higher maternal age (OR 0.43 [95% CI, 0.19–0.95]; p = 0.037) and among those women who reported higher antenatal care (ANC) attendance (OR, 0.32 [95% CI, 0.15–0.70]; p = 0.005). Conclusion This study shows that P. vivax is the prevailing species among pregnant women with malaria in the region and shows that vivax clinical malaria may represent harmful consequences for the health of the mother and their offsprings particularly on specific groups such as adolescents, primigravidae and those women with lower ANC attendance. PMID:26675007

  9. Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers

    DTIC Science & Technology

    2011-02-01

    species in most endemic areas outside Africa. 1 Limited succes of classic malaria control measures has prompted the search for vaccines and because...invested in this parasite species than in P. vivax. However, progress is also being achieved in the development of P. vivax subunit vaccines . Two...trials. 2– 4 Recent phase I clinical trials conducted using different formulations of P. vivax CS-derived subunit vaccines based on long syn

  10. [Curative treatment of malaria Plasmodium falciparum, P. vivax and P. ovale malaria with mefloquine].

    PubMed

    Danis, M; Felix, H; Brucker, G; Druilhe, P; Datry, A; Richard-Lenoble, D; Gentilini, M

    1982-01-01

    Mefloquine (WR 142-490, RO 21.5998), and antimalarial 4-quinoleine-methanol, active on multiresistant strains of P. falciparum is a resourceful product because of its pharmacocinetics and the possibility it opens of a single day curative therapy. Its mean half-live is 15 days, with important individual variations from 8 to 23 days as well as racial one within North-American, Asiatic or African patients. A 1,25 to 1,50 g dose divided in 2 or 3 intakes during 16 hours has proved to be effective in 34 P. falciparum cases. Lower doses, near 1 g seem sufficient for P. vivax (6 cases) and P. ovale fits (4 cases). Clinical and biological acceptance are good, according to this limited study. The use of mefloquine might nowadays be reserved for geographical areas where resistance to P. falciparum is significantly high. Its diffusion in Africa, south of the Sahara, though conceivable, might be discarded for the time beeing.

  11. The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites.

    PubMed

    Russell, Bruce M; Cooke, Brian M

    2017-04-01

    Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs.

  12. Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood–Stage Proteins of Plasmodium vivax

    PubMed Central

    Cassiano, Gustavo C.; Furini, Adriana A. C.; Capobianco, Marcela P.; Storti-Melo, Luciane M.; Cunha, Maristela G.; Kano, Flora S.; Carvalho, Luzia H.; Soares, Irene S.; Santos, Sidney E.; Póvoa, Marinete M.; Machado, Ricardo L. D.

    2016-01-01

    The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA–1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP–119) were detected by ELISA. The SNP BLYS –871C>T was associated with the frequency of IgG responders to PvAMA–1 and PvMSP–119. The SNP CD40 –1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP–119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines. PMID:26901523

  13. Genetic diversity of transmission-blocking vaccine candidates Pvs25 and Pvs28 in Plasmodium vivax isolates from Yunnan Province, China

    PubMed Central

    2011-01-01

    Background Transmission-blocking vaccines (TBVs) have been considered an important strategy for disrupting the malaria transmission cycle, especially for Plasmodium vivax malaria, which undergoes gametocytogenesis earlier during infection. Pvs25 and Pvs28 are transmission-blocking vaccine candidates for P. vivax malaria. Assessment of genetic diversity of the vaccine candidates will provide necessary information for predicting the performance of vaccines, which will guide us during the development of malaria vaccines. Results We sequenced the coding regions of pvs25 and pvs28 from 30 P. vivax isolates from Yunnan Province, identifying five amino acid haplotypes of Pvs25 and seven amino acid haplotypes of Pvs28. Among a total of four mutant residues, the predominant haplotype of Pvs25 only had the I130T substitution. For Pvs28, a total of eight amino acid substitutions were identified. The predominant haplotype of Pvs28 had two substitution at positions 52 (M52L) and 140 (T140S) with 5-6 GSGGE/D tandem repeats at the end of fourth EGF-like domain. Most amino acid substitutions were common with previous reports from South Asian isolates. Although the nucleotide diversity of pvs28 (π = 0.0034 ± 0.0012) was significantly higher than pvs25 (π = 0.0013 ± 0.0009), it was still conserved when compared with the blood stage vaccine candidates. Conclusions Genetic analysis revealed limited genetic diversity of pvs25 and pvs28, suggesting antigenic diversity may not be a particular problem for Sal I based TBVs in most P. vivax-endemic areas of China. PMID:22117620

  14. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico

    PubMed Central

    2014-01-01

    Background Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. Methods The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. Results Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. Conclusions These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of

  15. Therapeutic efficacy of chloroquine for the treatment of Plasmodium vivax malaria among outpatients at Shawa Robit Health Care Centre, North-East Ethiopia.

    PubMed

    Seifu, Seble; Zeynudin, Ahmed; Zemene, Endalew; Suleman, Sultan; Biruksew, Abdissa

    2017-03-11

    Nearly 40% of all malaria infection in Ethiopia is caused by Plasmodium vivax. Chloroquine (CQ) is the first line treatment for confirmed P. vivax malaria in the country. However, the efficacy of this drug has been compromised by CQ resistant P. vivax (CRPv) strains. Therefore, the present study was aimed at assessing the therapeutic efficacy of CQ for treatment of P. vivax malaria at Shawa Robit Health Care Centre, North-Ease Ethiopia. A one-arm, 28-day follow-up, in vivo therapeutic efficacy study was conducted from October 2013 to February 2014. Eighty-seven patients with microscopically confirmed P. vivax mono - infection aged between 1 and 65 years were enrolled and treated with a 25mg/kg CQ administered for three consecutive days under supervision. Socio-demographic and clinical information were collected. Blood smears were prepared and examined for parasite clearance or recurrence of parasitaemia. Clinical examination was performed at all follow-up visits. Haematocrit determination was made. Percentages, frequencies, Kaplan-Meier survival probability analysis and statistical associations were computed. P-value of <0.05 was considered statistically significant. From the total 87 patients included in the study 76 (87.4%) completed their 28-day follow-up; four patients were excluded due to P. falciparum infection during the follow up (on day 2, day 7 and day 14) and seven cases were lost to follow-up (on day 3, day 7 and day 14). Among those P. vivax infected individuals, 44 (50.6%) subjects were febrile on day of admission and the remaining had history of fever. From the 76 study participants who completed the 28-day follow up period, late parasitological failure (LPF) was observed in five (6.6%) cases. The geometric mean of parasite density was 8723.9/μl and mean haematocrit value was 35.45%. Besides, survival analysis showed that the cumulative incidence of success and failure rates at day 28 was 93.4% (95% CI=0.849-0.972) and 7.04% (95% CI=0

  16. The Incidence and Differential Seasonal Patterns of Plasmodium vivax Primary Infections and Relapses in a Cohort of Children in Papua New Guinea

    PubMed Central

    Ross, Amanda; Koepfli, Cristian; Schoepflin, Sonja; Timinao, Lincoln; Siba, Peter; Smith, Thomas; Mueller, Ivo; Felger, Ingrid; Tanner, Marcel

    2016-01-01

    Plasmodium vivax has the ability to relapse from dormant parasites in the liver weeks or months after inoculation, causing further blood-stage infection and potential onward transmission. Estimates of the force of blood-stage infections arising from primary infections and relapses are important for designing intervention strategies. However, in endemic settings their relative contributions are unclear. Infections are frequently asymptomatic, many individuals harbor multiple infections, and while high-resolution genotyping of blood samples enables individual infections to be distinguished, primary infections and relapses cannot be identified. We develop a model and fit it to longitudinal genotyping data from children in Papua New Guinea to estimate the incidence and seasonality of P vivax primary infection and relapse. The children, aged one to three years at enrolment, were followed up over 16 months with routine surveys every two months. Blood samples were taken at the routine visits and at other times if the child was ill. Samples positive by microscopy or a molecular method for species detection were genotyped using high-resolution capillary electrophoresis for P vivax MS16 and msp1F3, and P falciparum msp2. The data were summarized as longitudinal patterns of success or failure to detect a genotype at each routine time-point (eg 001000001). We assume that the seasonality of P vivax primary infection is similar to that of P falciparum since they are transmitted by the same vectors and, because P falciparum does not have the ability to relapse, the seasonality can be estimated. Relapses occurring during the study period can be a consequence of infections occurring prior to the study: we assume that the seasonal pattern of primary infections repeats over time. We incorporate information from parasitological and entomology studies to gain leverage for estimating the parameters, and take imperfect detection into account. We estimate the force of P vivax primary

  17. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy

    PubMed Central

    Bennett, Jason W.; Yadava, Anjali; Tosh, Donna; Sattabongkot, Jetsumon; Komisar, Jack; Ware, Lisa A.; McCarthy, William F.; Cowden, Jessica J.; Regules, Jason; Spring, Michele D.; Paolino, Kristopher; Hartzell, Joshua D.; Cummings, James F.; Richie, Thomas L.; Lumsden, Joanne; Kamau, Edwin; Murphy, Jittawadee; Lee, Cynthia; Parekh, Falgunee; Birkett, Ashley; Cohen, Joe; Ballou, W. Ripley; Polhemus, Mark E.; Vanloubbeeck, Yannick F.; Vekemans, Johan; Ockenhouse, Christian F.

    2016-01-01

    Background A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. Methods We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. Results The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. Significance This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for

  18. Therapeutic Assessment of Chloroquine-Primaquine Combined Regimen in Adult Cohort of Plasmodium vivax Malaria from Primary Care Centres in Southwestern India

    PubMed Central

    Saravu, Kavitha; Kumar, Rishikesh; Ashok, Herikudru; Kundapura, Premananda; Kamath, Veena; Kamath, Asha; Mukhopadhyay, Chiranjay

    2016-01-01

    Background Several reports of chloroquine treatment failure and resistance in Plasmodium vivax malaria from Southeast Asian countries have been published. Present study was undertaken to assess the efficacy of chloroquine-primaquine (CQ-PQ) combined regimen for the treatment of P. vivax malaria patients who were catered by the selected primary health centres (PHCs) of Udupi taluk, Udupi district, Karnataka, India. Method Five PHCs were selected within Udupi taluk based on probability proportional to size. In-vivo therapeutic efficacy assessment of CQ (1500 mg over three days) plus PQ (210 mg over 14 days) regimen was carried out in accordance with the World Health Organization’s protocol of 28 days follow-up among microscopically diagnosed monoinfection P. vivax cohort. Results In total, 161 participants were recruited in the study of which, 155 (96.3%) participants completed till day 28 follow-up, fully complied with the treatment regimen and showed adequate clinical and parasitological response. Loss to follow up was noted with 5 (3.1%) participants and non-compliance with treatment regimen occurred with one participant (0.6%). Glucose-6-phosphate dehydrogenase deficiency (G6PDd, <30% of normal mean activity) was noted among 5 (3.1%) participants and one of them did develop PQ induced dark-brown urination which subsided after PQ discontinuation. G6PDd patients were treated with PQ 45 mg/week for eight weeks while PQ was discontinued in one case with G6PD 1.4 U/g Hb due to complaint of reddish-brown coloured urine by 48 hours of PQ initiation. Nested polymerase chain reaction test revealed 45 (28%) cases as mixed (vivax and falciparum) malaria. Conclusions The CQ-PQ combined regimen remains outstandingly effective to treat uncomplicated P. vivax malaria in Udupi taluk and thus it should continue as first line regimen. For all P. vivax cases, G6PD screening before PQ administration must be mandatory and made available in all PHCs. PMID:27315280

  19. Natural acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein (PvDBP-II) equally block erythrocyte binding of homologous and heterologous expressed PvDBP-II on the surface of COS-7 cells.

    PubMed

    Valizadeh, Vahideh; Zakeri, Sedigheh; Mehrizi, Akram A; Mirkazemi, Sedigheh; Djadid, Navid D

    2016-02-01

    The binding domain of Plasmodium vivax Duffy binding protein (PvDBP-II) is a promising blood-stage vaccine candidate for vivax malaria. For the development of a successful vivax malaria vaccine based on DBP-II, the antigenic diversity and also naturally occurring functional antibodies to different PvDBP-II variant types in the various populations must be determined. However, similar to other blood-stage antigens, allelic variation within the PvDBP-II is a fundamental challenge for the development of a broadly efficient vaccine. The present study was performed to define whether the polymorphisms in PvDBP-II influence the nature of functional inhibitory activity of naturally acquired or induced anti-DBP-II antibodies in mice. In this investigation, five genetically distinct variants of PvDBP-II were transiently expressed on the COS-7 cell surface. Erythrocyte-binding inhibition assay (EBIA) was performed using human sera infected with corresponding and non-corresponding P. vivax variants as well as by the use of mice sera immunized with different expressed recombinant PvDBP-IIs. EBIA results showed that the inhibitory percentage varied between 50 and 63 % by using sera from infected individuals, and in case of mouse antisera, inhibition was in the range of 76-86 %. Interestingly, no significant difference was detected in red blood cell binding inhibition when different PvDBP-II variants on the COS-7 cell surfaces were incubated with heterologous and homologous sera infected with PvDBP-II variants. This suggests that the detected polymorphisms in all five forms of PvDBP-II may not affect functional activity of anti-DBP-II antibodies. In conclusion, our results revealed that there are functional cross-reactive antibody responses to heterologous PvDBP-II variants that might provide a broader inhibitory response against all, or at least the majority of strains compared to single allele of this protein that should be considered in development of PvDBP-II-based vaccine.

  20. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Assefa, Samuel; Lim, Caeul; Preston, Mark D; Duffy, Craig W; Nair, Mridul B; Adroub, Sabir A; Kadir, Khamisah A; Goldberg, Jonathan M; Neafsey, Daniel E; Divis, Paul; Clark, Taane G; Duraisingh, Manoj T; Conway, David J; Pain, Arnab; Singh, Balbir

    2015-10-20

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  1. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women

    PubMed Central

    Requena, Pilar; Rui, Edmilson; Padilla, Norma; Martínez-Espinosa, Flor E.; Castellanos, Maria Eugenia; Bôtto-Menezes, Camila; Malheiro, Adriana; Arévalo-Herrera, Myriam; Kochar, Swati; Kochar, Sanjay K.; Kochar, Dhanpat K.; Umbers, Alexandra J.; Ome-Kaius, Maria; Wangnapi, Regina; Hans, Dhiraj; Menegon, Michela; Mateo, Francesca; Sanz, Sergi; Desai, Meghna; Mayor, Alfredo; Chitnis, Chetan C.; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Severini, Carlo; Fernández-Becerra, Carmen; Menéndez, Clara

    2016-01-01

    P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings. PMID:27711158

  2. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women.

    PubMed

    Requena, Pilar; Rui, Edmilson; Padilla, Norma; Martínez-Espinosa, Flor E; Castellanos, Maria Eugenia; Bôtto-Menezes, Camila; Malheiro, Adriana; Arévalo-Herrera, Myriam; Kochar, Swati; Kochar, Sanjay K; Kochar, Dhanpat K; Umbers, Alexandra J; Ome-Kaius, Maria; Wangnapi, Regina; Hans, Dhiraj; Menegon, Michela; Mateo, Francesca; Sanz, Sergi; Desai, Meghna; Mayor, Alfredo; Chitnis, Chetan C; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Severini, Carlo; Fernández-Becerra, Carmen; Menéndez, Clara; Del Portillo, Hernando; Dobaño, Carlota

    2016-10-01

    P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings.

  3. Efficacy of Three Different Regimens of Primaquine for the Prevention of Relapses of Plasmodium vivax Malaria in the Amazon Basin of Peru

    PubMed Central

    Durand, Salomón; Cabezas, Cesar; Lescano, Andres G.; Galvez, Mariela; Gutierrez, Sonia; Arrospide, Nancy; Alvarez, Carlos; Santolalla, Meddly L.; Bacon, David J.; Graf, Paul C. F.

    2014-01-01

    We evaluated the efficacy of three primaquine (PQ) regimes to prevent relapses with Plasmodium vivax through an open-label randomized trial in Loreto, Peru. Vivax monoinfections were treated with chloroquine for 3 days and PQ in three different regimes: 0.5 mg/kg per day for 5 days (150 mg total), 0.5 mg/kg per day for 7 days (210 mg total), or 0.25 mg/kg per day for 14 days (210 mg total). Biweekly fever assessments and bimonthly thick smears were taken for 210 days. Recurrences after 35 days were considered relapses. One hundred eighty cases were enrolled in each group; 90% of cases completed follow-up. There were no group-related differences in age, sex, or parasitemia. Relapse rates were similar in the 7- and 14-day regimes (16/156 = 10.3% and 22/162 = 13.6%, P = 0.361) and higher in the 5-day group (48/169 = 28.4%, P < 0.001 and P = 0.001, respectively). The 7-day PQ regimen used in Peru is as efficacious as the recommended 14-day regimen and superior to 5 treatment days. PMID:24752682

  4. The effect of zinc and vitamin C supplementation on hemoglobin and hematocrit levels and immune response in patients with Plasmodium vivax malaria.

    PubMed

    Zen Rahfiludin, M; Ginandjar, Praba

    2013-09-01

    Plasmodium vivax infection in humans can relapse and is associated with iron deficiency. The immune response plays an important role in preventing relapse. In this study we analyzed the effect of zinc and vitamin C supplementation on hemoglobin and hematocrit levels and immune response in patients with P. vivax malaria. We measured immune response by examining interferon gamma (IFN-gamma) and interleukin-10 (IL-10) levels. Subjects were divided into either treatment or control groups. The treatment group received daily zinc and vitamin C supplementation for 45 days. Compliance with supplement consumption was recorded weekly. After 45 days of supplementation, IFN-gamma and IL-1 levels were remeasured. All study subjects in both groups had normal hemoglobin and hematocrit levels. The hemoglobin levels increased only in the supplementation group (p=0.011), while hematocrit levels increased in both the supplementation (p=0.001) and control (p=0.023) groups. IFN-gamma decreased slightly in the supplementation group, but the change was not significant (p=0.688). IL-10 increased slightly in both the supplementation and the control groups, but the change were not significant (p=0.421 and p=0.556, respectively), suggesting the elevated hemoglobin and hematocrit levels were unrelated to immune response.

  5. B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax Merozoite Surface Protein-3α (PvMSP-3α) in malaria exposed individuals from Brazilian Amazon

    PubMed Central

    Lima-Junior, JC; Jiang, J; Rodrigues-da-Silva, RN; Banic, DM; Tran, TM; Ribeiro, RY; Meyer, VSE; De-Simone, SG; Santos, F; Moreno, A; Barnwell, JW; Galinski, MR; Oliveira-Ferreira, J

    2011-01-01

    The Plasmodium vivax Merozoite Surface Protein-3α (PvMSP-3α) is considered as a potential vaccine candidates. However, the detailed investigations of the type of immune responses induced in naturally exposed populations are necessary. Therefore, we aim to characterize the naturally induced antibody to PvMSP-3α in 282 individuals with different levels of exposure to malaria infections residents in Brazilian Amazon. PvMSP3 specific antibodies (IgA, IgG and IgG subclass) to five recombinant proteins and the epitope mapping by Spot-synthesis technique to full-protein sequence of amino acids (15aa sequence with overlapping sequence of 9aa) were performed. Our results indicates that PvMSP3 is highly immunogenic in naturally exposed populations, where 78% of studied individuals present IgG immune response against the full-length recombinant protein (PVMSP3-FL) and IgG subclass profile was similar to all five recombinant proteins studied with a high predominance of IgG1 and IgG3. We also observe that IgG and subclass levels against PvMSP3 are associated with malaria exposure. The PvMSP3 epitope mapping by spot-synthesis shows a natural recognition of at least 15 antigenic determinants, located mainly in the two blocks of repeats, confirming the high immunogenicity of this region. In conclusion, PvMSP-3α is immunogenic in naturally exposed individuals to malaria infections and that antibodies to PvMSP3 are induced to several B cell epitopes. The presence of PvMSP3 cytophilic antibodies (IgG1 and IgG3), suggest that this mechanisms could also occur in P. vivax. PMID:21215342

  6. High genetic polymorphism of relapsing P. vivax isolates in northwest Colombia.

    PubMed

    Restrepo, Eliana; Imwong, Mallika; Rojas, Winston; Carmona-Fonseca, Jaime; Maestre, Amanda

    2011-07-01

    Genetic diversity of Plasmodium populations has been more extensively documented in Colombia for Plasmodium falciparum than for Plasmodium vivax. Recently, highly variable microsatellite markers have been described and used in population-level studies of genetic variation of P. vivax throughout the world. We applied this approach to understand the genetic structure of P. vivax populations and to identify recurrence-associated haplotypes. In this, three microsatellite markers of P. vivax were amplified and the combined size of the fragments was used to establish genotypes. Patients from an ongoing treatment efficacy trial who were kept either in endemic or non-endemic regions in the northwest of Colombia were included in the study. In total 58 paired clinical isolates, were amplified. A total of 54 haplotypes were observed among the two regions. Some haplotypes were exclusive to the endemic region where the highest degree of polymorphism was detected. In addition, we confirmed the different genotypes of recurrent-relapsing and primary infection isolates suggesting the activation of heterologous hypnozoite populations. We conclude that analysis of the three microsatellites is a valuable tool to establish the genetic characteristics of P. vivax populations in Colombia.

  7. Efficacy and Safety of Dihydroartemisinin-Piperaquine for Treatment of Plasmodium vivax Malaria in Endemic Countries: Meta-Analysis of Randomized Controlled Studies

    PubMed Central

    Naing, Cho; Racloz, Vanessa; Whittaker, Maxine Anne; Aung, Kyan; Reid, Simon Andrew; Mak, Joon Wah; Tanner, Marcel

    2013-01-01

    Background This study aimed to synthesize available evidence on the efficacy of dihydroartemisinin-piperaquine (DHP) in treating uncomplicated Plasmodium vivax malaria in people living in endemic countries. Methodology and Principal Findings This is a meta-analysis of randomized controlled trials (RCT). We searched relevant studies in electronic databases up to May 2013. RCTs comparing efficacy of (DHP) with other artemisinin-based combination therapy (ACT), non-ACT or placebo were selected. The primary endpoint was efficacy expressed as PCR-corrected parasitological failure. Efficacy was pooled by hazard ratio (HR) and 95% CI, if studies reported time-to-event outcomes by the Kaplan-Meier method or data available for calculation of HR Nine RCTs with 14 datasets were included in the quantitative analysis. Overall, most of the studies were of high quality. Only a few studies compared with the same antimalarial drugs and reported the outcomes of the same follow-up duration, which created some difficulties in pooling of outcome data. We found the superiority of DHP over chloroquine (CQ) (at day > 42-63, HR:2.33, 95% CI:1.86-2.93, I2: 0%) or artemether-lumefentrine (AL) (at day 42, HR:2.07, 95% CI:1.38-3.09, I2: 39%). On the basis of GRADE criteria, further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Discussion/Conclusion Findings document that DHP is more efficacious than CQ and AL in treating uncomplicated P. vivax malaria. The better safety profile of DHP and the once-daily dosage improves adherence, and its fixed co-formulation ensures that both drugs (dihydroartemisinin and piperaquine) are taken together. However, DHP is not active against the hypnozoite stage of P. vivax. DHP has the potential to become an alternative antimalarial drug for the treatment uncomplicated P. vivax malaria. This should be substantiated by future RCTs with other ACTs. Additional work is required to establish

  8. Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission

    PubMed Central

    Elliott, Suzanne; Sekuloski, Silvana; Sikulu, Maggy; Hugo, Leon; Khoury, David; Cromer, Deborah; Davenport, Miles; Sattabongkot, Jetsumon; Ivinson, Karen; Ockenhouse, Christian; McCarthy, James

    2016-01-01

    Background Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes. Methods Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7–9 days. Results The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds. Conclusion The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions

  9. Interaction of Plasmodium vivax Tryptophan-rich Antigen PvTRAg38 with Band 3 on Human Erythrocyte Surface Facilitates Parasite Growth.

    PubMed

    Alam, Mohd Shoeb; Choudhary, Vandana; Zeeshan, Mohammad; Tyagi, Rupesh K; Rathore, Sumit; Sharma, Yagya D

    2015-08-14

    Plasmodium tryptophan-rich proteins are involved in host-parasite interaction and thus potential drug/vaccine targets. Recently, we have described several P. vivax tryptophan-rich antigens (PvTRAgs), including merozoite expressed PvTRAg38, from this noncultivable human malaria parasite. PvTRAg38 is highly immunogenic in humans and binds to host erythrocytes, and this binding is inhibited by the patient sera. This binding is also affected if host erythrocytes were pretreated with chymotrypsin. Here, Band 3 has been identified as the chymotrypsin-sensitive erythrocyte receptor for this parasite protein. Interaction of PvTRAg38 with Band 3 has been mapped to its three different ectodomains (loops 1, 3, and 6) exposed at the surface of the erythrocyte. The binding region of PvTRAg38 to Band3 has been mapped to its sequence, KWVQWKNDKIRSWLSSEW, present at amino acid positions 197-214. The recombinant PvTRAg38 was able to inhibit the parasite growth in in vitro Plasmodium falciparum culture probably by competing with the ligand(s) of this heterologous parasite for the erythrocyte Band 3 receptor. In conclusion, the host-parasite interaction at the molecular level is much more complicated than known so far and should be considered during the development of anti-malarial therapeutics.

  10. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants.

    PubMed

    Rodrigues-da-Silva, Rodrigo Nunes; Soares, Isabela Ferreira; Lopez-Camacho, Cesar; Martins da Silva, João Hermínio; Perce-da-Silva, Daiana de Souza; Têva, Antônio; Ramos Franco, Antônia Maria; Pinheiro, Francimeire Gomes; Chaves, Lana Bitencourt; Pratt-Riccio, Lilian Rose; Reyes-Sandoval, Arturo; Banic, Dalma Maria; Lima-Junior, Josué da Costa

    2017-01-01

    The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = -0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This

  11. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants

    PubMed Central

    Rodrigues-da-Silva, Rodrigo Nunes; Soares, Isabela Ferreira; Lopez-Camacho, Cesar; Martins da Silva, João Hermínio; Perce-da-Silva, Daiana de Souza; Têva, Antônio; Ramos Franco, Antônia Maria; Pinheiro, Francimeire Gomes; Chaves, Lana Bitencourt; Pratt-Riccio, Lilian Rose; Reyes-Sandoval, Arturo; Banic, Dalma Maria; Lima-Junior, Josué da Costa

    2017-01-01

    The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This

  12. The Robust and Modulated Biomarker Network Elicited by the Plasmodium vivax Infection Is Mainly Mediated by the IL-6/IL-10 Axis and Is Associated with the Parasite Load

    PubMed Central

    Guimarães da Costa, Allyson; do Valle Antonelli, Lis Ribeiro; Augusto Carvalho Costa, Pedro; Paulo Diniz Pimentel, João; Garcia, Nadja Pinto; Monteiro Tarragô, Andréa; Socorro Lopes dos Santos, Maria do Perpétuo; Nogueira, Paulo Afonso; Hekcmann, Maria Izabel Ovellar; Sadahiro, Aya; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Malheiro, Adriana

    2014-01-01

    Background. Recent studies have shown that the inflammatory process, including the biomarker production, and the intense activation of innate immune responses are greater in the malaria caused by Plasmodium vivax than other species. Here, we examined the levels of serum biomarkers and their interaction during acute malaria. Material and Methods. Blood samples were collected from P. vivax-infected patients at admission and from healthy donors. Levels of serum biomarkers were measured by Cytometric Bead Assay or ELISA. Results. P. vivax infection triggered the production of both inflammatory and regulatory biomarkers. Levels of IL-6, CXCL-8, IFN-γ, IL-5, and IL-10 were higher in P. vivax-infected patients than in healthy donors. On the other hand, malaria patients produced lower levels of TNF-α, IL-12p70, and IL-2 than healthy individuals. While the levels of IL-10 and IL-6 were found independent on the number of malaria episodes, higher levels of these cytokines were seen in patients with higher parasite load. Conclusion. A mixed pattern of proinflammatory and regulatory biomarkers is produced in P. vivax malaria. Analysis of biomarker network suggests that IL-10 and IL-6 are a robust axis in malaria patients and that this interaction seems to be associated with the parasite load. PMID:24741587

  13. Directly observed therapy with primaquine to reduce the recurrence rate of plasmodium vivax infection along the Thai-Myanmar border.

    PubMed

    Maneeboonyang, Wanchai; Lawpoolsri, Saranath; Puangsa-Art, Supalarp; Yimsamran, Surapon; Thanyavanich, Nipon; Wuthisen, Pitak; Prommongkol, Sutthiporn; Chaimongkul, Wuthichai; Rukmanee, Prasert; Rukmanee, Natefa; Chavez, Irwin F; Buchachart, Kasinee; Krudsood, Srivicha; Singhasivanon, Pratap

    2011-01-01

    This study was carried out from April 2005 to June 2006 to evaluate the recurrence of P. vivax malaria infection in relation to drug compliance along the Thai-Myanmar border in Ratchaburi, Thailand. Ninety-two patients with vivax malaria were sequentially assigned to 2 groups. Both groups received a standard dose of chloroquine (total dose = 2.5 g) for 3 days and primaquine (total dose = 210 mg) for 14 days. The experimental group received a full course of treatment using daily directly observed therapy (DOT) while subjects in the control group were given the medication with necessary instructions to take as self-administered therapy (SAT). Patients were followed up for 3 months on Days 14, 21, 28, 60 and 90. Five of 46 patients from the SAT group had recurrence of malaria on Days 21, 44, 60, 72 and 87. Recurrence was not observed among patients in the DOT group. Survival analysis also showed significant differences between the SAT and DOT groups (p <0.05). The study suggests patient compliance with the 14-day primaquine treatment with DOT improve the outcome of .vivax malaria treatment.

  14. DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria

    PubMed Central

    2014-01-01

    Background DDX39B (BAT1) encodes an RNA helicase known to regulate expression of TNF and IL-6. Elevated levels of these two cytokines are associated with increased severity of clinical malaria. The aim of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) in the DDX39B, TNF and IL6 genes and the clinical outcomes of patients with Plasmodium vivax malaria. Methods Cross-sectional investigations were carried out in two regions of the Brazilian Amazon where several studies on the pathogenesis of vivax malaria had been performed. Individuals were categorized according to infection status as well as clinical presentation into the following groups: uninfected, asymptomatic infection, mild infection, or complicated infection. Polymorphisms were identified using PCR restriction fragment-length polymorphism analysis and the restriction enzymes NlaIII or NcoI. The plasma levels of cytokines were determined using ELISA. Results The G allele of DDX39B-22C > G was associated with absent or decreased manifestations of malaria and the C allele was a risk factor for disease complications. Study participants heterozygous for TNF-308 (GA) and DDX39B-348 (CT) had higher TNF levels than wild-type participants. Haplotypes that included DDX39B (-22C > G and -348C > T) and TNF polymorphisms were not directly associated with mild or complicated malaria infections; however, haplotypes AGC, ACC, GGT, AGT and ACT were associated with increased TNF levels. Participants with genotype combinations GC/CC/GG/GG and GG/CT/GG/GG (DDX39B-22/DDX39B-348/TNF-308/IL6-176) had decreased and increased risk of mild malaria, respectively, compared with asymptomatic and uninfected participants. GC/CC/GG/GG was linked to decreased TNF and IL-6 levels. Conclusions This is the first study to describe patients with DDX39B and IL6 SNPs who had vivax malaria. These findings support the postulation that a set of mutations in immune-related genes is associated

  15. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross–Boosting of Immune Responses

    PubMed Central

    Cao, Yi; Bansal, Geetha P.; Merino, Kristen; Kumar, Nirbhay

    2016-01-01

    In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites. PMID:27438603

  16. Sequence polymorphisms in Pvs48/45 and Pvs47 gametocyte and gamete surface proteins in Plasmodium vivax isolated in Korea.

    PubMed

    Woo, Mi Kyung; Kim, Kyeong Ah; Kim, JuYeon; Oh, Jun Seo; Han, Eun Taek; An, Seong Soo A; Lim, Chae Seung

    2013-05-01

    Nucleotide sequence analyses of the Pvs48/45 and Pvs47 genes were conducted in 46 malaria patients from the Republic of Korea (ROK) (n = 40) and returning travellers from India (n = 3) and Indonesia (n = 3). The domain structures, which were based on cysteine residue position and secondary protein structure, were similar between Plasmodium vivax (Pvs48/45 and Pvs47) and Plasmodium falciparum (Pfs48/45 and Pfs47). In comparison to the Sal-1 reference strain (Pvs48/45, PVX_083235 and Pvs47, PVX_083240), Korean isolates revealed seven polymorphisms (E35K, H211N, K250N, D335Y, A376T, I380T and K418R) in Pvs48/45. These isolates could be divided into five haplotypes with the two major types having frequencies of 47.5% and 20%, respectivelfy. In Pvs47, 10 polymorphisms (F22L, F24L, K27E, D31N, V230I, M233I, E240D, I262T, I273M and A373V) were found and they could be divided into four haplotypes with one major type having a frequency of 75%. The Pvs48/45 isolates from India showed a unique amino acid substitution site (K26R). Compared to the Sal-1 and ROK isolates, the Pvs47 isolates from travellers returning from India and Indonesia had amino acid substitutions (S57T and I262K). The current data may contribute to the development of the malaria transmission-blocking vaccine in future clinical trials.

  17. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  18. Preclinical Vaccine Study of Plasmodium vivax Circumsporozoite Protein Derived-Synthetic Polypeptides Formulated in Montanide ISA 720 and Montanide ISA 51 Adjuvants

    PubMed Central

    Arévalo-Herrera, Myriam; Vera, Omaira; Castellanos, Angélica; Céspedes, Nora; Soto, Liliana; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate previously assessed in animals and humans. Here, combinations of three synthetic polypeptides corresponding to amino (N), central repeat (R), and carboxyl (C) regions of the CS protein formulated in Montanide ISA 720 or Montanide ISA 51 adjuvants were assessed for immunogenicity in rodents and primates. BALB/c mice and Aotus monkeys were divided into test and control groups and were immunized three times with doses of 50 and 100 μg of vaccine or placebo. Antigen-specific antimalarial antibodies were determined by enzyme-linked immunosorbent assay, immunofluorescent antibody test, and IFN-γ responses by enzyme-linked immunosorbent spot (ELIspot). Both vaccine formulations were highly immunogenic in both species. Mice developed better antibody responses against C and R polypeptides, whereas the N polypeptide was more immunogenic in monkeys. Anti-peptide antibodies remained detectable for several months and recognized native proteins on sporozoites. Differences between Montanide ISA 720 and Montanide ISA 51 formulations were not significant. PMID:21292874

  19. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites

    PubMed Central

    Zeeman, Anne-Marie; Lakshminarayana, Suresh B.; van der Werff, Nicole; Klooster, Els J.; Voorberg-van der Wel, Annemarie; Kondreddi, Ravinder R.; Bodenreider, Christophe; Simon, Oliver; Sauerwein, Robert; Yeung, Bryan K. S.

    2016-01-01

    Two Plasmodium PI4 kinase (PI4K) inhibitors, KDU691 and LMV599, were selected for in vivo testing as causal prophylactic and radical-cure agents for Plasmodium cynomolgi sporozoite-infected rhesus macaques, based on their in vitro activity against liver stages. Animals were infected with P. cynomolgi sporozoites, and compounds were dosed orally. Both the KDU691 and LMV599 compounds were fully protective when administered prophylactically, and the more potent compound LMV599 achieved protection as a single oral dose of 25 mg/kg of body weight. In contrast, when tested for radical cure, five daily doses of 20 mg/kg of KDU691 or 25 mg/kg of LMV599 did not prevent relapse, as all animals experienced a secondary infection due to the reactivation of hypnozoites in the liver. Pharmacokinetic data show that LMV599 achieved plasma exposure that was sufficient to achieve efficacy based on our in vitro data. These findings indicate that Plasmodium PI4K is a potential drug target for malaria prophylaxis but not radical cure. Longer in vitro culture systems will be required to assess these compounds' activity on established hypnozoites and predict radical cure in vivo. PMID:26926645

  20. The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants

    PubMed Central

    Torres, Leticia M.; Lima, Barbara A. S.; Sousa, Taís N.; Alves, Jéssica R. S.; Rocha, Roberto S.; Fontes, Cor J. F.; Sanchez, Bruno A. M.; Adams, John H.; Brito, Cristiana F. A.; Pires, Douglas E. V.; Ascher, David B.; Sell, Ana Maria; Carvalho, Luzia H.

    2016-01-01

    Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase

  1. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9

    PubMed Central

    Rodrigues-da-Silva, Rodrigo Nunes; Martins da Silva, João Hermínio; Singh, Balwan; Jiang, Jianlin; Meyer, Esmeralda V. S.; Santos, Fátima; Banic, Dalma Maria; Moreno, Alberto; Galinski, Mary R.; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa

    2016-01-01

    Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and

  2. Effects of untreated bed nets on the transmission of Plasmodium falciparum, P. vivax and Wuchereria bancrofti in Papua New Guinea.

    PubMed

    Burkot, T R; Garner, P; Paru, R; Dagoro, H; Barnes, A; McDougall, S; Wirtz, R A; Campbell, G; Spark, R

    1990-01-01

    The impact of untreated bed nets on the transmission of human malaria and filariasis in a village in a hyperendemic area of Papua New Guinea was studied. In anopheline mosquitoes, the Plasmodium falciparum sporozoite antigen positivity rate, filarial infection rates and human blood indices dropped significantly after bed nets were introduced. This reduction in human-vector contact did not affect mosquito density as no significant difference in either landing rates or indoor resting catches was found. The number of bed nets in a house and ownership of dogs were factors significantly associated with a reduction in the number of indoor resting mosquitoes. However, the reduction in the P. falciparum sporozoite antigen rate in mosquitoes was not accompanied by a reduction in either malaria parasite or antibody prevalences or titres against the P. falciparum circumsporozoite protein.

  3. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P

    2013-01-01

    We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527

  4. Mosquito surveillance in the Demilitarized Zone, Republic of Korea, during an outbreak of Plasmodium vivax malaria in 1996 and 1997.

    PubMed

    Strickman, D; Miller, M E; Kim, H C; Lee, K W

    2000-06-01

    Since 1993, more than 2,000 cases of vivax malaria have occurred in the Republic of Korea in an epidemic that ended nearly 20 malaria-free years. Most malaria has occurred in the northwestern part of the country, mainly affecting Korean military personnel. As a part of an operational surveillance effort, we sampled mosquitoes in and near the Demilitarized Zone (Paju County, Kyonggi Province) during the last 2 wk of July in 1996 and from May 15 to September 10 in 1997. The 1st year, landing collections were done at 5 different sites; the 2nd year, carbon-dioxide-baited light traps at 5 sites, larval collections in 10 adjacent fields, and landing collections at 1 site in the Demilitarized Zone were performed weekly. Of 17 species collected, Anopheles sinensis was consistently the most abundant mosquito, comprising 79-96% of mosquitoes. The diel pattern of biting by An. sinensis varied by location and season, with the majority of individuals biting late at night during warm weather (>20 degrees C) and early at night during cool weather. In contrast, Aedes vexans nipponii (the 2nd most abundant species) bit in the greatest numbers at the same time all season, from 2000 to 2300 h. Among the correlates with abundance of An. sinensis were average nighttime temperature 2 wk previous to the night in question, wind late at night (negatively correlated), and apparent size of the moon (negatively correlated). The data showed that the exact number of An. sinensis biting could not be estimated from numbers collected in carbon-dioxide-baited light traps. On the other hand, a threshold of 15 An. sinensis per trap night corresponded (88% accuracy) to a threshold of 12 mosquitoes biting 2 adjacent collectors per night. Larval collections were also significantly correlated with landing collections, despite inexact sampling methods and separation of the larval habitat from the site where landing collections were performed. Operational entomology assets using nighttime temperature

  5. A Plasmodium vivax plasmid DNA- and adenovirus-vectored malaria vaccine encoding blood stage antigens AMA1 and MSP142 in a prime/boost heterologous immunization regimen partially protects Aotus monkeys against blood stage challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-02-08

    Malaria is caused by parasites of the genus Plasmodium that are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of P. falciparum it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside of Africa, stressing the importance of developing a vaccine against malaria. In this study we assess the immunogenicity and protective efficacy of two P. vivax antigens, AMA1 and MSP142 in a recombinant DNA plasmid prime/adenoviral vector (Ad) boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with DNA alone, Ad alone, prime/boost regimens of each antigen, prime/boost with both antigens, and empty vector controls, and then subjected to blood stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, based on their ability to induced the longest pre-patent period and time to peak parasitemia; the lowest peak and mean parasitemia; the smallest area under the parasitemia curve and the highest self-cured rate. Overall, pre-challenge MSP1 antibody titers strongly correlated with decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, P. vivax plasmid DNA/Ad5 vaccine encoding blood stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen, provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and regimen for further development.

  6. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens

    PubMed Central

    Win, Htun Htun; Thitipanawan, Niramon; Po, Christina; Chowwiwat, Nongnud; Raksapraidee, Rattanaporn; Wilairisak, Pornpimon; Keereecharoen, Lily; Proux, Stéphane

    2017-01-01

    Background Radical cure of Plasmodium vivax malaria with 8-aminoquinolines (primaquine or tafenoquine) is complicated by haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD heterozygous females, because of individual variation in the pattern of X-chromosome inactivation (Lyonisation) in erythroid cells, may have low G6PD activity in the majority of their erythrocytes, yet are usually reported as G6PD “normal” by current phenotypic screening tests. Their haemolytic risk when treated with 8-aminoquinolines has not been well characterized. Methods and Findings In a cohort study nested within a randomised clinical trial that compared different treatment regimens for P. vivax malaria, patients with a normal standard NADPH fluorescent spot test result (≳30%–40% of normal G6PD activity) were randomised to receive 3 d of chloroquine or dihydroartemisinin-piperaquine in combination with primaquine, either the standard high dose of 0.5 mg base/kg/day for 14 d or a higher dose of 1 mg base/kg/d for 7 d. Patterns of haemolysis were compared between G6PD wild-type and G6PD heterozygous female participants. Between 21 February 2012 and 04 July 2014, 241 female participants were enrolled, of whom 34 were heterozygous for the G6PD Mahidol variant. Haemolysis was substantially greater and a larger proportion of participants reached the threshold of clinically significant haemolysis (fractional haematocrit reduction >25%) in G6PD heterozygotes taking the higher (7 d) primaquine dose (9/17 [53%]) compared with G6PD heterozygotes taking the standard high (14 d) dose (2/16 [13%]; p = 0.022). In heterozygotes, the mean fractional haematocrit reductions were correspondingly greater with the higher primaquine dose (7-d regimen): −20.4% (95% CI −26.0% to −14.8%) (nadir on day 5) compared with the standard high (14 d) dose: −13.1% (95% CI −17.6% to −8.6%) (nadir day 6). Two heterozygotes taking the higher (7 d) primaquine dose

  7. Complicated malaria: a rare presentation of Plasmodium ovale.

    PubMed

    Tomar, Laxmikant Ramkumarsingh; Giri, Subhash; Bauddh, Nitesh Kumar; Jhamb, Rajat

    2015-04-01

    Malaria has emerged as a major public health problem worldwide. Complications are commonly seen in Plasmodium falciparum (P. falciparum) and Plasmodium vivax (P. vivax) infection, but due to Plasmodium ovale (P. ovale) infection is rarely described in literature. Here we report a case of severe disease due to P. ovale infection complicated with jaundice, thrombocytopenia, hypotension and acute renal failure.

  8. Recombination Hotspots and Population Structure in Plasmodium falciparum

    PubMed Central

    Mu, Jianbing; Duan, Junhui; McGee, Kate M; Joy, Deirdre A; McVean, Gilean A. T

    2005-01-01

    Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations. PMID:16144426

  9. Sequence variation of ookinete surface proteins Pvs25 and Pvs28 of Plasmodium vivax isolates from Southern Mexico and their association to local anophelines infectivity.

    PubMed

    González-Cerón, Lilia; Alvarado-Delgado, Alejandro; Martínez-Barnetche, Jesus; Rodríguez, Mario H; Ovilla-Muñoz, Marbella; Pérez, Fabián; Hernandez-Avila, Juan E; Sandoval, Marco A; Rodríguez, Maria Del Carmen; Villarreal-Treviño, Cuauhtémoc

    2010-07-01

    The polymorphism of Pvs25 and Pvs28 ookinete surface proteins, their association to circumsporozoite protein repeat (CSPr) genotypes (Vk210 and Vk247) and their infectivity to local Anopheles albimanus and Anopheles pseudopunctipennis were investigated in Plasmodium vivax-infected blood samples obtained from patients in Southern Mexico. The pvs25 and pvs28 complete genes were amplified, cloned and sequenced; and the CSPr genotype was determined by PCR amplification and hybridization. The amino acid Pvs25 and Pvs28 polymorphisms were mapped to their corresponding protein structure. Infected blood samples were simultaneously provided through artificial feeders to both mosquito species; the ratio of infected mosquitoes and oocyst numbers were recorded. The polymorphism of pvs25 and pvs28 was limited to few nucleotide positions, and produced three haplotypes: type A/A parasites presented Pvs25 and Pvs28 amino acid sequences identical to that of Sal I reference strain; parasites type B1 presented a mutation 130 Ile-->Thr in Pvs25, while type B2 presented 87 Gln-->Lys/130 Ile-->Thr in the same molecule. Both types B1 and B2 parasites presented changes in Pvs28 at 87 Asn-->Asp, 110 Tyr-->Asn and five GSGGE/D repeat sequences between the fourth EGF-like domain and the GPI. Most P. vivaxparasites from the coastal plains and the overlapping region were Pvs25/28 A/A, CSPrVk210 and were infective only to An. albimanus (p< or =0.0001). Parasites originating in foothills were Pvs25/28 type B1/B or B2/B and CSPrVk210 or Vk247, and were more infective to An. pseudopunctipennis than to An. albimanus (p< or =0.001). These results and the analysis of Pvs25/28 from other parts of the world indicated that non-synonymous variations in these proteins occur in amino acid residues exposed on the surface of the proteins, and are likely to interact with midgut mosquito ligands. We hypothesize that these molecules have been shaped by co-evolutionary adaptations of parasites to their

  10. Clinical Profile of Plasmodium vivax Malaria in Children and Study of Severity Parameters in relation to Mortality: A Tertiary Care Centre Perspective in Mumbai, India.

    PubMed

    Kumari, Manju; Ghildiyal, Radha

    2014-01-01

    Background. While research on P. vivax is scarce because it is considered benign, it has become evident with implementation of molecular diagnosis that it can also cause multiple organ dysfunction and severe life-threatening disease. Objective. To study clinical presentations and complications of P. vivax malaria and mortality correlation to severity parameters as defined by WHO criteria for severe malaria. Materials and methods. This study was conducted in a tertiary care centre in Mumbai. Confirmed P. vivax cases were enrolled and studied for their clinical profile, and WHO severity parameters were tested for their frequency and association to mortality. Result. The most common presentation was fever followed by pallor. 26% of the cases satisfied one or more criteria of WHO severity parameters. 2 cases died; both had pulmonary edema and bleeding. The major predictor of mortality among these predefined severity criteria was pulmonary edema/ARDS. Patients with severe anemia, circulatory collapse, and repeated generalized convulsion had 100% survival rate. Leukopenia was present in 10% of the cases. Both cases with mortality had leukopenia. Conclusion. P. vivax monoinfection tends to have severe complications in children. There is a need to review severity criteria for P. vivax malaria.

  11. Evaluation of the Naturally Acquired Antibody Immune Response to the Pv200L N-terminal Fragment of Plasmodium vivax Merozoite Surface Protein-1 in Four Areas of the Amazon Region of Brazil

    PubMed Central

    Storti-Melo, Luciane M.; Souza-Neiras, Wanessa C.; Cassiano, Gustavo C.; Taveira, Leonardo C.; Cordeiro, Antônio J.; Couto, Vanja S. C. A.; Póvoa, Marinete M.; Cunha, Maristela G.; Echeverry, Diana M.; Rossit, Andréa R. B.; Arévalo-Herrera, Myriam; Herrera, Sócrates; Machado, Ricardo L. D.

    2011-01-01

    Frequency and levels of IgG antibodies to an N-terminal fragment of the Plasmodium vivax MSP-1 (Pv200L) protein, in individuals naturally exposed to malaria in four endemic areas of Brazil, were evaluated by enzyme-linked immunosorbent assay. Plasma samples of 261 P. vivax-infected individuals from communities of Macapá, Novo Repartimento, Porto Velho, and Plácido de Castro in the Amazonian region with different malaria transmission intensities. A high mean number of studied individuals (89.3%) presented with antibodies to the Pv200L that correlated with the number of previous malaria infections; there were significant differences in the frequency of the responders (71.9–98.7) and in the antibody levels (1:200–1:51,200) among the four study areas. Results of this study provide evidence that Pv200L is a naturally immunogenic fragment of the PvMSP-1 and is associated with the degree of exposure to parasites. The fine specificity of antibodies to Pv200L is currently being assessed. PMID:21292879

  12. International population movements and regional Plasmodium falciparum malaria elimination strategies

    PubMed Central

    Tatem, Andrew J.; Smith, David L.

    2010-01-01

    Calls for the eradication of malaria require the development of global and regional strategies based on a strong and consistent evidence base. Evidence from the previous global malaria eradication program and more recent transborder control campaigns have shown the importance of accounting for human movement in introducing infections to areas targeted for elimination. Here, census-based migration data were analyzed with network analysis tools, Plasmodium falciparum malaria transmission maps, and global population databases to map globally communities of countries linked by relatively high levels of infection movements. The likely principal sources and destinations of imported cases in each region were also mapped. Results indicate that certain groups of countries, such as those in West Africa and central Asia are much more strongly connected by relatively high levels of population and infection movement than others. In contrast, countries such as Ethiopia and Myanmar display significantly greater isolation in terms of likely infection movements in and out. The mapping here of both communities of countries linked by likely higher levels of infection movement, and “natural” migration boundaries that display reduced movement of people and infections between regions has practical utility. These maps can inform the design of malaria elimination strategies by identifying regional communities of countries afforded protection from recolonization by surrounding regions of reduced migration. For more isolated countries, a nationally focused control or elimination program is likely to stand a better chance of success than those receiving high levels of visitors and migrants from high-transmission regions. PMID:20566870

  13. FY polymorphisms and vivax malaria in inhabitants of Amazonas State, Brazil.

    PubMed

    Albuquerque, Sérgio Roberto Lopes; Cavalcante, Francimary de Oliveira; Sanguino, Edalton Cesar; Tezza, Lucianna; Chacon, Fernanda; Castilho, Lilian; dos Santos, Maria Cristina

    2010-04-01

    Although the importance of glycoprotein Duffy in the human red cells invasion process by Plasmodium vivax merozoites has been demonstrated, little is known about the associations of FY polymorphisms with malaria vivax parasitic density. In this study, we investigated the associations of the SNPs 125 G>A, 265 C>T, and 298 G>A on FY gene and the SNP -33T>C on GATA box with the vivax malaria parasitic density in inhabitants of Amazon State, Brazil. Verifications of P. vivax, as well as the definition of parasitism, were determined by standard screening tests in 497 patients. FY phenotyping was performed in all samples by hemagglutination using gel cards. Molecular analysis for FY/GATA polymorphisms were performed by polymerase chain reaction-restriction fragment length polymorphism. Our data showed that in this population, FY*A/FY*B-33 and FY*B/FY*B-33 genotypes may be a selective advantage, reducing the frequency of P. vivax infection in the studied area. FY*A/FY*B and FY*A/FY*A genotypes showed to be associated with the rise of the frequency of P. vivax infection, and FY*B/FY*X and FY*A/FY*X showed to be associated with the low levels of parasitism. These results suggest that natural adaptations, in malaria-endemic regions, could be leading to the arising of partial defense mechanisms against P. vivax, which is different from the previously described in African descents, as well as adaptations that could be increasing the susceptibility of human to this kind of malaria.

  14. Artemisinin combination therapy for vivax malaria?

    PubMed Central

    Douglas, Nicholas M.; Anstey, Nicholas M.; Angus, Brian J.; Nosten, Francois; Price, Ric N.

    2012-01-01

    Early parasitological diagnosis and treatment with artemisinin-based combination therapies (ACT) are seen as key components of global malaria elimination programmes. In general, use of ACTs has been limited to patients with falciparum malaria whereas blood-stage P. vivax infections are mostly still treated with chloroquine. We review the evidence for the relative benefits and disadvantages of the existing ‘separate’ treatment approach versus a ‘unified’ ACT-based strategy for treating P. falciparum and P. vivax infections in regions where both species are endemic (co-endemic). The ‘separate’ treatment scenario is justifiable where P. vivax remains sensitive to chloroquine and providing that diagnostic tests reliably distinguish P. vivax from P. falciparum. However, with the high frequency of misdiagnosis in routine practice and the rise and spread of chloroquine-resistant P. vivax, there may be a compelling rationale for a unified ACT-based strategy for vivax and falciparum malaria in all co-endemic areas. Analyses of the cost-effectiveness of ACTs for both Plasmodium species are required to assess the role of these drugs in vivax malaria control and elimination efforts. PMID:20510281

  15. A population-based clinical trial with the SPf66 synthetic Plasmodium falciparum malaria vaccine in Venezuela.

    PubMed

    Noya, O; Gabaldón Berti, Y; Alarcón de Noya, B; Borges, R; Zerpa, N; Urbáez, J D; Madonna, A; Garrido, E; Jimenéz, M A; Borges, R E

    1994-08-01

    A phase III malaria vaccine trial in 13 villages in an endemic area, South Venezuela, compared incidence rates of Plasmodium falciparum and Plasmodium vivax infections in 1422 vaccinated and 938 nonvaccinated subjects over 18 months. The SPf66 vaccine was given in three doses, on days 0, 20, and 112. Vaccination was complete in 976 subjects (68.7%). Minor side effects requiring no treatment were reported by 123 (12.6%), with an apparent increase in frequency from the first to the third vaccine dose. No autoimmune evidence was observed in a sample of subjects. Antibodies against SPf66 were present at low titers in 24.7% of tested subjects before vaccination, increasing to 53.6% after the second dose and to 73.6% after the third dose; 26.4% of subjects initially seronegative never seroconverted. The SPf66 malaria vaccine showed a protective efficacy of 55% (95% confidence interval, 21%-75%) against P. falciparum and of 41% (19%-57%) against P. vivax malaria.

  16. First Evidence and Predictions of Plasmodium Transmission in Alaskan Bird Populations

    PubMed Central

    Loiseau, Claire; Harrigan, Ryan J.; Cornel, Anthony J.; Guers, Sue L.; Dodge, Molly; Marzec, Timothy; Carlson, Jenny S.; Seppi, Bruce; Sehgal, Ravinder N. M.

    2012-01-01

    The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations. PMID:23028595

  17. First evidence and predictions of Plasmodium transmission in Alaskan bird populations.

    PubMed

    Loiseau, Claire; Harrigan, Ryan J; Cornel, Anthony J; Guers, Sue L; Dodge, Molly; Marzec, Timothy; Carlson, Jenny S; Seppi, Bruce; Sehgal, Ravinder N M

    2012-01-01

    The unprecedented rate of change in the Arctic climate is expected to have major impacts on the emergence of infectious diseases and host susceptibility to these diseases. It is predicted that malaria parasites will spread to both higher altitudes and latitudes with global warming. Here we show for the first time that avian Plasmodium transmission occurs in the North American Arctic. Over a latitudinal gradient in Alaska, from 61°N to 67°N, we collected blood samples of resident and migratory bird species. We found both residents and hatch year birds infected with Plasmodium as far north as 64°N, providing clear evidence that malaria transmission occurs in these climates. Based on our empirical data, we make the first projections of the habitat suitability for Plasmodium under a future-warming scenario in Alaska. These findings raise new concerns about the spread of malaria to naïve host populations.

  18. Comparative performance of the ParaSight F test for detection of Plasmodium falciparum in malaria-immune and nonimmune populations in Irian Jaya, Indonesia.

    PubMed Central

    Fryauff, D. J.; Gomez-Saladin, E.; Purnomo; Sumawinata, I.; Sutamihardja, M. A.; Tuti, S.; Subianto, B.; Richie, T. L.

    1997-01-01

    A comparison was made of the performance of the ParaSight F test (F test) for detection of Plasmodium falciparum in blood from malaria-immune (410 native Irianese) and nonimmune (369 new transmigrants) populations in Irian Jaya, Indonesia, where malaria is hyperendemic and all four species of human malaria occur. There were highly significant differences between populations in the sensitivity (Irianese, 60% versus transmigrants, 84%; P < 0.001) and specificity (Irianese, 97% versus transmigrants, 84%; P < 0.001) of the F test. The test had comparably high levels of sensitivity for Irianese children aged < or = 10 years, both age groups of transmigrants (76-85%), but low sensitivity for Irianese aged > 10 years (40%), among whom only 7% of parasitaemias < 120 per microliter and 69% of those > 120 per microliter were detected. Specificity was comparably high for transmigrant children aged < or = 10 years and both age groups of Irianese (93-98%). The low specificity for transmigrants aged > 10 years (79%) was due to a preponderance of false positives, frequently identified by microscopy as P. vivax. The results suggest that comparison based on microscopy underestimated the performance of the ParaSight F test and that malaria immune status, irrespective of P. falciparum density, may influence the test's sensitivity. PMID:9509627

  19. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).

    PubMed

    Chugh, Manoj; Adak, T; Sehrawat, Neelam; Gakhar, S K

    2011-04-01

    The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.

  20. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study

    PubMed Central

    McGready, R; Lee, SJ; Wiladphaingern, J; Ashley, EA; Rijken, MJ; Boel, M; Simpson, JA; Paw, MK; Pimanpanarak, M; Mu, Oh; Singhasivanon, P; White, NJ; Nosten, FH

    2012-01-01

    Summary Background The effects of malaria and its treatment in the first trimester of pregnancy remain an area of concern. We aimed to assess the outcome of malaria-exposed and malaria-unexposed first-trimester pregnancies of women from the Thai–Burmese border and compare outcomes after chloroquine-based, quinine-based, or artemisinin-based treatments. Methods We analysed all antenatal records of women in the first trimester of pregnancy attending Shoklo Malaria Research Unit antenatal clinics from May 12, 1986, to Oct 31, 2010. Women without malaria in pregnancy were compared with those who had a single episode of malaria in the first trimester. The association between malaria and miscarriage was estimated using multivariable logistic regression. Findings Of 48 426 pregnant women, 17 613 (36%) met the inclusion criteria: 16 668 (95%) had no malaria during the pregnancy and 945 (5%) had a single episode in the first trimester. The odds of miscarriage increased in women with asymptomatic malaria (adjusted odds ratio 2·70, 95% CI 2·04–3·59) and symptomatic malaria (3·99, 3·10–5·13), and were similar for Plasmodium falciparum and Plasmodium vivax. Other risk factors for miscarriage included smoking, maternal age, previous miscarriage, and non-malaria febrile illness. In women with malaria, additional risk factors for miscarriage included severe or hyperparasitaemic malaria (adjusted odds ratio 3·63, 95% CI 1·15–11·46) and parasitaemia (1·49, 1·25–1·78 for each ten-fold increase in parasitaemia). Higher gestational age at the time of infection was protective (adjusted odds ratio 0·86, 95% CI 0·81–0·91). The risk of miscarriage was similar for women treated with chloroquine (92 [26%] of 354), quinine (95 [27%) of 355), or artesunate (20 [31%] of 64; p=0·71). Adverse effects related to antimalarial treatment were not observed. Interpretation A single episode of falciparum or vivax malaria in the first trimester of pregnancy can cause

  1. Plasmodium vivax Cell Traversal Protein for Ookinetes and Sporozoites (PvCelTOS) gene sequence and potential epitopes are highly conserved among isolates from different regions of Brazilian Amazon

    PubMed Central

    Bitencourt Chaves, Lana; Perce-da-Silva, Daiana de Souza; Rodrigues-da-Silva, Rodrigo Nunes; Martins da Silva, João Hermínio; Cassiano, Gustavo Capatti; Machado, Ricardo Luiz Dantas; Pratt-Riccio, Lilian Rose; Banic, Dalma Maria

    2017-01-01

    The Plasmodium vivax Cell-traversal protein for ookinetes and sporozoites (PvCelTOS) plays an important role in the traversal of host cells. Although essential to PvCelTOS progress as a vaccine candidate, its genetic diversity remains uncharted. Therefore, we investigated the PvCelTOS genetic polymorphism in 119 field isolates from five different regions of Brazilian Amazon (Manaus, Novo Repartimento, Porto Velho, Plácido de Castro and Oiapoque). Moreover, we also evaluated the potential impact of non-synonymous mutations found in the predicted structure and epitopes of PvCelTOS. The field isolates showed high similarity (99.3% of bp) with the reference Sal-1 strain, presenting only four Single-Nucleotide Polymorphisms (SNP) at positions 24A, 28A, 109A and 352C. The frequency of synonymous C109A (82%) was higher than all others (p<0.0001). However, the non-synonymous G28A and G352C were observed in 9.2% and 11.7% isolates. The great majority of the isolates (79.8%) revealed complete amino acid sequence homology with Sal-1, 10.9% presented complete homology with Brazil I and two undescribed PvCelTOS sequences were observed in 9.2% field isolates. Concerning the prediction analysis, the N-terminal substitution (Gly10Ser) was predicted to be within a B-cell epitope (PvCelTOS Accession Nos. AB194053.1) and exposed at the protein surface, while the Val118Leu substitution was not a predicted epitope. Therefore, our data suggest that although G28A SNP might interfere in potential B-cell epitopes at PvCelTOS N-terminal region the gene sequence is highly conserved among the isolates from different geographic regions, which is an important feature to be taken into account when evaluating its potential as a vaccine candidate. PMID:28158176

  2. An HPLC method with diode array detector for the simultaneous quantification of chloroquine and desethylchloroquine in plasma and whole blood samples from Plasmodium vivax patients in Vietnam, using quinine as an internal standard

    PubMed Central

    Pham Nguyen, Phuong; Nguyen Duc Khanh, Tho; Nguyen Thanh Thuy, Nhien; Nguyen Thuy Nha, Ca; Pouplin, Thomas; Farrar, Jeremy; Thwaites, Guy E.; Tran Tinh, Hien

    2016-01-01

    Abstract A sensitive, simple method for quantification of chloroquine (CQ) and desethylchloroquine (MCQ) in whole blood and plasma from Plasmodium vivax patients has been developed using HPLC with diode array detection (DAD). Solid‐phase extraction on Isolute‐96‐CBA was employed to process 100 μL of plasma/whole blood samples. CQ, MCQ and quinine were separated using a mobile phase of phosphate buffer 25 mm, pH 2.60–acetonitrile (88:12, v/v) with 2 mm sodium perchlorate on a Zorbax SB‐CN 150 × 4.6 mm, 5 μm column at a flow rate of 1.2 mL/min, at ambient temperature in 10 min, with the DAD wavelength of 343 nm. The method was linear over the range of 10–5000 ng/mL for both CQ and MCQ in plasma and whole blood. The limit of detection was 4 ng/mL and limit of quantification was 10 ng/mL in both plasma and blood for CQ and MCQ. The intra‐, inter‐ and total assay precision were <10% for CQ and MCQ in plasma and whole blood. In plasma, the accuracies varied between 101 and 103%, whereas in whole blood, the accuracies ranged from 97.0 to 102% for CQ and MCQ. The method is an ideal technique with simple facilities and instruments, bringing about good separation in comparison with previous methods. © 2016 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd PMID:26578224

  3. Plasmodium falciparum Founder Populations in Western Cambodia Have Reduced Artemisinin Sensitivity In Vitro

    PubMed Central

    Amaratunga, Chanaki; Witkowski, Benoit; Dek, Dalin; Try, Vorleak; Khim, Nimol; Miotto, Olivo

    2014-01-01

    Reduced Plasmodium falciparum sensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clearance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced ART sensitivity in vitro at the early ring stage of parasite development and that a genetically admixed population contains subsets of parasites with normal or reduced ART sensitivity. PMID:24867977

  4. Novel Cross-Border Approaches to Optimise Identification of Asymptomatic and Artemisinin-Resistant Plasmodium Infection in Mobile Populations Crossing Cambodian Borders

    PubMed Central

    Edwards, Hannah M.; Canavati, Sara E.; Rang, Chandary; Ly, Po; Sovannaroth, Siv; Canier, Lydie; Khim, Nimol; Menard, Didier; Ashton, Ruth A.; Meek, Sylvia R.; Roca-Feltrer, Arantxa

    2015-01-01

    Background Human population movement across country borders presents a real challenge for malaria control and elimination efforts in Cambodia and its neighbouring countries. To quantify Plasmodium infection among the border-crossing population, including asymptomatic and artemisinin resistant (AR) parasites, three official border crossing points, one from each of Cambodia's borders with Thailand, Laos and Vietnam, were selected for sampling. Methods and Findings A total of 3206 participants (of 4110 approached) were recruited as they crossed the border, tested for malaria and interviewed. By real-time polymerase chain reaction (RT-PCR), 5.4% of all screened individuals were found to harbour Plasmodium parasites. The proportion was highest at the Laos border (11.5%). Overall there were 97 P. vivax (55.7%), 55 P. falciparum (31.6%), two P. malariae (1.1%) and 20 mixed infections (11.5%). Of identified infections, only 20% were febrile at the time of screening. Of the 24 P. falciparum samples where a further PCR was possible to assess AR, 15 (62.5%) had mutations in the K13 propeller domain gene, all from participants at the Laos border point. Malaria rapid diagnostic test (RDT) pLDH/HRP-2 identified a positivity rate of 3.2% overall and sensitivity compared to RT-PCR was very low (43.1%). Main individual risk factors for infection included sex, fever, being a forest-goer, poor knowledge of malaria prevention methods and previous malaria infection. Occupation, day of the week and time of crossing (morning vs. afternoon) also appeared to play an important role in predicting positive cases. Conclusions This study offers a novel approach to identify asymptomatic infections and monitor AR parasite flow among mobile and migrant populations crossing the borders. Similar screening activities are recommended to identify other hot borders and characterise potential hot spots of AR. Targeted “customised” interventions and surveillance activities should be implemented in

  5. Mass primaquine treatment to eliminate vivax malaria: lessons from the past

    PubMed Central

    2014-01-01

    Recent successes in malaria control have put malaria eradication back on the public health agenda. A significant obstacle to malaria elimination in Asia is the large burden of Plasmodium vivax, which is more difficult to eliminate than Plasmodium falciparum. Persistent P. vivax liver stages can be eliminated only by radical treatment with a ≥ seven-day course of an 8-aminoquinoline, with the attendant risk of acute haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Primaquine is the only generally available 8-aminoquinoline. Testing for G6PD deficiency is not widely available, and so whilst it is widely recommended, primaquine is often not prescribed. In the past, some countries aiming for vivax malaria eradication deployed mass treatments with primaquine on a massive scale, without G6PD testing. In Azerbaijan, Tajikistan (formerly USSR), North Afghanistan and DPR Korea 8,270,185 people received either a 14-day “standard” or a 17-day “interrupted” primaquine treatment to control post-eradication malaria epidemics. These mass primaquine preventive treatment campaigns were conducted by dedicated teams who administered the drugs under supervision and then monitored the population for adverse events. Despite estimated G6PD prevalences up to 38.7%, the reported frequency of severe adverse events related to primaquine was very low. This experience shows that with careful planning and implementation of mass treatment strategies using primaquine and adequate medical support to manage haemolytic toxicity, it is possible to achieve high population coverage, substantially reduce malaria transmission, and manage the risk of severe acute haemolytic anaemia in communities with a relatively high prevalence of G6PD deficiency safely. PMID:24502194

  6. Systematic Review of Sub-microscopic P. vivax Infections: Prevalence and Determining Factors

    PubMed Central

    Cheng, Qin; Cunningham, Jane; Gatton, Michelle L.

    2015-01-01

    Background Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency. Methodology/Principal Findings A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified. Conclusions/Significance SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings

  7. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.

    PubMed

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures.

  8. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region

    PubMed Central

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study’s results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species’ distribution so as to include control, prevention and follow-up measures. PMID:27467587

  9. Identification of the optimal third generation antifolate against P. falciparum and P. vivax.

    PubMed

    Hunt, Sonia Y; Detering, Carsten; Varani, Gabriele; Jacobus, David P; Schiehser, Guy A; Shieh, Hong-Ming; Nevchas, Isabelle; Terpinski, Jacek; Sibley, Carol Hopkins

    2005-12-01

    Inhibitors of dihydrofolate reductase (DHFR) have been mainstays in the treatment of falciparum malaria. Resistance to one of these antifolates, pyrimethamine, is now common in Plasmodium falciparum populations. Antifolates have not traditionally been recommended for treatment of vivax malaria. However, recent studies have suggested that a third-generation antifolate, WR99210, is remarkably effective even against highly pyrimethamine-resistant parasites from both species. Two methods were used to identify a compound that is effective against quadruple mutant alleles from P. falciparum (N51I/C59R/S108N/I164L) and from Plasmodium vivax (57L/111L/117T/173F). The first was simple yeast system used to screen a panel of WR99210 analogs. The biguanide prodrug, JPC-2056, of the 2-chloro-4-trifluoromethoxy analog of WR99210 was effective against both the P. falciparum and P. vivax enzymes, and has been selected for further development. The second method compared the analogs in silico by docking them in the known structure of the P. falciparum DHFR-thymidylate synthase. The program reproduced well the position of the triazine ring, but the calculated energies of ligand binding were very similar for different compounds and therefore did not reproduce the observed trends in biological activity. The WR99210 family of molecules is flexible due to a long bridge between the triazine ring and the substituted benzene. During docking, multiple conformations were observed for the benzene ring part of the molecules in the DHFR active site, making computer-based predictions of binding energy less informative than for more rigid ligands. This flexibility is a key factor in their effectiveness against the highly mutant forms of DHFR.

  10. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  11. Prolonged incubation period of imported P. vivax malaria in London.

    PubMed

    Warwick, R; Swimer, G J; Britt, R P

    1980-05-01

    Between January 1976 and July 1979, 453 cases of malaria were seen at Hillingdon Hospital. The majority of cases were Plasmodium vivax infections in Asians from the Punjab in Northern India-either new immigrants or United Kingdom resident Asians returning from holidays. Twenty-four cases were contracted in Africa or the Middle East. Figures are presented showing a considerable increase in cases during the period of study. In P. vivax infections the time interval between arrival and development of the acute illness was significantly greater for those subjects entering the United Kingdom in autumn or winter.

  12. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006-2009.

    PubMed

    Charles, Macarthur; Das, Sanchita; Daniels, Rachel; Kirkman, Laura; Delva, Glavdia G; Destine, Rodney; Escalante, Ananias; Villegas, Leopoldo; Daniels, Noah M; Shigyo, Kristi; Volkman, Sarah K; Pape, Jean W; Golightly, Linnie M

    2016-05-01

    Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006-2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin.

  13. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population.

    PubMed

    Chang, Hsiao-Han; Park, Daniel J; Galinsky, Kevin J; Schaffner, Stephen F; Ndiaye, Daouda; Ndir, Omar; Mboup, Souleymane; Wiegand, Roger C; Volkman, Sarah K; Sabeti, Pardis C; Wirth, Dyann F; Neafsey, Daniel E; Hartl, Daniel L

    2012-11-01

    Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.