Yam, Xue Yan; Birago, Cecilia; Fratini, Federica; Di Girolamo, Francesco; Raggi, Carla; Sargiacomo, Massimo; Bachi, Angela; Berry, Laurence; Fall, Gamou; Currà, Chiara; Pizzi, Elisabetta; Breton, Catherine Braun; Ponzi, Marta
2013-01-01
Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum. PMID:24045696
Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie; Salanti, Ali; Koram, Kwadwo A; Riley, Eleanor M; Theander, Thor G; Hviid, Lars; Staalsoe, Trine
2003-07-01
Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products of a specific VSA gene (2O2var1) implicated in PAM and transcribed by a CSA-adhering parasite line did not have these characteristics. Furthermore, we could not demonstrate preferential transcription of 2O2var1 in the CSA-adhering line versus the unselected, parental isolate. Our data call for circumspection regarding the molecular identity of the parasite ligand mediating adhesion to CSA in PAM.
Malaria rapid diagnostic tests in elimination settings—can they find the last parasite?
McMorrow, M. L.; Aidoo, M.; Kachur, S. P.
2016-01-01
Rapid diagnostic tests (RDTs) for malaria have improved the availability of parasite-based diagnosis throughout the malaria-endemic world. Accurate malaria diagnosis is essential for malaria case management, surveillance, and elimination. RDTs are inexpensive, simple to perform, and provide results in 15–20 min. Despite high sensitivity and specificity for Plasmodium falciparum infections, RDTs have several limitations that may reduce their utility in low-transmission settings: they do not reliably detect low-density parasitaemia (≤200 parasites/μL), many are less sensitive for Plasmodium vivax infections, and their ability to detect Plasmodium ovale and Plasmodium malariae is unknown. Therefore, in elimination settings, alternative tools with higher sensitivity for low-density infections (e.g. nucleic acid-based tests) are required to complement field diagnostics, and new highly sensitive and specific field-appropriate tests must be developed to ensure accurate diagnosis of symptomatic and asymptomatic carriers. As malaria transmission declines, the proportion of low-density infections among symptomatic and asymptomatic persons is likely to increase, which may limit the utility of RDTs. Monitoring malaria in elimination settings will probably depend on the use of more than one diagnostic tool in clinical-care and surveillance activities, and the combination of tools utilized will need to be informed by regular monitoring of test performance through effective quality assurance. PMID:21910780
Nguitragool, Wang; Mueller, Ivo; Kumpitak, Chalermpon; Saeseu, Teerawat; Bantuchai, Sirasate; Yorsaeng, Ritthideach; Yimsamran, Surapon; Maneeboonyang, Wanchai; Sa-Angchai, Patiwat; Chaimungkun, Wutthichai; Rukmanee, Prasert; Puangsa-Art, Supalarp; Thanyavanich, Nipon; Koepfli, Cristian; Felger, Ingrid; Sattabongkot, Jetsumon; Singhasivanon, Pratap
2017-10-24
Low-density asymptomatic infections of Plasmodium spp. are common in low endemicity areas worldwide, but outside Africa, their contribution to malaria transmission is poorly understood. Community-based studies with highly sensitive molecular diagnostics are needed to quantify the asymptomatic reservoir of Plasmodium falciparum and P. vivax infections in Thai communities. A cross-sectional survey of 4309 participants was conducted in three endemic areas in Kanchanaburi and Ratchaburi provinces of Thailand in 2012. The presence of P. falciparum and P. vivax parasites was determined using 18S rRNA qPCR. Gametocytes were also detected by pfs25 / pvs25 qRT-PCRs. A total of 133 individuals were found infected with P. vivax (3.09%), 37 with P. falciparum (0.86%), and 11 with mixed P. vivax/ P. falciparum (0.26%). The clear majority of both P. vivax (91.7%) and P. falciparum (89.8%) infections were not accompanied by any febrile symptoms. Infections with either species were most common in adolescent and adult males. Recent travel to Myanmar was highly associated with P. falciparum (OR = 9.0, P = 0.001) but not P. vivax infections (P = 0.13). A large number of P. vivax (71.5%) and P. falciparum (72.0%) infections were gametocyte positive by pvs25/pfs25 qRT-PCR. Detection of gametocyte-specific pvs25 and pfs25 transcripts was strongly dependent on parasite density. pvs25 transcript numbers, a measure of gametocyte density, were also highly correlated with parasite density (r 2 = 0.82, P < 0.001). Asymptomatic infections with Plasmodium spp. were common in western Thai communities in 2012. The high prevalence of gametocytes indicates that these infections may contribute substantially to the maintenance of local malaria transmission.
Nguyen, Thuy-Nhien; von Seidlein, Lorenz; Nguyen, Tuong-Vy; Truong, Phuc-Nhi; Hung, Son Do; Pham, Huong-Thu; Nguyen, Tam-Uyen; Le, Thanh Dong; Dao, Van Hue; Mukaka, Mavuto; Day, Nicholas Pj; White, Nicholas J; Dondorp, Arjen M; Thwaites, Guy E; Hien, Tran Tinh
2018-05-01
A substantial proportion of Plasmodium species infections are asymptomatic with densities too low to be detectable with standard diagnostic techniques. The importance of such asymptomatic plasmodium infections in malaria transmission is probably related to their duration and density. To explore the duration of asymptomatic plasmodium infections and changes in parasite densities over time, a cohort of participants who were infected with Plasmodium parasites was observed over a 2-year follow-up period. In this open cohort study, inhabitants of four villages in Vietnam were invited to participate in baseline and subsequent 3-monthly surveys up to 24 months, which included the collection of venous blood samples. Samples were batch-screened using ultra-sensitive (u)PCR (lower limit of detection of 22 parasites per mL). Participants found to be infected by uPCR during any of these surveys were invited to join a prospective cohort and provide monthly blood samples. We estimated the persistence of Plasmodium falciparum and Plasmodium vivax infections and changes in parasite densities over a study period of 24 months. Between Dec 1, 2013, and Jan 8, 2016, 356 villagers participated in between one and 22 surveys. These study participants underwent 4248 uPCR evaluations (11·9 tests per participant). 1874 (32%) of 4248 uPCR tests indicated a plasmodium infection; 679 (36%) of 1874 tests were P falciparum monoinfections, 507 (27%) were P vivax monoinfections, 463 (25%) were co-infections with P falciparum and P vivax, and 225 (12%) were indeterminate species of Plasmodium. The median duration of P falciparum infection was 2 months (IQR 1-3); after accounting for censoring, participants had a 20% chance of having parasitaemia for 4 months or longer. The median duration of P vivax infection was 6 months (3-9), and participants had a 59% chance of having parasitaemia for 4 months or longer. The parasite densities of persistent infections oscillated; following ultralow-density infections, high-density infections developed frequently. Persistent largely asymptomatic P vivax and P falciparum infections are common in this area of low seasonal malaria transmission. Infections with low-density parasitaemias can develop into much higher density infections at a later time, which are likely to sustain malaria endemicity. The Wellcome Trust, Bill & Melinda Gates Foundation. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Voordouw, Maarten J; Anholt, Bradley R; Taylor, Pam J; Hurd, Hilary
2009-01-01
Background Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly. Results We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching. Conclusion With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities. PMID:19379508
Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P
2018-03-01
Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.
Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G
2003-11-01
Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.
Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Vulule, John; Kazura, James W; Moormann, Ann M; Davenport, Miles P
2013-11-01
Recent studies of Plasmodium berghei malaria in mice show that high blood-stage parasitemia levels inhibit the development of subsequent liver-stage infections. Whether a similar inhibitory effect on liver-stage Plasmodium falciparum by blood-stage infection occurs in humans is unknown. We have analyzed data from a treatment-time-to-infection cohort of children < 10 years of age residing in a malaria holoendemic area of Kenya where people experience a new blood-stage infection approximately every 2 weeks. We hypothesized that if high parasitemia blocked the liver stage, then high levels of parasitemia should be followed by a "skipped" peak of parasitemia. Statistical analysis of "natural infection" field data and stochastic simulation of infection dynamics show that the data are consistent with high P. falciparum parasitemia inhibiting liver-stage parasite development in humans.
Lemaitre, Magali; Watier, Laurence; Briand, Valérie; Garcia, André; Le Hesran, Jean Yves; Cot, Michel
2014-01-01
Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1–9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development. PMID:24323515
Lemaitre, Magali; Watier, Laurence; Briand, Valérie; Garcia, André; Le Hesran, Jean Yves; Cot, Michel
2014-02-01
Parasitic infections are associated with high morbidity and mortality in developing countries. Several studies focused on the influence of helminth infections on malaria but the nature of the biological interaction is under debate. Our objective was to undertake a study to explore the influence of the measure of excreted egg load caused by Schistosoma haematobium on Plasmodium falciparum parasite densities. Ten measures of malaria parasite density and two measures of schistosomiasis egg urinary excretion over a 2-year follow-up period on 178 Senegalese children were considered. A linear mixed-effect model was developed to take data dependence into account. This work showed that children with a light S. haematobium infection (1-9 eggs/mL of urine) presented lower P. falciparum parasite densities than children not infected by S. haematobium (P < 0.04). Possible changes caused by parasite coinfections should be considered in the anti-helminth treatment of children and in malaria vaccination development.
Implications of Plasmodium vivax Biology for Control, Elimination, and Research
Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda
2016-01-01
This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636
2011-01-01
Background The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. Methods The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Results Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. Conclusion SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl. PMID:21226920
Maltha, Jessica; Gillet, Philippe; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Bruggeman, Cathrien; Jacobs, Jan
2011-01-12
The present study evaluated the SD Bioline Malaria Ag 05FK40 (SDFK40), a three-band RDT detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH), in a reference setting. The SDFK40 was retrospectively and prospectively tested against a panel of stored (n = 341) and fresh (n = 181) whole blood samples obtained in international travelers suspected of malaria, representing the four Plasmodium species as well as Plasmodium negative samples, and compared to microscopy and PCR results. The prospective panel was run together with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). Overall sensitivities for P. falciparum tested retrospectively and prospectively were 67.9% and 78.8%, reaching 100% and 94.6% at parasite densities >1,000/μl. Sensitivity at parasite densities ≤ 100/μl was 9.1%. Overall sensitivities for Plasmodium vivax and Plasmodium ovale were 86.7% and 80.0% (retrospectively) and 92.9% and 76.9% (prospectively), reaching 94.7% for both species (retrospective panel) at parasite densities >500/μl. Sensitivity for Plasmodium malariae was 21.4%. Species mismatch occurred in 0.7% of samples (3/411) and was limited to non-falciparum species erroneously identified as P. falciparum. None of the Plasmodium negative samples in the retrospective panel reacted positive. Compared to OptiMAL and SDFK60, SDFK40 showed lower sensitivities for P. falciparum, but better detection of P. ovale. Inter-observer agreement and test reproducibility were excellent, but lot-to-lot variability was observed for pan-pLDH results in case of P. falciparum. SDFK40 performance was poor at low (≤ 100/μl) parasite densities, precluding its use as the only diagnostic tool for malaria diagnosis. SDFK40 performed excellent for P. falciparum samples at high (>1,000/μl) parasite densities as well as for detection of P. vivax and P. ovale at parasite densities >500/μl.
Cross-species malaria immunity induced by chemically attenuated parasites
Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia
2013-01-01
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622
Implications of Plasmodium vivax Biology for Control, Elimination, and Research.
Olliaro, Piero L; Barnwell, John W; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C; Shanks, G Dennis; Snounou, Georges; Wongsrichanalai, Chansuda
2016-12-28
This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. © The American Society of Tropical Medicine and Hygiene.
Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.
Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D
2017-07-01
Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.
2009-01-01
Background The SD FK80 P.f/P.v Malaria Antigen Rapid Test (Standard Diagnostics, Korea) (FK80) is a three-band malaria rapid diagnostic test detecting Plasmodium falciparum histidine-rich protein-2 (HRP-2) and Plasmodium vivax-specific lactate dehydrogenase (Pv-pLDH). The present study assessed its performance in a non-endemic setting. Methods Stored blood samples (n = 416) from international travellers suspected of malaria were used, with microscopy corrected by PCR as the reference method. Samples infected by Plasmodium falciparum (n = 178), Plasmodium vivax (n = 99), Plasmodium ovale (n = 75) and Plasmodium malariae (n = 24) were included, as well as 40 malaria negative samples. Results Overall sensitivities for the diagnosis of P. falciparum and P. vivax were 91.6% (95% confidence interval (CI): 86.2% - 95.0%) and 75.8% (65.9% - 83.6%). For P. falciparum, sensitivity at parasite densities ≥ 100/μl was 94.6% (88.8% - 97.6%); for P. vivax, sensitivity at parasite densities ≥ 500/μl was 86.8% (75.4% - 93.4%). Four P. falciparum samples showed a Pv-pLDH line, three of them had parasite densities exceeding 50.000/μl. Two P. vivax samples, one P. ovale and one P. malariae sample showed a HRP-2 line. For the HRP-2 and Pv-pLDH lines, respectively 81.4% (136/167) and 55.8% (43/77) of the true positive results were read as medium or strong line intensities. The FK80 showed good reproducibility and reliability for test results and line intensities (kappa values for both exceeding 0.80). Conclusion The FK80 test performed satisfactorily in diagnosing P. falciparum and P. vivax infections in a non-endemic setting. PMID:19930609
Hall, Neil; Karras, Marianna; Raine, J Dale; Carlton, Jane M; Kooij, Taco W A; Berriman, Matthew; Florens, Laurence; Janssen, Christoph S; Pain, Arnab; Christophides, Georges K; James, Keith; Rutherford, Kim; Harris, Barbara; Harris, David; Churcher, Carol; Quail, Michael A; Ormond, Doug; Doggett, Jon; Trueman, Holly E; Mendoza, Jacqui; Bidwell, Shelby L; Rajandream, Marie-Adele; Carucci, Daniel J; Yates, John R; Kafatos, Fotis C; Janse, Chris J; Barrell, Bart; Turner, C Michael R; Waters, Andrew P; Sinden, Robert E
2005-01-07
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
Isaksson, Caroline; Sepil, Irem; Baramidze, Vladimer; Sheldon, Ben C
2013-04-08
Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host's resistance. Generation of reactive oxygen species (ROS) is one of the host's initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses - total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success.
High prevalence of asymptomatic malaria in south-eastern Bangladesh
2014-01-01
Background The WHO has reported that RDT and microscopy-confirmed malaria cases have declined in recent years. However, it is still unclear if this reflects a real decrease in incidence in Bangladesh, as particularly the hilly and forested areas of the Chittagong Hill Tract (CHT) Districts report more than 80% of all cases and deaths. surveillance and epidemiological data on malaria from the CHT are limited; existing data report Plasmodium falciparum and Plasmodium vivax as the dominant species. Methods A cross-sectional survey was conducted in the District of Bandarban, the southernmost of the three Hill Tracts Districts, to collect district-wide malaria prevalence data from one of the regions with the highest malaria endemicity in Bangladesh. A multistage cluster sampling technique was used to collect blood samples from febrile and afebrile participants and malaria microscopy and standardized nested PCR for diagnosis were performed. Demographic data, vital signs and splenomegaly were recorded. Results Malaria prevalence across all subdistricts in the monsoon season was 30.7% (95% CI: 28.3-33.2) and 14.2% (95% CI: 12.5-16.2) by PCR and microscopy, respectively. Plasmodium falciparum mono-infections accounted for 58.9%, P. vivax mono-infections for 13.6%, Plasmodium malariae for 1.8%, and Plasmodium ovale for 1.4% of all positive cases. In 24.4% of all cases mixed infections were identified by PCR. The proportion of asymptomatic infections among PCR-confirmed cases was 77.0%, oligosymptomatic and symptomatic cases accounted for only 19.8 and 3.2%, respectively. Significantly (p < 0.01) more asymptomatic cases were recorded among participants older than 15 years as compared to younger participants, whereas prevalence and parasite density were significantly (p < 0.01) higher in patients younger than 15 years. Spleen rate and malaria prevalence in two to nine year olds were 18.6 and 34.6%, respectively. No significant difference in malaria prevalence and parasite density was observed between dry and rainy season. Conclusions A large proportion of asymptomatic plasmodial infections was found which likely act as a reservoir of transmission. This has major implications for ongoing malaria control programmes that are based on the treatment of symptomatic patients. These findings highlight the need for new intervention strategies targeting asymptomatic carriers. PMID:24406220
Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum
Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes
2012-01-01
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784
2013-01-01
Background Plasmodium infections trigger complex immune reactions from their hosts against several life stages of the parasite, including gametocytes. These immune responses are highly variable, depending on age, genetics, and exposure history of the host as well as species and strain of parasite. Although the effects of host antibodies that act against gamete stages in the mosquito (due to uptake in the blood meal) are well documented, the effects of host immunity upon within-host gametocytes are not as well understood. This report consists of a theoretical population biology-based analysis to determine constraints that host immunity impose upon gametocyte population growth. The details of the mathematical models used for the analysis were guided by published reports of clinical and animal studies, incorporated plausible modalities of immune reactions to parasites, and were tailored to the life cycl es of the two most widespread human malaria pathogens, Plasmodium falciparum and Plasmodium vivax. Results For the same ability to bind and clear a target, the model simulations suggest that an antibody attacking immature gametocytes would tend to lower the overall density of transmissible mature gametocytes more than an antibody attacking the mature forms directly. Transmission of P. falciparum would be especially vulnerable to complete blocking by antibodies to its immature forms since its gametocytes take much longer to reach maturity than those of P. vivax. On the other hand, antibodies attacking the mature gametocytes directly would reduce the time the mature forms can linger in the host. Simulation results also suggest that varying the standard deviation in the time necessary for individual asexual parasites to develop and produce schizonts can affect the efficiency of production of transmissible gametocytes. Conclusions If mature gametocyte density determines the probability of transmission, both Plasmodium species, but especially P. falciparum, could bolster this probability through evasion or suppression of host immune responses against the immature gametocytes. However, if the long term lingering of mature gametocytes at low density in the host is also important to ensure transmission, then evasion or suppression of antibodies against the mature stages would bolster probability of transmission as well. PMID:23767770
Transmission of human and macaque Plasmodium spp. to ex-captive orangutans in Kalimantan, Indonesia.
Reid, Michael J C; Ursic, Raul; Cooper, Dawn; Nazzari, Hamed; Griffiths, Melinda; Galdikas, Birute M; Garriga, Rosa M; Skinner, Mark; Lowenberger, Carl
2006-12-01
Data are lacking on the specific diseases to which great apes are susceptible and the transmission dynamics and overall impact of these diseases. We examined the prevalence of Plasmodium spp. infections in semicaptive orangutans housed at the Orangutan Care Center and Quarantine, Central Kalimantan, Indonesia, by using a combination of microscopic and DNA molecular techniques to identify the Plasmodium spp. in each animal. Previous studies indicated 2 orangutan-specific Plasmodium spp., but our data show 4 Plasmodium spp. These findings provide evidence for P. vivax transmission between humans and orangutans and for P. cynomolgi transmission between macaques and orangutans. These data have potential implications for the conservation of orangutans and also for the bidirectional transmission of parasites between orangutans and humans visiting or living in the region.
Transmission of Human and Macaque Plasmodium spp. to Ex-Captive Orangutans in Kalimantan, Indonesia
Reid, Michael J.C.; Ursic, Raul; Cooper, Dawn; Nazzari, Hamed; Griffiths, Melinda; Galdikas, Birute M.; Garriga, Rosa M.; Skinner, Mark; Lowenberger, Carl
2006-01-01
Data are lacking on the specific diseases to which great apes are susceptible and the transmission dynamics and overall impact of these diseases. We examined the prevalence of Plasmodium spp. infections in semicaptive orangutans housed at the Orangutan Care Center and Quarantine, Central Kalimantan, Indonesia, by using a combination of microscopic and DNA molecular techniques to identify the Plasmodium spp. in each animal. Previous studies indicated 2 orangutan-specific Plasmodium spp., but our data show 4 Plasmodium spp. These findings provide evidence for P. vivax transmission between humans and orangutans and for P. cynomolgi transmission between macaques and orangutans. These data have potential implications for the conservation of orangutans and also for the bidirectional transmission of parasites between orangutans and humans visiting or living in the region. PMID:17326942
HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes
Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos
2017-01-01
Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125
HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes.
Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos
2017-01-01
Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium -infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite.
Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.
Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N
2014-02-01
Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.
Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.
Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck
2013-01-01
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.
Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes
Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.
2012-01-01
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609
Helminth parasites alter protection against Plasmodium infection.
Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam
2014-01-01
More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.
Koepfli, Cristian; Robinson, Leanne J; Rarau, Patricia; Salib, Mary; Sambale, Naomi; Wampfler, Rahel; Betuela, Inoni; Nuitragool, Wang; Barry, Alyssa E; Siba, Peter; Felger, Ingrid; Mueller, Ivo
2015-01-01
A better understanding of human-to-mosquito transmission is crucial to control malaria. In order to assess factors associated with gametocyte carriage, 2083 samples were collected in a cross-sectional survey in Papua New Guinea. Plasmodium species were detected by light microscopy and qPCR and gametocytes by detection of pfs25 and pvs25 mRNA transcripts by reverse-transcriptase PCR (qRT-PCR). The parasite prevalence by PCR was 18.5% for Plasmodium falciparum and 13.0% for P. vivax. 52.5% of all infections were submicroscopic. Gametocytes were detected in 60% of P. falciparum-positive and 51% of P. vivax-positive samples. Each 10-fold increase in parasite density led to a 1.8-fold and 3.3-fold increase in the odds of carrying P. falciparum and P. vivax gametocytes. Thus the proportion of gametocyte positive and gametocyte densities was highest in young children carrying high asexual parasite densities and in symptomatic individuals. Dilution series of gametocytes allowed absolute quantification of gametocyte densities by qRT-PCR and showed that pvs25 expression is 10-20 fold lower than pfs25 expression. Between 2006 and 2010 parasite prevalence in the study site has decreased by half. 90% of the remaining infections were asymptomatic and likely constitute an important reservoir of transmission. However, mean gametocyte densities were low (approx. 1-2 gametocyte/μL) and it remains to be determined to what extent low-density gametocyte positive individuals are infective to mosquitos.
Persistent Parasitism: The Adaptive Biology of Malariae and Ovale Malaria.
Sutherland, Colin J
2016-10-01
Plasmodium malariae causes malaria in humans throughout the tropics and subtropics. Plasmodium ovale curtisi and Plasmodium ovale wallikeri are sympatric sibling species common in sub-Saharan Africa and also found in Oceania and Asia. Although rarely identified as the cause of malaria cases in endemic countries, PCR detection has confirmed all three parasite species to be more prevalent, and persistent, than previously thought. Chronic, low-density, multispecies asymptomatic infection is a successful biological adaptation by these Plasmodium spp., a pattern also observed among malaria parasites of wild primates. Current whole-genome analyses are illuminating the species barrier separating the ovale parasite species and reveal substantial expansion of subtelomeric gene families. The evidence for and against a quiescent pre-erythrocytic form of P. malariae is reviewed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Case Report: A Case of Plasmodium falciparum hrp2 and hrp3 Gene Mutation in Bangladesh.
Nima, Maisha Khair; Hougard, Thomas; Hossain, Mohammad Enayet; Kibria, Mohammad Golam; Mohon, Abu Naser; Johora, Fatema Tuj; Rahman, Rajibur; Haque, Rashidul; Alam, Mohammad Shafiul
2017-10-01
Several species of Plasmodium are responsible for causing malaria in humans. Proper diagnoses are crucial to case management, because severity and treatment varies between species. Diagnoses can be made using rapid diagnostic tests (RDTs), which detect Plasmodium proteins. Plasmodium falciparum causes the most virulent cases of malaria, and P. falciparum histidine-rich protein 2 (PfHRP2) is a common target of falciparum malaria RDTs. Here we report a case in which a falciparum malaria patient in Bangladesh tested negative on PfHRP2-based RDTs. The negative results can be attributed to a deletion of part of the pfhrp2 gene and frameshift mutations in both pfhrp2 and pfhrp3 gene. This finding may have implications for malaria diagnostics and case management in Bangladesh and other regions of South Asia.
2013-01-01
Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646
Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C; Pance, Alena
2016-01-01
The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types.
Heutmekers, Marloes; Gillet, Philippe; Maltha, Jessica; Scheirlinck, Annelies; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Jacobs, Jan
2012-06-18
The present study evaluated CareStart pLDH Malaria, a three-band rapid diagnostic test detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) in a reference setting. CareStart pLDH was retrospectively and prospectively assessed with a panel of stored (n=498) and fresh (n=77) blood samples obtained in international travelers suspected of malaria. Both panels comprised all four Plasmodium species; the retrospective panel comprised also Plasmodium negative samples. The reference method was microscopy corrected by PCR. The prospective panel was run side-to-side with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). In the retrospective evaluation, overall sensitivity for P. falciparum samples (n=247) was 94.7%, reaching 98.7% for parasite densities>1,000/μl. Most false negative results occurred among samples with pure gametocytaemia (2/12, 16.7%) and at parasite densities ≤ 100/μl (7/12, 58.3%). None of the Plasmodium negative samples (n=96) showed visible test lines. Sensitivities for Plasmodium vivax (n=70), Plasmodium ovale (n=69) and Plasmodium malariae (n=16) were 74.3%, 31.9% and 25.0% respectively. Wrong species identification occurred in 10 (2.5%) samples and was mainly due to P. vivax samples reacting with the Pf-pLDH test line. Overall, Pf-pLDH test lines showed higher line intensities compared to the pan-pLDH lines (67.9% and 23.0% medium and strong line intensities for P. falciparum). In the prospective panel (77 Plasmodium-positive samples), CareStart pLDH showed higher sensitivities for P. falciparum compared to OptiMAL (p=0.008), lower sensitivities for P. falciparum as compare to SDFK60 (although not reaching statistical significance, p=0.08) and higher sensitivities for P. ovale compared to both OptiMAL (p=0.03) and SDFK60 (p=0.01). Inter-observer and test reproducibility were good to excellent. CareStart pLDH performed excellent for the detection of P. falciparum, well for P. vivax, but poor for P. ovale and P. malariae.
NASA Technical Reports Server (NTRS)
Li, Tao; Glushakova, Svetlana; Zimmerberg, Joshua
2003-01-01
Plasmodium falciparum replicates poorly in erythrocyte densities greater than a hematocrit of 20%. A new method to culture the major malaria parasite was developed by using a hollow fiber bioreactor that preserves healthy erythrocytes at hematocrit up to 100%. P. falciparum replicated equally well at all densities studied. This method proved advantageous for large-scale preparation of parasitized erythrocytes (and potentially immunogens thereof), because high yields ( approximately 10(10) in 4 days) could be prepared with less cost and labor. Concomitantly, secreted proteins were concentrated by molecular sieving during culture, perhaps contributing to the parasitemic limit of 8%-12% with the 3D7 strain. The finding that P. falciparum can replicate at packed erythrocyte densities suggests that this system may be useful for study of the pathogenesis of fatal cerebral malaria, of which one feature is densely packed blood cells in brain microvasculature.
Schoone, G J; Oskam, L; Kroon, N C; Schallig, H D; Omar, S A
2000-11-01
A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the sample with one modified in vitro RNA as a competitor in a single-tube NASBA reaction. Parasite densities ranging from 10 to 10(8) Plasmodium falciparum parasites per ml could be demonstrated and quantified in whole blood. This is approximately 1,000 times more sensitive than conventional microscopy analysis of thick blood smears. Comparison of the parasite densities obtained by microscopy and QT-NASBA with 120 blood samples from Kenyan patients with clinical malaria revealed that for 112 of 120 (93%) of the samples results were within a 1-log difference. QT-NASBA may be especially useful for the detection of low parasite levels in patients with early-stage malaria and for the monitoring of the efficacy of drug treatment.
Helminth Parasites Alter Protection against Plasmodium Infection
Salazar-Castañon, Víctor H.; Legorreta-Herrera, Martha
2014-01-01
More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response. PMID:25276830
Wolbachia increases susceptibility to Plasmodium infection in a natural system.
Zélé, F; Nicot, A; Berthomieu, A; Weill, M; Duron, O; Rivero, A
2014-03-22
Current views about the impact of Wolbachia on Plasmodium infections are almost entirely based on data regarding artificially transfected mosquitoes. This work has shown that Wolbachia reduces the intensity of Plasmodium infections in mosquitoes, raising the exciting possibility of using Wolbachia to control or limit the spread of malaria. Whether natural Wolbachia infections have the same parasite-inhibiting properties is not yet clear. Wolbachia-mosquito combinations with a long evolutionary history are, however, key for understanding what may happen with Wolbachia-transfected mosquitoes after several generations of coevolution. We investigate this issue using an entirely natural mosquito-Wolbachia-Plasmodium combination. In contrast to most previous studies, which have been centred on the quantification of the midgut stages of Plasmodium, we obtain a measurement of parasitaemia that relates directly to transmission by following infections to the salivary gland stages. We show that Wolbachia increases the susceptibility of Culex pipiens mosquitoes to Plasmodium relictum, significantly increasing the prevalence of salivary gland stage infections. This effect is independent of the density of Wolbachia in the mosquito. These results suggest that naturally Wolbachia-infected mosquitoes may, in fact, be better vectors of malaria than Wolbachia-free ones.
Evaluation of the Clearview® Malaria pLDH Malaria Rapid Diagnostic Test in a non-endemic setting.
Houzé, Sandrine; Hubert, Véronique; Cohen, Dorit Pessler; Rivetz, Baruch; Le Bras, Jacques
2011-09-27
Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs.
Tadesse, Fitsum G; van den Hoogen, Lotus; Lanke, Kjerstin; Schildkraut, Jodie; Tetteh, Kevin; Aseffa, Abraham; Mamo, Hassen; Sauerwein, Robert; Felger, Ingrid; Drakeley, Chris; Gadissa, Endalamaw; Bousema, Teun
2017-03-03
The widespread presence of low-density asymptomatic infections with concurrent gametocytes may be a stumbling block for malaria elimination. This study investigated the asymptomatic reservoir of Plasmodium falciparum and Plasmodium vivax infections in schoolchildren from five settings in northwest Ethiopia. Two cross-sectional surveys were conducted in June and November 2015, enrolling 551 students from five schools and 294 students from three schools, respectively. Finger prick whole blood and plasma samples were collected. The prevalence and density of P. falciparum and P. vivax parasitaemia and gametocytaemia were determined by 18S rRNA quantitative PCR (qPCR) and pfs25 and pvs25 reverse transcriptase qPCR. Antibodies against blood stage antigens apical membrane antigen-1 (AMA-1) and merozoite surface protein-1 (MSP-1 19 ) were measured for both species. Whilst only 6 infections were detected by microscopy in 881 slides (0.7%), 107 of 845 blood samples (12.7%) were parasite positive by (DNA-based) qPCR. qPCR parasite prevalence between sites and surveys ranged from 3.8 to 19.0% for P. falciparum and 0.0 to 9.0% for P. vivax. The median density of P. falciparum infections (n = 85) was 24.4 parasites/µL (IQR 18.0-34.0) and the median density of P. vivax infections (n = 28) was 16.4 parasites/µL (IQR 8.8-55.1). Gametocyte densities by (mRNA-based) qRT-PCR were strongly associated with total parasite densities for both P. falciparum (correlation coefficient = 0.83, p = 0.010) and P. vivax (correlation coefficient = 0.58, p = 0.010). Antibody titers against P. falciparum AMA-1 and MSP-1 19 were higher in individuals who were P. falciparum parasite positive in both surveys (p < 0.001 for both comparisons). This study adds to the available evidence on the wide-scale presence of submicroscopic parasitaemia by quantifying submicroscopic parasite densities and concurrent gametocyte densities. There was considerable heterogeneity in the occurrence of P. falciparum and P. vivax infections and serological markers of parasite exposure between the examined low endemic settings in Ethiopia.
Spry, Christina; Sewell, Alan L; Hering, Yuliya; Villa, Mathew V J; Weber, Jonas; Hobson, Stephen J; Harnor, Suzannah J; Gul, Sheraz; Marquez, Rodolfo; Saliba, Kevin J
2018-01-01
Survival of the human malaria parasite Plasmodium falciparum is dependent on pantothenate (vitamin B 5 ), a precursor of the fundamental enzyme cofactor coenzyme A. CJ-15,801, an enamide analogue of pantothenate isolated from the fungus Seimatosporium sp. CL28611, was previously shown to inhibit P. falciparum proliferation in vitro by targeting pantothenate utilization. To inform the design of next generation analogues, we set out to synthesize and test a series of synthetic enamide-bearing pantothenate analogues. We demonstrate that conservation of the R-pantoyl moiety and the trans-substituted double bond of CJ-15,801 is important for the selective, on-target antiplasmodial effect, while replacement of the carboxyl group is permitted, and, in one case, favored. Additionally, we show that the antiplasmodial potency of CJ-15,801 analogues that retain the R-pantoyl and trans-substituted enamide moieties correlates with inhibition of P. falciparum pantothenate kinase (PfPanK)-catalyzed pantothenate phosphorylation, implicating the interaction with PfPanK as a key determinant of antiplasmodial activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Takamatsu, Atsuko; Takaba, Eri; Takizawa, Ginjiro
2009-01-07
Branching network growth patterns, depending on environmental conditions, in plasmodium of true slime mold Physarum polycephalum were investigated. Surprisingly, the patterns resemble those in bacterial colonies even though the biological mechanisms differ greatly. Bacterial colonies are collectives of microorganisms in which individual organisms have motility and interact through nutritious and chemical fields. In contrast, the plasmodium is a giant amoeba-like multinucleated unicellular organism that forms a network of tubular structures through which protoplasm streams. The cell motility of the plasmodium is generated by oscillation phenomena observed in the partial bodies, which interact through the tubular structures. First, we analyze characteristics of the morphology quantitatively, then we abstract local rules governing the growing process to construct a simple network growth model. This model is independent of specific systems, in which only two rules are applied. Finally, we discuss the mechanism of commonly observed biological pattern formations through comparison with the system of bacterial colonies.
2010-01-01
Background Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria. PMID:20719001
Response to various periods of mechanical stimuli in Physarum plasmodium
NASA Astrophysics Data System (ADS)
Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki
2017-06-01
Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli.
Lobanov, Alexey V.; Delgado, Cesar; Rahlfs, Stefan; Novoselov, Sergey V.; Kryukov, Gregory V.; Gromer, Stephan; Hatfield, Dolph L.; Becker, Katja; Gladyshev, Vadim N.
2006-01-01
The use of selenocysteine (Sec) as the 21st amino acid in the genetic code has been described in all three major domains of life. However, within eukaryotes, selenoproteins are only known in animals and algae. In this study, we characterized selenoproteomes and Sec insertion systems in protozoan Apicomplexa parasites. We found that among these organisms, Plasmodium and Toxoplasma utilized Sec, whereas Cryptosporidium did not. However, Plasmodium had no homologs of known selenoproteins. By searching computationally for evolutionarily conserved selenocysteine insertion sequence (SECIS) elements, which are RNA structures involved in Sec insertion, we identified four unique Plasmodium falciparum selenoprotein genes. These selenoproteins were incorrectly annotated in PlasmoDB, were conserved in other Plasmodia and had no detectable homologs in other species. We provide evidence that two Plasmodium SECIS elements supported Sec insertion into parasite and endogenous selenoproteins when they were expressed in mammalian cells, demonstrating that the Plasmodium SECIS elements are functional and indicating conservation of Sec insertion between Apicomplexa and animals. Dependence of the plasmodial parasites on selenium suggests possible strategies for antimalarial drug development. PMID:16428245
2010-01-01
Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. Conclusion The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed. PMID:21182774
Van Bortel, Wim; Trung, Ho Dinh; Hoi, Le Xuan; Van Ham, Nguyen; Van Chut, Nguyen; Luu, Nguyen Dinh; Roelants, Patricia; Denis, Leen; Speybroeck, Niko; D'Alessandro, Umberto; Coosemans, Marc
2010-12-23
In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed.
2010-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. Methods The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Results Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/μl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/μl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. Conclusion The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor. PMID:20565816
Maltha, Jessica; Gillet, Philippe; Bottieau, Emmanuel; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2010-06-18
Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/microl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/microl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor.
Evaluation of the Clearview® malaria pLDH malaria rapid diagnostic test in a non-endemic setting
2011-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). Methods The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Results Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. Conclusion The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs PMID:21951996
Transmission-blocking interventions eliminate malaria from laboratory populations
Blagborough, A. M.; Churcher, T. S.; Upton, L. M.; Ghani, A. C.; Gething, P. W.; Sinden, R. E.
2013-01-01
Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field. PMID:23652000
Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E
2003-05-01
Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.
USDA-ARS?s Scientific Manuscript database
We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms insulin can alter immune responsiveness through regulation of NF-kB transcription fa...
Motshoge, Thato; Ababio, Grace K; Aleksenko, Larysa; Read, John; Peloewetse, Elias; Loeto, Mazhani; Mosweunyane, Tjantilili; Moakofhi, Kentse; Ntebele, Davies S; Chihanga, Simon; Motlaleng, Mpho; Chinorumba, Anderson; Vurayai, Moses; Pernica, Jeffrey M; Paganotti, Giacomo M; Quaye, Isaac K
2016-09-29
Botswana is one of eight SADC countries targeting malaria elimination by 2018. Through spirited upscaling of control activities and passive surveillance, significant reductions in case incidence of Plasmodium falciparum (0.96 - 0.01) was achieved between 2008 and 2012. As part of the elimination campaign, active detection of asymptomatic Plasmodium species by a highly sensitive method was deemed necessary. This study was carried out to determine asymptomatic Plasmodium species carriage by nested PCR in the country, in 2012. A cross-sectional study involving 3924 apparently healthy participants were screened for Plasmodium species in 14 districts (5 endemic: Okavango, Ngami, Tutume, Boteti and Bobirwa; and 9 epidemic: North East, Francistown, Serowe-Palapye, Ghanzi, Kweneng West, Kweneng East, Kgatleng, South East, and Good Hope). Venous blood was taken from each participant for a nested PCR detection of Plasmodium species. The parasite rates of asymptomatic Plasmodium species detected were as follows: Plasmodium falciparum, 0.16 %; Plasmodium vivax, 4.66 %; Plasmodium malariae, (Pm) 0.16 %; Plasmodium ovale, 0 %, mixed infections (P. falciparum and P. vivax), 0.055 %; and (P. vivax and P. malariae), 0.027 %, (total: 5.062 %). The high proportion of asymptomatic reservoir of P. vivax was clustered in the East, South Eastern and Central districts of the country. There appeared to be a correlation between the occurrence of P. malariae infection with P. vivax infection, with the former only occurring in districts that had substantial P. vivax circulation. The median age among 2-12 year olds for P. vivax infection was 5 years (Mean 5.13 years, interquartile range 3-7 years). The odds of being infected with P. vivax decreased by 7 % for each year increase in age (OR 0.93, 95 % CI 0.87-1.00, p = 0.056). We have confirmed low parasite rate of asymptomatic Plasmodium species in Botswana, with the exception of P.vivax which was unexpectedly high. This has implication for the elimination campaign so a follow up study is warranted to inform decisions on new strategies that take this evidence into account in the elimination campaign.
First case of a naturally acquired human infection with Plasmodium cynomolgi
2014-01-01
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans. The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods. Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax. This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax. Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria. The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization. PMID:24564912
First case of a naturally acquired human infection with Plasmodium cynomolgi.
Ta, Thuy H; Hisam, Shamilah; Lanza, Marta; Jiram, Adela I; Ismail, NorParina; Rubio, José M
2014-02-24
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
1986-01-01
rhesus, le premier indemne, le second infeste par Plasmodium cynomolgi. Vingt moustiques gorges de sang constituaient le groupe temoin non infest& et...60 autres moustiques infest& ont ete divises en trois groupes de 20 moustiques (groupes infest& 1, 2 et 3). On a evaI& le nombre moyen d’oocystes...port& par les moustiques en dissequant ceux du groupe 1 au septieme jour de I’etude; on a recherche la presence de sporozo’ites dans les glandes
Innexin AGAP001476 Is Critical for Mediating Anti-Plasmodium Responses in Anopheles Mosquitoes
Li, Michelle W. M.; Wang, Jiuling; Zhao, Yang O.; Fikrig, Erol
2014-01-01
The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes. PMID:25035430
NASA Technical Reports Server (NTRS)
Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)
2002-01-01
We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.
Wadi, Ishan; Pillai, C Radhakrishna; Anvikar, Anupkumar R; Sinha, Abhinav; Nath, Mahendra; Valecha, Neena
2018-01-08
Malaria remains a global health problem despite availability of effective tools. For malaria elimination, drugs targeting sexual stages of Plasmodium falciparum need to be incorporated in treatment regimen along with schizonticidal drugs to interrupt transmission. Primaquine is recommended as a transmission blocking drug for its effect on mature gametocytes but is not extensively utilized because of associated safety concerns among glucose-6-phosphate dehydrogenase (G6PD) deficient patients. In present work, methylene blue, which is proposed as an alternative to primaquine is investigated for its gametocytocidal activity amongst Indian field isolates. An effort has been made to establish Indian field isolates of P. falciparum as in vitro model for gametocytocidal drugs screening. Plasmodium falciparum isolates were adapted to in vitro culture and induced to gametocyte production by hypoxanthine and culture was enriched for gametocyte stages using N-acetyl-glucosamine. Gametocytes were incubated with methylene blue for 48 h and stage specific gametocytocidal activity was evaluated by microscopic examination. Plasmodium falciparum field isolates RKL-9 and JDP-8 were able to reproducibly produce gametocytes in high yield and were used to screen gametocytocidal drugs. Methylene blue was found to target gametocytes in a concentration dependent manner by either completely eliminating gametocytes or rendering them morphologically deformed with mean IC 50 (early stages) as 424.1 nM and mean IC 50 (late stages) as 106.4 nM. These morphologically altered gametocytes appeared highly degenerated having shrinkage, distortions and membrane deformations. Field isolates that produce gametocytes in high yield in vitro can be identified and used to screen gametocytocidal drugs. These isolates should be used for validation of gametocytocidal hits obtained previously by using lab adapted reference strains. Methylene blue was found to target gametocytes produced from Indian field isolates and is proposed to be used as a gametocytocidal adjunct with artemisinin-based combination therapy. Further exploration of methylene blue in clinical studies amongst Indian population, including G6PD deficient patients, is recommended.
2014-01-01
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887
Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D
2014-10-04
As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.
USDA-ARS?s Scientific Manuscript database
Methanolic extracts of Sida acuta and Vetiveria zizanioides leaves and root were studied for toxicity to Anopheles stephensi mosquitoes and to the malaria parasite Plasmodium berghei in mice. The extracts reduced parasitemia levels in mice by 17-69%, depending on extract concentration. Median le...
Coupled Oscillators System in the True Slime Mold
NASA Astrophysics Data System (ADS)
Takamatsu, A.; Fujii, T.; Endo, I.
The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.
Samuelson, John; Robbins, Phillips W.
2014-01-01
Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with NG-QC and is based upon an increased likelihood of threonine but not serine in the second position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*). PMID:25475176
2012-01-01
Background The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. Results We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. Conclusion Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology. PMID:23181666
The role of cGMP signalling in regulating life cycle progression of Plasmodium.
Hopp, Christine S; Bowyer, Paul W; Baker, David A
2012-08-01
The 3'-5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Why Density Dependent Propulsion?
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.
Attemene, Serge David Dago; Beourou, Sylvain; Tuo, Karim; Gnondjui, Albert Alloh; Konate, Abibatou; Toure, Andre Offianan; Kati-Coulibaly, Seraphin; Djaman, Joseph Alico
2018-03-01
Malaria is an infectious and deadly parasitic disease, associated with fever, anaemia and other ailments. Unfortunately the upsurge of plasmodium multidrug resistant constrained researchers to look for new effective drugs. Medicinal plants seem to be an unquenchable source of bioactive principles in the treatment of various diseases. The aim of this study was to assess the antiplasmodial activity of two Ivorian medicinal plants. The in vitro activity was evaluated against clinical isolates and Plasmodium falciparum K1 multidrug resistant strain using the fluorescence based SYBR green I assay. The in vivo bioassay was carried out using the classical 4 day suppressive and curative tests on Plasmodium berghei infected mice. Results showed that the in vitro bioassay of both plant extracts were found to exhibit a promising and moderate antiparasitic effects on clinical isolates (5 µg/mL < IC 50 < 15 µg/mL) and Plasmodium falciparum multidrug resistant K1 strain (15 µg/mL < IC 50 < 50 µg/mL). Furthermore, the in vivo antiplasmodial screening of both extracts showed a significant decrease in parasitemia, which was dose-dependent. Body temperature in mice treated with both extracts at experimental doses increased, compared to the negative control group and was dose-dependent. As for mice body weight a significant decrease ( p < 0.001) was noticed in the negative control group compared to tested groups of animals. The hydroethanolic stem bark extract of Anthocleista djalonensis A Chev and leaves extract of Ziziphus mauritiana Lam exhibited anti-malarial activities. Therefore, the bioactive compounds of both plant extracts need to be investigated.
Baltzell, Kimberly A; Shakely, Deler; Hsiang, Michelle; Kemere, Jordan; Ali, Abdullah Suleiman; Björkman, Anders; Mårtensson, Andreas; Omar, Rahila; Elfving, Kristina; Msellem, Mwinyi; Aydin-Schmidt, Berit; Rosenthal, Philip J; Greenhouse, Bryan
2013-02-01
We screened for malaria in 594 blood samples from febrile patients who tested negative by a Plasmodium falciparum-specific histidine-rich protein-2-based rapid diagnostic test at 12 health facilities in Zanzibar districts North A and Micheweni, from May to August 2010. Screening was with microscopy, polymerase chain reaction (PCR) targeting the cytochrome b gene (cytbPCR) of the four major human malaria species, and quantitative PCR (qPCR). The prevalence of cytbPCR-detectable malaria infection was 2% (12 of 594), including 8 P. falciparum, 3 Plasmodium malariae, and 1 Plasmodium vivax infections. Microscopy identified 4 of 8 P. falciparum infections. Parasite density as estimated by microscopy or qPCR was > 4,000 parasites/μL in 5 of 8 cytbPCR-detectable P. falciparum infections. The infections that were missed by the rapid diagnostic test represent a particular challenge in malaria elimination settings and highlight the need for more sensitive point-of-care diagnostic tools to improve case detection of all human malaria species in febrile patients.
Malaria rapid diagnostic tests in endemic settings.
Maltha, J; Gillet, P; Jacobs, J
2013-05-01
Malaria rapid diagnostic tests (RDTs) are instrument-free tests that provide results within 20 min and can be used by community health workers. RDTs detect antigens produced by the Plasmodium parasite such as Plasmodium falciparum histidine-rich protein-2 (PfHPR2) and Plasmodium lactate dehydrogenase (pLDH). The accuracy of RDTs for the diagnosis of uncomplicated P. falciparum infection is equal or superior to routine microscopy (but inferior to expert microscopy). Sensitivity for Plasmodium vivax is 75-100%; for Plasmodium ovale and Plasmodium malariae, diagnostic performance is poor. Design limitations of RDTs include poor sensitivity at low parasite densities, susceptibility to the prozone effect (PfHRP2-detecting RDTs), false-negative results due to PfHRP2 deficiency in the case of pfhrp2 gene deletions (PfHRP2-detecting RDTs), cross-reactions between Plasmodium antigens and detection antibodies, false-positive results by other infections and susceptibility to heat and humidity. End-user's errors relate to safety, procedure (delayed reading, incorrect sample and buffer volumes) and interpretation (not recognizing invalid test results, disregarding faint test lines). Withholding antimalarial treatment in the case of negative RDT results tends to be infrequent and tendencies towards over-prescription of antibiotics have been noted. Numerous shortcomings in RDT kits' labelling, instructions for use (correctness and readability) and contents have been observed. The World Health Organization and partners actively address quality assurance of RDTs by comparative testing of RDTs, inspections of manufacturing sites, lot testing and training tools but no formal external quality assessment programme of end-user performance exists. Elimination of malaria requires RDTs with lower detection limits, for which nucleic acid amplification tests are under development. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
2010-01-01
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay. PMID:20822506
Harris, Ivor; Sharrock, Wesley W; Bain, Lisa M; Gray, Karen-Ann; Bobogare, Albino; Boaz, Leonard; Lilley, Ken; Krause, Darren; Vallely, Andrew; Johnson, Marie-Louise; Gatton, Michelle L; Shanks, G Dennis; Cheng, Qin
2010-09-07
Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥ 38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Curt-Varesano, Aurélie; Braun, Laurence; Ranquet, Caroline; Hakimi, Mohamed-Ali; Bougdour, Alexandre
2016-02-01
Toxoplasma gondii and Plasmodium species are obligatory intracellular parasites that export proteins into the infected cells in order to interfere with host-signalling pathways, acquire nutrients or evade host defense mechanisms. With regard to export mechanism, a wealth of information in Plasmodium spp. is available, while the mechanisms operating in T. gondii remain uncertain. The recent discovery of exported proteins in T. gondii, mainly represented by dense granule resident proteins, might explain this discrepancy and offers a unique opportunity to study the export mechanism in T. gondii. Here, we report that GRA16 export is mediated by two protein elements present in its N-terminal region. Because the first element contains a putative Plasmodium export element linear motif (RRLAE), we hypothesized that GRA16 export depended on a maturation process involving protein cleavage. Using both N- and C-terminal epitope tags, we provide evidence for protein proteolysis occurring in the N-terminus of GRA16. We show that TgASP5, the T. gondii homolog of Plasmodium plasmepsin V, is essential for GRA16 export and is directly responsible for its maturation in a Plasmodium export element-dependent manner. Interestingly, TgASP5 is also involved in GRA24 export, although the GRA24 maturation mechanism is TgASP5-independent. Our data reveal different modus operandi for protein export, in which TgASP5 should play multiple functions. © 2015 John Wiley & Sons Ltd.
Backward bifurcation and optimal control of Plasmodium Knowlesi malaria
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2014-07-01
A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.
Laban, Natasha M; Kobayashi, Tamaki; Hamapumbu, Harry; Sullivan, David; Mharakurwa, Sungano; Thuma, Philip E; Shiff, Clive J; Moss, William J
2015-01-28
Rapid diagnostic tests (RDTs) detecting histidine-rich protein 2 (PfHRP2) antigen are used to identify individuals with Plasmodium falciparum infection even in low transmission settings seeking to achieve elimination. However, these RDTs lack sensitivity to detect low-density infections, produce false negatives for P. falciparum strains lacking pfhrp2 gene and do not detect species other than P. falciparum. Results of a PfHRP2-based RDT and Plasmodium nested PCR were compared in a region of declining malaria transmission in southern Zambia using samples from community-based, cross-sectional surveys from 2008 to 2012. Participants were tested with a PfHRP2-based RDT and a finger prick blood sample was spotted onto filter paper for PCR analysis and used to prepare blood smears for microscopy. Species-specific, real-time, quantitative PCR (q-PCR) was performed on samples that tested positive either by microscopy, RDT or nested PCR. Of 3,292 total participants enrolled, 12 (0.4%) tested positive by microscopy and 42 (1.3%) by RDT. Of 3,213 (98%) samples tested by nested PCR, 57 (1.8%) were positive, resulting in 87 participants positive by at least one of the three tests. Of these, 61 tested positive for P. falciparum by q-PCR with copy numbers ≤ 2 x 10(3) copies/μL, 5 were positive for both P. falciparum and Plasmodium malariae and 2 were positive for P. malariae alone. RDT detected 32 (53%) of P. falciparum positives, failing to detect three of the dual infections with P. malariae. Among 2,975 participants enrolled during a low transmission period between 2009 and 2012, sensitivity of the PfHRP2-based RDT compared to nested PCR was only 17%, with specificity of >99%. The pfhrp gene was detected in 80% of P. falciparum positives; however, comparison of copy number between RDT negative and RDT positive samples suggested that RDT negatives resulted from low parasitaemia and not pfhrp2 gene deletion. Low-density P. falciparum infections not identified by currently used PfHRP2-based RDTs and the inability to detect non-falciparum malaria will hinder progress to further reduce malaria in low transmission settings of Zambia. More sensitive and specific diagnostic tests will likely be necessary to identify parasite reservoirs and achieve malaria elimination.
A systematic review of transfusion-transmitted malaria in non-endemic areas.
Verra, Federica; Angheben, Andrea; Martello, Elisa; Giorli, Giovanni; Perandin, Francesca; Bisoffi, Zeno
2018-01-16
Transfusion-transmitted malaria (TTM) is an accidental Plasmodium infection caused by whole blood or a blood component transfusion from a malaria infected donor to a recipient. Infected blood transfusions directly release malaria parasites in the recipient's bloodstream triggering the development of high risk complications, and potentially leading to a fatal outcome especially in individuals with no previous exposure to malaria or in immuno-compromised patients. A systematic review was conducted on TTM case reports in non-endemic areas to describe the epidemiological characteristics of blood donors and recipients. Relevant articles were retrieved from Pubmed, EMBASE, Scopus, and LILACS. From each selected study the following data were extracted: study area, gender and age of blood donor and recipient, blood component associated with TTM, Plasmodium species, malaria diagnostic method employed, blood donor screening method, incubation period between the infected transfusion and the onset of clinical symptoms in the recipient, time elapsed between the clinical symptoms and the diagnosis of malaria, infection outcome, country of origin of the blood donor and time of the last potential malaria exposure. Plasmodium species were detected in 100 TTM case reports with a different frequency: 45% Plasmodium falciparum, 30% Plasmodium malariae, 16% Plasmodium vivax, 4% Plasmodium ovale, 2% Plasmodium knowlesi, 1% mixed infection P. falciparum/P. malariae. The majority of fatal outcomes (11/45) was caused by P. falciparum whilst the other fatalities occurred in individuals infected by P. malariae (2/30) and P. ovale (1/4). However, non P. falciparum fatalities were not attributed directly to malaria. The incubation time for all Plasmodium species TTM case reports was longer than what expected in natural infections. This difference was statistically significant for P. malariae (p = 0.006). A longer incubation time in the recipient together with a chronic infection at low parasite density of the donor makes P. malariae a subtle but not negligible risk for blood safety aside from P. falciparum. TTM risk needs to be taken into account in order to enhance the safety of the blood supply chain from donors to recipients by means of appropriate diagnostic tools.
In vitro anti-Plasmodium falciparum properties of the full set of human secreted phospholipases A2.
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S; Bollinger, James; Grellier, Philippe; Gelb, Michael H; Schrével, Joseph; Lambeau, Gérard; Deregnaucourt, Christiane
2015-06-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
In Vitro Anti-Plasmodium falciparum Properties of the Full Set of Human Secreted Phospholipases A2
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S.; Bollinger, James; Grellier, Philippe; Gelb, Michael H.; Schrével, Joseph
2015-01-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. PMID:25824843
Lankau, Richard A; Strauss, Sharon Y
2011-01-01
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977
Imaging Plasmodium Immunobiology in Liver, Brain, and Lung
Frevert, Ute; Nacer, Adéla; Cabrera, Mynthia; Movila, Alexandru; Leberl, Maike
2013-01-01
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite. PMID:24076429
Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E
2012-01-01
Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.
Modeling the effects of weather and climate change on malaria transmission.
Parham, Paul Edward; Michael, Edwin
2010-05-01
In recent years, the impact of climate change on human health has attracted considerable attention; the effects on malaria have been of particular interest because of its disease burden and its transmission sensitivity to environmental conditions. We investigated and illustrated the role that dynamic process-based mathematical models can play in providing strategic insights into the effects of climate change on malaria transmission. We evaluated a relatively simple model that permitted valuable and novel insights into the simultaneous effects of rainfall and temperature on mosquito population dynamics, malaria invasion, persistence and local seasonal extinction, and the impact of seasonality on transmission. We illustrated how large-scale climate simulations and infectious disease systems may be modeled and analyzed and how these methods may be applied to predicting changes in the basic reproduction number of malaria across Tanzania. We found extinction to be more strongly dependent on rainfall than on temperature and identified a temperature window of around 32-33 degrees C where endemic transmission and the rate of spread in disease-free regions is optimized. This window was the same for Plasmodium falciparum and P. vivax, but mosquito density played a stronger role in driving the rate of malaria spread than did the Plasmodium species. The results improved our understanding of how temperature shifts affect the global distribution of at-risk regions, as well as how rapidly malaria outbreaks take off within vulnerable populations. Disease emergence, extinction, and transmission all depend strongly on climate. Mathematical models offer powerful tools for understanding geographic shifts in incidence as climate changes. Nonlinear dependences of transmission on climate necessitates consideration of both changing climate trends and variability across time scales of interest.
Safeukui, Innocent; Millet, Pascal; Boucher, Sébastien; Melinard, Laurence; Fregeville, Frédéric; Receveur, Marie-Catherine; Pistone, Thierry; Fialon, Pierre; Vincendeau, Philippe; Fleury, Hervé; Malvy, Denis
2008-01-01
Background A simple real-time PCR assay using one set of primer and probe for rapid, sensitive and quantitative detection of Plasmodium species, with simultaneous differentiation of Plasmodium falciparum from the three other Plasmodium species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) in febrile returning travellers and migrants was developed and evaluated. Methods Consensus primers were used to amplify a species-specific region of the multicopy 18S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be perfect matches to the 18S rRNA gene of the fourth Plasmodium species, while the acceptor probe sequence was designed for P. falciparum over a region containing one mismatched, which allowed differentiation of the three other Plasmodium species. The performance characteristics of the real-time PCR assay were compared with those of conventional PCR and microscopy-based diagnosis from 119 individuals with a suspected clinical diagnostic of imported malaria. Results Blood samples with parasite densities less than 0.01% were all detected, and analytical sensitivity was 0.5 parasite per PCR reaction. The melt curve means Tms (standard deviation) in clinical isolates were 60.5°C (0.6°C) for P. falciparum infection and 64.6°C (1.8°C) for non-P. falciparum species. These Tms values of the P. falciparum or non-P. falciparum species did not vary with the geographic origin of the parasite. The real-time PCR results correlated with conventional PCR using both genus-specific (Kappa coefficient: 0.95, 95% confidence interval: 0.9 – 1) or P. falciparum-specific (0.91, 0.8 – 1) primers, or with the microscopy results (0.70, 0.6 – 0.8). The real-time assay was 100% sensitive and specific for differentiation of P. falciparum to non-P. falciparum species, compared with conventional PCR or microscopy. The real-time PCR assay can also detect individuals with mixed infections (P. falciparum and non-P. falciparum sp.) in the same sample. Conclusion This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of P. falciparum to other Plasmodium species. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed. PMID:18442362
Lopaticki, Sash; Yang, Annie S P; John, Alan; Scott, Nichollas E; Lingford, James P; O'Neill, Matthew T; Erickson, Sara M; McKenzie, Nicole C; Jennison, Charlie; Whitehead, Lachlan W; Douglas, Donna N; Kneteman, Norman M; Goddard-Borger, Ethan D; Boddey, Justin A
2017-09-15
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.
2015-03-01
Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.
Host-mediated impairment of parasite maturation during blood-stage Plasmodium infection
Khoury, David S.; Cromer, Deborah; Akter, Jasmin; Sebina, Ismail; Elliott, Trish; Thomas, Bryce S.; Soon, Megan S. F.; James, Kylie R.; Best, Shannon E.; Haque, Ashraful; Davenport, Miles P.
2017-01-01
Severe malaria and associated high parasite burdens occur more frequently in humans lacking robust adaptive immunity to Plasmodium falciparum. Nevertheless, the host may partly control blood-stage parasite numbers while adaptive immunity is gradually established. Parasite control has typically been attributed to enhanced removal of parasites by the host, although in vivo quantification of this phenomenon remains challenging. We used a unique in vivo approach to determine the fate of a single cohort of semisynchronous, Plasmodium berghei ANKA- or Plasmodium yoelii 17XNL-parasitized red blood cells (pRBCs) after transfusion into naive or acutely infected mice. As previously shown, acutely infected mice, with ongoing splenic and systemic inflammatory responses, controlled parasite population growth more effectively than naive controls. Surprisingly, however, this was not associated with accelerated removal of pRBCs from circulation. Instead, transfused pRBCs remained in circulation longer in acutely infected mice. Flow cytometric assessment and mathematical modeling of intraerythrocytic parasite development revealed an unexpected and substantial slowing of parasite maturation in acutely infected mice, extending the life cycle from 24 h to 40 h. Importantly, impaired parasite maturation was the major contributor to control of parasite growth in acutely infected mice. Moreover, by performing the same experiments in rag1−/− mice, which lack T and B cells and mount weak inflammatory responses, we revealed that impaired parasite maturation is largely dependent upon the host response to infection. Thus, impairment of parasite maturation represents a host-mediated, immune system-dependent mechanism for limiting parasite population growth during the early stages of an acute blood-stage Plasmodium infection. PMID:28673996
Lefterova, Martina I; Budvytiene, Indre; Sandlund, Johanna; Färnert, Anna; Banaei, Niaz
2015-07-01
Malaria is the leading identifiable cause of fever in returning travelers. Accurate Plasmodium species identification has therapy implications for P. vivax and P. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay for Plasmodium species identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium 18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% for P. falciparum (20/21 positives detected) and 100% for the Plasmodium genus (52/52), P. vivax (20/20), P. ovale (9/9), and P. malariae (6/6). The sensitivity of the P. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% for P. vivax (49/52) and 100% for P. falciparum (51/51), P. ovale (62/62), P. malariae (69/69), and P. knowlesi (52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium 18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixed P. falciparum and P. ovale infection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitive Plasmodium species identification shortly after malaria diagnosis by microscopy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Malaria--a major health problem within an oil palm plantation around Popondetta, Papua New Guinea.
Pluess, Bianca; Mueller, Ivo; Levi, Damien; King, Graham; Smith, Thomas A; Lengeler, Christian
2009-04-08
For companies operating in malaria endemic countries, malaria represents a substantial risk to workers and their dependants, and can lead to significantly reduced worker productivity. This study provides an overview of the malaria epidemiology within an oil palm plantation in Popondetta, south-eastern Papua New Guinea, its implication for the company with its employees and their families and the potential for control. In 2006, we carried out a cross-sectional study within six company villages, which included the determination of parasite rates by conventional microscopy, interviews and haemoglobin measurements. Passive surveillance data were collected from the 13 company aid posts for the years 2005 and 2006. Malaria prevalence was found to be high: all-age prevalence was 33.5% (95% CI 30.1-37.0) in 723 individuals. Plasmodium falciparum was the dominant species, followed by Plasmodium vivax and Plasmodium malariae. Children between five and nine years of age were most affected (40.3%, 95% CI 0.32-0.49). Haemoglobin levels were found to be low; 11.0 g/dl (95% CI 10.8-11.1) for men and 10.4 g/dl (95% CI 10.3-10.5) for women, respectively. Plasmodium falciparum infections were significantly associated with anaemia (Hb < 10 g/dl). At the aid posts, all malaria cases in 2005 and January-March 2006 were diagnosed by symptoms only, while from April 2006 onwards most cases were tested by rapid diagnostic tests. Between 2005 and 2006, 22,023 malaria cases were diagnosed at the aid posts and malaria accounted for 30-40% of all clinical cases. Of the malaria cases, 13-20% were HOP employees. On average, an employee sick with malaria was absent for 1.8 days, resulting in a total of 9,313 workdays lost between 2005 and 2006. Sleeping outside of the house did not increase the risk of a malaria infection, neither did getting up before 7 am. Malaria was found to be a major health burden in the Higaturu Oil Palm plantation, posing a high risk for company staff and their relatives, including expatriates and other non-immune workers. Reducing the malaria risk is a highly recommended investment for the company.
Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.
Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda
2017-01-03
Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other malaria endemic settings where species besides P. falciparum may be transmitted and overlooked by control or elimination activities.
Franke, Eileen D.; Sette, Alessandro; Sacci, John; Southwood, Scott; Corradin, Giampietro; Hoffman, Stephen L.
2000-01-01
Previous studies indicated that the Plasmodium yoelii circumsporozoite protein (PyCSP) 57–70 region elicits T cells capable of eliminating infected hepatocytes in vitro. Herein, we report that the PyCSP58–67 sequence contains an H-2d binding motif, which binds purified Kd molecules in vitro with low affinity (3,267 nM) and encodes an H-2d-restricted cytotoxic T lymphocyte (CTL) epitope. Immunization of BALB/c mice with three doses of a multiple antigen peptide (MAP) construct containing four branches of amino acids 57 to 70 linked to a lysine-glycine core [MAP4(PyCSP57–70)] and Lipofectin as the adjuvant induced both T-cell proliferation and a peptide-specific CTL response that was PyCSP59–67 specific, H-2d restricted, and CD8+ T cell dependent. Immunization with either DNA encoding the PyCSP or irradiated sporozoites demonstrated that this CTL epitope is subdominant since it is not recognized in the context of whole CSP immunization. The biological relevance of this CTL response was underlined by the demonstration that it could mediate genetically restricted, CD8+- and nitric-oxide-dependent elimination of infected hepatocytes in vitro, as well as partial protection of BALB/c mice against sporozoite challenge. These findings indicate that subdominant epitopes with low major histocompatibility complex affinity can be used to engineer epitope-based vaccines and have implications for the selection of epitopes for subunit-based vaccines. PMID:10816491
Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Kappeler, Peter M.
2015-01-01
Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites. PMID:26767166
Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M
2015-12-01
Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.
Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M
2017-09-18
Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this study shows equal sensitivity as previously described methods based on whole blood, both in its limit of detection and prevalence estimates in two field surveys. The reduced cost and complexity of this method will allow for the scale-up of surveillance studies to target MDA and other malaria elimination interventions, and help lead to a better understanding of the epidemiology of low-density malaria infections.
Silberhorn, Elisabeth; Schwartz, Uwe; Symelka, Anne; de Koning-Ward, Tania; Längst, Gernot
2016-01-01
The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. PMID:28033404
Schussek, Sophie; Trieu, Angela; Apte, Simon H; Sidney, John; Sette, Alessandro; Doolan, Denise L
2013-10-01
Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8(+) and CD4(+) T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity.
Rangarajan, Radha; Bei, Amy K; Jethwaney, Deepa; Maldonado, Priscilla; Dorin, Dominique; Sultan, Ali A; Doerig, Christian
2005-01-01
Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission. PMID:15864297
Ferguson, David J. P.; Bunting, Karen A.; Xu, Zhengyao; Bailes, Elizabeth; Sinden, Robert E.; Holder, Anthony A.; Smith, Elizabeth F.; Coates, Juliet C.; Rita Tewari
2010-01-01
Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite. PMID:20886115
A Key Role for Lipoic Acid Synthesis During Plasmodium Liver stage Development
Falkard, Brie; Santha Kumar, T. R.; Hecht, Leonie-Sophie; Matthews, Krista A.; Henrich, Philipp P.; Gulati, Sonia; Lewis, Rebecca E.; Manary, Micah J.; Winzeler, Elizabeth A.; Sinnis, Photini; Prigge, Sean T.; Heussler, Volker; Deschermeier, Christina; Fidock, David
2013-01-01
SUMMARY The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepatic parasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analog 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines. PMID:23490300
Targeting Plasmodium PI(4)K to eliminate malaria.
McNamara, Case W; Lee, Marcus Cs; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Simon, Oliver; Yeung, Bryan Ks; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, Tr Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Nagle, Advait; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens Hm; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A
2013-12-12
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
Targeting Plasmodium PI(4)K to eliminate malaria
NASA Astrophysics Data System (ADS)
McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.
2013-12-01
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
2012-01-01
This is a report of the first Plasmodium vivax congenital malaria case in Guatemala and the first case in Latin America with genotypical, histological and clinical characterization. The findings show that maternal P. vivax infection still occurs in areas that are in the pathway towards malaria elimination, and can be associated with detrimental health effects for the neonate. It also highlights the need in very low transmission areas of not only maintaining, but increasing awareness of the problem and developing surveillance strategies, based on population risk, to detect the infection especially in this vulnerable group of the population. PMID:23217209
Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum
NASA Astrophysics Data System (ADS)
Yamada, Hiroyasu; Nakagaki, Toshiyuki
2008-07-01
We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.
Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew
2014-08-15
The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.
Karmodiya, Krishanpal; Modak, Rahul; Sahoo, Nirakar; Sajad, Syed; Surolia, Namita
2008-10-01
The type II fatty acid synthase (FAS) pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials, due to its intrinsic differences from the typeI pathway operating in humans. beta-Ketoacyl acyl carrier protein (ACP) reductase (FabG) performs the NADPH-dependent reduction of beta-ketoacyl-ACP to beta-hydroxyacyl-ACP, the first reductive step in the elongation cycle of fatty acid biosynthesis. In this article, we report intensive studies on the direct interactions of Plasmodium FabG and Plasmodium ACP in solution, in the presence and absence of its cofactor, NADPH, by monitoring the change in intrinsic fluorescence of P.falciparum FabG (PfFabG) and by surface plasmon resonance. To address the issue of the importance of the residues involved in strong, specific and stoichiometric binding of PfFabG to P.falciparum ACP (PfACP), we mutated Arg187, Arg190 and Arg230 of PfFabG. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The affinities of all the PfFabG mutants for acetoacetyl-ACP (the physiological substrate) were reduced to different extents as compared to wild-type PfFabG, but were equally active in biochemical assays with the substrate analog acetoacetyl-CoA. Kinetic analysis and studies of direct binding between PfFabG and PfACP confirmed the identification of Arg187 and Arg230 as critical residues for the PfFabG-PfACP interactions. Our studies thus reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of PfFabG for interactions with PfACP.
Plants, symbiosis and parasites: a calcium signalling connection.
Harper, Jeffrey F; Harmon, Alice
2005-07-01
A unique family of protein kinases has evolved with regulatory domains containing sequences that are related to Ca(2+)-binding EF-hands. In this family, the archetypal Ca(2+)-dependent protein kinases (CDPKs) have been found in plants and some protists, including the malarial parasite, Plasmodium falciparum. Recent genetic evidence has revealed isoform-specific functions for a CDPK that is essential for Plasmodium berghei gametogenesis, and for a related chimeric Ca(2+) and calmodulin-dependent protein kinase (CCaMK) that is essential to the formation of symbiotic nitrogen-fixing nodules in plants. In Arabidopsis thaliana, the analysis of 42 isoforms of CDPK and related kinases is expected to delineate Ca(2+) signalling pathways in all aspects of plant biology.
Knockout of the Rodent Malaria Parasite Chitinase PbCHT1 Reduces Infectivity to Mosquitoes
Dessens, Johannes T.; Mendoza, Jacqui; Claudianos, Charles; Vinetz, Joseph M.; Khater, Emad; Hassard, Stuart; Ranawaka, Gaya R.; Sinden, Robert E.
2001-01-01
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds—an artificial situation where midgut invasion occurs before PM formation—suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions. PMID:11349074
Doolan, Denise L
2011-01-01
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T
2012-10-01
Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.
2014-01-01
N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization. PMID:24641010
Partial purification and characterization of DNA topoisomerase II from Plasmodium falciparum.
Chavalitshewinkoon, P; Leelaphiwat, S; Wilairat, P
1994-03-01
DNA topoisomerase II from Plasmodium falciparum was partially purified by FPLC using three columns: Econo-Pac Q, heparin-agarose and Mono Q. The enzyme showed ATP- and Mg2 +/- dependent activities in a decatenation assay, with optimum concentrations of 0.5 and 10 mM, respectively. Furthermore, highest activity was detected in the presence of 100 mM KCI. Enzyme decatenation activity was not inhibited by the DNA topoisomerase I inhibitor, camptothecin, but was sensitive to both prokaryotic and eukaryotic DNA topoisomerase II inhibitors.
The efficiency of sporozoite transmission in the human malarias, Plasmodium falciparum and P. vivax*
Burkot, T. R.; Graves, P. M.; Cattan, J. A.; Wirtz, R. A.; Gibson, F. D.
1987-01-01
Reported are malaria sporozoite and inoculation rates over a 1-year period in eight epidemiologically defined villages of different endemicity in Madang Province, Papua New Guinea. In the study, more than 41 000 wild-caught mosquitos were analysed for Plasmodium falciparum and P. vivax sporozoites by ELISA. In a given village the entomological inoculation rates correlated strongly with the prevalences of both these malarial parasites in children. However, the prevalence of P. falciparum infections in children was much higher than that of P. vivax, despite similar inoculation rates for the two species. These data suggest that in Papua New Guinea P. falciparum is more efficiently transmitted than P. vivax from mosquito to man. The increased efficiency of transmission of P. falciparum may be due to the heavier sporozoite densities in wild-caught mosquitos naturally infected with P. falciparum sporozoites that were tenfold greater than the sporozoite densities in mosquitos infected with P. vivax. PMID:3311441
Plasmodium vivax molecular diagnostics in community surveys: pitfalls and solutions.
Gruenberg, Maria; Moniz, Clara Antunes; Hofmann, Natalie Ellen; Wampfler, Rahel; Koepfli, Cristian; Mueller, Ivo; Monteiro, Wuelton Marcelo; Lacerda, Marcus; de Melo, Gisely Cardoso; Kuehn, Andrea; Siqueira, Andre M; Felger, Ingrid
2018-01-30
A distinctive feature of Plasmodium vivax infections is the overall low parasite density in peripheral blood. Thus, identifying asymptomatic infected individuals in endemic communities requires diagnostic tests with high sensitivity. The detection limits of molecular diagnostic tests are primarily defined by the volume of blood analysed and by the copy number of the amplified molecular marker serving as the template for amplification. By using mitochondrial DNA as the multi-copy template, the detection limit can be improved more than tenfold, compared to standard 18S rRNA targets, thereby allowing detection of lower parasite densities. In a very low transmission area in Brazil, application of a mitochondrial DNA-based assay increased prevalence from 4.9 to 6.5%. The usefulness of molecular tests in malaria epidemiological studies is widely recognized, especially when precise prevalence rates are desired. Of concern, however, is the challenge of demonstrating test accuracy and quality control for samples with very low parasite densities. In this case, chance effects in template distribution around the detection limit constrain reproducibility. Rigorous assessment of false positive and false negative test results is, therefore, required to prevent over- or under-estimation of parasite prevalence in epidemiological studies or when monitoring interventions.
Glucose-6-phosphate metabolism in Plasmodium falciparum.
Preuss, Janina; Jortzik, Esther; Becker, Katja
2012-07-01
Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based. Copyright © 2012 Wiley Periodicals, Inc.
Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P
2016-12-01
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.
Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.
2016-01-01
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318
Density-Dependent Growth in Invasive Lionfish (Pterois volitans)
Benkwitt, Cassandra E.
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604
Density-dependent growth in invasive Lionfish (Pterois volitans).
Benkwitt, Cassandra E
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Abrams, Peter A
2009-09-01
Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.
Withers-Martinez, Chrislaine; Suarez, Catherine; Fulle, Simone; Kher, Samir; Penzo, Maria; Ebejer, Jean-Paul; Koussis, Kostas; Hackett, Fiona; Jirgensons, Aigars; Finn, Paul; Blackman, Michael J
2012-05-15
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop 'pan-reactive' drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Implications of seed banking for recruitment of Southern Appalachian woody species
Janneke Hille Ris Lambers; James S. Clark; Michael Lavine
2002-01-01
Seed dormancy is assumed to be unimportant for population dynamics of temperate woody species, because seeds occur at low densities and are short lived in forest soils. However, low soil seed densities may result from low seed production, and even modest seed longevity can buffer against fluctuating seed production, potentially limiting density-dependent mortality and...
Hay, Simon I.; Rogers, David J.; Toomer, Jonathan F.; Snow, Robert W.
2011-01-01
This paper presents the results of an extensive search of the formal and informal literature on annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa from 1980 onwards. It first describes how the annual EIR data were collated, summarized, neo-referenced and staged for public access on the internet. Problems of data standardization, reporting accuracy and the subsequent publishing of information on the internet follow. The review was conducted primarily to investigate the spatial heterogeneity of malaria exposure in Africa and supports the idea of highly heterogeneous risk at the continental, regional and country levels. The implications for malaria control of the significant spatial (and seasonal) variation in exposure to infected mosquito bites are discussed. PMID:10897348
Non-Genetic Determinants of Mosquito Competence for Malaria Parasites
Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna
2013-01-01
Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841
Plasmodium ovale infection in Malaysia: first imported case.
Lim, Yvonne A L; Mahmud, Rohela; Chew, Ching Hoong; T, Thiruventhiran; Chua, Kek Heng
2010-10-08
Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax. Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing. Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector. The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis.
Woyessa, Adugna; Deressa, Wakgari; Ali, Ahmed; Lindtjørn, Bernt
2013-06-27
Malaria is a major public health problem in Ethiopia. Plasmodium falciparum and Plasmodium vivax co-exist and malaria rapid diagnostic test (RDTs) is vital in rendering parasite-confirmed treatment especially in areas where microscopy from 2008 to 2010 is not available. CareStartTM Malaria Pf/Pv combo test was evaluated compared to microscopy in Butajira area, south-central Ethiopia. This RDT detects histidine-rich protein-2 (HRP2) found in P. falciparum, and Plasmodium enzyme lactate dehydrogenase (pLDH) for diagnosis of P. vivax. The standard for the reporting of diagnostic accuracy studies was complied. Among 2,394 participants enrolled, 10.9% (n=87) were Plasmodium infected (household survey) and 24.5% (n=392) health facility-based using microscopy. In the household surveys, the highest positivity was caused by P. vivax (83.9%, n=73), P. falciparum (15.0%, n=13), and the rest due to mixed infections of both (1.1%, n=1). In health facility, P. vivax caused 78.6% (n=308), P. falciparum caused 20.4% (n=80), and the rest caused by mixed infections 1.0% (n=4). RDT missed 9.1% (n=8) in household and 4.3% (n=17) in health facility-based surveys among Plasmodium positive confirmed by microscopy while 3.3% (n=24) in household and 17.2% (n=208) in health facility-based surveys were detected false positive. RDT showed agreement with microscopy in detecting 79 positives in household surveys (n=796) and 375 positives in health centre survey (n=1,598).RDT performance varied in both survey settings, lowest PPV (64.3%) for Plasmodium and P. falciparum (77.2%) in health centres; and Plasmodium (76.7%) and P. falciparum (87.5%) in household surveys. NPV was low in P. vivax in health centres (77.2%) and household (87.5%) surveys. Seasonally varying RDT precision of as low as 14.3% PPV (Dec. 2009), and 38.5% NPV (Nov. 2008) in health centre surveys; and 40-63.6% PPV was observed in household surveys. But the influence of age and parasite density on RDT performance was not ascertained. Establishing quality control of malaria RDT in the health system in areas with low endemic and where P. falciparum and P. vivax co-exist is recommendable. CareStartTM RDT might be employed for epidemiological studies that require interpreting the results cautiously. Future RDT field evaluation against microscopy should be PCR corrected.
Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study.
Degarege, Abraham; Legesse, Mengistu; Medhin, Girmay; Animut, Abebe; Erko, Berhanu
2012-11-09
The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio for being infected with non-severe P. falciparum increased with the number of intestinal helminth species (p<0.001). Mean Plasmodium density among intestinal helminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027). Individuals who were co-infected with different species of intestinal helminths and Plasmodium showed lower mean haemoglobin concentration than individuals who were infected only with Plasmodium. Infections with A. lumbricoides, T. trichiura and S. mansoni were positively associated with P. falciparum infection. However, further studies are required to investigate how these helminths could contribute to increased prevalence of P. falciparum infection.
Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study
2012-01-01
Background The effects of helminth co-infection on malaria in humans remain uncertain. This study aimed to evaluate the nature of association of intestinal helminths with prevalence and clinical outcomes of Plasmodium infection. Methods A cross-sectional study involving 1,065 malaria suspected febrile patients was conducted at Dore Bafeno Health Center, Southern Ethiopia, from December 2010 to February 2011. Plasmodium and intestinal helminth infections were diagnosed using Giemsa-stained blood films and Kato-Katz technique, respectively. Haemoglobin level was determined using a haemocue machine. Results Among 1,065 malaria suspected febrile patients, 28.8% were positive for Plasmodium parasites (P. falciparum =13.0%, P. vivax =14.5%, P. falciparum and P. vivax =1.3%). Among 702 patients who provided stool samples, 53.8%, 31.6% and 19.4% were infected with intestinal helminths, Plasmodium alone and with both Plasmodium and intestinal helminths, respectively. The prevalence of infections with Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), Schistosoma mansoni (S. mansoni) and hookworm (9.8%) were 35.9%, 15.8%, 11.7% and 9.8%, respectively. Out of the 222 (31.6%) Plasmodium infected cases, 9 (4.1%) had severe malaria. P. falciparum infection was more common in febrile patients infected with A. lumbricoides alone (21.3%), T. trichiura alone (23.1%) and S. mansoni alone (23.1%) compared to those without intestinal helminth infections (9.3%) (p<0.001 for all). Prevalence of non-severe malaria was significantly higher in individuals infected with intestinal helminths than in those who were not infected with intestinal helminths (adjusted OR=1.58, 95% CI=1.13-2.22). The chance of developing non-severe P. falciparum malaria were 2.6, 2.8 and 3.3 times higher in individuals infected with A. lumbricoides alone, T. trichiura alone and S. mansoni alone, respectively, compared to intestinal helminth-free individuals (p<0.05 for all). The odds ratio for being infected with non-severe P. falciparum increased with the number of intestinal helminth species (p<0.001). Mean Plasmodium density among intestinal helminth infected individuals was significantly increased with the number of intestinal helminths species (p=0.027). Individuals who were co-infected with different species of intestinal helminths and Plasmodium showed lower mean haemoglobin concentration than individuals who were infected only with Plasmodium. Conclusions Infections with A. lumbricoides, T. trichiura and S. mansoni were positively associated with P. falciparum infection. However, further studies are required to investigate how these helminths could contribute to increased prevalence of P. falciparum infection. PMID:23136960
Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo. PMID:28107409
Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.
DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum
Lee, Andrew H.; Symington, Lorraine S.
2014-01-01
SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562
Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J
2013-06-18
Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wanji, Samuel; Kimbi, Helen K; Eyong, Joan E; Tendongfor, Nicholas; Ndamukong, Judith L
2008-05-22
Rapid and correct diagnosis of malaria is considered an important strategy in the control of the disease. However, it remains to be determined how well these tests can perform in those who harbour the parasite, but are asymptomatic, so that rapid diagnostic tests (RDTs) could be used in rapid mass surveillance in malaria control programmes. Microscopic and immunochromatographic diagnosis of malaria were performed on blood samples from the hyperendemic Mount Cameroon region. Thin and thick blood films were stained with Giemsa and examined under light microscopy for malaria parasites. The RDT was performed on the blood samples for the detection of Plasmodium species. In addition, the performance characteristics of the test were determined using microscopy as gold standard. Results revealed 40.32% to be positive for microscopy and 34.41% to be positive for the RDT. Parasites were detected in a greater proportion of samples as the parasite density increase. Plasmodium falciparum was the predominant Plasmodium species detected in the study population either by microscopy or by the RDT. Overall, the test recorded a sensitivity and specificity of 85.33% and 95.05% respectively, and an accuracy of 91.40%. The sensitivity and specificity of the RDT increased as parasite densities increased. The Hexagon Malaria Combi test showed a high sensitivity and specificity in diagnosing malaria in asymptomatic subjects and so could be suitable for use in mass surveillance programmes for the management and control of malaria.
Umbers, Alexandra J; Unger, Holger W; Rosanas-Urgell, Anna; Wangnapi, Regina A; Kattenberg, Johanna H; Jally, Shadrach; Silim, Selina; Lufele, Elvin; Karl, Stephan; Ome-Kaius, Maria; Robinson, Leanne J; Rogerson, Stephen J; Mueller, Ivo
2015-10-19
The diagnosis of malaria during pregnancy is complicated by placental sequestration, asymptomatic infection, and low-density peripheral parasitaemia. Where intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine is threatened by drug resistance, or is inappropriate due to low transmission, intermittent screening and treatment (ISTp) with rapid diagnostic tests for malaria (RDT) could be a valuable alternative. Therefore, the accuracy of RDTs to detect peripheral and placental infection was assessed in a declining transmission setting in Papua New Guinea (PNG). The performance of a combination RDT detecting histidine-rich protein-2 (HRP-2) and Plasmodium lactate dehydrogenase (pLDH), and light microscopy (LM), to diagnose peripheral Plasmodium falciparum and Plasmodium vivax infections during pregnancy, were assessed using quantitative real-time PCR (qPCR) as the reference standard. Participants in a malaria prevention trial in PNG with a haemoglobin ≤90 g/L, or symptoms suggestive of malaria, were tested. Ability of RDT and LM to detect active placental infection on histology was evaluated in some participants. Among 876 women, 1162 RDTs were undertaken (anaemia: 854 [73.5 %], suspected malaria: 308 [26.5 %]). qPCR detected peripheral infection during 190 RDT episodes (165 P. falciparum, 19 P. vivax, 6 mixed infections). Overall, RDT detected peripheral P. falciparum infection with 45.6 % sensitivity (95 % CI 38.0-53.4), a specificity of 96.4 % (95.0-97.4), a positive predictive value of 68.4 % (59.1-76.8), and a negative predictive value of 91.1 % (89.2-92.8). RDT performance to detect P. falciparum was inferior to LM, more so amongst anaemic women (18.6 vs 45.3 % sensitivity, Liddell's exact test, P < 0.001) compared to symptomatic women (72.9 vs 82.4 % sensitivity, P = 0.077). RDT and LM missed 88.0 % (22/25) and 76.0 % (19/25) of P. vivax infections, respectively. In a subset of women tested at delivery and who had placental histology (n = 158) active placental infection was present in 19.6 %: all three peripheral blood infection detection methods (RDT, LM, qPCR) missed >50 % of these infections. In PNG, HRP-2/pLDH RDTs may be useful to diagnose peripheral P. falciparum infections in symptomatic pregnant women. However, they are not sufficiently sensitive for use in intermittent screening amongst asymptomatic (anaemic) women. These findings have implications for the management of malaria in pregnancy. The adverse impact of infections undetected by RDT or LM on pregnancy outcomes needs further evaluation.
Kadian, Kavita; Vijay, Sonam; Gupta, Yash; Rawal, Ritu; Singh, Jagbir; Anvikar, Anup; Pande, Veena; Sharma, Arun
2018-08-01
Malaria parasites utilize Methylerythritol phosphate (MEP) pathway for synthesis of isoprenoid precursors which are essential for maturation and survival of parasites during erythrocytic and gametocytic stages. The absence of MEP pathway in the human host establishes MEP pathway enzymes as a repertoire of essential drug targets. The fourth enzyme, 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) has been proved essential in pathogenic bacteria, however; it has not yet been studied in any Plasmodium species. This study was undertaken to investigate genetic polymorphism and concomitant structural implications of the Plasmodium vivax IspE (PvIspE) by employing sequencing, modeling and bioinformatics approach. We report that PvIspE gene displayed six non-synonymous mutations which were restricted to non-conserved regions within the gene from seven topographically distinct malaria-endemic regions of India. Phylogenetic studies reflected that PvIspE occupies unique status within Plasmodia genus and reflects that Plasmodium vivax IspE gene has a distant and non-conserved relation with human ortholog Mevalonate Kinase (MAVK). Structural modeling analysis revealed that all PvIspE Indian isolates have critically conserved canonical galacto-homoserine-mevalonate-phosphomevalonate kinase (GHMP) domain within the active site lying in a deep cleft sandwiched between ATP and CDPME-binding domains. The active core region was highly conserved among all clinical isolates, may be due to >60% β-pleated rigid architecture. The mapped structural analysis revealed the critically conserved active site of PvIspE, both sequence, and spacially among all Indian isolates; showing no significant changes in the active site. Our study strengthens the candidature of Plasmodium vivax IspE enzyme as a future target for novel antimalarials. Copyright © 2018 Elsevier B.V. All rights reserved.
De Niz, Mariana; Stanway, Rebecca R; Wacker, Rahel; Keller, Derya; Heussler, Volker T
2016-04-21
Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Evaluation of the Palutop+4 malaria rapid diagnostic test in a non-endemic setting.
van Dijk, David P J; Gillet, Philippe; Vlieghe, Erika; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2009-12-12
Palutop+4 (All. Diag, Strasbourg, France), a four-band malaria rapid diagnostic test (malaria RDT) targeting the histidine-rich protein 2 (HRP-2), Plasmodium vivax-specific parasite lactate dehydrogenase (Pv-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) was evaluated in a non-endemic setting on stored whole blood samples from international travellers suspected of malaria. Microscopy corrected by PCR was the reference method. Samples include those infected by Plasmodium falciparum (n = 323), Plasmodium vivax (n = 97), Plasmodium ovale (n = 73) and Plasmodium malariae (n = 25) and 95 malaria negative samples. The sensitivities for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 85.1%, 66.0%, 32.0% and 5.5%. Sensitivities increased at higher parasite densities and reached 90.0% for P. falciparum >100/microl and 83.8% for P. vivax > 500/microl. Fourteen P. falciparum samples reacted with the Pv-pLDH line, one P. vivax sample with the HRP-2 line, and respectively two and four P. ovale and P. malariae samples reacted with the HRP-2 line. Two negative samples gave a signal with the HRP-2 line. Faint and weak line intensities were observed for 129/289 (44.6%) HRP-2 lines in P. falciparum samples, for 50/64 (78.1%) Pv-pLDH lines in P. vivax samples and for 9/13 (69.2%) pan-pLDH lines in P. ovale and P. malariae samples combined. Inter-observer reliabilities for positive and negative readings were excellent for the HRP-2 and Pv-pLDH lines (overall agreement > 92.0% and kappa-values for each pair of readers >or= 0.88), and good for the pan-pLDH line (85.5% overall agreement and kappa-values >or= 0.74). Palutop+4 performed moderately for the detection of P. falciparum and P. vivax, but sensitivities were lower than those of three-band malaria RDTs.
Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes
Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita
2015-01-01
Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797
Deans, J. A.; Cohen, S.
1979-01-01
The identification of malarial antigens that induce protective immunity could provide a rational basis for developing an effective antimalarial vaccine as well as specific serodiagnostic tests indicative of clinical immune status. Since protective immunity is probably induced by stage-dependent rather than stage-independent antigens, the antigenic composition of different stages of Plasmodium knowlesi has been compared, and a limited chemical characterization undertaken. This information should provide some insight into the types of preparative procedure appropriate for the purification of functionally important malarial antigens. PMID:120777
Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos
2013-01-01
Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2−/− Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2−/− mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer–hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite. PMID:24218563
Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos
2013-11-26
Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2(-/-) Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2(-/-) mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer-hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite.
Touré, Mahamoudou; Petersen, Pelle T; Bathily, Sidy N'd; Sanogo, Daouda; Wang, Christian W; Schiøler, Karin L; Konradsen, Flemming; Doumbia, Seydou; Alifrangis, Michael
2017-02-08
From November to December 2012 in Sélingué-Mali, blood samples from 88 febrile patients who tested negative by malaria Paracheck ® rapid diagnostic tests (RDTs) were used to assess the presence of sub-RDT Plasmodium falciparum as well as Borrelia , Coxiella burnetii , and Babesia applying molecular tools. Plasmodium sp. was present among 57 (60.2%) of the 88 malaria RDT-negative patients, whereas the prevalence of Borrelia , C. burnetii , and Babesia were 3.4% ( N = 3), 1.1% ( N = 1), and 0.0%, respectively. The additional diagnostic use of polymerase chain reaction (PCR) identified a high proportion of Plasmodium sp.-positive samples and although this may be a concern for malaria control, the respective PCR-identified malaria infections were less likely responsible for the observed fevers given the low parasite density. Also, the low infection levels of Borrelia and C. burnetii and lack of Babesia among the febrile patients call for further studies to assess the causes of fever among malaria RDT-negative patients in Sélingué. © The American Society of Tropical Medicine and Hygiene.
Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development
Bancone, Germana; Malleret, Benoit; Suwanarusk, Rossarin; Chowwiwat, Nongnud; Chu, Cindy S; McGready, Rose; Rénia, Laurent; Nosten, François
2017-01-01
Abstract Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder in humans and appears to be protective against falciparum severe malaria. Controversially, it is also thought that Plasmodium vivax has driven the recent selection of G6PD alleles. We use an experimental approach to determine whether G6PD-MahidolG487A variant, a widespread cause of severe G6PD deficiency in Southeast Asia, provides a barrier against vivax malaria. Our results show that the immature reticulocytes (CD71+) targeted by P. vivax invasion are enzymatically normal, even in hemizygous G6PD-Mahidol G487A mutants; thus, allowing the normal growth, development, and high parasite density in severely deficient samples. PMID:28591790
Control of interaction strength in a network of the true slime mold by a microfabricated structure.
Takamatsu, A; Fujii, T; Endo, I
2000-02-01
The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.
Zheng, Wenqi; Liu, Fei; He, Yiwen; Liu, Qingyang; Humphreys, Gregory B; Tsuboi, Takafumi; Fan, Qi; Luo, Enjie; Cao, Yaming; Cui, Liwang
2017-01-05
Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle. We expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene. Both polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts. The full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro and transmission of the parasites to mosquitoes. Genetic manipulation study indicated that PSOP25 is required for ookinete maturation in P. berghei. These results support further testing of the PSOP25 orthologs in human malaria parasites as promising TBV candidates.
Density-Dependent Effects on Group Size Are Sex-Specific in a Gregarious Ungulate
Vander Wal, Eric; van Beest, Floris M.; Brook, Ryan K.
2013-01-01
Density dependence can have marked effects on social behaviors such as group size. We tested whether changes in population density of a large herbivore (elk, Cervus canadensis) affected sex-specific group size and whether the response was density- or frequency-dependent. We quantified the probability and strength of changes in group sizes and dispersion as population density changed for each sex. We used group size data from a population of elk in Manitoba, Canada, that was experimentally reduced from 1.20 to 0.67 elk/km2 between 2002 and 2009. Our results indicated that functional responses of group size to population density are sex-specific. Females showed a positive density-dependent response in group size at population densities ≥0.70 elk/km2 and we found evidence for a minimum group size at population density ≤0.70 elk/km2. Changes in male group size were also density-dependent; however, the strength of the relationship was lower than for females. Density dependence in male group size was predominantly a result of fusion of solitary males into larger groups, rather than fusion among existing groups. Our study revealed that density affects group size of a large herbivore differently between males and females, which has important implications for the benefits e.g., alleviating predation risk, and costs of social behaviors e.g., competition for resources and mates, and intra-specific pathogen transmission. PMID:23326502
Tadesse, Fitsum G; Slater, Hannah C; Chali, Wakweya; Teelen, Karina; Lanke, Kjerstin; Belachew, Mulualem; Menberu, Temesgen; Shumie, Girma; Shitaye, Getasew; Okell, Lucy C; Graumans, Wouter; van Gemert, Geert-Jan; Kedir, Soriya; Tesfaye, Addisu; Belachew, Feleke; Abebe, Wake; Mamo, Hassen; Sauerwein, Robert; Balcha, Taye; Aseffa, Abraham; Yewhalaw, Delenasaw; Gadisa, Endalamaw; Drakeley, Chris; Bousema, Teun
2018-06-01
The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
1994-08-10
R. A" Moore, P. B. , Schlessinger, D., Warner, J. R., eds. American Society for Microbiology , Washington, D. C. pp. 73-92. Nomura, M., Morgan, E...HEIFFER, M. H. , DAVIDSON, D. E., JR" AND KORTE, D. W., JR. 1984. Preclinical TeSiing . In " Handbook of Experimental Pharmacology" (W. Peters and
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-05-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at -20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at -20°C or extracted immediately, especially if anticipating 2 or more years of storage. © The American Society of Tropical Medicine and Hygiene.
Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J.; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan
2015-01-01
Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at −20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at −20°C or extracted immediately, especially if anticipating 2 or more years of storage. PMID:25758652
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A
2016-01-01
Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.
Plasmodium berghei: infectivity of mice to Anopheles stephensi mosquitoes.
Butcher, G A; Sinden, R E; Billker, O
1996-12-01
The infectivity of P. berghei-infected TO mice to mosquitoes declines rapidly 2 to 5 days after blood inoculation, in spite of rising numbers of gametocytes in the blood. This pattern is typical of many malaria infections and various factors, particularly specific and nonspecific immune responses, have previously been implicated in the decline. Here we report that (1) simple physiological changes in the mouse blood, namely, falling pH and bicarbonate levels induced by high parasitaemias, are responsible for the sustained inhibition of infectivity; (2) the inhibition is reversible in vivo by the addition of sodium bicarbonate alone; (3) the inhibition occurs at the point of exflagellation; (4) contrary to previous observations (Kawamoto et al. 1992), exflagellation in P. berghei, like that in P. gallinaceum (Bishop and McConnachie 1956; Nijhout and Carter 1978; Nijhout 1979) and P. falciparum (Ogwan'g et al. 1993), is dependent on extracellular bicarbonate; and (5) induction of exflagellation by a mosquito factor is bicarbonate dependent. These new observations are critical to the design and interpretation of experiments on other transmission blocking phenomena.
Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.
2005-01-01
A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504
Blood parasites in owls with conservation implications for the Spotted Owl (Strix occidentalis).
Ishak, Heather D; Dumbacher, John P; Anderson, Nancy L; Keane, John J; Valkiūnas, Gediminas; Haig, Susan M; Tell, Lisa A; Sehgal, Ravinder N M
2008-05-28
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.
Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)
Ishak, Heather D.; Dumbacher, John P.; Anderson, Nancy L.; Keane, John J.; Valkiūnas, Gediminas; Haig, Susan M.; Tell, Lisa A.; Sehgal, Ravinder N. M.
2008-01-01
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. PMID:18509541
Blood parasites in Owls with conservation implications for the Spotted Owl (Strix occidentalis)
Ishak, H.D.; Dumbacher, J.P.; Anderson, N.L.; Keane, J.J.; Valkiunas, G.; Haig, S.M.; Tell, L.A.; Sehgal, R.N.M.
2008-01-01
The three subspecies of Spotted Owl (Northern, Strix occidentalis courina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n=17) and unique lineages (n=12). This high level of sequence diversity is significant because only one leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. ?? 2008 Ishak et al.
Computational prediction of host-pathogen protein-protein interactions.
Dyer, Matthew D; Murali, T M; Sobral, Bruno W
2007-07-01
Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.
Moore, Julie M.; Chaisavaneeyakorn, Sujittra; Perkins, Douglas J.; Othoro, Caroline; Otieno, Juliana; Nahlen, Bernard L.; Shi, Ya Ping; Udhayakumar, Venkatachalam
2004-01-01
Pregnant women are at an increased risk for malarial infection. Plasmodium falciparum accumulates in the placenta and is associated with dysregulated immune function and poor birth outcomes. Malarial pigment (hemozoin) also accumulates in the placenta and may modulate local immune function. In this study, the impact of hemozoin on cytokine production by intervillous blood mononuclear cells from malaria-infected placentas was investigated. There was a dose-dependent, suppressive effect of hemozoin on production of gamma interferon (IFN-γ), with less of an effect on tumor necrosis factor alpha (TNF-α) and interleukin-10, in human immunodeficiency virus-seronegative (HIV−) women. In contrast, IFN-γ and TNF-α production tended to increase in HIV-seropositive women with increasing hemozoin levels. Production patterns of cytokines, especially IFN-γ in HIV− women, followed different trends as a function of parasite density and hemozoin level. The findings suggest that the influences of hemozoin accumulation and high-density parasitemia on placental cytokine production are not equivalent and may involve different mechanisms, all of which may operate differently in the context of HIV infection. Cytokine production dysregulated by accumulation of hemozoin or high-density parasitemia may induce pathology and impair protective immunity in HIV-infected and -uninfected women. PMID:15557625
Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells
van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana
2013-01-01
Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174
Steiper, Michael E; Wolfe, Nathan D; Karesh, William B; Kilbourn, Annelisa M; Bosi, Edwin J; Ruvolo, Maryellen
2006-07-01
The alpha-globin genes are implicated in human resistance to malaria, a disease caused by Plasmodium parasites. This study is the first to analyze DNA sequences from a novel alpha-globin-type gene in orangutans, a species affected by Plasmodium. Phylogenetic methods show that the gene is a duplication of an alpha-globin gene and is located 5' of alpha-2 globin. The alpha-globin-type gene is notable for having four amino acid replacements relative to the orangutan's alpha-1 and alpha-2 globin genes, with no synonymous differences. Pairwise K(a)/K(s) methods and likelihood ratio tests (LRTs) revealed that the evolutionary history of the alpha-globin-type gene has been marked by either neutral or positive evolution, but not purifying selection. A comparative analysis of the amino acid replacements of the alpha-globin-type gene with human hemoglobinopathies and hemoglobin structure showed that two of the four replaced sites are members of the same molecular bond, one that is crucial to the proper functioning of the hemoglobin molecule. This suggested an adaptive evolutionary change. Functionally, this locus may result in a thalassemia-like phenotype in orangutans, possibly as an adaptation to combat Plasmodium.
Plasmodium ovale infection in Malaysia: first imported case
2010-01-01
Background Plasmodium ovale infection is rarely reported in Malaysia. This is the first imported case of P. ovale infection in Malaysia which was initially misdiagnosed as Plasmodium vivax. Methods Peripheral blood sample was first examined by Giemsa-stained microscopy examination and further confirmed using a patented in-house multiplex PCR followed by sequencing. Results and Discussion Initial results from peripheral blood smear examination diagnosed P. vivax infection. However further analysis using a patented in-house multiplex PCR followed by sequencing confirmed the presence of P. ovale. Given that Anopheles maculatus and Anopheles dirus, vectors of P. ovale are found in Malaysia, this finding has significant implication on Malaysia's public health sector. Conclusions The current finding should serve as an alert to epidemiologists, clinicians and laboratory technicians in the possibility of finding P. ovale in Malaysia. P. ovale should be considered in the differential diagnosis of imported malaria cases in Malaysia due to the exponential increase in the number of visitors from P. ovale endemic regions and the long latent period of P. ovale. It is also timely that conventional diagnosis of malaria via microscopy should be coupled with more advanced molecular tools for effective diagnosis. PMID:20929588
The Anopheles innate immune system in the defense against malaria infection
Clayton, April M.; Dong, Yuemei; Dimopoulos, George
2014-01-01
The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482
Kattenberg, Johanna H; Tahita, Christian M; Versteeg, Inge A J; Tinto, Halidou; Traoré-Coulibaly, Maminata; Schallig, Henk D F H; Mens, Petra F
2012-05-01
To evaluate persistence of several Plasmodium antigens in pregnant women after treatment and compare diagnostics during treatment follow-up. Thirty-two pregnant women (N = 32) with confirmed malaria infection by a histidine-rich protein 2 (HRP2)-based rapid diagnostic test (RDT) and microscopy were followed for 28 days after artemisinin-based combination therapy (ACT). A Plasmodium lactate dehydrogenase (pLDH)-based RDT and two ELISAs based on the detection of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and haeme detoxification protein (HDP) were compared with each other and to RT-PCR at each visit. The mean visit number (95% confidence interval) on which the HRP2-based RDT was still positive after treatment was 3.4 (2.7-4.1) visits with some patients still positive at day 28. This is significantly later than the pLDH-based RDT [0.84 (0.55-1.1)], microscopy (median 1, range 1-3), DHFR-TS-ELISA [1.7 (1.1-2.3)] and RT-PCR (median 2, range 1-5) (P < 0.05), but not significantly later than HDP-ELISA [2.1 (1.6-2.7)]. Lower gravidity and higher parasite density at day 0 resulted in significantly longer positive results with most tests (P < 0.05). HRP2 can persist up to 28 days after ACT treatment; therefore, this test is not suitable for treatment follow-up in pregnant women and can generate problems when using this test during intermittent preventive treatment (IPTp). DHFR-TS is less persistent than HRP2, making it a potentially interesting target for diagnosis. © 2012 Blackwell Publishing Ltd.
Stratton, Christopher F; Namanja-Magliano, Hilda A; Cameron, Scott A; Schramm, Vern L
2015-10-16
Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.
Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David
2007-03-01
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
de Souza, Aracele M; de Araújo, Flávia C F; Fontes, Cor J F; Carvalho, Luzia H; de Brito, Cristiana F A; de Sousa, Taís N
2015-08-25
Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection. The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated. The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections. Depending on the type of marker used, a considerable amplification bias was observed, which may have serious implications for the characterization of the complexity of a P. vivax infection. Based on the performance of markers in artificial mixtures of DNA and natural infections, a minimum panel of four genetic markers (PvMS6, PvMS7, MN21, and msp1B10) was defined, and these markers are highly informative regarding the genetic variability of P. vivax populations.
Deligianni, Elena; Morgan, Rhiannon N; Bertuccini, Lucia; Wirth, Christine C; Silmon de Monerri, Natalie C; Spanos, Lefteris; Blackman, Michael J; Louis, Christos; Pradel, Gabriele; Siden-Kiamos, Inga
2013-08-01
Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress. © 2013 John Wiley & Sons Ltd.
Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.
2018-01-01
Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342
Grigg, M J; William, T; Drakeley, C J; Jelip, J; von Seidlein, L; Barber, B E; Fornace, K M; Anstey, N M; Yeo, T W; Cox, J
2014-01-01
Introduction Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. Methods and analysis A population-based case–control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. Ethics This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK. PMID:25149186
Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling
Warncke, Jan D.; Vakonakis, Ioannis
2016-01-01
SUMMARY During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family. PMID:27582258
Figueiredo, Mayra Araguaia Pereira; Di Santi, Silvia Maria; Manrique, Wilson Gómez; Gonçalves, Luiz Ricardo; André, Marcos Rogério; Machado, Rosangela Zacarias
2017-04-26
Considering the diversity of feeding habits that females of some species of anophelines present, it is important to understand which vertebrates are part of blood food sources and how important is the role of each in the ecoepidemiology of malaria. There are many vector species for Plasmodium spp. in the State of Maranhão, Brazil. In São Luís Island, Anopheles aquasalis is the main vector for human malaria; this species is abundant in areas with primates that are positive for Plasmodium. Anopheles aquasalis has natural exophilic and zoophilic feeding behavior, but in cases of high density and absence of animals, presents quite varied behavior, and feeds on human blood. In this context, the objective of the present study was to identify Plasmodium spp. and the blood meal sources of anophelines in two environmental reserves on São Luís Island, state of Maranhão, using molecular methods. Between June and July 2013, female anophelines were collected in the Sítio Aguahy Private Reserve, in the municipality of São José de Ribamar, and in the Sítio Mangalho Reserve, located within the Maracanã Environmental Protection Area, in the municipality of São Luís. CDC-type light traps, Shannon traps and protected human bait were used during three consecutive hours in peridomestic and wooded areas. Pools of anophelines were formed using mosquitoes of the same species that had been caught at the same site on the same date. A genus-specific amplification protocol based on the 18S rRNA gene was used for qPCR and cPCR. A total of 416 anophelines were collected, of the following species: An. aquasalis (399), An. mediopunctatus (3), An. shannoni (1), An. nuneztovari (sensu lato) (1), An. goeldii (1), An. evansae (2) and An. (Nyssorhynchus) sp. (9), comprising 54 pools. Two pools were positive for Plasmodium (2/54) based on the 18S rRNA gene. In the phylogenetic analysis using the maximum likelihood method, based on a 240 bp fragment of the 18S rRNA gene, it was found that the sequences of Plasmodium sp. amplified from pools of An. aquasalis (pool 2) and An. nuneztovari (s.l.) (pool 10) were phylogenetically related to a clade of P. falciparum isolates from India, and to a clade of Plasmodium sp. isolates from psittacines in Brazil, respectively. Cat, dog and human DNA were identified in the blood meals of the anophelines sampled. The species An. aquasalis was the most abundant anopheline species in São Luís Island. Plasmodium spp. DNA was detected, thus confirming the importance of this species as the main vector on São Luís Island, Brazil. In addition, the presence of An. nuneztovari (s.l.) with DNA positive for Plasmodium spp. confirms its importance as a secondary vector.
Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.
2013-01-01
Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242
Establishing a China malaria diagnosis reference laboratory network for malaria elimination.
Yin, Jian-hai; Yan, He; Huang, Fang; Li, Mei; Xiao, Hui-hui; Zhou, Shui-sen; Xia, Zhi-gui
2015-01-28
In China, the prevalence of malaria has reduced dramatically due to the elimination programme. The continued success of the programme will depend upon the accurate diagnosis of the disease in the laboratory. The basic requirements for this are a reliable malaria diagnosis laboratory network and quality management system to support case verification and source tracking. The baseline information of provincial malaria laboratories in the China malaria diagnosis reference laboratory network was collected and analysed, and a quality-assurance activity was carried out to assess their accuracies in malaria diagnosis by microscopy using WHO standards and PCR. By the end of 2013, nineteen of 24 provincial laboratories have been included in the network. In the study, a total of 168 staff were registered and there was no bias in their age, gender, education level, and position. Generally Plasmodium species were identified with great accuracy by microscopy and PCR. However, Plasmodium ovale was likely to be misdiagnosed as Plasmodium vivax by microscopy. China has established a laboratory network for primary malaria diagnosis which will cover a larger area. Currently, Plasmodium species can be identified fairly accurately by microscopy and PCR. However, laboratory staff need additional trainings on accurate identification of P. ovale microscopically and good performance of PCR operations.
Martins-Campos, Keillen M; Kuehn, Andrea; Almeida, Anne; Duarte, Ana Paula M; Sampaio, Vanderson S; Rodriguez, Íria C; da Silva, Sara G M; Ríos-Velásquez, Claudia María; Lima, José Bento Pereira; Pimenta, Paulo Filemon Paolucci; Bassat, Quique; Müller, Ivo; Lacerda, Marcus; Monteiro, Wuelton M; Barbosa Guerra, Maria das Graças V
2018-05-04
Asymptomatic individuals are one of the major challenges for malaria elimination programs in endemic areas. In the absence of clinical symptoms and with a lower parasite density they constitute silent reservoirs considered important for maintaining transmission of human malaria. Studies from Brazil have shown that infected individuals may carry these parasites for long periods. Patients were selected from three periurban endemic areas of the city of Manaus, in the western Brazilian Amazon. Symptomatic and asymptomatic patients with positive thick blood smear and quantitative real-time PCR (qPCR) positive for Plasmodium vivax were invited to participate in the study. A standardised pvs25 gene amplification by qPCR was used for P. vivax gametocytes detection. Anopheles aquasalis were fed using membrane feeding assays (MFA) containing blood from malaria patients. Parasitemia of 42 symptomatic and 25 asymptomatic individuals was determined by microscopic examination of blood smears and qPCR. Parasitemia density and gametocyte density were assessed as determinants of infection rates and oocysts densities. A strong correlation between gametocyte densities (microscopy and molecular techniques) and mosquito infectivity (P < 0.001) and oocysts median numbers (P < 0.05) was found in both groups. The ability to infect mosquitoes was higher in the symptomatic group (41%), but infectivity in the asymptomatic group was also seen (1.42%). Although their infectivity to mosquitoes is relatively low, given the high prevalence of P. vivax asymptomatic carriers they are likely to play and important role in malaria transmission in the city of Manaus. The role of asymptomatic infections therefore needs to be considered in future malaria elimination programs in Brazil.
Sandeu, Maurice M; Bayibéki, Albert N; Tchioffo, Majoline T; Abate, Luc; Gimonneau, Geoffrey; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Diallo, Diadier; Berry, Antoine; Texier, Gaétan; Morlais, Isabelle
2017-08-17
The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.
MCQUEEN, PHILIP G.; MCKENZIE, F. ELLIS
2008-01-01
We assess the consequences of competition for red blood cells (RBCs) in co-infections with the two major agents of human malaria, Plasmodium vivax and Plasmodium falciparum, using differential equations to model the population dynamics of RBCs and parasites. P. vivax parasitizes only the youngest RBCs, but this can reduce the broader RBC population susceptible to P. falciparum. We found that competition for RBCs typically causes one species to suppress the other, depending on their relative reproduction rates and timing of inoculation. However, if the species’ reproduction rates are nearly equal, transient increases in RBC production stimulated by the presence of P. falciparum may boost P. vivax parasitemia above its single-species infection level. Conversely, P. falciparum parasitemia is rarely enhanced above its single-species level. Furthermore, transients in RBC production can induce coupled oscillations in the parasitemia of both species. These results are remarkably robust to changes in model parameters. PMID:16837717
Defining the Global Spatial Limits of Malaria Transmission in 2005
Guerra, C.A.; Snow, R.W.; Hay, S.I.
2011-01-01
There is no accurate contemporary global map of the distribution of malaria. We show how guidelines formulated to advise travellers on appropriate chemoprophylaxis for areas of reported Plasmodium falciparum and Plasmodium vivax malaria risk can be used to generate crude spatial limits. We first review and amalgamate information on these guidelines to define malaria risk at national and sub-national administrative boundary levels globally. We then adopt an iterative approach to reduce these extents by applying a series of biological limits imposed by altitude, climate and population density to malaria transmission, specific to the local dominant vector species. Global areas of, and population at risk from, P. falciparum and often-neglected P. vivax malaria are presented for 2005 for all malaria endemic countries. These results reveal that more than 3 billion people were at risk of malaria in 2005. PMID:16647970
Asian G6PD-Mahidol Reticulocytes Sustain Normal Plasmodium Vivax Development.
Bancone, Germana; Malleret, Benoit; Suwanarusk, Rossarin; Chowwiwat, Nongnud; Chu, Cindy S; McGready, Rose; Rénia, Laurent; Nosten, François; Russell, Bruce
2017-07-15
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder in humans and appears to be protective against falciparum severe malaria. Controversially, it is also thought that Plasmodium vivax has driven the recent selection of G6PD alleles. We use an experimental approach to determine whether G6PD-MahidolG487A variant, a widespread cause of severe G6PD deficiency in Southeast Asia, provides a barrier against vivax malaria. Our results show that the immature reticulocytes (CD71+) targeted by P. vivax invasion are enzymatically normal, even in hemizygous G6PD-Mahidol G487A mutants; thus, allowing the normal growth, development, and high parasite density in severely deficient samples. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Chenet, Stella M; Pacheco, M Andreína; Bacon, David J; Collins, William E; Barnwell, John W; Escalante, Ananias A
2013-12-01
The merozoite surface protein-9 (MSP-9) has been considered a target for an anti-malarial vaccine since it is one of many proteins involved in the erythrocyte invasion, a critical step in the parasite life cycle. Orthologs encoding this antigen have been found in all known species of Plasmodium parasitic to primates. In order to characterize and investigate the extent and maintenance of MSP-9 genetic diversity, we analyzed DNA sequences of the following malaria parasite species: Plasmodium falciparum, Plasmodium reichenowi, Plasmodium chabaudi, Plasmodium yoelii, Plasmodium berghei, Plasmodium coatneyi, Plasmodium gonderi, Plasmodium knowlesi, Plasmodium inui, Plasmodium simiovale, Plasmodium fieldi, Plasmodium cynomolgi and Plasmodium vivax and evaluated the signature of natural selection in all MSP-9 orthologs. Our findings suggest that the gene encoding MSP-9 is under purifying selection in P. vivax and closely related species. We further explored how selection affected different regions of MSP-9 by comparing the polymorphisms in P. vivax and P. falciparum, and found contrasting patterns between these two species that suggest differences in functional constraints. This observation implies that the MSP-9 orthologs in human parasites may interact differently with the host immune response. Thus, studies carried out in one species cannot be directly translated into the other. Copyright © 2013 Elsevier B.V. All rights reserved.
Carme, B; Venturin, C
1999-01-01
In 1996, malaria involving Plasmodium vivax, Plasmodium falciparum, and, to a lesser extent, Plasmodium malariae was endemic in 21 countries in the Americas. The Amazon river basin and bordering areas including the Guyanas were the most affected zones. Until the mid 1970s, endemic malaria appeared to be under control. However in the ensuing 15 year period, the situation deteriorated drastically. Although trends varied depending on location, aggregate indexes indicated a twofold increase with recrudescence in previously settled areas and emergence in newly populated zones. Since 1990, the situation has worsened further in some areas where increased incidences have been associated with a high levels of drug-resistant Plasmodium falciparum. However this species remains in minority except in the Guyanas where the highest annual incidences (100 to 500 cases per 1000) and the most drug-resistant Plasmodium have been reported. The causes underlying this deterioration are numerous and complex. In regions naturally prone to transmission of the disease, outbreaks have been intensified by unrestrained settlement. The resulting deforestation has created new breeding areas for Anopheles darlingi, the main vector of malaria in the Americas. Migration of poor populations to newly opened farming and mining areas has created highly exposed areas for malaria infection. Implementation of adequate medical care and prevention measures has been hindered by a lack of money and sociopolitical unrest. Climatic phenomenon related the El Nino have also been favorable to the return of malaria to the region. Except with regard to financial resources and political unrest, the same risk factors for malaria are present in French Guiana.
Opoku-Okrah, C; Gordge, M; Kweku Nakua, E; Abgenyega, T; Parry, M; Robertson, C; Smith, C L
2014-02-01
Several factors influence the severity of Plasmodium falciparum; here, we investigate the impact of alpha+-thalassaemia genotype on P. falciparum parasitemia and prevalence of severe anaemia amongst microcytic children from Kumasi, Ghana. Seven hundred and thirty-two children (≤10 years) with P. falciparum were categorised into normocytic and microcytic (mean cell volume ≤76 fL). Microcytic individuals were genotyped for the -α(3.7) deletional thalassaemia mutation and parasite densities determined. Amongst microcytic patients both parasite densities and prevalence of severe malaria parasitemia (≥100 000/μL) were significantly lower (P < 0.001) in the presence of an alpha+-thalassaemia genotype compared with non-alpha+-thalassaemia genotype. There was no evidence that alpha+-thalassaemia protected against severe anaemia. The protection conferred by alpha-thalassaemia genotype against severe P. falciparum parasitemia did not change with increasing age. The severity of P. falciparum parasitemia was significantly lower in both the homozygous and heterozygous alpha+-thalassaemia groups compared with microcytic individuals with non-alpha+-thalassaemia genotype. The protective effect, from severe malaria, of the alpha+-thalassaemia allele does not alter with age. © 2013 John Wiley & Sons Ltd.
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Nega, Desalegn; Dana, Daniel; Tefera, Tamirat; Eshetu, Teferi
2015-01-01
Background In Sub-Saharan African countries, including Ethiopia, malaria in pregnancy is a major public health threat which results in significant morbidities and mortalities among pregnant women and their fetuses. In malaria endemic areas, Plasmodium infections tend to remain asymptomatic yet causing significant problems like maternal anemia, low birth weight, premature births, and still birth. This study was conducted to determine the prevalence and predictors of asymptomatic Plasmodium infection among pregnant women in the rural surroundings of Arba Minch Town, Southern Ethiopia. Methods A community based cross-sectional study comprising multistage sampling was conducted between April and June, 2013. Socio-demographic data were collected by using a semi-structured questionnaire. Plasmodium infection was diagnosed by using Giemsa-stained blood smear microscopy and a rapid diagnostic test (SD BIOLINE Malaria Ag Pf/Pv POCT, standard diagnostics, inc., Korea). Results Of the total 341 pregnant women participated in this study, 9.1% (31/341) and 9.7% (33/341) were confirmed to be infected with Plasmodium species by microscopy and rapid diagnostic tests (RDTs), respectively. The geometric mean of parasite density was 2392 parasites per microliter (μl); 2275/ μl for P. falciparum and 2032/ μl for P. vivax. Parasitemia was more likely to occur in primigravidae (Adjusted odds ratio (AOR): 9.4, 95% confidence interval (CI): 4.3–60.5), secundigravidae (AOR: 6.3, 95% CI: 2.9–27.3), using insecticide treated bed net (ITN) sometimes (AOR: 3.2, 95% CI: 1.8- 57.9), not using ITN at all (AOR: 4.6, 95% CI: 1.4–14.4) compared to multigravidae and using ITN always, respectively. Conclusion Asymptomatic malaria in this study is low compared to other studies’ findings. Nevertheless, given the high risk of malaria during pregnancy, pregnant women essentially be screened for asymptomatic Plasmodium infection and be treated promptly via the antenatal care (ANC) services. PMID:25849587
Das, Sudipta; Bhatanagar, Suyash; Morrisey, Joanne M.; Daly, Thomas M.; Burns, James M.; Coppens, Isabelle; Vaidya, Akhil B.
2016-01-01
Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble “rhoptries” and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise. PMID:27227970
Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran
2005-01-01
Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027
Ntumngia, Francis B.; McHenry, Amy M.; Barnwel, John W.; Cole-Tobian, Jennifer; King, Christopher L.; Adams, John H.
2009-01-01
Plasmodium vivax Duffy binding protein (DBP) is vital for parasite development, thereby making this molecule a good vaccine candidate. Preclinical development of a P. vivax vaccine often involves use of primate models prior to testing efficacy in humans, but primate isolates are poorly characterized. We analyzed the complete gene coding for the DBP in several P. vivax isolates that are used for experimental primate infections and compared these sequences with the Salvador I DBP isolate, which is being used for vaccine development. Our results affirm that primate-adapted isolates are genetically similar to P. vivax circulating in humans, but variability is greatest in the putative target of protective antibodies. In addition, some P. vivax isolates contain multiple genetically different clones. Testing a DBP vaccine may therefore be complicated by heterogeneity and diversity of the P. vivax isolates available for in vivo challenge. PMID:19190217
Molina, Douglas M.; Finney, Olivia C.; Arevalo-Herrera, Myriam; Herrera, Socrates; Felgner, Philip L.; Gardner, Malcolm J.; Liang, Xiaowu; Wang, Ruobing
2012-01-01
The development of pre-erythrocytic Plasmodium vivax vaccines is hindered by the lack of in vitro culture systems or experimental rodent models. To help bypass these roadblocks, we exploited the fact that naturally exposed Fy− individuals who lack the Duffy blood antigen (Fy) receptor are less likely to develop blood-stage infections; therefore, they preferentially develop immune responses to pre-erythrocytic–stage parasites, whereas Fy+ individuals experience both liver- and blood-stage infections and develop immune responses to both pre-erythrocytic and erythrocytic parasites. We screened 60 endemic sera from P. vivax-exposed Fy+ or Fy− donors against a protein microarray containing 91 P. vivax proteins with P. falciparum orthologs that were up-regulated in sporozoites. Antibodies against 10 P. vivax antigens were identified in sera from P. vivax-exposed individuals but not unexposed controls. This technology has promising implications in the discovery of potential vaccine candidates against P. vivax malaria. PMID:22826492
Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi
Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.
2017-01-01
Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705
Plasmodium falciparum malaria in 1st-2nd century CE southern Italy.
Marciniak, Stephanie; Prowse, Tracy L; Herring, D Ann; Klunk, Jennifer; Kuch, Melanie; Duggan, Ana T; Bondioli, Luca; Holmes, Edward C; Poinar, Hendrik N
2016-12-05
The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, Daniel P.; Ilies, Monica; Olszewski, Kellen L.
The 2.15 {angstrom} resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K{sub d} = 11 {micro}M). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region ismore » largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.« less
Mariette, Natacha; Barnadas, Céline; Bouchier, Christiane; Tichit, Magali; Ménard, Didier
2008-01-01
Background Rapid diagnostic tests (RDTs) are becoming increasingly indispensable in malaria management, as a means of increasing the accuracy of diagnosis. The WHO has issued recommendations, but the selection of the most suitable RDT remains difficult for users in endemic countries. The genetic variability of the antigens detected with RDTs has been little studied, but may affect the sensitivity of RDTs. This factor has been studied by comparisons between countries at continental level, but little information is available concerning antigen variability within a given country. Methods A country-wide assessment of polymorphism of the PfHRP2, PfHRP3, pLDH and aldolase antigens was carried out in 260 Plasmodium falciparum and 127 Plasmodium vivax isolates, by sequencing the genes encoding these antigens in parasites originating from the various epidemiological strata for malaria in Madagascar. Results Higher levels of polymorphism were observed for the pfhrp2 and pfhrp3 genes than for the P. falciparum and P. vivax aldolase and pldh genes. Pfhrp2 sequence analysis predicted that 9% of Malagasy isolates would not be detected at parasite densities ≤ 250 parasites/μl (ranging from 6% in the north to 14% in the south), although RDTs based on PfHRP2 detection are now recommended in Madagascar. Conclusion These findings highlight the importance of training of health workers and the end users of RDTs in the provision of information about the possibility of false-negative results for patients with clinical symptoms of malaria, particularly in the south of Madagascar. PMID:18957099
Climate, environment and transmission of malaria.
Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi
2016-06-01
Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political instability and health policies that have reduced the funds for vector control, combined with the presence of migratory flows from endemic countries.
Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510
Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E; Colchero, Fernando
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.
Characterization of Adaptation by Morphology in a Planar Biological Network of Plasmodial Slime Mold
NASA Astrophysics Data System (ADS)
Ito, Masateru; Okamoto, Riki; Takamatsu, Atsuko
2011-07-01
Growth processes of a planar biological network of plasmodium of a true slime mold, Physarum polycephalum, were analyzed quantitatively. The plasmodium forms a transportation network through which protoplasm conveys nutrients, oxygen, and cellular organelles similarly to blood in a mammalian vascular network. To analyze the network structure, vertices were defined at tube bifurcation points. Then edges were defined for the tubes connecting both end vertices. Morphological analysis was attempted along with conventional topological analysis, revealing that the growth process of the plasmodial network structure depends on environmental conditions. In an attractive condition, the network is a polygonal lattice with more than six edges per vertex at the early stage and the hexagonal lattice at a later stage. Through all growing stages, the tube structure was not highly developed but an unstructured protoplasmic thin sheet was dominantly formed. The network size is small. In contrast, in the repulsive condition, the network is a mixture of polygonal lattice and tree-graph. More specifically, the polygonal lattice has more than six edges per vertex in the early stage, then a tree-graph structure is added to the lattice network at a later stage. The thick tube structure was highly developed. The network size, in the meaning of Euclidean distance but not topological one, grows considerably. Finally, the biological meaning of the environment-dependent network structure in the plasmodium is discussed.
Andresen, Cecilia; Niklasson, Markus; Cassman Eklöf, Sofie; Wallner, Björn
2017-01-01
Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe. PMID:28746405
Santos-Vega, Mauricio; Bouma, Menno J; Kohli, Vijay; Pascual, Mercedes
2016-01-01
Background The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria. Methodology/principal findings Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors. Conclusion/significance Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission ‘hotspots’. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a “radical cure”. PMID:27906962
Santos-Vega, Mauricio; Bouma, Menno J; Kohli, Vijay; Pascual, Mercedes
2016-12-01
The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria. Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors. Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission 'hotspots'. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a "radical cure".
Oberli, Alexander; Slater, Leanne M.; Cutts, Erin; Brand, Françoise; Mundwiler-Pachlatko, Esther; Rusch, Sebastian; Masik, Martin F. G.; Erat, Michèle C.; Beck, Hans-Peter; Vakonakis, Ioannis
2014-01-01
Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.—Oberli, A., Slater, L. M., Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch, S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis, I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. PMID:24983468
Gatton, Michelle L; Dunn, Jessica; Chaudhry, Alisha; Ciketic, Sadmir; Cunningham, Jane; Cheng, Qin
2017-04-01
Rapid diagnostic tests (RDTs) are an important tool for malaria diagnosis, with most using antibodies against Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Reports of P. falciparum lacking this protein are increasing, creating a problem for diagnosis of falciparum malaria in locations without quality-assured microscopy. An agent-based stochastic simulation model of P. falciparum transmission was used to investigate the selective pressure exerted on parasite populations by use of RDTs for diagnosis of symptomatic cases. The model considered parasites with normal, reduced, or no PfHRP2, and diagnosis using PfHRP2-only or combination RDTs. Use of PfHRP2-only RDTs in communities where a PfHRP2-negative parasite was introduced during the simulation resulted in transmission of the parasite in >80% of cases, compared with <30% for normal or PfHRP2-reduced parasites. Using PfHRP2-only RDTs in the presence of PfHRP2-negative parasites caused an increase in prevalence, reduced RDT positivity within symptomatic patients but no change in the number of antimalarial treatments due to false-negative RDT results. Diagnosis with PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs did not select for PfHRP2-negative parasites. The use of PfHRP2-only RDTs is sufficient to select P. falciparum parasites lacking this protein, thus posing a significant public health problem, which could be moderated by using PfHRP2/Pf-Plasmodium lactate dehydrogenase combination RDTs. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Blank, Jannike; Behrends, Jochen; Jacobs, Thomas; Schneider, Bianca E
2016-02-01
Cerebral malaria (CM) is the most severe complication of human infection with Plasmodium falciparum. The mechanisms predisposing to CM are still not fully understood. Proinflammatory immune responses are required for the control of blood-stage malaria infection but are also implicated in the pathogenesis of CM. A fine balance between pro- and anti-inflammatory immune responses is required for parasite clearance without the induction of host pathology. The most accepted experimental model to study human CM is Plasmodium berghei ANKA (PbANKA) infection in C57BL/6 mice that leads to the development of a complex neurological syndrome which shares many characteristics with the human disease. We applied this model to study the outcome of PbANKA infection in mice previously infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Tuberculosis is coendemic with malaria in large regions in the tropics, and mycobacteria have been reported to confer some degree of unspecific protection against rodent Plasmodium parasites in experimental coinfection models. We found that concomitant M. tuberculosis infection did not change the clinical course of PbANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. The immunological environments in spleen and brain did not differ between singly infected and coinfected animals; instead, the overall cytokine and T cell responses in coinfected mice were comparable to those in animals solely infected with PbANKA. Our data suggest that M. tuberculosis coinfection is not able to change the outcome of PbANKA-induced disease, most likely because the inflammatory response induced by the parasite rapidly dominates in mice previously infected with M. tuberculosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ginouves, Marine; Veron, Vincent; Musset, Lise; Legrand, Eric; Stefani, Aurélia; Prevot, Ghislaine; Demar, Magalie; Djossou, Félix; Brousse, Paul; Nacher, Mathieu; Carme, Bernard
2015-11-10
The two main plasmodial species in French Guiana are Plasmodium vivax and Plasmodium falciparum whose respective prevalence influences the frequency of mixed plasmodial infections. The accuracy of their diagnosis is influenced by the sensitivity of the method used, whereas neither microscopy nor rapid diagnostic tests allow a satisfactory evaluation of mixed plasmodial infections. In the present study, the frequency of mixed infections in different part of French Guiana was determined using real time PCR, a sensitive and specific technique. From 400 cases of malaria initially diagnosed by microscopy, real time PCR showed that 10.75 % of the cases were mixed infections. Their prevalence varied considerably between geographical areas. The presence, in equivalent proportions, of the two plasmodial species in eastern French Guiana was associated with a much higher prevalence of mixed plasmodial infections than in western French Guiana, where the majority of the population was Duffy negative and thus resistant to vivax malaria. Clinicians must be more vigilant regarding mixed infections in co-endemic P. falciparum/P. vivax areas, in order to deliver optimal care for patients suffering from malaria. This may involve the use of rapid diagnostic tests capable of detecting mixed infections or low density single infections. This is important as French Guiana moves towards malaria elimination.
A Research Agenda for Malaria Eradication: Diagnoses and Diagnostics
2011-01-01
Many of malaria's signs and symptoms are indistinguishable from those of other febrile diseases. Detection of the presence of Plasmodium parasites is essential, therefore, to guide case management. Improved diagnostic tools are required to enable targeted treatment of infected individuals. In addition, field-ready diagnostic tools for mass screening and surveillance that can detect asymptomatic infections of very low parasite densities are needed to monitor transmission reduction and ensure elimination. Antibody-based tests for infection and novel methods based on biomarkers need further development and validation, as do methods for the detection and treatment of Plasmodium vivax. Current rapid diagnostic tests targeting P. vivax are generally less effective than those targeting Plasmodium falciparum. Moreover, because current drugs for radical cure may cause serious side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency, more information is needed on the distribution of G6PD-deficiency variants as well as tests to identify at-risk individuals. Finally, in an environment of very low or absent malaria transmission, sustaining interest in elimination and maintaining resources will become increasingly important. Thus, research is required into the context in which malaria diagnostic tests are used, into diagnostics for other febrile diseases, and into the integration of these tests into health systems. PMID:21311583
Siner, Angela; Liew, Sze-Tze; Kadir, Khamisah Abdul; Mohamad, Dayang Shuaisah Awang; Thomas, Felicia Kavita; Zulkarnaen, Mohammad; Singh, Balbir
2017-10-17
Plasmodium knowlesi, a simian malaria parasite, has become the main cause of malaria in Sarawak, Malaysian Borneo. Epidemiological data on malaria for Sarawak has been derived solely from hospitalized patients, and more accurate epidemiological data on malaria is necessary. Therefore, a longitudinal study of communities affected by knowlesi malaria was undertaken. A total of 3002 blood samples on filter paper were collected from 555 inhabitants of 8 longhouses with recently reported knowlesi malaria cases in the Betong Division of Sarawak, Malaysian Borneo. Each longhouse was visited bimonthly for a total of 10 times during a 21-month study period (Jan 2014-Oct 2015). DNA extracted from blood spots were examined by a nested PCR assay for Plasmodium and positive samples were then examined by nested PCR assays for Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium cynomolgi and Plasmodium inui. Blood films of samples positive by PCR were also examined by microscopy. Genus-specific PCR assay detected Plasmodium DNA in 9 out of 3002 samples. Species-specific PCR identified 7 P. knowlesi and one P. vivax. Malaria parasites were observed in 5 thick blood films of the PCR positive samples. No parasites were observed in blood films from one knowlesi-, one vivax- and the genus-positive samples. Only one of 7 P. knowlesi-infected individual was febrile and had sought medical treatment at Betong Hospital the day after sampling. The 6 knowlesi-, one vivax- and one Plasmodium-infected individuals were afebrile and did not seek any medical treatment. Asymptomatic human P. knowlesi and P. vivax malaria infections, but not P. cynomolgi and P. inui infections, are occurring within communities affected with malaria.
Doritchamou, Justin; Arango, Eliana M.; Cabrera, Ana; Arroyo, Maria Isabel; Kain, Kevin C.; Ndam, Nicaise Tuikue; Maestre, Amanda
2014-01-01
In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region. PMID:24686068
2010-01-01
Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in Plasmodium gametogenesis and ookinete formation. Conclusions This work demonstrated in vivo transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies. PMID:20196858
Koepfli, Cristian; Ome-Kaius, Maria; Jally, Shadrach; Malau, Elisheba; Maripal, Samuel; Ginny, Jason; Timinao, Lincoln; Kattenberg, Johanna Helena; Obadia, Thomas; White, Michael; Rarau, Patricia; Senn, Nicolas; Barry, Alyssa E; Kazura, James W; Mueller, Ivo; Robinson, Leanne J
2017-12-12
The scale-up of effective malaria control in the last decade has resulted in a substantial decline in the incidence of clinical malaria in many countries. The effects on the proportions of asymptomatic and submicroscopic infections and on transmission potential are yet poorly understood. In Papua New Guinea, vector control has been intensified since 2008, and improved diagnosis and treatment was introduced in 2012. Cross-sectional surveys were conducted in Madang Province in 2006 (with 1280 survey participants), 2010 (with 2117 participants), and 2014 (with 2516 participants). Infections were quantified by highly sensitive quantitative polymerase chain reaction (PCR) analysis, and gametocytes were quantified by reverse-transcription qPCR analysis. Plasmodium falciparum prevalence determined by qPCR decreased from 42% in 2006 to 9% in 2014. The P. vivax prevalence decreased from 42% in 2006 to 13% in 2010 but then increased to 20% in 2014. Parasite densities decreased 5-fold from 2006 to 2010; 72% of P. falciparum and 87% of P. vivax infections were submicroscopic in 2014. Gametocyte density and positivity correlated closely with parasitemia, and population gametocyte prevalence decreased 3-fold for P. falciparum and 29% for P. vivax from 2010 to 2014. Sustained control has resulted in reduced malaria transmission potential, but an increasing proportion of gametocyte carriers are asymptomatic and submicroscopic and represent a challenge to malaria control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias
2017-12-14
Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Senn, Nicolas; Rarau, Patricia; Manong, Doris; Salib, Mary; Siba, Peter; Robinson, Leanne J; Reeder, John; Rogerson, Stephen; Mueller, Ivo; Genton, Blaise
2012-03-01
In malaria-endemic areas it is recommended that febrile children be tested for malaria by rapid diagnostic test (RDT) or blood slide (BS) and receive effective malaria treatment only if results are positive. However, RDTs are known to perform less well for Plasmodium vivax. We evaluated the safety of withholding antimalarial drugs from young Papua New Guinean children with negative RDT results in areas with high levels of both Plasmodium falciparum and P. vivax infections. Longitudinal prospective study of children aged 3-27 months visiting outpatient clinics for fever. RDT was administered at first visit. RDT and microscopy were performed if children returned because of persistent symptoms. Outcomes were rates of reattendance and occurrence of severe illnesses. Of 5670 febrile episodes, 3942 (70%) involved a negative RDT result. In 133 cases (3.4%), the children reattended the clinic within 7 days for fever, of whom 29 (0.7%) were parasitemic by RDT or microscopy. Of children who reattended, 24 (0.7%) presented with a severe illness: 2 had lower respiratory tract infections (LRTIs) with low-density P. vivax on BS; 2 received a diagnosis of P. vivax malaria on the basis of RDT but BSs were negative; 16 had LRTIs; 3 had alternative diagnoses. Of these 24, 22 were cured at day 28. Two children died of illnesses other than malaria and were RDT and BS negative at the initial and subsequent visits. Treatment for malaria based on RDT results is safe and feasible even in infants living in areas with moderate to high endemicity for both P. falciparum and P. vivax infections.
VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta.
Rovira-Vallbona, Eduard; Monteiro, Isadora; Bardají, Azucena; Serra-Casas, Elisa; Neafsey, Daniel E; Quelhas, Diana; Valim, Clarissa; Alonso, Pedro; Dobaño, Carlota; Ordi, Jaume; Menéndez, Clara; Mayor, Alfredo
2013-01-01
Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three DBL3X segments contained signatures of high parasite density (P<0.003) that were highly prevalent in the parasite population (49-91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional characterization of VAR2CSA and the development of tools against placental malaria.
Grigg, M J; William, T; Drakeley, C J; Jelip, J; von Seidlein, L; Barber, B E; Fornace, K M; Anstey, N M; Yeo, T W; Cox, J
2014-08-22
Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Capone, Aida; Ricci, Irene; Damiani, Claudia; Mosca, Michela; Rossi, Paolo; Scuppa, Patrizia; Crotti, Elena; Epis, Sara; Angeletti, Mauro; Valzano, Matteo; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Mandrioli, Mauro; Favia, Guido
2013-06-18
Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
Arévalo-Herrera, Myriam; Solarte, Yezid; Rocha, Leonardo; Álvarez, Diego; Beier, John C.; Herrera, Sócrates
2011-01-01
Malaria infection induces antibodies capable of suppressing the infectivity of gametocytes and gametes, however, little is known about the duration of the antibody response, the parasite specificity, and the role of complement. We report the analyses of the transmission-blocking (TB) activity of sera collected from 105 Plasmodium vivax-infected and 44 non-infected individuals from a malaria endemic region of Colombia, using a membrane feeding assay in Anopheles albimanus mosquitoes. In infected donors we found that TB activity was antibody dose dependent (35%), lasted for 2–4 months after infection, and in 70% of the cases different P. vivax wild isolates displayed differential susceptibility to blocking antibodies. Additionally, in a number of assays TB was complement-dependent. Twenty-seven percent of non-infected individuals presented TB activity that correlated with antibody titers. Studies here provide preliminary data on factors of great importance for further work on the development of TB vaccines. PMID:21292881
Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.
Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor
2004-01-01
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337
Pal-Bhowmick, Ipsita; Andersen, John; Srinivasan, Prakash; Narum, David L; Bosch, Jürgen; Miller, Louis H
2012-01-01
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite's ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand's cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. IMPORTANCE The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Green, Judith L.; Wall, Richard J.; Vahokoski, Juha; Yusuf, Noor A.; Ridzuan, Mohd A. Mohd; Stanway, Rebecca R.; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R.; Howell, Steven A.; Pires, Isa P.; Moon, Robert W.; Molloy, Justin E.; Kursula, Inari; Tewari, Rita
2017-01-01
Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain–interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. PMID:28893907
Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G
2016-11-01
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Hackett, Fiona; Atid, Jonathan; Tan, Michele Ser Ying
2017-01-01
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. PMID:28683142
Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A
2017-10-27
Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Using Click Chemistry to Identify Potential Drug Targets in Plasmodium
2016-06-01
test, * p < 0.05. These and other results are reported in a manuscript currently have undergone initial review at Molecular Microbiology . The referees...sporozoites requires cGMP-dependent protein kinase and calcium dependent protein kinase 4 (manuscript in review at Molecular Microbiology ) References...manuscript in review at Molecular Microbiology ) (3) Invited Articles: None (4) Abstracts: Bhanot, P., Govindasamy, K., Khan, R. , Ojo, K.K., Van
Mutungi, Joe Kimanthi; Yahata, Kazuhide; Sakaguchi, Miako; Kaneko, Osamu
2015-11-01
Malaria symptoms and pathogenesis are caused by blood stage parasite burdens of Plasmodium spp., for which invasion of red blood cells (RBCs) by merozoites is essential. Successful targeting by either drugs or vaccines directed against the whole merozoite or its antigens during its transient extracellular status would contribute to malaria control by impeding RBC invasion. To understand merozoite invasion biology and mechanisms, it is desired to obtain merozoites that retain their invasion activity in vitro. Accordingly, methods have been developed to isolate invasive Plasmodium knowlesi and Plasmodium falciparum merozoites. Rodent malaria parasite models offer ease in laboratory maintenance and experimental genetic modifications; however, no methods have been reported regarding isolation of high numbers of invasive rodent malaria merozoites. In this study, Plasmodium yoelii-infected RBCs were obtained from infected mice, and mature schizont-infected RBCs enriched via Histodenz™ density gradients. Merozoites retaining invasion activity were then isolated by passing the preparations through a filter membrane. RBC-invaded parasites developed to mature stages in vitro in a synchronous manner. Isolated merozoites were evaluated for retention of invasion activity following storage at different temperatures prior to incubation with uninfected mouse RBCs. Isolated merozoites retained their invasion activity 4h after isolation at 10 or 15 °C, whereas their invasion activity reduced to 0-10% within 30 min when incubated on ice or at 37 °C prior to RBC invasion assay. Images of merozoites at successive steps during RBC invasion were captured by light and transmission electron microscopy. Synthetic peptides derived from the amino acid sequence of the P. yoelii invasion protein RON2 efficiently inhibited RBC invasion. The developed method to isolate and keep invasive P. yoelii merozoites for up to 4h is a powerful tool to study the RBC invasion biology of this parasite. This method provides an important platform to evaluate the mode of action of drugs and vaccine candidates targeting the RBC invasion steps using rodent malaria model. Copyright © 2015 Elsevier B.V. All rights reserved.
Management of imported malaria in Europe
2012-01-01
In this position paper, the European Society for Clinical Microbiology and Infectious Diseases, Study Group on Clinical Parasitology, summarizes main issues regarding the management of imported malaria cases. Malaria is a rare diagnosis in Europe, but it is a medical emergency. A travel history is the key to suspecting malaria and is mandatory in patients with fever. There are no specific clinical signs or symptoms of malaria although fever is seen in almost all non-immune patients. Migrants from malaria endemic areas may have few symptoms. Malaria diagnostics should be performed immediately on suspicion of malaria and the gold- standard is microscopy of Giemsa-stained thick and thin blood films. A Rapid Diagnostic Test (RDT) may be used as an initial screening tool, but does not replace urgent microscopy which should be done in parallel. Delays in microscopy, however, should not lead to delayed initiation of appropriate treatment. Patients diagnosed with malaria should usually be hospitalized. If outpatient management is preferred, as is the practice in some European centres, patients must usually be followed closely (at least daily) until clinical and parasitological cure. Treatment of uncomplicated Plasmodium falciparum malaria is either with oral artemisinin combination therapy (ACT) or with the combination atovaquone/proguanil. Two forms of ACT are available in Europe: artemether/lumefantrine and dihydroartemisinin/piperaquine. ACT is also effective against Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and Plasmodium knowlesi, but these species can be treated with chloroquine. Treatment of persistent liver forms in P. vivax and P. ovale with primaquine is indicated after excluding glucose 6 phosphate dehydrogenase deficiency. There are modified schedules and drug options for the treatment of malaria in special patient groups, such as children and pregnant women. The potential for drug interactions and the role of food in the absorption of anti-malarials are important considerations in the choice of treatment. Complicated malaria is treated with intravenous artesunate resulting in a much more rapid decrease in parasite density compared to quinine. Patients treated with intravenous artesunate should be closely monitored for haemolysis for four weeks after treatment. There is a concern in some countries about the lack of artesunate produced according to Good Manufacturing Practice (GMP). PMID:22985344
2013-01-01
Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector regardless of its nutrional status upon emergence. The data suggest that small-sized An. gambiae, therefore, would contribute little to malaria transmission, whereas this size effect would not affect An. stephensi. PMID:24326030
Avian Plasmodium in Eastern Austrian mosquitoes.
Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter
2017-09-29
Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results are nonetheless valuable in providing an overview of avian Plasmodium species and lineages present in Austria.
de Oliveira, Elaine Cristina; dos Santos, Emerson Soares; Zeilhofer, Peter; Souza-Santos, Reinaldo; Atanaka-Santos, Marina
2013-11-15
In Brazil, 99% of the cases of malaria are concentrated in the Amazon region, with high level of transmission. The objectives of the study were to use geographic information systems (GIS) analysis and logistic regression as a tool to identify and analyse the relative likelihood and its socio-environmental determinants of malaria infection in the Vale do Amanhecer rural settlement, Brazil. A GIS database of georeferenced malaria cases, recorded in 2005, and multiple explanatory data layers was built, based on a multispectral Landsat 5 TM image, digital map of the settlement blocks and a SRTM digital elevation model. Satellite imagery was used to map the spatial patterns of land use and cover (LUC) and to derive spectral indices of vegetation density (NDVI) and soil/vegetation humidity (VSHI). An Euclidian distance operator was applied to measure proximity of domiciles to potential mosquito breeding habitats and gold mining areas. The malaria risk model was generated by multiple logistic regression, in which environmental factors were considered as independent variables and the number of cases, binarized by a threshold value was the dependent variable. Out of a total of 336 cases of malaria, 133 positive slides were from inhabitants at Road 08, which corresponds to 37.60% of the notifications. The southern region of the settlement presented 276 cases and a greater number of domiciles in which more than ten cases/home were notified. From these, 102 (30.36%) cases were caused by Plasmodium falciparum and 174 (51.79%) cases by Plasmodium vivax. Malaria risk is the highest in the south of the settlement, associated with proximity to gold mining sites, intense land use, high levels of soil/vegetation humidity and low vegetation density. Mid-resolution, remote sensing data and GIS-derived distance measures can be successfully combined with digital maps of the housing location of (non-) infected inhabitants to predict relative likelihood of disease infection through the analysis by logistic regression. Obtained findings on the relation between malaria cases and environmental factors should be applied in the future for land use planning in rural settlements in the Southern Amazon to minimize risks of disease transmission.
T-cell-dependent immunity and thrombocytopenia in rats infected with Plasmodium chabaudi.
Watier, H; Verwaerde, C; Landau, I; Werner, E; Fontaine, J; Capron, A; Auriault, C
1992-01-01
Normal, splenectomized, and athymic Fischer rats were infected with Plasmodium chabaudi. In normal rat infections, acute-phase infection resolved rapidly and completely. In splenectomized rats, infection resulted in high parasitemia and ultimately death. In nude rats, parasite growth was reduced compared with normal rats, and a persistent parasitemia (between 20 and 45%) was observed for several months. Complete resolution of the infection was achieved after adoptive transfer of T lymphocytes, even when transfer occurred during the course of infection. These results indicated that an acquired, T-lymphocyte-dependent immunity was necessary for the complete recovery observed in normal rats. In normal rats, thrombocytopenia and splenomegaly occurred during infection. By contrast, in nude rats, both of these pathological manifestations were only observed after thymus grafting. Thrombocytopenia was also absent in the splenectomized animals. Despite an increase in platelet-associated immunoglobulin levels during the infection, thrombocytopenia was not transferred by injection of infected rat serum to normal recipients. It has been concluded that the nude rat infection can be regarded as a novel and useful model for studying the T-cell-dependent effector and pathological mechanisms and to investigate the anti-P. chabaudi immune response. PMID:1729178
Baird, Kevin
2015-01-01
Most of the tens of millions of clinical attacks caused by Plasmodium vivax each year likely originate from dormant liver forms called hypnozoites. We do not systematically attack that reservoir because the only drug available, primaquine, is poorly suited to doing so. Primaquine was licenced for anti-relapse therapy in 1952 and became available despite threatening patients having an inborn deficiency of glucose-6-phosphate dehydrogenase (G6PD) with acute haemolytic anaemia. The standard method for screening G6PD deficiency, the fluorescent spot test, has proved impractical where most malaria patients live. The blind administration of daily primaquine is dangerous, but so too are the relapses invited by withholding treatment. Absent G6PD screening, providers must choose between risking harm by the parasite or its treatment. How did this dilemma escape redress in science, clinical medicine and public health? This review offers critical historic reflection on the neglect of this serious problem in the chemotherapy of P. vivax. PMID:25943156
Beeson, James G; Ndungu, Francis; Persson, Kristina E M; Chesson, Joanne M; Kelly, Greg L; Uyoga, Sophie; Hallamore, Sandra L; Williams, Thomas N; Reeder, John C; Brown, Graham V; Marsh, Kevin
2007-07-01
During pregnancy, specific variants of Plasmodium falciparum-infected erythrocytes (IEs) can accumulate in the placenta through adhesion to chondroitin sulfate A (CSA) mediated by expression of PfEMP1 encoded by var2csa-type genes. Antibodies against these variants are associated with protection from maternal malaria. We evaluated antibodies among Kenyan, Papua New Guinean, and Malawian men and Kenyan children against two different CSA-binding P. falciparum isolates expressing var2csa variants. Specific IgG was present at significant levels among some men and children from each population, suggesting exposure to these variants is not exclusive to pregnancy. However, the level and prevalence of antibodies was substantially lower overall than exposed multigravidas. IgG-binding was specific and did not represent antibodies to subpopulations of non-CSA-binding IEs, and some sera inhibited IE adhesion to CSA. These findings have significant implications for understanding malaria pathogenesis and immunity and may be significant for understanding the acquisition of immunity to maternal malaria.
Crowther, Gregory J.; Hillesland, Heidi K.; Keyloun, Katelyn R.; Reid, Molly C.; Lafuente-Monasterio, Maria Jose; Ghidelli-Disse, Sonja; Leonard, Stephen E.; He, Panqing; Jones, Jackson C.; Krahn, Mallory M.; Mo, Jack S.; Dasari, Kartheek S.; Fox, Anna M. W.; Boesche, Markus; El Bakkouri, Majida; Rivas, Kasey L.; Leroy, Didier; Hui, Raymond; Drewes, Gerard; Maly, Dustin J.; Van Voorhis, Wesley C.; Ojo, Kayode K.
2016-01-01
In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds’ mechanisms of action—i.e., the specific molecular targets by which they kill the parasite—would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children’s Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 μM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible. PMID:26934697
Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.
To Live Like a Pig and Die Like a Dog: Environmental Implications for World War I in East Africa
2009-12-03
held decisive advantages including greater numbers of troops, more robust logistics, and unchallenged control of the sea lines of communications...The Center for Disease Control defines malaria as “a serious and sometimes fatal disease caused by a parasite that commonly infects a certain type of...malaria parasites that can infect humans, Plasmodium falciparum remains indigenous to east 32 Center for Disease Control, “Malaria Home > Frequently
Detection of Plasmodium sp. in capybara.
dos Santos, Leonilda Correia; Curotto, Sandra Mara Rotter; de Moraes, Wanderlei; Cubas, Zalmir Silvino; Costa-Nascimento, Maria de Jesus; de Barros Filho, Ivan Roque; Biondo, Alexander Welker; Kirchgatter, Karin
2009-07-07
In the present study, we have microscopically and molecularly surveyed blood samples from 11 captive capybaras (Hydrochaeris hydrochaeris) from the Sanctuary Zoo for Plasmodium sp. infection. One animal presented positive on blood smear by light microscopy. Polymerase chain reaction was carried out accordingly using a nested genus-specific protocol, which uses oligonucleotides from conserved sequences flanking a variable sequence region in the small subunit ribosomal RNA (ssrRNA) of all Plasmodium organisms. This revealed three positive animals. Products from two samples were purified and sequenced. The results showed less than 1% divergence between the two capybara sequences. When compared with GenBank sequences, a 55% similarity was obtained to Toxoplasma gondii and a higher similarity (73-77.2%) was found to ssrRNAs from Plasmodium species that infect reptile, avian, rodents, and human beings. The most similar Plasmodium sequence was from Plasmodium mexicanum that infects lizards of North America, where around 78% identity was found. This work is the first report of Plasmodium in capybaras, and due to the low similarity with other Plasmodium species, we suggest it is a new species, which, in the future could be denominated "Plasmodium hydrochaeri".
Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus.
Vallejo, Andrés F; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R; Herrera, Sócrates; Arévalo-Herrera, Myriam
2016-06-01
Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated by microscopy; 3) host cellular immune response did not appear to significantly affect mosquito infectivity; and 4) no statistically significant difference was observed in transmission between mosquitoes directly feeding on humans and artificial membrane feeding assays.
Clinical Evaluation of a Loop-Mediated Amplification Kit for Diagnosis of Imported Malaria
Polley, Spencer D.; González, Iveth J.; Mohamed, Deqa; Daly, Rosemarie; Bowers, Kathy; Watson, Julie; Mewse, Emma; Armstrong, Margaret; Gray, Christen; Perkins, Mark D.; Bell, David; Kanda, Hidetoshi; Tomita, Norihiro; Kubota, Yutaka; Mori, Yasuyoshi; Chiodini, Peter L.; Sutherland, Colin J.
2013-01-01
Background. Diagnosis of malaria relies on parasite detection by microscopy or antigen detection; both fail to detect low-density infections. New tests providing rapid, sensitive diagnosis with minimal need for training would enhance both malaria diagnosis and malaria control activities. We determined the diagnostic accuracy of a new loop-mediated amplification (LAMP) kit in febrile returned travelers. Methods. The kit was evaluated in sequential blood samples from returned travelers sent for pathogen testing to a specialist parasitology laboratory. Microscopy was performed, and then malaria LAMP was performed using Plasmodium genus and Plasmodium falciparum–specific tests in parallel. Nested polymerase chain reaction (PCR) was performed on all samples as the reference standard. Primary outcome measures for diagnostic accuracy were sensitivity and specificity of LAMP results, compared with those of nested PCR. Results. A total of 705 samples were tested in the primary analysis. Sensitivity and specificity were 98.4% and 98.1%, respectively, for the LAMP P. falciparum primers and 97.0% and 99.2%, respectively, for the Plasmodium genus primers. Post hoc repeat PCR analysis of all 15 tests with discrepant results resolved 4 results in favor of LAMP, suggesting that the primary analysis had underestimated diagnostic accuracy. Conclusions. Malaria LAMP had a diagnostic accuracy similar to that of nested PCR, with a greatly reduced time to result, and was superior to expert microscopy. PMID:23633403
Detecting the antimalarial artemisinin in plant extracts using near-infrared spectroscopy
USDA-ARS?s Scientific Manuscript database
The antimalarial artemisinin is produced by Artemisia annua L and can be used to kill the protozoan parasite Plasmodium, which is spread by mosquitoes. Artemisinin is extracted from these plants through tea preparation. The artemisinin content of the tea varies depending on how much artemisinin was ...
Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P
2016-08-02
Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.
Basic features of slime mould motility
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro
2015-03-01
The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...
Yapi, Richard B.; Hürlimann, Eveline; Houngbedji, Clarisse A.; Ndri, Prisca B.; Silué, Kigbafori D.; Soro, Gotianwa; Kouamé, Ferdinand N.; Vounatsou, Penelope; Fürst, Thomas; N’Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2014-01-01
Background Helminth infection and malaria remain major causes of ill-health in the tropics and subtropics. There are several shared risk factors (e.g., poverty), and hence, helminth infection and malaria overlap geographically and temporally. However, the extent and consequences of helminth-Plasmodium co-infection at different spatial scales are poorly understood. Methodology This study was conducted in 92 schools across Côte d’Ivoire during the dry season, from November 2011 to February 2012. School children provided blood samples for detection of Plasmodium infection, stool samples for diagnosis of soil-transmitted helminth (STH) and Schistosoma mansoni infections, and urine samples for appraisal of Schistosoma haematobium infection. A questionnaire was administered to obtain demographic, socioeconomic, and behavioral data. Multinomial regression models were utilized to determine risk factors for STH-Plasmodium and Schistosoma-Plasmodium co-infection. Principal Findings Complete parasitological and questionnaire data were available for 5,104 children aged 5-16 years. 26.2% of the children were infected with any helminth species, whilst the prevalence of Plasmodium infection was 63.3%. STH-Plasmodium co-infection was detected in 13.5% and Schistosoma-Plasmodium in 5.6% of the children. Multinomial regression analysis revealed that boys, children aged 10 years and above, and activities involving close contact to water were significantly and positively associated with STH-Plasmodium co-infection. Boys, wells as source of drinking water, and water contact were significantly and positively associated with Schistosoma-Plasmodium co-infection. Access to latrines, deworming, higher socioeconomic status, and living in urban settings were negatively associated with STH-Plasmodium co-infection; whilst use of deworming drugs and access to modern latrines were negatively associated with Schistosoma-Plasmodium co-infection. Conclusions/Significance More than 60% of the school children surveyed were infected with Plasmodium across Côte d’Ivoire, and about one out of six had a helminth-Plasmodium co-infection. Our findings provide a rationale to combine control interventions that simultaneously aim at helminthiases and malaria. PMID:24901333
Intercohort density dependence drives brown trout habitat selection
NASA Astrophysics Data System (ADS)
Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana
2013-01-01
Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat selection.
Jiménez, Alfons; Nhabomba, Augusto; Casas-Vila, Núria; Puyol, Laura; Campo, Joseph J.; Manaca, Maria Nelia; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Bardají, Azucena; Angov, Evelina; Dutta, Sheetij; Chitnis, Chetan E.; Alonso, Pedro L.; Gascón, Joaquim; Dobaño, Carlota
2013-01-01
Background Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. Methods A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. Results Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. Conclusions Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures. PMID:23967347
Ellis, Vincenzo A; Medeiros, Matthew C I; Collins, Michael D; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E
2017-01-01
Parasite prevalence is thought to be positively related to host population density owing to enhanced contagion. However, the relationship between prevalence and local abundance of multiple host species is underexplored. We surveyed birds and their haemosporidian parasites (genera Plasmodium and Haemoproteus) at multiple sites across eastern North America to test whether the prevalence of these parasites in a host species at a particular site is related to that host's local abundance. Prevalence was positively related to host abundance within most sites, although the effect was stronger and more consistent for Plasmodium than for Haemoproteus. In contrast, prevalence was not related to variation in the abundance of most individual host species among sites across the region. These results suggest that parasite prevalence partly reflects the relative abundances of host species in local assemblages. However, three nonnative host species had low prevalence despite being relatively abundant at one site, as predicted by the enemy release hypothesis.
Ansari, Hifzur Rahman; Templeton, Thomas J; Subudhi, Amit Kumar; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C; Benavente, Ernest Diez; Clark, Taane G; Sutherland, Colin J; Barnwell, John W; Culleton, Richard; Cao, Jun; Pain, Arnab
2016-10-01
Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tiono, Alfred B; Ouédraogo, Alphonse; Diarra, Amidou; Coulibaly, Sam; Soulama, Issiaka; Konaté, Amadou T; Barry, Aïssata; Mukhopadhyay, Amitava; Sirima, Sodiomon B; Hamed, Kamal
2014-01-27
Rapid diagnostic tests (RDTs) are immune chromatographic tests targeting antigens of one or more Plasmodium species and offer the potential to extend accurate malaria diagnosis in endemic areas. In this study, the performance of Plasmodium falciparum-specific histidine-rich protein-2 (PfHRP-2) RDT in the detection of asymptomatic carriers from a hyperendemic region of Burkina Faso was compared with microscopy to gain further insight on its relevance in community-based interventions. The performance of HRP-2 test was evaluated in terms of sensitivity, specificity, positive and negative predictive values, discordant values, likelihood ratios, accuracy, and precision using microscopy as the 'gold standard'. This analysis was carried out in a controlled, parallel, cluster-randomized (18 clusters; 1:1) study in children and adults. The effect of systematic treatment of P. falciparum asymptomatic carriers during three consecutive monthly community screening campaigns on the incidence of symptomatic malaria episodes over a 12-month period was compared with no treatment of asymptomatic carriers. Sensitivity of HRP-2 test in asymptomatic carriers was higher in campaign 1 (92.4%) when compared to campaign 2 (84.0%) and campaign 3 (77.8%). The sensitivity of HRP-2 test increased as parasite density increased across all the age groups. Highest sensitivity (≥97.0%) was recorded at parasite densities of 1,000-4,999/μl, except for children aged 10 to 14 years. The specificity of HRP-2 test was comparable across age groups and highest in campaign 3 (95.9%). The negative predictive values were high across the three campaigns (≥92.7%) while the positive predictive values ranged from 23.2 to 73.8%. False-positive and false-negative rates were high in campaign 1 and campaign 3, respectively. The performance of HRP-2 test in detecting asymptomatic carriers of P. falciparum varied by age and parasite density. Although the use of HRP-2 test is beneficial for the diagnosis of acute malaria, its low sensitivity in screening asymptomatic carriers may limit its utility in pre-elimination interventional settings. The use of a practical and more sensitive test such as loop-mediated isothermal amplification in combination with a cost effective HRP-2 test may be worth exploring in such settings.
Effect of L-arginine on the growth of Plasmodium falciparum and immune modulation of host cells.
Awasthi, Vikky; Chauhan, Rubika; Chattopadhyay, Debprasad; Das, Jyoti
2017-01-01
Malaria is a life-threatening disease caused by Plasmodium parasites. The life-cycle of Plasmodium species involves several stages both in mosquito and the vertebrate host. In the erythrocytic stage, Plasmodium resides inside the red blood cells (RBCs), where it meets most of its nutritional requirement by degrad- ing host's haemoglobin. L-arginine is required for growth and division of cells. The present study was aimed to demonstrate the effect of supplementation of different concentrations of L-arginine and L-citrulline on the growth of parasite, and effect of the culture supernatant on the host's peripheral blood mononuclear cells (PBMCs). To examine the effect of supplementation of L-arginine and L-citrulline, Plasmodium falciparum (3D7 strain) was cultured in RPMI 1640, L-arginine deficient RPMI 1640, and in different concentrations of L-arginine, and L-citrulline supplemented in arginine deficient RPMI 1640 medium. To have a holistic view of in vivo cell activation, the PBMCs isolated from healthy human host were cultured in the supernatant collected from P. falciparum culture. Growth of the parasite was greatly enhanced in L-arginine supplemented media and was found to be concentration dependent. However, parasite growth was compromised in L-citrulline supplemented and L-arginine deficient media. The supernatant collected from L-arginine supplemented parasite media (sArg) showed increased FOXP3 and interleukin-10 (IL-10) expression as compared to the supernatant collected from L-citrulline supple- mented parasite media (sCit). The in vitro culture results showed, decreased parasite growth, and decreased expression of programmed cell death-1 (PD-1) (a coinhibitory molecule) and IL-10 in the L-citrulline supplemented media as compared to L-arginine supplemented media. Hence, it was concluded that L-citrulline supplementation would be a better alternative than L-arginine to inhibit the parasite growth.
Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes.
Lalubin, Fabrice; Delédevant, Aline; Glaizot, Olivier; Christe, Philippe
2014-07-01
In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
LaMonte, Gregory; Lim, Michelle Yi-Xiu; Wree, Melanie; Reimer, Christin; Nachon, Marie; Corey, Victoria; Gedeck, Peter; Plouffe, David; Du, Alan; Figueroa, Nelissa; Yeung, Bryan; Bifani, Pablo; Winzeler, Elizabeth A
2016-07-05
Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage. Copyright © 2016 LaMonte et al.
Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha
2018-02-01
Understanding the pathophysiology and associated host parasite interactions of the malaria infection is the prerequisite for developing effective prevention and treatment strategies. The exact mechanism underlying malaria associated ineffective and dyserythropoiesis is not yet fully understood. Being an important protein, haemoglobin serves as the main amino acid reservoir available to the intra-erythrocytic plasmodium. It is important to check the expression profiling of globin genes which may help us to understand host parasite interactions and its potential contribution to both infection and disease. Here, an in-vitro culture system was used to study the effect of different doses of Plasmodium falciparum on haematopoietic stem cell expansion, differentiation and expression of globin genes. Upon exposure to the different doses of P. falciparum parasites of strains 3D7, Dd2 and RKL9 (intact and lysed form) at different stages of erythroid development, cells demonstrated suppression in growth and differentiation. At almost all stages of erythroid development upon parasite exposure, the γ globin gene was found to be downregulated and the α/β as well as α/non- α globin mRNA ratios in late stage erythroid cells were found to be reduced (p < .01) compared to the untreated controls. The imbalance in globin chain expression might be considered as one of the factors involved in malaria associated inappropriate erythropoietic responses. Copyright © 2018 Elsevier Inc. All rights reserved.
Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.
Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina
2015-12-08
Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2018-03-21
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Plasmodium spp. in raptors on the Eurasian-African migration route.
Paperna, I; Yosef, R; Landau, I
2007-12-01
Examination of blood smears obtained from raptors trapped while on migration at Eilat, Israel, demonstrated Plasmodium infection in Accipiter brevipes and Buteo buteo. The following species are described, from A. brevipes: Plasmodium alloelongatum n. sp., P. accipiteris n. sp. and from B. buteo: P. buteonis n. sp. and Plasmodium sp. for which we lack sufficient data for adequate species description. Overall prevalence of infection with Plasmodium spp. was very low: among 38 examined A. brevipes 5% and among 56 B. buteo 3.6%.
Hamid, Muzamil M Abdel; Mohammed, Sara B; El Hassan, Ibrahim M
2013-02-01
Characterization of Plasmodium falciparum diversity is commonly achieved by amplification of the polymorphic regions of the merozoite surface proteins 1 (MSP1) and 2 (MSP2) genes. The present study aimed to determine the allelic variants distribution of MSP1 and MSP2 and multiplicity of infection in P. falciparum field isolates from Kosti, central Sudan, an area characterized by seasonal malaria transmission. Total 121 samples (N = 121) were collected during a cross-sectional survey between March and April 2003. DNA was extracted and MSP1 and MSP2 polymorphic loci were genotyped. The total number of alleles identified in MSP1 block 2 was 11, while 16 alleles were observed in MSP2 block 3. In MSP1, RO33 was found to be the predominant allelic type, carried alone or in combination with MAD20 and K1 types, whereas FC27 family was the most prevalent in MSP2. Sixty two percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 1.93 (CI 95% 1.66-2.20). Age correlated with parasite density (P = 0.017). In addition, a positive correlation was observed between parasite densities and the number of alleles (P = 0.022). Genetic diversity in P. falciparum field isolates in central Sudan was high and consisted of multiple clones.
Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2015-05-01
Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.
USDA-ARS?s Scientific Manuscript database
Recent reports of global declines in pollinator species imply an urgent need to assess native pollinator population sizes and density dependent benefits for linked plants. Here, we estimated effective population sizes (Ne) of four native bumblebee species, Bombus balteatus, B. flavifrons, B. bifariu...
2014-01-01
A structure-guided design approach using a homology model of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was used to improve the potency of a series of imidazopyridazine inhibitors as potential antimalarial agents. This resulted in high affinity compounds with PfCDPK1 enzyme IC50 values less than 10 nM and in vitroP. falciparum antiparasite EC50 values down to 12 nM, although these compounds did not have suitable ADME properties to show in vivo efficacy in a mouse model. Structural modifications designed to address the ADME issues, in particular permeability, were initially accompanied by losses in antiparasite potency, but further optimization allowed a good balance in the compound profile to be achieved. Upon testing in vivo in a murine model of efficacy against malaria, high levels of compound exposure relative to their in vitro activities were achieved, and the modest efficacy that resulted raises questions about the level of effect that is achievable through the targeting of PfCDPK1. PMID:24689770
Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian
2010-10-01
Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.
Density-dependent productivity in a colonial vulture at two spatial scales.
Fernández-Bellon, Darío; Cortés-Avizanda, Ainara; Arenas, Rafael; Donázar, José Antonio
2016-02-01
Understanding how density dependence modifies demographic parameters in long-lived vertebrates is a challenge for ecologists. Two alternative hypotheses have been used to explain the mechanisms behind density-dependent effects on breeding output: habitat heterogeneity and individual adjustment (also known as interference competition). A number of studies have highlighted the importance of habitat heterogeneity in density dependence in territorial species, but less information exists on demographic processes in colonial species. For these, we expect density-dependent mechanisms to operate at two spatial scales: colony and breeding unit. In this study, we used long-term data from a recovering population of Cinereous Vultures (Aegypius monachus) in southern Spain. We analyzed a long-term data set with information on 2162 breeding attempts at four colonies over a nine-year period (2002-2010) to evaluate environmental and population parameters influencing breeding output. Our results suggest that breeding productivity is subject to density-dependent processes at the colony and the nest site scale and is best explained by interference competition. Factors intrinsic to each colony, as well as environmental constraints linked to physiography and human presence, also play a role in regulatory processes. We detected the existence of a trade-off between the disadvantages of nesting too close to conspecifics and the benefits of coloniality. These could be mediated by the agonistic interactions between breeding pairs and the benefits derived from social sharing of information by breeding individuals. We propose that this trade-off may play a role in defining colony structure and may hold true for other colonial breeding bird species. Our findings also have important management implications for the conservation of this threatened species.
Daenen, S; Huiges, W; Modderman, E; Halie, M R
1993-01-01
Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows that the cellular buoyant density increases slightly with up to 0.008 g/ml during the S-phase, at least in cryo-preserved cells used in this study. This contrasts with the generally accepted belief that S-phase cells have a lower or constant buoyant density. A practical implication is that separation of cell (sub)populations based on differences in buoyant density could be flawed to the extent that these populations contain S-phase cells.
Vaccines against malaria-still a long way to go.
Matuschewski, Kai
2017-08-01
Several species of Plasmodium cause a broad spectrum of human disease that range from nausea and fever to severe anemia, cerebral malaria, and multiorgan failure. In malaria-endemic countries, continuous exposure to Plasmodium sporozoite inoculations and subsequent blood infections elicit only partial and short-lived immunity, which gradually develops over many years of parasite exposure and multiple clinical episodes. The ambitious goal of malaria vaccinology over the past 70 years has been to develop an immunization strategy that mounts protection superior to naturally acquired immunity. Herein, three principal concepts in evidence-based malaria vaccine development are compared. Feasible leads are typically stand-alone subunit vaccine approaches that block Plasmodium parasite life cycle progression or parasite/host interactions, and they constitute the majority of candidates in preclinical research and early clinical testing. Integrated approaches incorporate malaria antigen(s) into licensed or emerging pediatric vaccine formulations. This strategy can complement the malaria control portfolio even if the antimalarial component is only partially effective and has led to the development of the only candidate vaccine to date, namely RTS,S-AS01. Experimental whole parasite vaccine approaches have been repeatedly shown to elicit sterile and lasting protection against identical parasite strains, but mass production, proof of broad protection against different parasite strains, and routes of vaccine delivery remain significant translational road blocks. Global access to an effective and affordable malaria vaccine will critically depend on innovative translational research that builds on a better molecular understanding of Plasmodium biology and host immunity. © 2017 Federation of European Biochemical Societies.
Chloroquine mediated modulation of Anopheles gambiae gene expression.
Abrantes, Patrícia; Dimopoulos, George; Grosso, Ana Rita; do Rosário, Virgílio E; Silveira, Henrique
2008-07-02
Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.
Ouédraogo, André Lin; Eckhoff, Philip A; Luty, Adrian J F; Roeffen, Will; Sauerwein, Robert W; Bousema, Teun; Wenger, Edward A
2018-05-01
Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001) but not submicroscopic (p = 0.937) gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the human infectious reservoir for malaria.
Fransisca, Liony; Kusnanto, Josef Hari; Satoto, Tri Baskoro T; Sebayang, Boni; Supriyanto; Andriyan, Eko; Bangs, Michael J
2015-03-05
The World Health Organization recommends malaria be diagnosed by standard microscopy or rapid diagnostic test (RDT) before treatment. RDTs have been used with greater frequency in the absence of matching blood slide confirmation in the majority of RDT reported cases in Mimika Regency, Papua Province, Indonesia. Given the importance of RDT in current health system as point-of-care tool, careful validation of RDT product performance for providing accurate malaria diagnosis is critical. Plasmotec Malaria-3 (XW-P07) performance was evaluated by comparing it with paired blood film microscopy and quantitative real-time PCR (qPCR). Consecutive whole blood samples were derived from one clinic in Mimika as part of routine passive malaria case detection. RDT results were read by two trained technicians and interpreted by consensus. Expert microscopic examination of blood slides was cross-checked by observer-blinded second reader and a third examiner if discordant between examinations. qPCR was used as the 'gold standard', followed by microscopy for the outcome/disease variable. Comparison analysis included sensitivity (Sn), specificity (Sp), positive and negative predictive values (PPV & NPV), and other diagnostic screening performance measures for detecting Plasmodium falciparum and Plasmodium vivax infections. Overall malaria positive samples from qPCR was 42.2% (175/415 samples); and from matching blood slides 40.5% (168/415) of which those infections with relatively low parasite densities ≤100/μl blood was 5.7% of P. falciparum and 16.5% of P. vivax samples examined. Overall RDT performance when compared with microscopy for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:72.9%, Sp:99.1%, PPV:95.4%, NPV:93.4%, Kappa:0.79. Overall RDT performance when compared with qPCR for detecting P. falciparum was Sn:92%, Sp:96.6%, PPV:88%, NPV:97.8%, Kappa:0.87; and for P. vivax Sn:66%, Sp:99.1%, PPV:95.4%, NPV:90.9%, Kappa:0.73. Plasmotec Malaria-3 test showed good overall performance scores in precision for detecting P. falciparum, but lower values regarding sensitivity and negative likelihood ratio for detecting P. vivax, a finding partly associated with greater frequency of lower density P. vivax infections compared to P. falciparum in this study. In particular, the negative likelihood ratio (>0.1) for P. vivax detection indicates RDT lacked sufficient discriminating exclusion power falling below general acceptance criteria.
Malaria and helminth co-infection and nutritional status of febrile patients in Southern Ethiopia.
Degarege, Abraham; Animut, Abebe; Legesse, Mengistu; Medhin, Girmay; Erko, Berhanu
2014-02-01
Because the mechanisms by which Plasmodium and helminth parasites affect nutritional status are different, these parasites likely have additive effects when they co-exist in a host. This study aimed to compare the prevalence of undernutrition in patients infected with either Plasmodium or helminths and those co-infected with the two types of parasites. Acute febrile patients suspected of having malaria who attended the outpatient clinic at Dore Bafeno Health Center between December 2010 and February 2011 were examined for Plasmodium parasites using Giemsa-stained thick and thin blood smears and for helminths using the thick Kato-Katz method. Nutritional status was determined using anthropometric indices generated from height and weight measurements. Of the 702 patients examined, 34.5% were infected with helminths alone, 12.3% were infected with Plasmodium alone, and 19.4% co-infected with Plasmodium and intestinal helminths. Out of the patients examined, 44.9% were undernourished. The prevalence of undernutrition was not significantly different between those patients not infected with Plasmodium or helminth species and those infected with Plasmodium or helminth species. The differences in the odds of undernutrition were also not significant between patients who were co-infected with different Plasmodium and helminth species and those with single infections with Plasmodium or helminth species in our multivariable logistic regression model adjusted for the confounding effects of age and sex. The prevalence of undernutrition was comparable in patients infected with Plasmodium or helminths alone and those co-infected with Plasmodium and helminths in Dore Bafeno Health Center, Southern Ethiopia. However, further studies are needed in areas of intense transmission where both parasites are endemic to elucidate whether the impact of Plasmodium and helminth co-infection on undernutrition is additive or multiplicative. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
'2TM proteins': an antigenically diverse superfamily with variable functions and export pathways.
Kaur, Jasweer; Hora, Rachna
2018-01-01
Malaria is a disease that affects millions of people annually. An intracellular habitat and lack of protein synthesizing machinery in erythrocytes pose numerous difficulties for survival of the human pathogen Plasmodium falciparum . The parasite refurbishes the infected red blood cell (iRBC) by synthesis and export of several proteins in an attempt to suffice its metabolic needs and evade the host immune response. Immune evasion is largely mediated by surface display of highly polymorphic protein families known as variable surface antigens. These include the two trans-membrane (2TM) superfamily constituted by multicopy repetitive interspersed family (RIFINs), subtelomeric variable open reading frame (STEVORs) and Plasmodium falciparum Maurer's cleft two trans-membrane proteins present only in P. falciparum and some simian infecting Plasmodium species. Their hypervariable region flanked by 2TM domains exposed on the iRBC surface is believed to generate antigenic diversity. Though historically named "2TM superfamily," several A-type RIFINs and some STEVORs assume one trans-membrane topology. RIFINs and STEVORs share varied functions in different parasite life cycle stages like rosetting, alteration of iRBC rigidity and immune evasion. Additionally, a member of the STEVOR family has been implicated in merozoite invasion. Differential expression of these families in laboratory strains and clinical isolates propose them to be important for host cell survival and defense. The role of RIFINs in modulation of host immune response and presence of protective antibodies against these surface exposed molecules in patient sera highlights them as attractive targets of antimalarial therapies and vaccines. 2TM proteins are Plasmodium export elements positive, and several of these are exported to the infected erythrocyte surface after exiting through the classical secretory pathway within parasites. Cleaved and modified proteins are trafficked after packaging in vesicles to reach Maurer's clefts, while information regarding delivery to the iRBC surface is sparse. Expression and export timing of the RIFIN and Plasmodium falciparum erythrocyte membrane protein1 families correspond to each other. Here, we have compiled and comprehended detailed information regarding orthologues, domain architecture, surface topology, functions and trafficking of members of the "2TM superfamily." Considering the large repertoire of proteins included in the 2TM superfamily and recent advances defining their function in malaria biology, a surge in research carried out on this important protein superfamily is likely.
Changes in cytokine production associated with acquired immunity to Plasmodium falciparum malaria
Rhee, M S M; Akanmori, B D; Waterfall, M; Riley, E M
2001-01-01
Individuals living in malaria-endemic areas eventually develop clinical immunity to Plasmodium falciparum. That is, they are able to limit blood parasite densities to extremely low levels and fail to show symptoms of infection. As the clinical symptoms of malaria infection are mediated in part by pro-inflammatory cytokines it is not clear whether the acquisition of clinical immunity is due simply to the development of antiparasitic mechanisms or whether the ability to regulate inflammatory cytokine production is also involved. We hypothesize that there is a correlation between risk of developing clinical malaria and the tendency to produce high levels of proinflammatory cytokines in response to malaria infection. In order to test this hypothesis, we have compared the ability of peripheral blood mononuclear cells from malaria-naive and malaria-exposed adult donors to proliferate and to secrete IFN-γ in response to P. falciparum schizont extract (PfSE). In order to determine how PfSE-induced IFN-γ production is regulated, we have also measured production of IL-12p40 and IL-10 from PfSE-stimulated PBMC and investigated the role of neutralizing antibody to IL-12 in modulating IFN-γ production. We find that cells from naive donors produce moderate amounts of IFN-γ in response to PfSE and that IFN-γ production is strongly IL-12 dependent. Cells from malaria-exposed donors living in an area of low malaria endemicity produce much higher levels of IFN-γ and this response is also at least partially IL-12 dependent. In complete contrast, cells from donors living in an area of very high endemicity produce minimal amounts of IFN-γ. No significant differences were detected between the groups in IL-10 production, suggesting that this cytokine does not play a major role in regulating malaria-induced IFN-γ production. The data from this study thus strongly support the hypothesis that down-regulation of inflammatory cytokine production may be a component of acquired clinical immunity to malaria but the mechanism by which this is achieved remains to be elucidated. PMID:11737069
Das, Smita; Peck, Roger B; Barney, Rebecca; Jang, Ihn Kyung; Kahn, Maria; Zhu, Meilin; Domingo, Gonzalo J
2018-03-17
As malaria endemic countries shift from control to elimination, the proportion of low density Plasmodium falciparum infections increases. Current field diagnostic tools, such as microscopy and rapid diagnostic tests (RDT), with detection limits of approximately 100-200 parasites/µL (p/µL) and 800-1000 pg/mL histidine-rich protein 2 (HRP2), respectively, are unable to detect these infections. A novel ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT) was evaluated in laboratory conditions to define the test's performance against recombinant HRP2 and native cultured parasites. The uRDT detected dilutions of P. falciparum recombinant GST-W2 and FliS-W2, as well as cultured W2 and ITG, diluted in whole blood down to 10-40 pg/mL HRP2, depending on the protein tested. uRDT specificity was 100% against 123 archived frozen whole blood samples. Rapid test cross-reactivity with HRP3 was investigated using pfhrp2 gene deletion strains D10 and Dd2, pfhrp3 gene deletion strain HB3, and controls pfhrp2 and pfhrp3 double deletion strain 3BD5 and pfhrp2 and pfhrp3 competent strain ITG. The commercial Standard Diagnostics, Inc. BIOLINE Malaria Ag P.f RDT (SD-RDT) and uRDT detected pfhrp2 positive strains down to 49 and 3.13 p/µL, respectively. The pfhrp2 deletion strains were detected down to 98 p/µL by both tests. The performance of the uRDT was variable depending on the protein, but overall showed a greater than 10-fold improvement over the SD-RDT. The uRDT also exhibited excellent specificity and showed the same cross-reactivity with HRP3 as the SD-RDT. Together, the results support the uRDT as a more sensitive HRP2 test that could be a potentially effective tool in elimination campaigns. Further clinical evaluations for this purpose are merited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov
We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less
Jambou, Ronan; Combes, Valery; Jambou, Marie-Jose; Weksler, Babeth B.; Couraud, Pierre-Olivier; Grau, Georges E.
2010-01-01
Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria. PMID:20686652
Bifurcation in the chemotactic behavior of Physarum plasmodium
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro; Gunji, Yukio-Pegio; Sato, Hiroshi; Tsubakino, Hiroto
2017-07-01
The plasmodium of true slime mold Physarum polycephalum is a unicellular and multinuclear giant amoeba. Since the cellular organism has some computational abilities, it is attracting much attention in the field of information science. However, previous studies have mainly focused on the optimization behavior of the plasmodium for a single-modality stimulus, and there are few studies on how the organism adapts to multi-modal stimuli. We stimulated the plasmodium with mixture of attractant and repellent stimuli, and we observed bifurcation in the chemotactic behavior of the plasmodium.
Rovira-Vallbona, Eduard; Contreras-Mancilla, Juan José; Ramirez, Roberson; Guzmán-Guzmán, Mitchel; Carrasco-Escobar, Gabriel; Llanos-Cuentas, Alejandro; Vinetz, Joseph M; Gamboa, Dionicia; Rosanas-Urgell, Anna
2017-07-01
Malaria transmission requires that Anopheles mosquitoes ingest Plasmodium gametocyte stages circulating in the human bloodstream. In the context of malaria elimination, understanding the epidemiology of gametocytes relative to all Plasmodium infections and the contribution of asymptomatic and sub-microscopic parasite carriers to the gametocyte reservoir is necessary, especially in low endemic settings with predominance of P.vivax. A 13-month longitudinal study was conducted in two communities (n = 1935 individuals) of Loreto Department, Peru, with five active screenings for Plasmodium infections and gametocyte stages by quantitative real-time PCR (qPCR) and reverse transcription (RT)-qPCR, respectively. Parasite prevalence by qPCR was 7.2% for P.vivax (n = 520/7235; range by survey 6.0%-8.1%) and 3.2% for P.falciparum (n = 235/7235; range by survey 0.4%-7.7%). Sub-microscopic infections accounted for 73.5% of P.vivax (range by survey 60%-89%) and almost the totality of P.falciparum cases. Gametocytes were found in 28.4% P.vivax infections (range by survey 18.7%-34.1%), with a peak of 61.5% in one community at the start of the transmission season. About 59.8% of all P.vivax gametocyte carriers were asymptomatic and 31.9% were sub-microscopic. Age patterns for gametocyte prevalence paralleled asexual stage infections and peaked among >15-25 year old individuals. Asexual parasite density was found to be the strongest predictor for P.vivax gametocyte presence in longitudinal multivariate analysis (odds ratio 2.33 [95% confidence interval 1.96, 2.78]; P<0.001). Despite significant differences in seasonality patterns and P.vivax prevalence found at the local scale, sub-microscopic and asymptomatic infections predominate and contribute significantly to the gametocyte reservoir in different communities of the Peruvian Amazon. Control and elimination campaigns need sensitive tools to detect all infections that escape routine malaria surveillance, which may contribute to maintain transmission in the region.
Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M
2014-01-01
Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.
Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.
2014-01-01
Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452
An innovative tool for moving malaria PCR detection of parasite reservoir into the field
2013-01-01
Background To achieve the goal of malaria elimination in low transmission areas such as in Cambodia, new, inexpensive, high-throughput diagnostic tools for identifying very low parasite densities in asymptomatic carriers are required. This will enable a switch from passive to active malaria case detection in the field. Methods DNA extraction and real-time PCR assays were implemented in an “in-house” designed mobile laboratory allowing implementation of a robust, sensitive and rapid malaria diagnostic strategy in the field. This tool was employed in a survey organized in the context of the MalaResT project (NCT01663831). Results The real-time PCR screening and species identification assays were performed in the mobile laboratory between October and November 2012, in Rattanakiri Province, to screen approximately 5,000 individuals in less than four weeks and treat parasite carriers within 24–48 hours after sample collection. An average of 240 clinical samples (and 40 quality control samples) was tested every day, six/seven days per week. Some 97.7% of the results were available <24 hours after the collection. A total of 4.9% were positive for malaria. Plasmodium vivax was present in 61.1% of the positive samples, Plasmodium falciparum in 45.9%, Plasmodium malariae in 7.0% and Plasmodium ovale in 2.0%. Conclusions The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings. This will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information. Fast results will be of great help for staff in the field to track and treat asymptomatic parasitaemic cases. The concept of the mobile laboratory could be extended to other countries for the molecular detection of malaria or other pathogens, or to culture vivax parasites, which does not support long-time delay between sample collection and culture. PMID:24206649
Contreras-Mancilla, Juan José; Ramirez, Roberson; Guzmán-Guzmán, Mitchel; Carrasco-Escobar, Gabriel; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.
2017-01-01
Malaria transmission requires that Anopheles mosquitoes ingest Plasmodium gametocyte stages circulating in the human bloodstream. In the context of malaria elimination, understanding the epidemiology of gametocytes relative to all Plasmodium infections and the contribution of asymptomatic and sub-microscopic parasite carriers to the gametocyte reservoir is necessary, especially in low endemic settings with predominance of P.vivax. A 13-month longitudinal study was conducted in two communities (n = 1935 individuals) of Loreto Department, Peru, with five active screenings for Plasmodium infections and gametocyte stages by quantitative real-time PCR (qPCR) and reverse transcription (RT)-qPCR, respectively. Parasite prevalence by qPCR was 7.2% for P.vivax (n = 520/7235; range by survey 6.0%-8.1%) and 3.2% for P.falciparum (n = 235/7235; range by survey 0.4%-7.7%). Sub-microscopic infections accounted for 73.5% of P.vivax (range by survey 60%-89%) and almost the totality of P.falciparum cases. Gametocytes were found in 28.4% P.vivax infections (range by survey 18.7%-34.1%), with a peak of 61.5% in one community at the start of the transmission season. About 59.8% of all P.vivax gametocyte carriers were asymptomatic and 31.9% were sub-microscopic. Age patterns for gametocyte prevalence paralleled asexual stage infections and peaked among >15–25 year old individuals. Asexual parasite density was found to be the strongest predictor for P.vivax gametocyte presence in longitudinal multivariate analysis (odds ratio 2.33 [95% confidence interval 1.96, 2.78]; P<0.001). Despite significant differences in seasonality patterns and P.vivax prevalence found at the local scale, sub-microscopic and asymptomatic infections predominate and contribute significantly to the gametocyte reservoir in different communities of the Peruvian Amazon. Control and elimination campaigns need sensitive tools to detect all infections that escape routine malaria surveillance, which may contribute to maintain transmission in the region. PMID:28671944
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
Arnáez, Juan; Roa, Miguel A; Albert, Leticia; Cogollos, Rosario; Rubio, Jose M; Villares, Rebeca; Alarabe, Abdulkareem; Cervera, Aurea; López-Vélez, Rogelio
2010-01-01
In Europe, imported malarial cases occur in returning travelers and immigrants mostly from African countries. There have been an increasing number of cases in the past years in Spain. An analysis of all cases of malaria who attended at the Hospital of Mostoles in the Southwest of Madrid from 1995 to 2007 was performed. Clinical, epidemiological, laboratory, and parasitological findings were analyzed and compared between immigrants coming from endemic countries (recent immigrants) and children who traveled to endemic areas to visit friends and relatives (VFRs). Sixty cases of imported malaria were detected. Most of the cases (59 of 60) were acquired in sub-Saharan Africa. The most common species was Plasmodium falciparum (43 of 60). Microscopic examination was positive in 95%, and the polymerase chain reaction (PCR) for Plasmodium achieved additional diagnosis in seven cases. Fourteen cases were VFRs; none of them used appropriate malaria chemoprophylaxis. Fever and thrombocytopenia were significantly more common among VFRs. They also had significantly higher parasite density. Twelve cases were asymptomatic at the time of diagnosis; all of them were recent immigrants. VFRs account for a significant number of childhood malarial cases. These patients had not taken malaria chemoprophylaxis and malarial cases were more severe. VFR children are a high-risk group, and pretravel advice should underline the risk for malaria. Recent immigrants can be asymptomatic and parasitemias are lower. Therefore, a high index of suspicion is necessary, and PCR for Plasmodium should be performed in case of negative thick smears.
Clinical implications of asymptomatic Plasmodium falciparum infections in Malawi.
Buchwald, Andrea G; Sixpence, Alick; Chimenya, Mabvuto; Damson, Milius; Sorkin, John D; Wilson, Mark L; Seydel, Karl; Hochman, Sarah; Mathanga, Don P; Taylor, Terrie E; Laufer, Miriam K
2018-05-16
Asymptomatic Plasmodium falciparum infections are common in Malawi, however, the implications of these infections for the burden of malaria illness are unknown. Whether asymptomatic infections eventually progress to malaria illness, persist without causing symptoms, or clear spontaneously remains undetermined. We identified asymptomatic infections and evaluated the associations between persistent asymptomatic infections and malaria illness. Children and adults (N = 120) who presented at a health facility with uncomplicated malaria were followed monthly for two years. During follow-up visits, participants with malaria symptoms were tested and treated if positive. Samples from all visits were tested for parasites using both microscopy and PCR, and all malaria infections underwent genotyping. Cox frailty models were used to estimate the temporal association between asymptomatic infections and malaria illness episodes. Mixed models were used to estimate the odds of clinical symptoms associated with new versus persistent infections. Participants had a median follow-up time of 720 days. Asymptomatic infections were detected during 23% of visits. Persistent asymptomatic infections were associated with decreased risk of malaria illness in all ages (HR 0.50, p < 0.001). When asymptomatic infections preceded malaria illness, newly acquired infections were detected at 92% of subsequent clinical episodes, independent of presence of persistent infections. Malaria illness among children was more likely due to newly acquired infections (OR 1.4, 95%CI 1.3-1.5) than to persistent infections. Asymptomatic P. falciparum infections are associated with decreased incidence of malaria illness but do not protect against disease when new infection occurs.
Zoonotic Malaria – Global Overview and Research and Policy Needs
Ramasamy, Ranjan
2014-01-01
The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118
Gonzalez-Ceron, L; Rodriguez, M H; Santillan, F; Chavez, B; Nettel, J A; Hernandez-Avila, J E; Kain, K C
2001-07-01
Anopheles albimanus and An. pseudopunctipennis differ in their susceptibilities to Plasmodium vivax circumsporozoite phenotypes. An. pseudopunctipennis is susceptible to phenotype VK247 but almost refractory to VK210. In contrast, An. albimanus is almost refractory to VK247 but susceptible to VK210. To investigate the site in the mosquito and the parasite stage at which resistance mechanisms affect VK247 development in An. albimanus, parasite development was followed in a series of experiments in which both mosquitoes species were simultaneously infected with blood from patients. Parasite phenotype was determined in mature oocysts and salivary gland sporozoites by use of immunofluorescence and Western blot assays and/or gene identification. Ookinete maturation and their densities within the bloodmeal bolus were similar in both mosquito species. Ookinete densities on the internal midgut surface of An. albimanus were 4.7 times higher than those in An. pseudopunctipennis; however, the densities of developing oocysts on the external midgut surface were 6.12 times higher in the latter species. Electron microscopy observation of ookinetes in An. albimanus midgut epithelium indicated severe parasite damage. These results indicate that P. vivax VK247 parasites are destroyed at different parasite stages during migration in An. albimanus midguts. A portion, accumulated on the internal midgut surface, is probably destroyed by the mosquito's digestive enzymes and another portion is most likely destroyed by mosquito defense molecules within the midgut epithelium. A third group, reaching the external midgut surface, initiates oocyst development, but over 90% of them interrupt their development and die. The identification of mechanisms that participate in parasite destruction could provide new elements to construct transgenic mosquitoes resistant to malaria parasites. Copyright 2001 Academic Press.
Etoka-Beka, Mandingha Kosso; Ntoumi, Francine; Kombo, Michael; Deibert, Julia; Poulain, Pierre; Vouvoungui, Christevy; Kobawila, Simon Charles; Koukouikila-Koussounda, Felix
2016-12-01
To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever. © 2016 John Wiley & Sons Ltd.
Ayogu, E E; Ukwe, C V; Nna, E O
2016-01-01
Current malaria control strategies are based on early diagnosis and appropriate treatment of malaria cases. The study aimed at comparing the performance of blood film microscopy and rapid diagnostic test (RDT) in Plasmodium falciparum detection in patients ≥6 years of age. A total of 154 consecutive pyretic patients aged 6-62 years were enrolled, sampled, and tested for malaria using RDT (first response) and microscopy by Giemsa staining. Genomic DNA was extracted after saponin hemolysis and nested polymerase chain reaction (PCR) was used to detect Plasmodium falciparum. The endpoints were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Of the 154 patients, 80 (51.9%) had fever of ≥37.5°C. 106 (68.8%) were positive by First response® , 132 (85.7%) by microscopy, and 121 (78.6%) by PCR. The sensitivity, specificity, PPV, and NPV of first response compared to microscopic method were 82.2%, 100.0%, 100.0%, and 34.3%, respectively, while it was 75.4%, 75.0%, 95.3%, and 31.2%, respectively, when compared to PCR. The sensitivity, specificity, PPV, and NPV of the microscopic method compared to PCR were 92.3%, 50.0%, 90.91%, and 54.5%, respectively. There was a significant difference in the performance of RDT and film microscopy methods (P ≤ 0.05). Microscopy performed better and is more reliable than first response (RDT) in areas with low parasite density among patients ≥6 years of age. Rapid diagnostic tests could be useful in aareas with high parasite density as an alternative to smear microscopy.
[Iditification of five imported cases of Plasmodium ovale wallikeri infection in Zhejiang Province].
Zhang, Ling-ling; Ruan, Wei; Chen, Hua-liang; Lu, Qiao-yi; Yao, Li-nong
2014-10-01
To identify and analyze Plasmodium ovale wallikeri in 5 imported malaria cases, who were detected positive by microscopy and negative by conventional PCR. Epidemiological information and blood samples were collected from the five patients. The detection was conducted by microscopy, Rapid Diagnostic Test (RDT) and nested PCR with Plasmodium genus-specific, species-specific and Plasmodium ovale wallikeri-specific primers. The amplified products were sequenced and Blast analysis was performed on line in NCBI. The five patients returned from Africa, and all had a history of malaria. They were microscopically positive for Plasmodium sp., and two cases showed Pan positive RDT result. All blood samples were negative for four Plasmodium spp. by conventional nested PCR, but positive by nested PCR with Plasmodium ovale wallikeri-specific primers. Blast analysis showed that the amplified sequences of the five cases had complete homology with P. ovale wallikeri clone RSH10 18S ribosomal RNA gene (Accession No. KF219561.1). The five cases which classified as positive by microscopy while negative by conventional PCR have been confirmed as Plasmodium ovale wallikeri infection by nested PCR with P. ovale wallikeri-specific primers.
Plasmodium infection decreases fecundity and increases survival of mosquitoes.
Vézilier, J; Nicot, A; Gandon, S; Rivero, A
2012-10-07
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).
Sissoko, Mahamadou S.; van den Hoogen, Lotus L.; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z.; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W.; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K.
2015-01-01
Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km2 in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728
Wang, Jiuling; Zhang, Yue; Zhao, Yang O.; Li, Michelle W. M.; Zhang, Lili; Dragovic, Srdjan; Abraham, Nabil M.; Fikrig, Erol
2013-01-01
Malaria, a mosquito-borne disease caused by Plasmodium species, causes substantial morbidity and mortality throughout the world. Plasmodium sporozoites mature in oocysts formed in the mosquito gut wall and then invade the salivary glands, where they remain until transmitted to the vertebrate host during a mosquito bite. The Plasmodium circumsporozoite protein (CSP) binds to salivary glands and plays a role in the invasion of this organ by sporozoites. We identified an Anopheles salivary gland protein, named CSP-binding protein (CSPBP), that interacts with CSP. Downregulation of CSPBP in mosquito salivary glands inhibited invasion by Plasmodium organisms. In vivo bioassays showed that mosquitoes that were fed blood with CSPBP antibody displayed a 25% and 90% reduction in the parasite load in infected salivary glands 14 and 18 days after the blood meal, respectively. These results suggest that CSPBP is important for the infection of the mosquito salivary gland by Plasmodium organisms and that blocking CSPBP can interfere with the Plasmodium life cycle. PMID:23801601
NASA Astrophysics Data System (ADS)
Boyack, Rufus; Guo, Hao; Levin, K.
2015-03-01
Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])
Hodson, C N; Yu, Y; Plettner, E; Roitberg, B D
2016-12-01
Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1-allyloxy-4-propoxybenzene, 3c{3,6}) chosen for behavioural testing. An assay to evaluate the blood-host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c{3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood-host and probe less at the host odour. Thus, 3c{3,6} may be an effective repellent for the control of A. gambiae. © 2016 The Royal Entomological Society.
Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.
Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula
2017-09-01
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Valderrama-Aguirre, Augusto; Zúñiga-Soto, Evelin; Mariño-Ramírez, Leonardo; Moreno, Luz Ángela; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower (P ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of Pv200L as a subunit vaccine candidate. PMID:21292880
Sharma, Rahul; Sharma, Bhumika; Gupta, Ashish; Dhar, Suman Kumar
2018-05-01
Malaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported. Herein, we report the presence of a novel trafficking pathway in an apicomplexan, Plasmodium falciparum where a homologue of an Origin Recognition Complex 2 (Orc2) goes to the nucleus following its association with the ER. Our work highlights the unconventional role of ER in protein trafficking and reports for the first time an ORC homologue getting trafficked through such a pathway to the nucleus where it may be involved in DNA replication and other ancillary functions. Such trafficking pathways may have a profound impact on the cell biology of a malaria parasite and have significant implications in strategizing new antimalarials. Copyright © 2018 Elsevier B.V. All rights reserved.
2015-01-01
Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resistance. Whole genome sequencing of three resistant lines showed that each had acquired independent mutations in a P-type cation-transporter ATPase, PfATP4 (PF3D7_1211900), a protein implicated as the novel Plasmodium spp. target of another, structurally unrelated, class of antimalarials called the spiroindolones and characterized as an important sodium transporter of the cell. Similarly to the spiroindolones, GNF-Pf4492 blocks parasite transmission to mosquitoes and disrupts intracellular sodium homeostasis. Our data demonstrate that PfATP4 plays a critical role in cellular processes, can be inhibited by two distinct antimalarial pharmacophores, and supports the recent observations that PfATP4 is a critical antimalarial target. PMID:25322084
Patil, Aarti; Orjuela-Sánchez, Pamela; da Silva-Nunes, Mônica; Ferreira, Marcelo U.
2010-01-01
The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nonapeptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. PMID:20097310
Malmquist, Nicholas A.; Moss, Thomas A.; Mecheri, Salah; Scherf, Artur; Fuchter, Matthew J.
2012-01-01
Epigenetic factors such as histone methylation control the developmental progression of malaria parasites during the complex life cycle in the human host. We investigated Plasmodium falciparum histone lysine methyltransferases as a potential target class for the development of novel antimalarials. We synthesized a compound library based upon a known specific inhibitor (BIX-01294) of the human G9a histone methyltransferase. Two compounds, BIX-01294 and its derivative TM2-115, inhibited P. falciparum 3D7 parasites in culture with IC50 values of ∼100 nM, values at least 22-fold more potent than their apparent IC50 toward two human cell lines and one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day. Importantly, treatment of P. falciparum parasites in culture with BIX-01294 or TM2-115 resulted in significant reductions in histone H3K4me3 levels in a concentration-dependent and exposure time-dependent manner. Together, these results suggest that BIX-01294 and TM2-115 inhibit malaria parasite histone methyltransferases, resulting in rapid and irreversible parasite death. Our data position histone lysine methyltransferases as a previously unrecognized target class, and BIX-01294 as a promising lead compound, in a presently unexploited avenue for antimalarial drug discovery targeting multiple life-cycle stages. PMID:23011794
Bansal, Abhisheka; Singh, Shailja; More, Kunal R.; Hans, Dhiraj; Nangalia, Kuldeep; Yogavel, Manickam; Sharma, Amit; Chitnis, Chetan E.
2013-01-01
Calcium-dependent protein kinases (CDPKs) play important roles in the life cycle of Plasmodium falciparum and other apicomplexan parasites. CDPKs commonly have an N-terminal kinase domain (KD) and a C-terminal calmodulin-like domain (CamLD) with calcium-binding EF hands. The KD and CamLD are separated by a junction domain (JD). Previous studies on Plasmodium and Toxoplasma CDPKs suggest a role for the JD and CamLD in the regulation of kinase activity. Here, we provide direct evidence for the binding of the CamLD with the P3 region (Leu356 to Thr370) of the JD in the presence of calcium (Ca2+). Moreover, site-directed mutagenesis of conserved hydrophobic residues in the JD (F363A/I364A, L356A, and F350A) abrogates functional activity of PfCDPK1, demonstrating the importance of these residues in PfCDPK1 function. Modeling studies suggest that these residues play a role in interaction of the CamLD with the JD. The P3 peptide, which specifically inhibits the functional activity of PfCDPK1, blocks microneme discharge and erythrocyte invasion by P. falciparum merozoites. Purfalcamine, a previously identified specific inhibitor of PfCDPK1, also inhibits microneme discharge and erythrocyte invasion, confirming a role for PfCDPK1 in this process. These studies validate PfCDPK1 as a target for drug development and demonstrate that interfering with its mechanistic regulation may provide a novel approach to design-specific PfCDPK1 inhibitors that limit blood stage parasite growth and clear malaria parasite infections. PMID:23204525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furno, I.; Chabloz, V.; Fasoli, A.
2014-01-15
The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheathmore » density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].« less
Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G
2015-03-17
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María
2018-01-30
Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species identification in remote malaria diagnosis.
Frech, Christian; Chen, Nansheng
2011-01-01
Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. PMID:22215999
Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.
2013-01-01
Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694
Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N.; Matuschewski, Kai
2016-01-01
Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484
Anderson, John D.
1951-01-01
The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated. PMID:14873916
Yerlikaya, Seda; Campillo, Ana; Gonzalez, Iveth J
2018-03-15
Despite the increased use and worldwide distribution of malaria rapid diagnostic tests (RDTs) which distinguish between Plasmodium falciparum and non-falciparum species, little is known about their performance for detecting Plasmodium knowlesi (Pk), Plasmodium malariae (Pm), and Plasmodium ovale (Po). The objective of this review is to analyze results of published studies evaluating the diagnostic accuracy of malaria RDTs in detecting Pk, Pm and Po mono-infections.MEDLINE, EMBASE, Web of Science and CENTRAL databases were systematically searched to identify studies which reported on the performance of RDTs in detecting Pk, Pm,Po mono-infections.Among 40 studies included in the review, three reported on Pk, eight on Pm, five on Po, one on Pk and Pm, and 23 on Pm and Po infections. In the meta-analysis, estimates of sensitivities of RDTs in detecting Pk infections ranged from 2% to 48%. Test performances for Pm and Po infections were less accurate and highly heterogeneous, mainly due to the small number of samples tested.Limited data available suggest that malaria RDTs show suboptimal performance for detecting Pk, Pm,Po infections. New improved RDTs as well as appropriately designed, cross-sectional studies to demonstrate their usefulness in the detection of neglected Plasmodium species, are urgently needed.
Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.
2014-01-01
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236
Prevalence and distribution of human Plasmodium infection in Pakistan.
Khattak, Aamer A; Venkatesan, Meera; Nadeem, Muhammad F; Satti, Humayoon S; Yaqoob, Adnan; Strauss, Kathy; Khatoon, Lubna; Malik, Salman A; Plowe, Christopher V
2013-08-28
Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high.
Prevalence and distribution of human Plasmodium infection in Pakistan
2013-01-01
Background Both Plasmodium vivax and Plasmodium falciparum are prevalent in Pakistan, yet up-to-date data on the epidemiology of malaria in Pakistan are not available. This study was undertaken to determine the current prevalence and distribution of Plasmodium species across the country. Methods A malariometric population survey was conducted in 2011 using blood samples collected from 801 febrile patients of all ages in four provinces and the capital city of Islamabad. Microscopically confirmed Plasmodium-positive blood samples were reconfirmed by polymerase chain reaction (PCR). Confirmed parasite-positive samples were subjected to species-specific PCR capable of detecting four species of human malaria. Results Of the 707 PCR-positive samples, 128 (18%) were P. falciparum, 536 (76%) were P. vivax, and 43 (6%) were mixed P. falciparum and P. vivax. Ninety-four microscopy-positive samples were PCR-negative, and Plasmodium malariae and Plasmodium ovale were not detected. Prevalence of P. vivax ranged from 2.4% in Punjab Province to 10.8% in Sindh Province and prevalence of P. falciparum ranged from 0.1% in Islamabad to 3.8% in Balochistan. Conclusions Plasmodium infections in Pakistan are largely attributed to P. vivax but P. falciparum and mixed species infections are also prevalent. In addition, regional variation in the prevalence and species composition of malaria is high. PMID:23984968
Witkowski, Benoit; Lelièvre, Joel; Nicolau-Travers, Marie-Laure; Iriart, Xavier; Njomnang Soh, Patrice; Bousejra-Elgarah, Fatima; Meunier, Bernard; Berry, Antoine; Benoit-Vical, Françoise
2012-01-01
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.
Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex.
Nemetski, Sondra Maureen; Cardozo, Timothy J; Bosch, Gundula; Weltzer, Ryan; O'Malley, Kevin; Ejigiri, Ijeoma; Kumar, Kota Arun; Buscaglia, Carlos A; Nussenzweig, Victor; Sinnis, Photini; Levitskaya, Jelena; Bosch, Jürgen
2015-08-20
Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the presence of the small molecule stabilizer compound 24.
Blume, Martin; Hliscs, Marion; Rodriguez-Contreras, Dayana; Sanchez, Marco; Landfear, Scott; Lucius, Richard; Matuschewski, Kai; Gupta, Nishith
2011-04-01
Glucose is considered essential for erythrocytic stages of the malaria parasite, Plasmodium falciparum. Importance of sugar and its permease for hepatic and sexual stages of Plasmodium, however, remains elusive. Moreover, increasing global resistance to current antimalarials necessitates the search for novel drugs. Here, we reveal that hexose transporter 1 (HT1) of Plasmodium berghei can transport glucose (K(m)~87 μM), mannose (K(i)~93 μM), fructose (K(i)~0.54 mM), and galactose (K(i)~5 mM) in Leishmania mexicana mutant and Xenopus laevis; and, therefore, is functionally equivalent to HT1 of P. falciparum (Glc, K(m)~175 μM; Man, K(i)~276 μM; Fru, K(i)~1.25 mM; Gal, K(i)~5.86 mM). Notably, a glucose analog, C3361, attenuated hepatic (IC(50)~15 μM) and ookinete development of P. berghei. The PbHT1 could be ablated during intraerythrocytic stages only by concurrent complementation with PbHT1-HA or PfHT1. Together; these results signify that PbHT1 and glucose are required for the entire life cycle of P. berghei. Accordingly, PbHT1 is expressed in the plasma membrane during all parasite stages. To permit a high-throughput screening of PfHT1 inhibitors and their subsequent in vivo assessment, we have generated Saccharomyces cerevisiae mutant expressing codon-optimized PfHT1, and a PfHT1-dependent Δpbht1 parasite strain. This work provides a platform to facilitate the development of drugs against malaria, and it suggests a disease-control aspect by reducing parasite transmission.
Nicolau-Travers, Marie-Laure; Iriart, Xavier; Njomnang Soh, Patrice; Bousejra-ElGarah, Fatima; Meunier, Bernard; Berry, Antoine; Benoit-Vical, Françoise
2012-01-01
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia. PMID:22403683
Pybus, Brandon S; Sousa, Jason C; Jin, Xiannu; Ferguson, James A; Christian, Robert E; Barnhart, Rebecca; Vuong, Chau; Sciotti, Richard J; Reichard, Gregory A; Kozar, Michael P; Walker, Larry A; Ohrt, Colin; Melendez, Victor
2012-08-02
The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ's haemotoxic and anti-malarial properties are not fully understood. In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.
Requena, Pilar; Campo, Joseph J; Umbers, Alexandra J; Ome, Maria; Wangnapi, Regina; Barrios, Diana; Robinson, Leanne J; Samol, Paula; Rosanas-Urgell, Anna; Ubillos, Itziar; Mayor, Alfredo; López, Marta; de Lazzari, Elisa; Arévalo-Herrera, Myriam; Fernández-Becerra, Carmen; del Portillo, Hernando; Chitnis, Chetan E; Siba, Peter M; Bardají, Azucena; Mueller, Ivo; Rogerson, Stephen; Menéndez, Clara; Dobaño, Carlota
2014-09-15
Pregnancy triggers immunological changes aimed to tolerate the fetus, but its impact on B lymphocytes is poorly understood. In addition, exposure to the Plasmodium parasite is associated with altered distribution of peripheral memory B cell (MBC) subsets. To study the combined impact of high malaria exposure and pregnancy in B cell subpopulations, we analyzed PBMCs from pregnant and nonpregnant individuals from a malaria-nonendemic country (Spain) and from a high malaria-endemic country (Papua New Guinea). In the malaria-naive cohorts, pregnancy was associated with a significant expansion of all switched (IgD(-)) MBC and a decrease of naive B cells. Malaria-exposed women had more atypical MBC and fewer marginal zone-like MBC, and their levels correlated with both Plasmodium vivax- and Plasmodium falciparum-specific plasma IgG levels. Classical but not atypical MBC were increased in P. falciparum infections. Moreover, active atypical MBC positively correlated with proinflammatory cytokine plasma concentrations and had lower surface IgG levels than the average. Decreased plasma eotaxin (CCL11) levels were associated with pregnancy and malaria exposure and also correlated with B cell subset frequencies. Additionally, active atypical and active classical MBC expressed higher levels of eotaxin receptor CCR3 than the other B cell subsets, suggesting a chemotactic effect of eotaxin on these B cell subsets. These findings are important to understand immunity to infections like malaria that result in negative outcomes for both the mother and the newborn and may have important implications on vaccine development. Copyright © 2014 by The American Association of Immunologists, Inc.
Mapua, Mwanahamisi I; Pafčo, Barbora; Burgunder, Jade; Profousová-Pšenková, Ilona; Todd, Angelique; Hashimoto, Chie; Qablan, Moneeb A; Modrý, David; Petrželková, Klára J
2017-04-26
Although a high genetic diversity of Plasmodium spp. circulating in great apes has been revealed recently due to non-invasive methods enabling detection in faecal samples, little is known about the actual mechanisms underlying the presence of Plasmodium DNA in faeces. Great apes are commonly infected by strongylid nematodes, including hookworms, which cause intestinal bleeding. The impact of strongylid infections on the detection of Plasmodium DNA in faeces was assessed in wild, western, lowland gorillas from Dzanga Sangha Protected Areas, Central African Republic and eastern chimpanzees from Kalinzu Forest Reserve, Uganda. Fifty-one faecal samples from 22 habituated gorillas and 74 samples from 15 habituated chimpanzees were analysed using Cytochrome-b PCR assay and coprological methods. Overall, 26.4% of the analysed samples were positive for both Plasmodium spp. and strongylids. However, the results showed no significant impact of intensity of infections of strongylids on detection of Plasmodium DNA in gorilla and chimpanzee faeces. Bleeding caused by strongylid nematode Necator spp. cannot explain the presence of Plasmodium DNA in ape faeces.
Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele
2016-04-26
Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used interventions, and in proper interpretation of malaria vaccine studies.
Ta, Tang Thuy-Huong; Salas, Ana; Ali-Tammam, Marwa; Martínez, María Del Carmen; Lanza, Marta; Arroyo, Eduardo; Rubio, Jose Miguel
2010-07-27
Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very young children under five years old.
2010-01-01
Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very young children under five years old. PMID:20663184
Slime mold solves maze in one pass, assisted by gradient of chemo-attractants.
Adamatzky, Andrew
2012-06-01
Plasmodium of Physarum polycephalum is a large cell, visible by unaided eye, which exhibits sophisticated patterns of foraging behaviour. The plasmodium's behaviour is well interpreted in terms of computation, where data are spatially extended configurations of nutrients and obstacles, and results of computation are networks of protoplasmic tubes formed by the plasmodium. In laboratory experiments and numerical simulation we show that if plasmodium of P. polycephalum is inoculated in a maze's peripheral channel and an oat flake (source of attractants) in a the maze's central chamber then the plasmodium grows toward target oat flake and connects the flake with the site of original inoculation with a pronounced protoplasmic tube. The protoplasmic tube represents a path in the maze. The plasmodium solves maze in one pass because it is assisted by a gradient of chemo-attractants propagating from the target oat flake.
Construction of living cellular automata using the Physarum plasmodium
NASA Astrophysics Data System (ADS)
Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji
2015-04-01
The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.
Prevalence of Plasmodium falciparum infection in pregnant women in Gabon.
Bouyou-Akotet, Marielle K; Ionete-Collard, Denisa E; Mabika-Manfoumbi, Modeste; Kendjo, Eric; Matsiegui, Pierre-Blaise; Mavoungou, Elie; Kombila, Maryvonne
2003-06-25
In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. A total of 177 women (57%) had microscopic parasitaemia; 139 (64%)of them were primigravidae, 38 (40%) in their second pregnancy and 180 (64%) were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.
Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb
2011-08-01
Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.
[Efficacy of a rapid test to diagnose Plasmodium vivax in symptomatic patients of Chiapas, Mexico].
González-Cerón, Lilia; Rodríguez, Mario H; Betanzos, Angel F; Abadía, Acatl
2005-01-01
To evaluate, under laboratory conditions, the sensitivity and specificity of a rapid diagnostic test (OptiMAL), based on immunoreactive strips, to detect Plasmodium vivax infection in febrile patients in Southern Chiapas, Mexico. The presence of parasites in blood samples of 893 patients was investigated by Giemsa-stained thick blood smear microscopic examination (gold standard). A blood drop from the same sample was smeared on immunoreactive strips to investigate the presence of the parasite pLDH. Discordant results were resolved by PCR amplification of the parasite's 18S SSU rRNA, to discard infection. OptiMAL had an overall sensitivity of 93.3% and its specificity was 99.5%. Its positive and negative predictive values were 96.5% and 98.9%, respectively. Signal intensity in OptiMAL strips correlated well with the parasitemia density in the blood samples (r = 0.601, p = 0.0001). This rapid test had acceptable sensitivity and specificity to detect P. vivax under laboratory conditions and could be useful for malaria diagnosis in field operations in Mexico.
Comparison of rapid diagnostic tests for the detection of Plasmodium vivax malaria in South Korea.
Kim, Jung-Yeon; Ji, So-Young; Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja
2013-01-01
South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStart(TM) and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStart(TM) and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria.
Validation of isoleucine utilization targets in Plasmodium falciparum
Istvan, Eva S.; Dharia, Neekesh V.; Bopp, Selina E.; Gluzman, Ilya; Winzeler, Elizabeth A.; Goldberg, Daniel E.
2011-01-01
Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development. PMID:21205898
Björkman, A; Brohult, J; Willcox, M; Pehrson, P O; Rombo, L; Hedman, P; Hetland, G; Kollie, E; Hanson, A P; Bengtsson, E
1985-12-01
For seven years, chlorproguanil (1.0 to 2.0 mg kg-1) was administered monthly to the children below 15 years of age in a village with holoendemic malaria. Malariometric indices were recorded every six months. Susceptibility in vivo was monitored by the clearance of Plasmodium falciparum parasitaemia after drug intake. Three parasite species were found initially: P. falciparum (52%), P. malariae (8%) and P. ovale (4%). The parasites found during the study were mainly P. falciparum, and parasite rates ranged from 37 to 87% at the different surveys one month after respective drug intake. A fifty-fold decrease of mean parasite density was generally observed seven days after drug intake. Splenomegaly was initially recorded in all two to nine year old children, with a mean size of 2.64 according to Hackett's index. From 18 months onwards as the mean spleen index was 1.15 in the same age group. Chlorproguanil may represent an important alternative drug to groups at risk in malaria control schemes.
Mehrotra, Sonali; B Ningappa, Mylarappa; Raman, Jayalakshmi; Anand, Ranjith P; Balaram, Hemalatha
2012-04-01
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of Rapid Diagnostic Tests for the Detection of Plasmodium vivax Malaria in South Korea
Goo, Youn-Kyoung; Na, Byoung-Kuk; Pyo, Hyo-Joo; Lee, Han-Na; Lee, Juyoung; Kim, Nam Hee; von Seidlein, Lorenz; Cheng, Qin; Cho, Shin-Hyung; Lee, Won-Ja
2013-01-01
South Korea is one of many countries with endemic Plasmodium vivax malaria. Here we report the evaluation of four rapid diagnostic tests (RDTs) for diagnosis of this disease. A total of 253 subjects were enrolled in the study. The sensitivities, specificities and agreement frequencies were estimated by comparing the four RDTs against the standard of nested-PCR and microscopic examination. The CareStartTM and SD Bioline had higher test sensitivities (99.4 and 98.8%, respectively) compared with the NanoSign and Asan Easy tests (93.0 and 94.7%, respectively). The CareStartTM and SD Bioline tests could detect P. vivax in samples with parasite densities <150/μl, which was a slightly better performance than the other two RDTs. The quantitative accuracy of the four RDTs was also estimated by comparing results with P. vivax counts from blood samples. Lower test price would result in increased use of these RDTs in the field. The results of this study contribute valuable information that will aid in the selection of a diagnostic method for the detection of malaria. PMID:23667710
A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.
Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita
2012-02-01
Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.
A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development
Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita
2012-01-01
Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis. PMID:22383885
Restoration with smoke-dependent species
Keeley, J.E.; Keeley, M.B.
2000-01-01
Examination of blood films from wood ducks (Aix sponsa) from several northeastern states revealed Haemoproteus, Leucocytozoon, Plasmodium and a typanosome. Haemoproteus occurred in all areas sampled and birds of the year from Massachusetts demonstrated the highest incidence during the last 2 weeks in August. Leucocytozoon was most prevalent in more northern areas. P. circumflexum and a trypanosome are reported for the first time from this host.
Outchkourov, Nikolay; Vermunt, Adriaan; Jansen, Josephine; Kaan, Anita; Roeffen, Will; Teelen, Karina; Lasonder, Edwin; Braks, Anneke; van de Vegte-Bolmer, Marga; Qiu, Li Yan; Sauerwein, Robert; Stunnenberg, Hendrik G
2007-06-08
Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine module recognized by anti-epitope I antibodies, a middle four-cysteine module recognized by anti-epitopes IIb and III, and an N-terminal module recognized by anti-epitope V antibodies. Refolding assays identified that a fragment of 10 cysteines (10C), comprising the middle four-cysteine and the C-terminal six-cysteine modules, possesses superior refolding capacity. The refolded and partially purified 10C conformer elicited antibodies in mice that targeted at least two of the TB epitopes (I and III). The induced antibodies could block the fertilization of Plasmodium falciparum gametes in vivo in a concentration-dependent manner. Our results provide important insight into the structural organization of the Pfs48/45 protein and experimental support for a Pfs48/45-based subunit vaccine.
McCall, Matthew B B; Wammes, Linda J; Langenberg, Marijke C C; van Gemert, Geert-Jan; Walk, Jona; Hermsen, Cornelus C; Graumans, Wouter; Koelewijn, Rob; Franetich, Jean-François; Chishimba, Sandra; Gerdsen, Max; Lorthiois, Audrey; van de Vegte, Marga; Mazier, Dominique; Bijker, Else M; van Hellemond, Jaap J; van Genderen, Perry J J; Sauerwein, Robert W
2017-06-21
Malaria sporozoites must first undergo intrahepatic development before a pathogenic blood-stage infection is established. The success of infection depends on host and parasite factors. In healthy human volunteers undergoing controlled human malaria infection (CHMI), we directly compared three clinical Plasmodium falciparum isolates for their ability to infect primary human hepatocytes in vitro and to drive the production of blood-stage parasites in vivo. Our data show a correlation between the efficiency of strain-specific sporozoite invasion of human hepatocytes and the dynamics of patent parasitemia in study subjects, highlighting intrinsic differences in infectivity among P. falciparum isolates from distinct geographical locales. The observed heterogeneity in infectivity among strains underscores the value of assessing the protective efficacy of candidate malaria vaccines against heterologous strains in the CHMI model. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Genetic Structure of Plasmodium falciparum and Elimination of Malaria, Comoros Archipelago
Rebaudet, Stanislas; Bogreau, Hervé; Silaï, Rahamatou; Lepère, Jean-François; Bertaux, Lionel; Pradines, Bruno; Delmont, Jean; Gautret, Philippe; Parola, Philippe
2010-01-01
The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands. PMID:21029525
Veselý, Lukáš; Boukal, David S; Buřič, Miloš; Kozák, Pavel; Kouba, Antonín; Sentis, Arnaud
2017-12-22
Nonconsumptive predator-driven mortality (NCM), defined as prey mortality due to predation that does not result in prey consumption, is an underestimated component of predator-prey interactions with possible implications for population dynamics and ecosystem functioning. However, the biotic and abiotic factors influencing this mortality component remain largely unexplored, leaving a gap in our understanding of the impacts of environmental change on ecological communities. We investigated the effects of temperature, prey density, and predator diversity and density on NCM in an aquatic food web module composed of dragonfly larvae (Aeshna cyanea) and marbled crayfish (Procambarus fallax f. virginalis) preying on common carp (Cyprinus carpio) fry. We found that NCM increased with prey density and depended on the functional diversity and density of the predator community. Warming significantly reduced NCM only in the dragonfly larvae but the magnitude depended on dragonfly larvae density. Our results indicate that energy transfer across trophic levels is more efficient due to lower NCM in functionally diverse predator communities, at lower resource densities and at higher temperatures. This suggests that environmental changes such as climate warming and reduced resource availability could increase the efficiency of energy transfer in food webs only if functionally diverse predator communities are conserved.
Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle.
Mastan, Babu S; Kumari, Anchala; Gupta, Dinesh; Mishra, Satish; Kumar, Kota Arun
2014-06-01
Plasmepsins (PM), aspartic proteases of Plasmodium, comprises a family of ten proteins that perform critical functions in Plasmodium life cycle. Except VII and VIII, functions of the remaining plasmepsin members have been well characterized. Here, we have generated a mutant parasite lacking PM VII in Plasmodium berghei using reverse genetics approach. Systematic comparison of growth kinetics and infection in both mosquito and vertebrate host revealed that PM VII depleted mutants exhibited no defects in development and progressed normally throughout the parasite life cycle. These studies suggest a dispensable role for PM VII in Plasmodium berghei life cycle. Copyright © 2014 Elsevier B.V. All rights reserved.
Dewanee Ranaweera, A; Danansuriya, Manjula N; Pahalagedera, Kusumawathie; de A W Gunasekera, W M Kumudunayana T; Dharmawardena, Priyani; Mak, Keng Wai; Wong, Pei-Sze Jeslyn; Li, Mei-Zhi Irene; Tan, Cheong Huat; Hapuarachchi, Hapuarachchige C; Herath, Hema D B; Fernando, Deepika
2017-03-21
Sri Lanka has achieved 'malaria-free' status and is now in the phase of prevention of re-introduction of malaria. Imported malaria remains a challenge to resurgence of the disease. The diagnostic challenges encountered and the rapid response initiated to manage a Plasmodium infection, which was later confirmed as Plasmodium knowlesi, the first reported case from Sri Lanka, is discussed. An army officer who returned from Malaysia in October 2016 was found to be positive for Plasmodium both by microscopy and rapid diagnostic test (RDT) by the Anti Malaria Campaign Sri Lanka (AMC) during his third visit to a health care provider. Microscopy findings were suspicious of P. knowlesi infection as the smears showed parasite stages similar to both Plasmodium malariae and Plasmodium falciparum. Nested PCR at AMC confirmed Plasmodium genus, but not the species. In the absence of species confirmation, the patient was treated as a case of P. falciparum. The presence of P. knowlesi was later confirmed by a semi-nested PCR assay performed at the Environmental Health Institute, National Environmental Agency in Singapore. The parasite strain was also characterized by sequencing the circumsporozoite gene. Extensive case investigation including parasitological and entomological surveillance was carried out. Plasmodium knowlesi should be suspected in patients returning from countries in the South Asian region where the parasite is prevalent and when blood smear results are inconclusive.
Gitonga, Caroline W; Edwards, Tansy; Karanja, Peris N; Noor, Abdisalan M; Snow, Robert W; Brooker, Simon J
2012-07-01
To investigate risk factors, including reported net use, for Plasmodium infection and anaemia among school children and to explore variations in effects across different malaria ecologies occurring in Kenya. This study analysed data for 49 975 school children in 480 schools surveyed during a national school malaria survey, 2008-2010. Mixed effects logistic regression was used to investigate factors associated with Plasmodium infection and anaemia within different malaria transmission zones. Insecticide-treated net (ITN) use was associated with reduction in the odds of Plasmodium infection in coastal and western highlands epidemic zones and among boys in the lakeside high transmission zone. Other risk factors for Plasmodium infection and for anaemia also varied by zone. Plasmodium infection was negatively associated with increasing socio-economic status in all transmission settings, except in the semi-arid north-east zone. Plasmodium infection was a risk factor for anaemia in lakeside high transmission, western highlands epidemic and central low-risk zones, whereas ITN use was only associated with lower levels of anaemia in coastal and central zones and among boys in the lakeside high transmission zone. The risk factors for Plasmodium infection and anaemia, including the protective associations with ITN use, vary according to malaria transmission settings in Kenya, and future efforts to control malaria and anaemia should take into account such heterogeneities among school children. © 2012 Blackwell Publishing Ltd.
Leclerc, Antoine; Chavatte, Jean-Marc; Landau, Irène; Snounou, Georges; Petit, Thierry
2014-09-01
A morphologic and molecular epidemiologic investigation was conducted on a captive African black-footed penguin (Spheniscus demersus) colony with a history of Plasmodium infections at La Palmyre Zoo (France). Each penguin received 12.5 mg of pyrimethamine twice a week as a prophylaxis every year from April to November. Although Plasmodium parasites were not detected in blood smears and tissues collected from the penguins, various blood parasites were recorded in blood smears from wild Eurasian magpies (Pica pica) and carrion crows (Corvus corone) sampled at the same time in the study area. These parasites consisted of several Plasmodium spp. (P. lenoblei, P. dorsti, P bioccai, P. relictum, P. dherteae, P. beaucournui, P. maior, P. tranieri, and P. snounoui), Parahaemoproteus spp., Trypanosoma spp., and Leucocytozoon spp. On the other hand, nested polymerase chain reaction enabled detection of Plasmodium DNA in 28/44 (64%) penguins, 15/25 (60%) magpies, and 4/9 (44%) crows. Sequencing and phylogenetic analyses indicated that the parasite DNA amplified from the penguins, magpies, and crows were similar. Magpies and crows could therefore act as a reservoir for penguin Plasmodium infections, which may be more prevalent than previously thought. Morphologic characterization of the Plasmodium spp. detected in the penguins, as well as further biological and epidemiologic studies, are needed to fully understand the transmission of Plasmodium parasites to captive penguins.
Glennon, Elizabeth K K; Torrevillas, Brandi K; Morrissey, Shannon F; Ejercito, Jadrian M; Luckhart, Shirley
2017-07-13
Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment.
Barber, Bridget E; William, Timothy; Grigg, Matthew J; Piera, Kim; Yeo, Tsin W; Anstey, Nicholas M
2013-04-01
Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
Checks and balances? DNA replication and the cell cycle in Plasmodium.
Matthews, Holly; Duffy, Craig W; Merrick, Catherine J
2018-03-27
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Cerqueira, Gustavo C; Cheeseman, Ian H; Schaffner, Steve F; Nair, Shalini; McDew-White, Marina; Phyo, Aung Pyae; Ashley, Elizabeth A; Melnikov, Alexandre; Rogov, Peter; Birren, Bruce W; Nosten, François; Anderson, Timothy J C; Neafsey, Daniel E
2017-04-28
Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001-2014). We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations.
Guerra-Neira, Ana; Rubio, José M; Royo, Jesús Roche; Ortega, Jorge Cano; Auñón, Antonio Sarrión; Diaz, Pedro Berzosa; LLanes, Agustín Benito
2006-01-01
Background In this paper we analyse the Plasmodium sp. prevalence in three villages with different isolation status on the island of Bioko (Equatorial Guinea) where malaria is a hyper-endemic disease. We also describe the genetic diversity of P. falciparum, using several plasmodia proteins as markers which show a high degree of polymorphism (MSP-1 and MSP-2). The results obtained from three different populations are compared in order to establish the impact of human movements and interventions. Methods Plasmodium sp. were analysed in three villages on Bioko Island (Equatorial Guinea), one of which (Southern) is isolated by geographical barriers. The semi-nested multiplex polymerase chain reaction (PCR) technique was used to determine the prevalence of the four human plasmodia species. The genotyping and frequency of P. falciparum populations were determined by PCR assay target polymorphism regions of the merozoite surface proteins 1 and 2 genes (MSP-1 and MSP-2). Results The data obtained show that there are no differences in plasmodia population flow between the Northwest and Eastern regions as regards the prevalence of the different Plasmodium species. The Southern population, on the other hand, shows a minor presence of P. malariae and a higher prevalence of P. ovale, suggesting some kind of transmission isolated from the other two. The P. falciparum genotyping in the different regions points to a considerable allelic diversity in the parasite population on Bioko Island, although this is somewhat higher in the Southern region than the others. There was a correlation between parasitaemia levels and the age of the individual with the multiplicity of infection (MOI). Conclusion Results could be explained by the selection of particular MSP alleles. This would tend to limit diversity in the parasite population and leading up to the extinction of rare alleles. On the other hand, the parasite population in the isolated village has less outside influence and the diversity of P. falciparum is maintained higher. The knowledge of parasite populations and their relationships is necessary to study their implications for control intervention. PMID:16784527
Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.
2013-01-01
Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255
Ravigné, Virginie; Lemesle, Valérie; Walter, Alicia; Mailleret, Ludovic; Hamelin, Frédéric M
2017-03-01
Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.
Population and prehistory III: food-dependent demography in variable environments.
Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad
2009-11-01
The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.
Susceptibility of human Plasmodium knowlesi infections to anti-malarials
2013-01-01
Background Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed. Methods Here the ex vivo sensitivity of human P. knowlesi isolates in Malaysian Borneo were studied, using a WHO schizont maturation assay modified to accommodate the quotidian life cycle of this parasite. The in vitro sensitivities of P. knowlesi H strain adapted from a primate infection to in vitro culture (by measuring the production of Plasmodium lactate dehydrogenase) were also examined together with some assays using Plasmodium falciparum and Plasmodium vivax. Results Plasmodium knowlesi is uniformly highly sensitive to artemisinins, variably and moderately sensitive to chloroquine, and less sensitive to mefloquine. Conclusions Taken together with reports of clinical failures when P. knowlesi is treated with mefloquine, the data suggest that caution is required if using mefloquine in prevention or treatment of P. knowlesi infections, until further studies are undertaken. PMID:24245918
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
Prugnolle, Franck; Durand, Patrick; Neel, Cécile; Ollomo, Benjamin; Ayala, Francisco J.; Arnathau, Céline; Etienne, Lucie; Mpoudi-Ngole, Eitel; Nkoghe, Dieudonné; Leroy, Eric; Delaporte, Eric; Peeters, Martine; Renaud, François
2010-01-01
Plasmodium reichenowi, a chimpanzee parasite, was until very recently the only known close relative of Plasmodium falciparum, the most virulent agent of human malaria. Recently, Plasmodium gaboni, another closely related chimpanzee parasite, was discovered, suggesting that the diversity of Plasmodium circulating in great apes in Africa might have been underestimated. It was also recently shown that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite and that the world diversity of P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. The evidence indicates that all extant populations of P. falciparum originated from P. reichenowi, likely by a single transfer from chimpanzees. In this work, we have studied the diversity of Plasmodium species infecting chimpanzees and gorillas in Central Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used noninvasive sampling methods. We confirm the presence of P. reichenowi and P. gaboni in wild chimpanzees. Moreover, our results reveal the existence of an unexpected genetic diversity of Plasmodium lineages circulating in gorillas. We show that gorillas are naturally infected by two related lineages of parasites that have not been described previously, herein referred to as Plasmodium GorA and P. GorB, but also by P. falciparum, a species previously considered as strictly human specific. The continuously increasing contacts between humans and primate populations raise concerns about further reciprocal host transfers of these pathogens. PMID:20133889
Lester, Nigel P; Shuter, Brian J; Venturelli, Paul; Nadeau, Daniel
2014-01-01
A simple population model was developed to evaluate the role of plastic and evolutionary life-history changes on sustainable exploitation rates. Plastic changes are embodied in density-dependent compensatory adjustments to somatic growth rate and larval/juvenile survival, which can compensate for the reductions in reproductive lifetime and mean population fecundity that accompany the higher adult mortality imposed by exploitation. Evolutionary changes are embodied in the selective pressures that higher adult mortality imposes on age at maturity, length at maturity, and reproductive investment. Analytical development, based on a biphasic growth model, led to simple equations that show explicitly how sustainable exploitation rates are bounded by each of these effects. We show that density-dependent growth combined with a fixed length at maturity and fixed reproductive investment can support exploitation-driven mortality that is 80% of the level supported by evolutionary changes in maturation and reproductive investment. Sustainable fishing mortality is proportional to natural mortality (M) times the degree of density-dependent growth, as modified by both the degree of density-dependent early survival and the minimum harvestable length. We applied this model to estimate sustainable exploitation rates for North American walleye populations (Sander vitreus). Our analysis of demographic data from walleye populations spread across a broad latitudinal range indicates that density-dependent variation in growth rate can vary by a factor of 2. Implications of this growth response are generally consistent with empirical studies suggesting that optimal fishing mortality is approximately 0.75M for teleosts. This approach can be adapted to the management of other species, particularly when significant exploitation is imposed on many, widely distributed, but geographically isolated populations.
Hostetler, Jessica B.; Lo, Eugenia; Kanjee, Usheer; Amaratunga, Chanaki; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Yewhalaw, Delenasaw; Mascarenhas, Anjali; Kwiatkowski, Dominic P.; Ferreira, Marcelo U.; Rathod, Pradipsinh K.; Yan, Guiyun; Fairhurst, Rick M.; Duraisingh, Manoj T.; Rayner, Julian C.
2016-01-01
Background Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite’s ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP) in merozoites and the Duffy antigen receptor for chemokines (DARC) on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown. Methodology/Principal Findings Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India. Conclusions/Significance PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests will be required to confirm this hypothesis. PMID:27798646
Samal, Ajit Gopal; Behera, Prativa Kumari; Mohanty, Akshay Kumar; Satpathi, Sanghamitra; Kumar, Abhishek; Panda, Rabi Ratna; Minz, Aruna Mukti; Mohanty, Sanjib; Samal, Abhijit; Van Der Pluijm, Rob W
2017-10-01
Rapid and accurate diagnosis is crucial in the treatment of malaria. Rapid Diagnostic Tests (RDTs) using blood have been recommended by the WHO as an acceptable method for the diagnosis of malaria. RDTs provide results quickly, is simple to use and easy to interpret. However, its use requires collection of blood by skin puncture. Hence the aim of the pilot study is to explore the sensitivity and specificity of RDTs using urine (collected non-invasively) for diagnosis of Plasmodium falciparum malaria and to assess the relation between parasite density in blood with HRP-2 Ag detection in urine. All fever cases admitted to Ispat General Hospital (IGH) Rourkela, India, during June 2012-March 2013 with a clinical diagnosis of malaria were examined for the presence of asexual forms of P. falciparum in peripheral blood smears. All smear positive febrile patients who met the eligibility criteria were enrolled. Smear negative fever cases were enrolled as control cases. RDTs were performed using both urine and blood samples by using commercially available blood specific kits. Sixty blood smear positive cases and 51 febrile blood smear negative cases were enrolled. Sensitivity and specificity of RDT urine were 86.67% (95%CI:75.83-93.09) and 94.12% (95%CI:84.08-97.98) respectively whereas those of RDT blood were 91.67% (95% CI: 81.93-96.39) and 98.04% (95% CI 89.7-99.65). The sensitivity of both RDT urine as well as RDT blood were found to be dependent on the level of parasitemia. Results of this study are promising. Larger studies are needed to assess whether RDTs using urine could serve as a practical, reliable method for the detection of P. falciparum in a non-invasive manner where invasive blood taking is less feasible.
Alkaitis, Matthew S.; Wang, Honghui; Ikeda, Allison K.; Rowley, Carol A.; MacCormick, Ian J. C.; Chertow, Jessica H.; Billker, Oliver; Suffredini, Anthony F.; Roberts, David J.; Taylor, Terrie E.; Seydel, Karl B.; Ackerman, Hans C.
2016-01-01
Background. Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion. Methods. We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope–labeled tracers measured by quadrupole time-of-flight liquid chromatography–mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice. Results. Children with cerebral malaria and P. berghei–infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice. Conclusions. Simultaneous arginine and ornithine depletion in malaria parasite–infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance. PMID:27923948
Pace, Tomasino; Olivieri, Anna; Sanchez, Massimo; Albanesi, Veronica; Picci, Leonardo; Siden Kiamos, Inga; Janse, Chris J; Waters, Andrew P; Pizzi, Elisabetta; Ponzi, Marta
2006-05-01
Transmission of the malaria parasite depends on specialized gamete precursors (gametocytes) that develop in the bloodstream of a vertebrate host. Gametocyte/gamete differentiation requires controlled patterns of gene expression and regulation not only of stage and gender-specific genes but also of genes associated with DNA replication and mitosis. Once taken up by mosquito, male gametocytes undergo three mitotic cycles within few minutes to produce eight motile gametes. Here we analysed, in two Plasmodium species, the expression of SET, a conserved nuclear protein involved in chromatin dynamics. SET is expressed in both asexual and sexual blood stages but strongly accumulates in male gametocytes. We demonstrated functionally the presence of two distinct promoters upstream of the set open reading frame, the one active in all blood stage parasites while the other active only in gametocytes and in a fraction of schizonts possibly committed to sexual differentiation. In ookinetes both promoters exhibit a basal activity, while in the oocysts the gametocyte-specific promoter is silent and the reporter gene is only transcribed from the constitutive promoter. This transcriptional control, described for the first time in Plasmodium, provides a mechanism by which single-copy genes can be differently modulated during parasite development. In male gametocytes an overexpression of SET might contribute to a prompt entry and execution of S/M phases within mosquito vector.
Wierk, Jannika Katharina; Langbehn, Annette; Kamper, Maria; Richter, Stefanie; Burda, Paul-Christian; Heussler, Volker Theo; Deschermeier, Christina
2013-01-01
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite’s nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization. PMID:23544094
Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal
2015-01-01
Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771
Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A
2015-12-28
Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. Copyright © 2016 Green et al.
Charoenvit, Yupin; Majam, Victoria Fallarme; Corradin, Giampietro; Sacci, John B.; Wang, Ruobing; Doolan, Denise L.; Jones, Trevor R.; Abot, Esteban; Patarroyo, Manuel E.; Guzman, Fanny; Hoffman, Stephen L.
1999-01-01
Most work on protective immunity against the pre-erythrocytic stages of malaria has focused on induction of antibodies that prevent sporozoite invasion of hepatocytes, and CD8+ T-cell responses that eliminate infected hepatocytes. We recently reported that immunization of A/J mice with an 18-amino-acid synthetic linear peptide from Plasmodium yoelii sporozoite surface protein 2 (SSP2) in TiterMax adjuvant induces sterile protection that is dependent on CD4+ T cells and gamma interferon (IFN-γ). We now report that immunization of inbred A/J mice and outbred CD1 mice with each of two linear synthetic peptides from the 17-kDa P. yoelii hepatocyte erythrocyte protein (HEP17) in the same adjuvant also induces protection against sporozoite challenge that is dependent on CD4+ T cells and IFN-γ. The SSP2 peptide and the two HEP17 peptides are recognized by B cells as well as T cells, and the protection induced by these peptides appears to be directed against the infected hepatocytes. In contrast to the peptide-induced protection, immunization of eight different strains of mice with radiation-attenuated sporozoites induces protection that is absolutely dependent on CD8+ T cells. Data represented here demonstrate that CD4+ T-cell-dependent protection can be induced by immunization with linear synthetic peptides. These studies therefore provide the foundation for an approach to pre-erythrocytic-stage malaria vaccine development, based on the induction of protective CD4+ T-cell responses, which will complement efforts to induce protective antibody and CD8+ T-cell responses. PMID:10531206
2012-05-31
plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel ofPiasmodium species and strains prepared...AFMSA O&M FY10 ‘Plasmodium Project’, existing Plasmodium genus, P . falciparum , and P . vivax TaqMan assays were proposed for transfer to the RAPID...using P . vivax plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel of Plasmodium species and
1976-08-13
INFECTIONS WITH PLASMODIUM FALCIPARUM AND PLASMODIUM VIVAX (U) FINAL PROGRESS REPORT ( PROJECT 2284-XXIX) For the Period I May 1975 to 30 April...IT» IOC mit settiM I’jtf Section ^ I» ’■■■■• BisTtmunM/MWUiiun cooa DiJÜ iWBU. UK/» FINAL PROGRESS REPORT ( PROJECT 2284-XXIX) S...quinolinemethanols pyridinemethanols I ’As in previous years, the activities of this Project were focused on development of: (a) agents fully effective
Extremely low Plasmodium prevalence in wild plovers and coursers from Cape Verde and Madagascar.
Martínez-de la Puente, Josué; Eberhart-Phillips, Luke J; Cristina Carmona-Isunza, M; Zefania, Sama; Navarro, María José; Kruger, Oliver; Hoffman, Joseph Ivan; Székely, Tamás; Figuerola, Jordi
2017-06-08
Relatively little is known about the prevalence of blood parasites in shorebirds, especially those breeding in the tropics. The prevalence of blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon was assessed in blood samples from Kentish plovers and cream-coloured coursers in Cape Verde, and samples of Kittlitz's plovers, Madagascar plovers and white-fronted plovers in Madagascar. Only two of these samples were positive for Plasmodium: a Kittlitz's plover was infected by a generalist lineage of Plasmodium that has already been reported in Europe and Africa, while in a white-fronted plover direct sequencing revealed a previously un-described Plasmodium lineage. Potential explanations for the low prevalence of blood parasites include the scarcity of vectors in habitats used by these bird species and their resistance to parasitic infections.
Systems Biology-Based Investigation of Host-Plasmodium Interactions.
Smith, Maren L; Styczynski, Mark P
2018-05-18
Malaria is a serious, complex disease caused by parasites of the genus Plasmodium. Plasmodium parasites affect multiple tissues as they evade immune responses, replicate, sexually reproduce, and transmit between vertebrate and invertebrate hosts. The explosion of omics technologies has enabled large-scale collection of Plasmodium infection data, revealing systems-scale patterns, mechanisms of pathogenesis, and the ways that host and pathogen affect each other. Here, we provide an overview of recent efforts using systems biology approaches to study host-Plasmodium interactions and the biological themes that have emerged from these efforts. We discuss some of the challenges in using systems biology for this goal, key research efforts needed to address those issues, and promising future malaria applications of systems biology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun
2013-12-01
Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.
NASA Astrophysics Data System (ADS)
Dewi Siawanta, Shanti; Adi-Kusumo, Fajar; Irwan Endrayanto, Aluicius
2018-03-01
Malaria, which is caused by Plasmodium, is a common disease in tropical areas. There are three types of Plasmodium i.e. Plasmodium Vivax, Plasmodium Malariae, and Plasmodium Falciparum. The most dangerous cases of the Malaria are mainly caused by the Plasmodium Falciparum. One of the important characteristics for the Plasmodium infection is due to the immunity of erythrocyte that contains HbS (Haemoglobin Sickle-cell) genes. The individuals who has the HbS gene has better immunity against the disease. In this paper, we consider a model that shows the spread of malaria involving the interaction between the mosquitos population, the human who has HbS genes population and the human with normal gene population. We do some analytical and numerical simulation to study the basic reproduction ratio and the slow-fast dynamics of the phase-portrait. The slow dynamics in our model represents the response of the human population with HbS gene to the Malaria disease while the fast dynamics show the response of the human population with the normal gene to the disease. The slow and fast dynamics phenomena are due to the fact that the population of the individuals who have HbS gene is much smaller than the individuals who has normal genes.
2013-01-01
Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy performed by an experienced research microscopist, for the diagnosis of PCR-confirmed Plasmodium falciparum, P. knowlesi, and Plasmodium vivax malaria. Results A total of 304 patients with PCR-confirmed Plasmodium infection were enrolled, including 130 with P. knowlesi, 122 with P. falciparum, 43 with P. vivax, one with Plasmodium malariae and eight with mixed species infections. Among patients with P. knowlesi mono-infection, routine and cross-check microscopy both identified 94 (72%) patients as “P. malariae/P. knowlesi”; 17 (13%) and 28 (22%) respectively were identified as P. falciparum, and 13 (10%) and two (1.5%) as P. vivax. Among patients with PCR-confirmed P. falciparum, routine and cross-check microscopy identified 110/122 (90%) and 112/118 (95%) patients respectively as P. falciparum, and 8/122 (6.6%) and 5/118 (4.2%) as “P. malariae/P. knowlesi”. Among those with P. vivax, 23/43 (53%) and 34/40 (85%) were correctly diagnosed by routine and cross-check microscopy respectively, while 13/43 (30%) and 3/40 (7.5%) patients were diagnosed as “P. malariae/P. knowlesi”. Four of 13 patients with PCR-confirmed P. vivax and misdiagnosed by routine microscopy as “P. malariae/P. knowlesi” were subsequently re-admitted with P. vivax malaria. Conclusions Microscopy does not reliably distinguish between P. falciparum, P. vivax and P. knowlesi in a region where all three species frequently occur. Misdiagnosis of P. knowlesi as both P. vivax and P. falciparum, and vice versa, is common, potentially leading to inappropriate treatment, including chloroquine therapy for P. falciparum and a lack of anti-relapse therapy for P. vivax. The limitations of microscopy in P. knowlesi-endemic areas supports the use of unified blood-stage treatment strategies for all Plasmodium species, the development of accurate rapid diagnostic tests suitable for all species, and the use of PCR-confirmation for accurate surveillance. PMID:23294844
Zhou, Xia; Tambo, Ernest; Su, Jing; Fang, Qiang; Ruan, Wei; Chen, Jun-Hu; Yin, Ming-Bo; Zhou, Xiao-Nong
2017-10-01
Plasmodium vivax merozoite surface protein-1 (PvMSP1) gene codes for a major malaria vaccine candidate antigen. However, its polymorphic nature represents an obstacle to the design of a protective vaccine. In this study, we analyzed the genetic polymorphism and natural selection of the C-terminal 42 kDa fragment within PvMSP1 gene (Pv MSP142) from 77 P. vivax isolates, collected from imported cases of China-Myanmar border (CMB) areas in Yunnan province and the inland cases from Anhui, Yunnan, and Zhejiang province in China during 2009-2012. Totally, 41 haplotypes were identified and 30 of them were new haplotypes. The differences between the rates of non-synonymous and synonymous mutations suggest that PvMSP142 has evolved under natural selection, and a high selective pressure preferentially acted on regions identified of PvMSP133. Our results also demonstrated that PvMSP142 of P. vivax isolates collected on China-Myanmar border areas display higher genetic polymorphisms than those collected from inland of China. Such results have significant implications for understanding the dynamic of the P. vivax population and may be useful information towards China malaria elimination campaign strategies.
Han, Yeon Soo; Thompson, Joanne; Kafatos, Fotis C.; Barillas-Mury, Carolina
2000-01-01
We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P.berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to ‘bud off’ the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed. PMID:11080150
Wang, Qian; Fujioka, Hisashi; Nussenzweig, Victor
2005-01-01
Plasmodium sporozoites develop within oocysts residing in the mosquito midgut. Mature sporozoites exit the oocysts, enter the hemolymph, and invade the salivary glands. The circumsporozoite (CS) protein is the major surface protein of salivary gland and oocyst sporozoites. It is also found on the oocyst plasma membrane and on the inner surface of the oocyst capsule. CS protein contains a conserved motif of positively charged amino acids: region II-plus, which has been implicated in the initial stages of sporozoite invasion of hepatocytes. We investigated the function of region II-plus by generating mutant parasites in which the region had been substituted with alanines. Mutant parasites produced normal numbers of sporozoites in the oocysts, but the sporozoites were unable to exit the oocysts. In in vitro as well, there was a profound delay, upon trypsin treatment, in the release of mutant sporozoites from oocysts. We conclude that the exit of sporozoites from oocysts is an active process that involves the region II-plus of CS protein. In addition, the mutant sporozoites were not infective to young rats. These findings provide a new target for developing reagents that interfere with the transmission of malaria. PMID:16201021
Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J
2016-06-01
Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Freed, Leonard A; Cann, Rebecca L
2013-11-01
With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.
Density-dependent home-range size revealed by spatially explicit capture–recapture
Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.
2016-01-01
The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.
Vythilingam, Indra; Lim, Yvonne Al; Venugopalan, Balan; Ngui, Romano; Leong, Cherng Shii; Wong, Meng Li; Khaw, LokeTim; Goh, XiangTing; Yap, NanJiun; Sulaiman, Wan Yusoff Wan; Jeffery, John; Zawiah, Ab Ghani Ct; Nor Aszlina, Ismail; Sharma, Reuben Sk; Yee Ling, Lau; Mahmud, Rohela
2014-09-15
While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria. Cases of knowlesi/malariae malaria in the Hulu Selangor district were retrospectively reviewed and analyzed from 2009 to 2013. Mosquitoes were collected from areas where cases occurred in order to determine the vectors. Leucosphyrus group of mosquitoes were genetically characterized targeting the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit I (CO1). In addition, temporal and spatial analyses were carried out for human cases and vectors. Of the 100 microscopy diagnosed P. knowlesi/P. malariae cases over the 5 year period in the Hulu Selangor district, there was predominance of P. knowlesi/P. malariae cases among the young adults (ages 20-39 years; 67 cases; 67%). The majority of the infected people were involved in occupations related to agriculture and forestry (51; 51%). No death was recorded in all these cases.Five hundred and thirty five mosquitoes belonging to 14 species were obtained during the study. Anopheles maculatus was the predominant species (49.5%) followed by Anopheles letifer (13.1%) and Anopheles introlatus (11.6%). Molecular and phylogenetic analysis confirmed the species of the Leucosphyrus group to be An. introlatus. In the present study, only An. introlatus was positive for oocysts. Kernel Density analysis showed that P. knowlesi hotspot areas overlapped with areas where the infected An. introlatus was discovered. This further strengthens the hypothesis that An. introlatusis is the vector for P. knowlesi in the Hulu Selangor district.Unless more information is obtained on the vectors as well as macaque involved in the transmission, it will be difficult to plan effective control strategies. The utilization of modern analytical tools such as GIS (Geographic Information System) is crucial in estimating hotspot areas for targeted control strategies. Anopheles introlatus has been incriminated as vector of P. knowlesi in Hulu Selangor. The cases of P. knowlesi are on the increase and further research using molecular techniques is needed.
Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H
2017-11-01
Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Ill-posedness of Dynamic Equations of Compressible Granular Flow
NASA Astrophysics Data System (ADS)
Shearer, Michael; Gray, Nico
2017-11-01
We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.
Blood parasites of penguins: a critical review.
Vanstreels, Ralph Eric Thijl; Braga, Érika Martins; Catão-Dias, José Luiz
2016-07-01
Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.
Larvivorous fish for preventing malaria transmission
Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom
2013-01-01
Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Data collection and analysis Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. Main results We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species. PLAIN LANGUAGE SUMMARY Fish that feed on mosquito larvae for preventing malaria transmission Plasmodium parasites cause malaria and are transmitted by adult Anopheles mosquitoes. Programmes that introduce fish into water sources near where people live have been promoted. The theory is that these fish eat the Anopheles mosquito larvae and pupae, thus decreasing the adult mosquito population and reducing the number of people infected with Plasmodium parasites. In this review, we examined the research that evaluated introducing larvivorous fish to Anopheles mosquito breeding sites in areas where malaria was common, published up to 18 June 2013. We did not find any studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. We included 12 studies that examined the effects of larvivorous fish on Anopheles larvae and pupae in different breeding sites, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). Research evidence is insufficient to show whether introduction of larvivorous fish reduces the number of Anopheles larvae and pupae in water sources (nine studies, unpooled data, very low quality evidence). However, larvivorous fish may reduce the number of water sources withAnopheles mosquito larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. Before much is invested in this intervention, better research is needed to determine the effect of introducing larvivorous fish on adult Anopheles populations and on the number of people infected with malaria. Researchers need to use robust controlled designs with an adequate number of sites. Also, researchers should explore whether introducing these fish affects native fish and other non-target species. PMID:24323308
Degarege, Abraham; Degarege, Dawit; Veledar, Emir; Erko, Berhanu; Nacher, Mathieu; Beck-Sague, Consuelo M.; Madhivanan, Purnima
2016-01-01
Background It has been suggested that Schistosoma infection may be associated with Plasmodium falciparum infection or related reduction in haemoglobin level, but the nature of this interaction remains unclear. This systematic review synthesized evidence on the relationship of S. haematobium or S. mansoni infection with the occurrence of P. falciparum malaria, Plasmodium density and related reduction in haemoglobin level among children in sub-Saharan Africa (SSA). Methodology/Principal findings A systematic review in according with PRISMA guidelines was conducted. All published articles available in PubMed, Embase, Cochrane library and CINAHL databases before May 20, 2015 were searched without any limits. Two reviewers independently screened, reviewed and assessed all the studies. Cochrane Q and Moran’s I2 were used to assess heterogeneity and the Egger test was used to examine publication bias. The summary odds ratio (OR), summary regression co-efficient (β) and 95% confidence intervals (CI) were estimated using a random-effects model. Out of 2,920 citations screened, 12 articles (five cross-sectional, seven prospective cohort) were eligible to be included in the systematic review and 11 in the meta-analysis. The 12 studies involved 9,337 children in eight SSA countries. Eight studies compared the odds of asymptomatic/uncomplicated P. falciparum infection, two studies compared the incidence of uncomplicated P. falciparum infection, six studies compared P. falciparum density and four studies compared mean haemoglobin level between children infected and uninfected with S. haematobium or S. mansoni. Summary estimates of the eight studies based on 6,018 children showed a higher odds of asymptomatic/uncomplicated P. falciparum infection in children infected with S. mansoni or S. haematobium compared to those uninfected with Schistosoma (summary OR: 1.82; 95%CI: 1.41, 2.35; I2: 52.3%). The increase in odds of asymptomatic/uncomplicated P. falciparum infection among children infected with Schistosoma remained significant when subgroup analysis was conducted for S. haematobium (summary OR: 1.68; 95%CI: 1.18, 2.41; I2: 53.2%) and S. mansoni (summary OR: 2.15; 95%CI: 1.89, 2.46: I2: 0.0%) infection. However, the density of P. falciparum infection was lower in children co-infected with S. haematobium compared to those uninfected with Schistosoma (summary-β: -0.14; 95% CI: -0.24, -0.01; I2: 39.7%). The mean haemoglobin level was higher among children co-infected with S. haematobium and P. falciparum than those infected with only P. falciparum (summary-mean haemoglobin difference: 0.49; 95% CI: 0.04, 0.95; I2: 66.4%) Conclusions/Significance The current review suggests S. mansoni or S. haematobium co-infection may be associated with increased prevalence of asymptomatic/uncomplicated P. falciparum infection in children, but may protect against high density P. falciparum infection and related reduction in haemoglobin level. PMID:27926919
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR.
Iwagami, Moritoshi; Keomalaphet, Sengdeuane; Khattignavong, Phonepadith; Soundala, Pheovaly; Lorphachan, Lavy; Matsumoto-Takahashi, Emilie; Strobel, Michel; Reinharz, Daniel; Phommasansack, Manisack; Hongvanthong, Bouasy; Brey, Paul T; Kano, Shigeyuki
2017-12-01
Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas. A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes. There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented.
The epidemiology of malaria in adults in a rural area of southern Mozambique.
Mayor, Alfredo; Aponte, John J; Fogg, Carole; Saúte, Francisco; Greenwood, Brian; Dgedge, Martinho; Menendez, Clara; Alonso, Pedro L
2007-01-17
Epidemiological studies of malaria in adults who live in malaria endemic areas are scarce. More attention to the natural history of malaria affecting adults is needed to understand the dynamics of malaria infection and its interaction with the immune system. The present study was undertaken to investigate the clinical, parasitological and haematological status of adults exposed to malaria, and to characterize parasites in these individuals who progressively acquire protective immunity. A cross-sectional survey of 249 adults was conducted in a malaria endemic area of Mozambique. Clinical, parasitological and haematological status of the study population was recorded. Sub-microscopic infections and multiplicity of infections were investigated using polymerase chain reaction (PCR) and restriction fragment length polymorphism of Plasmodium falciparum merozoite surface protein 2 (msp2). Prevalence of P. falciparum infection by microscopy (14%) and PCR (42%) decreased progressively during adulthood, in parallel with an increase in the prevalence of sub-microscopic infections. Anaemia was only related to parasitaemia as detected by PCR. Multiplicity of infection decreased with age and was higher in subjects with high P. falciparum densities, highlighting density-dependent constraints upon the PCR technique. Adults of Manhiça progressively develop non-sterile, protective immunity against P. falciparum malaria. The method of parasite detection has a significant effect on the observed natural history of malaria infections. A more sensitive definition of malaria in adults should be formulated, considering symptoms such as diarrhoea, shivering and headache, combined with the presence of parasitaemia.
Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G
2013-12-01
Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. © 2013 Society for Conservation Biology.
Drug Evaluation in the Plasmodium falciparum - Aotus Model
1984-09-01
consecutive days to Colombian Aotus. Six amodiaquin analogues were evaluated for their capacity to cure in- fections of chloroquine -sensitive and...AMODIAQUIN ANALOGUES AND AMODIAQUIN AGAINST INFECTIONS OF CHLOROQUINE -SENSITIVE AND CHLOROQUINE -RESISTANT STRAINS OF PLASMODIUM FALCIPARUM 14...AMODIAQUIN ANALOGUES AND AMOOIAQUIN AGAINST INFECTIONS OF CHLOROQUINE -SENSITIVE AND CHLOROQUINE - RESISTANT STRAINS OF PLASMODIUM FALCIPARUM Following
Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro.
Engelbrecht, Dewaldt; Coetzer, Thérèsa Louise
2016-12-01
The asexual erythrocytic cycle of the protozoan parasite Plasmodium falciparum is responsible for the pathogenesis of malaria and causes the overwhelming majority of malaria deaths. Rapidly increasing parasitaemia during this 48hour cycle threatens the survival of the human host and the parasite prior to transmission of the slow-maturing sexual stages to the mosquito host. The parasite may utilise regulated cell death (RCD) to control the burden of infection on the host and thus aid its own survival and transmission. The occurrence of RCD in P. falciparum remains a controversial topic. We provide strong evidence for the occurrence of an apoptosis-like phenotype of RCD in P. falciparum under conditions of high parasite density. P. falciparum was maintained in vitro and stressed by allowing growth to an unrestricted peak parasitaemia. Cell death markers, including morphological changes, DNA fragmentation, mitochondrial polarisation and phosphatidylserine externalisation were used to characterise parasite death at the time of peak parasitaemia and 24h later. At peak parasitaemia, mitochondrial depolarisation was observed, together with phosphatidylserine externalisation in both parasitised- and neighbouring non-infected erythrocytes. DNA fragmentation coincided with a decline in parasitaemia. Fewer merozoites were observed in mature schizonts at peak parasitaemia. Growth recovery to near-peak parasitaemia was noted within two intraerythrocytic cycles. The combination and chronological order of the biochemical markers of cell death suggest the occurrence of an apoptosis-like phenotype. The identification of a RCD pathway in P. falciparum may provide novel drug targets, particularly if the pathway differs from the host machinery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Treatment uptake by individuals infected with Plasmodium falciparum in rural Gambia, West Africa.
von Seidlein, Lorenz; Clarke, Sian; Alexander, Neâl; Manneh, Fandingding; Doherty, Tom; Pinder, Margaret; Walraven, Gijs; Greenwood, Brian
2002-01-01
OBJECTIVE: To find out what proportion of Plasmodium falciparum infections are treated in rural Gambia. METHODS: Subjects from four villages in the Gambia were followed over nine months through visits to village health workers. Monthly cross-sectional malaria surveys measured the prevalence of P. falciparum infection. Linked databases were searched for treatment requests. Treated cases were individuals with parasitaemia who requested treatment during narrow or extended periods (14 or 28 days, respectively) before or after a positive blood film was obtained. FINDINGS: Parasite prevalence peaked in November 1998, when 399/653 (61%) individuals had parasitaemia. Parasite prevalence was highest throughout the study in children aged 5-10 years. Although access to treatment was better than in most of sub-Saharan Africa, only 20% of infected individuals sought medical treatment up to 14 days before or after a positive blood film. Within two months of a positive blood film, 199/726 (27%) individuals with parasitaemia requested treatment. Despite easy access to health care, less than half (42%) of those with parasite densities consistent with malaria attacks (5000/ l) requested treatment. High parasite density and infection during October-November were associated with more frequent treatment requests. Self-treatment was infrequent in study villages: in 3/120 (2.5%) households antimalarial drugs had been used in the preceding malaria season. CONCLUSION: Many P. falciparum infections may be untreated because of their subclinical nature. Intermittent presumptive treatment may reduce morbidity and mortality. It is likely that not all untreated infections were asymptomatic. Qualitative research should explore barriers to treatment uptake, to allow educational interventions to be planned. PMID:12471399
Prevalence of Plasmodium falciparum infection in pregnant women in Gabon
Bouyou-Akotet, Marielle K; Ionete-Collard, Denisa E; Mabika-Manfoumbi, Modeste; Kendjo, Eric; Matsiegui, Pierre-Blaise; Mavoungou, Elie; Kombila, Maryvonne
2003-01-01
Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57%) had microscopic parasitaemia; 139 (64%)of them were primigravidae, 38 (40%) in their second pregnancy and 180 (64%) were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population. PMID:12919637
Stone, Will; Sawa, Patrick; Lanke, Kjerstin; Rijpma, Sanna; Oriango, Robin; Nyaurah, Maureen; Osodo, Paul; Osoti, Victor; Mahamar, Almahamoudou; Diawara, Halimatou; Woestenenk, Rob; Graumans, Wouter; van de Vegte-Bolmer, Marga; Bradley, John; Chen, Ingrid; Brown, Joelle; Siciliano, Giulia; Alano, Pietro; Gosling, Roly; Dicko, Alassane; Drakeley, Chris; Bousema, Teun
2017-01-01
Abstract Background Single low-dose primaquine (PQ) reduces Plasmodium falciparum infectivity before it impacts gametocyte density. Here, we examined the effect of PQ on gametocyte sex ratio as a possible explanation for this early sterilizing effect. Methods Quantitative reverse-transcription polymerase chain reaction assays were developed to quantify female gametocytes (targeting Pfs25 messenger RNA [mRNA]) and male gametocytes (targeting Pf3D7_1469900 mRNA) in 2 randomized trials in Kenya and Mali, comparing dihydroartemisinin-piperaquine (DP) alone to DP with PQ. Gametocyte sex ratio was examined in relation to time since treatment and infectivity to mosquitoes. Results In Kenya, the median proportion of male gametocytes was 0.33 at baseline. Seven days after treatment, gametocyte density was significantly reduced in the DP-PQ arm relative to the DP arm (females: 0.05% [interquartile range {IQR}, 0.0–0.7%] of baseline; males: 3.4% [IQR, 0.4%–32.9%] of baseline; P < .001). Twenty-four hours after treatment, gametocyte sex ratio became male-biased and was not significantly different between the DP and DP-PQ groups. In Mali, there was no significant difference in sex ratio between the DP and DP-PQ groups (>0.125 mg/kg) 48 hours after treatment, and gametocyte sex ratio was not associated with mosquito infection rates. Conclusions The early sterilizing effects of PQ may not be explained by the preferential clearance of male gametocytes and may be due to an effect on gametocyte fitness. PMID:28931236
Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.
Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley
2013-01-01
The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865
Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.
Rosero, Doris A; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V; Torres, Carolina; Luckhart, Shirley; Correa, Margarita M
2013-01-01
The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia.
Puri, S K; Dutta, G P
2003-04-01
A new 8-aminoquinoline antimalarial WR 238605 (Tafenoquine), developed initially as a primaquine alternative for prevention of Plasmodium vivax relapses was evaluated for blood schizontocidal activity against two simian malaria infections namely Plasmodium cynomolgi B and Plasmodium fragile in rhesus monkeys. Treatment with WR 238605 at a dose of 3.16 mg(base)/kg/day x 7 days cured established trophozoite induced infections in monkeys with both these parasites. The lower dose of 1.00 mg/kg/day cured 9 out of 12 monkeys infected with P. cynomolgi B and 10 out of 11 monkeys infected with P. fragile. Primaquine was only partially curative at 10.0 mg(base)/kg/day x 7 dose regimen against both these infections. The potent blood schizontocidal activity of tafenoquine adds to the armoury of antimalarial drugs.
Modelling density-dependent resistance in insect-pathogen interactions.
White, K A; Wilson, K
1999-10-01
We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of the insect population. The results are interpreted ecologically and future avenues for research to address the shortfalls in the present model system are discussed. Copyright 1999 Academic Press.
Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai
2011-01-01
One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the HB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current non-polarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional hydrogen bonding. PMID:22267958
Evolution of Swarming Behavior Is Shaped by How Predators Attack.
Olson, Randal S; Knoester, David B; Adami, Christoph
2016-01-01
Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.
Bwanika, Richard; Kato, Charles D; Welishe, Johnson; Mwandah, Daniel C
2018-01-01
Malaria and helminths share the same geographical distribution in tropical Africa. Studies of the interaction of helminth and malaria co-infection in humans have been few and are mainly epidemiological, with little information on cellular immune responses. This study aimed to determine Cytokine profiles among patients co-infected with Plasmodium falciparum malaria and soil borne helminth attending Kampala International University Teaching Hospital (KIU). A case control study of 240 patients were recruited at KIU teaching hospital. Patients with Plasmodium falciparum malaria were 55 (22.9%) and those with soil-borne helminths were 63 (26.3%). The controls were 89 (37.1%), while those co-infected with Plasmodium falciparum malaria and soil-borne helminths were 33 (13.8%). Cases were defined as having a positive blood smear for P. falciparum malaria, those with helminths or co-infections of the two. Negative controls were those with a negative blood smear for P. falciparum malaria and those with no stool parasitic infections. Patients presenting with signs and symptoms of malaria or those suspected of having helminths were recruited for the study. A panel of five cytokines (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) were assayed from plasma samples in patients with and without Plasmodium falciparum malaria, patients with and without helminth, and then those co-infected with the two diseases diagnosis was done using thick blood smears stained with 10% Giemsa and stool examination was done following the Kato Katz technique following standard procedures. The prevalence of Plasmodium falciparum malaria by sex was 28 (11.7%) and 27 (11.3%) in male and female respectively. The overall prevalence of soil borne helminth was 26.3%, and among those harbouring helminths, 13.8% were co-infected with Plasmodium falciparum. Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and health controls for IFN-γ (P = 0.023), IL-10 (P = 0.008) and TGF-β (P = 0.0001). Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected patients and patients co-infected with Plasmodium falciparum malaria and soil borne helminth for IL-10 (P = 0.004), IL-6 (P = 0.011) and TGF-β (P = 0.003). An up-regulation of IFN-γ during Plasmodium falciparum malaria and an up-regulation of IL-10 and TGF-β in soil borne helminth infections was demonstrated. We demonstrate that co-infections of Plasmodium falciparum and soil borne helminth lead to an up-regulation of IL-10 and IL-6 and a down-regulation of TGF-β. Trial registration No17/10-16.
Karl, Stephan; Laman, Moses; Moore, Brioni R; Benjamin, John; Koleala, Tamarah; Ibam, Clemencia; Kasian, Bernadine; Siba, Peter M; Waltmann, Andreea; Mueller, Ivo; Woodward, Robert C; St Pierre, Timothy G; Davis, Timothy M E
2015-08-01
Quantitative magnetic fractionation and a published mathematical model were used to characterize between-treatment differences in gametocyte density and prevalence in 70 Papua New Guinean children with uncomplicated Plasmodium falciparum and/or Plasmodium vivax malaria randomized to one of two artemisinin combination therapies (artemether-lumefantrine or artemisinin-naphthoquine) in an intervention trial. There was an initial rise in peripheral P. falciparum gametocyte density with both treatments, but it was more pronounced in the artemisinin-naphthoquine group. Model-derived estimates of the median pretreatment sequestered gametocyte population were 21/μl for artemether-lumefantrine and 61/μl for artemisinin-naphthoquine (P < 0.001). The median time for P. falciparum gametocyte density to fall to <2.5/μl (below which transmission becomes unlikely) was 16 days in the artemether-lumefantrine group and 20 days in artemisinin-naphthoquine group (P < 0.001). Gametocyte prevalence modeling suggested that artemisinin-naphthoquine-treated children became gametocytemic faster (median, 2.2 days) than artemether-lumefantrine-treated children (median, 5.3 days; P < 0.001) and had a longer median P. falciparum gametocyte carriage time per individual (20 versus 13 days; P < 0.001). Clearance of P. vivax gametocytes was rapid (within 3 days) in both groups; however, consistent with the reappearance of asexual forms in the main trial, nearly 40% of children in the artemether-lumefantrine group developed P. vivax gametocytemia between days 28 and 42 compared with 3% of children in the artemisinin-naphthoquine group. These data suggest that artemisinin is less active than artemether against sequestered gametocytes. Greater initial gametocyte release after artemisinin-naphthoquine increases the period of potential P. falciparum transmission by 4 days relative to artemether-lumefantrine, but the longer elimination half-life of naphthoquine than of lumefantrine suppresses P. vivax recurrence and consequent gametocytemia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zeukeng, Francis; Tchinda, Viviane Hélène Matong; Bigoga, Jude Daiga; Seumen, Clovis Hugues Tiogang; Ndzi, Edward Shafe; Abonweh, Géraldine; Makoge, Valérie; Motsebo, Amédée; Moyou, Roger Somo
2014-10-01
Human co-infection with malaria and helmimths is ubiquitous throughout Africa. Nevertheless, its public health significance on malaria severity remains poorly understood. To contribute to a better understanding of epidemiology and control of this co-infection in Cameroon, a cross-sectional study was carried out to assess the prevalence of concomitant intestinal geohelminthiasis and malaria, and to evaluate its association with malaria and anaemia in Nkassomo and Vian. Finger prick blood specimens from a total of 263 participants aged 1-95 years were collected for malaria microscopy, assessment of haemoglobin levels, and molecular identification of Plasmodium species by PCR. Fresh stool specimens were also collected for the identification and quantification of geohelminths by the Kato-Katz method. The prevalence of malaria, geohelminths, and co-infections were 77.2%, 28.6%, and 22.1%, respectively. Plasmodium falciparum was the only malaria parasite species identified with mean parasite density of 111 (40; 18,800) parasites/µl of blood. The geohelminths found were Ascaris lumbricoides (21.6%) and Trichuris trichiura (10.8%), with mean parasite densities of 243 (24; 3,552) and 36 (24; 96) eggs/gram of faeces, respectively. Co-infections of A. lumbricoides and P. falciparum were the most frequent and correlated positively. While no significant difference was observed on the prevalences of single and co-infections between the two localities, there was a significant difference in the density of A. lumbricoides infection between the two localities. The overall prevalence of anaemia was 42%, with individuals co-infected with T. trichiura and P. falciparum (60%) being the most at risk. While the prevalence of malaria and anaemia were inversely related to age, children aged 5-14 years were more susceptible to geohelminthiasis and their co-infections with malaria. Co-existence of geohelminths and malaria parasites in Nkassomo and Vian enhances the occurrence of co-infections, and consequently, increases the risk for anaemia.
Wampfler, Rahel; Hofmann, Natalie E; Karl, Stephan; Betuela, Inoni; Kinboro, Benson; Lorry, Lina; Silkey, Mariabeth; Robinson, Leanne J; Mueller, Ivo; Felger, Ingrid
2017-07-01
Primaquine (PQ) is the only currently licensed antimalarial that prevents Plasmodium vivax (Pv) relapses. It also clears mature P. falciparum (Pf) gametocytes, thereby reducing post-treatment transmission. Randomized PQ treatment in a treatment-to-reinfection cohort in Papua New Guinean children permitted the study of Pv and Pf gametocyte carriage after radical cure and to investigate the contribution of Pv relapses. Children received radical cure with Chloroquine, Artemether-Lumefantrine plus either PQ or placebo. Blood samples were subsequently collected in 2-to 4-weekly intervals over 8 months. Gametocytes were detected by quantitative reverse transcription-PCR targeting pvs25 and pfs25. PQ treatment reduced the incidence of Pv gametocytes by 73%, which was comparable to the effect of PQ on incidence of blood-stage infections. 92% of Pv and 79% of Pf gametocyte-positive infections were asymptomatic. Pv and to a lesser extent Pf gametocyte positivity and density were associated with high blood-stage parasite densities. Multivariate analysis revealed that the odds of gametocytes were significantly reduced in mixed-species infections compared to single-species infections for both species (ORPv = 0.39 [95% CI 0.25-0.62], ORPf = 0.33 [95% CI 0.18-0.60], p<0.001). No difference between the PQ and placebo treatment arms was observed in density of Pv gametocytes or in the proportion of Pv infections that carried gametocytes. First infections after blood-stage and placebo treatment, likely caused by a relapsing hypnozoite, were equally likely to carry gametocytes than first infections after PQ treatment, likely caused by an infective mosquito bite. Pv relapses and new infections are associated with similar levels of gametocytaemia. Relapses thus contribute considerably to the Pv reservoir highlighting the importance of effective anti-hypnozoite treatment for efficient control of Pv. ClinicalTrials.gov NCT02143934.
Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia.
Barbosa, Susana; Gozze, Amanda B; Lima, Nathália F; Batista, Camilla L; Bastos, Melissa da Silva; Nicolete, Vanessa C; Fontoura, Pablo S; Gonçalves, Raquel M; Viana, Susana Ariane S; Menezes, Maria José; Scopel, Kézia Katiani G; Cavasini, Carlos E; Malafronte, Rosely dos Santos; da Silva-Nunes, Mônica; Vinetz, Joseph M; Castro, Márcia C; Ferreira, Marcelo U
2014-08-01
New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings. Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease. P. vivax prevalence decreased from 23.8% (March-April 2010) to 3.0% (April-May 2013), with no P. falciparum infections diagnosed after March-April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2-3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance.
Epidemiology of Disappearing Plasmodium vivax Malaria: A Case Study in Rural Amazonia
Lima, Nathália F.; Batista, Camilla L.; Bastos, Melissa da Silva; Nicolete, Vanessa C.; Fontoura, Pablo S.; Gonçalves, Raquel M.; Viana, Susana Ariane S.; Menezes, Maria José; Scopel, Kézia Katiani G.; Cavasini, Carlos E.; Malafronte, Rosely dos Santos; da Silva-Nunes, Mônica; Vinetz, Joseph M.; Castro, Márcia C.; Ferreira, Marcelo U.
2014-01-01
Background New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings. Methods Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease. Principal Findings/Conclusions P. vivax prevalence decreased from 23.8% (March–April 2010) to 3.0% (April–May 2013), with no P. falciparum infections diagnosed after March–April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2–3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance. PMID:25166263
Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L
2009-10-12
This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.
Martins, Yuri C; Freeman, Brandi D; Akide Ndunge, Oscar B; Weiss, Louis M; Tanowitz, Herbert B; Desruisseaux, Mahalia S
2016-11-01
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 10 6 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Prevalence and risk factors of malaria among children in southern highland Rwanda.
Gahutu, Jean-Bosco; Steininger, Christian; Shyirambere, Cyprien; Zeile, Irene; Cwinya-Ay, Neniling; Danquah, Ina; Larsen, Christoph H; Eggelte, Teunis A; Uwimana, Aline; Karema, Corine; Musemakweri, Andre; Harms, Gundel; Mockenhaupt, Frank P
2011-05-18
Increased control has produced remarkable reductions of malaria in some parts of sub-Saharan Africa, including Rwanda. In the southern highlands, near the district capital of Butare (altitude, 1,768 m), a combined community-and facility-based survey on Plasmodium infection was conducted early in 2010. A total of 749 children below five years of age were examined including 545 randomly selected from 24 villages, 103 attending the health centre in charge, and 101 at the referral district hospital. Clinical, parasitological, haematological, and socio-economic data were collected. Plasmodium falciparum infection (mean multiplicity, 2.08) was identified by microscopy and PCR in 11.7% and 16.7%, respectively; 5.5% of the children had malaria. PCR-based P. falciparum prevalence ranged between 0 and 38.5% in the villages, and was 21.4% in the health centre, and 14.9% in the hospital. Independent predictors of infection included increasing age, low mid-upper arm circumference, absence of several household assets, reported recent intake of artemether-lumefantrine, and chloroquine in plasma, measured by ELISA. Self-reported bed net use (58%) reduced infection only in univariate analysis. In the communities, most infections were seemingly asymptomatic but anaemia was observed in 82% and 28% of children with and without parasitaemia, respectively, the effect increasing with parasite density, and significant also for submicroscopic infections. Plasmodium falciparum infection in the highlands surrounding Butare, Rwanda, is seen in one out of six children under five years of age. The abundance of seemingly asymptomatic infections in the community forms a reservoir for transmission in this epidemic-prone area. Risk factors suggestive of low socio-economic status and insufficient effectiveness of self-reported bed net use refer to areas of improvable intervention.
Baker, David A; Stewart, Lindsay B; Large, Jonathan M; Bowyer, Paul W; Ansell, Keith H; Jiménez-Díaz, María B; El Bakkouri, Majida; Birchall, Kristian; Dechering, Koen J; Bouloc, Nathalie S; Coombs, Peter J; Whalley, David; Harding, Denise J; Smiljanic-Hurley, Ela; Wheldon, Mary C; Walker, Eloise M; Dessens, Johannes T; Lafuente, María José; Sanz, Laura M; Gamo, Francisco-Javier; Ferrer, Santiago B; Hui, Raymond; Bousema, Teun; Angulo-Barturén, Iñigo; Merritt, Andy T; Croft, Simon L; Gutteridge, Winston E; Kettleborough, Catherine A; Osborne, Simon A
2017-09-05
To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC 50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC 50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.
Molina-Cruz, Alvaro; Brzostowski, Joseph; Mu, Jianbing
2017-01-01
ABSTRACT Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs) play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO) parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s) in male gametocyte exflagellation and possibly in female gametes. PMID:29042501
Chaudhari, Rahul; Dey, Vishakha; Narayan, Aishwarya; Sharma, Shobhona
2017-01-01
The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF4− and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles. PMID:28462015
Chaudhari, Rahul; Dey, Vishakha; Narayan, Aishwarya; Sharma, Shobhona; Patankar, Swati
2017-01-01
The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPx Gl ) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF 4 - and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPx Gl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPx Gl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPx Gl ; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles.
Jortzik, Esther; Mailu, Boniface M; Preuss, Janina; Fischer, Marina; Bode, Lars; Rahlfs, Stefan; Becker, Katja
2011-06-15
The survival of malaria parasites in human RBCs (red blood cells) depends on the pentose phosphate pathway, both in Plasmodium falciparum and its human host. G6PD (glucose-6-phosphate dehydrogenase) deficiency, the most common human enzyme deficiency, leads to a lack of NADPH in erythrocytes, and protects from malaria. In P. falciparum, G6PD is combined with the second enzyme of the pentose phosphate pathway to create a unique bifunctional enzyme named GluPho (glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase). In the present paper, we report for the first time the cloning, heterologous overexpression, purification and kinetic characterization of both enzymatic activities of full-length PfGluPho (P. falciparum GluPho), and demonstrate striking structural and functional differences with the human enzymes. Detailed kinetic analyses indicate that PfGluPho functions on the basis of a rapid equilibrium random Bi Bi mechanism, where the binding of the second substrate depends on the first substrate. We furthermore show that PfGluPho is inhibited by S-glutathionylation. The availability of recombinant PfGluPho and the major differences to hG6PD (human G6PD) facilitate studies on PfGluPho as an excellent drug target candidate in the search for new antimalarial drugs.
Growth model for uneven-aged loblolly pine stands : simulations and management implications
C.-R. Lin; J. Buongiorno; Jeffrey P. Prestemon; K. E. Skog
1998-01-01
A density-dependent matrix growth model of uneven-aged loblolly pine stands was developed with data from 991 permanent plots in the southern United States. The model predicts the number of pine, soft hardwood, and hard hardwood trees in 13 diameter classes, based on equations for ingrowth, upgrowth, and mortality. Projections of 6 to 10 years agreed with the growth...
Blood parasites from California ducks and geese
Herman, C.M.
1951-01-01
Blood smears were procured from 1,011 geese and ducks of 19 species from various locations in California. Parasites were found in 28 individuals. The parasites observed included Haemoproteus hermani, Leucocytozoon simondi, microfilaria, Plasmodium relictum (=P. biziurae), and Plasmodium sp. with elongate gametocytes. This is the first report of a natural infection with a Plasmodium in North American wild ducks.
Delhaes, L; Lazaro, J E; Gay, F; Thellier, M; Danis, M
1999-01-01
Malarial lactate dehydrogenase (LDH), which uses 3-acetyl pyridine adenine dinucleotide as coenzyme in a reaction leading to the formation of pyruvate from L-lactate, may be used to study the susceptibility of Plasmodium falciparum to a drug in vitro. Several methods to determine the activity of this enzyme are available. One, the colorimetric method of Makler and colleagues, was modified slightly, by using sodium-2,3-bis-[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5 - carboxanilide (XTT) and following the reaction by measuring the optical density at 450 nm. Using two, culture-adapted strains of P. falciparum, this LDH assay was compared with the unmodified Makler's assay and with the isotopic microtest based on the incorporation of tritium-labelled hypoxanthine. Fresh, clinical P. falciparum isolates were also tested in the presence of several drugs, including chloroquine, mefloquine, quinine, halofantrine, atovaquone and qinghaosu derivatives. The results of the three assays were correlated for all the drugs tested except atovaquone. The two enzymatic assays are non-radioactive, rapid, reliable, inexpensive to perform and semi-automatic. However, they do require an initial parasitaemia of 2% with a haematocrit of 1.8%.
Berhane, Araia; Anderson, Karen; Mihreteab, Selam; Gresty, Karryn; Rogier, Eric; Mohamed, Salih; Hagos, Filmon; Embaye, Ghirmay; Chinorumba, Anderson; Zehaie, Assefash; Dowd, Simone; Waters, Norman C.; Gatton, Michelle L.; Udhayakumar, Venkatachalam; Cunningham, Jane
2018-01-01
False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2–based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies. PMID:29460730
Rajkhowa, Sanchaita; Hussain, Iftikar; Hazarika, Kalyan K; Sarmah, Pubalee; Deka, Ramesh Chandra
2013-09-01
Artemisinin form the most important class of antimalarial agents currently available, and is a unique sesquiterpene peroxide occurring as a constituent of Artemisia annua. Artemisinin is effectively used in the treatment of drug-resistant Plasmodium falciparum and because of its rapid clearance of cerebral malaria, many clinically useful semisynthetic drugs for severe and complicated malaria have been developed. However, one of the major disadvantages of using artemisinins is their poor solubility either in oil or water and therefore, in order to overcome this difficulty many derivatives of artemisinin were prepared. A comparative study on the chemical reactivity of artemisinin and some of its derivatives is performed using density functional theory (DFT) calculations. DFT based global and local reactivity descriptors, such as hardness, chemical potential, electrophilicity index, Fukui function, and local philicity calculated at the optimized geometries are used to investigate the usefulness of these descriptors for understanding the reactive nature and reactive sites of the molecules. Multiple regression analysis is applied to build up a quantitative structure-activity relationship (QSAR) model based on the DFT based descriptors against the chloroquine-resistant, mefloquine-sensitive Plasmodium falciparum W-2 clone.
de Roode, Jacobus C; Culleton, Richard; Bell, Andrew S; Read, Andrew F
2004-09-14
Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by feeding mice to Anopheles stephensi mosquitoes. In the absence of drugs, the sensitive clone competitively suppressed the resistant clone; this resulted in lower asexual parasite densities and also reduced transmission to the mosquito vector. Drug treatment, however, allowed the resistant clone to fill the ecological space emptied by the removal of the sensitive clone, allowing it to transmit as well as it would have done in the absence of competition. These results show that under drug pressure, resistant strains can have two advantages: (1) they survive better than sensitive strains and (2) they can exploit the opportunities presented by the removal of their competitors. When mixed infections are common, such effects could increase the spread of drug resistance.
Wong, Meng L.; Chua, Tock H.; Leong, Cherng S.; Khaw, Loke T.; Fornace, Kimberly; Wan-Sulaiman, Wan-Yusoff; William, Timothy; Drakeley, Chris; Ferguson, Heather M.; Vythilingam, Indra
2015-01-01
Background The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species. Methodology/Principal Findings We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs. Conclusions/Significance This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region. PMID:26448052
Herrera, Sócrates; Fernández, Olga; Manzano, María R.; Murrain, Bermans; Vergara, Juana; Blanco, Pedro; Palacios, Ricardo; Vélez, Juan D.; Epstein, Judith E.; Chen-Mok, Mario; Reed, Zarifah H.; Arévalo-Herrera, Myriam
2010-01-01
Successful establishment of a Plasmodium vivax sporozoite challenge model in humans is described. Eighteen healthy adult, malaria-naïve volunteers were randomly allocated to Groups A–C and exposed to 3 ± 1, 6 ± 1, and 9 ± 1 bites of Anopheles albimanus mosquitoes infected with P. vivax, respectively. Seventeen volunteers developed signs and symptoms consistent with malaria, and geometric mean prepatent periods of 11.1 days (9.3–11) for Group A; 10.8 days (9.8–11.9) for Group B; and 10.6 days (8.7–12.4) for Group C, with no statistically significant difference among groups (Kruskal-Wallis, P = 0.70). One volunteer exposed to eight mosquito bites did not develop a parasitemia. No differences in parasite density were observed and all individuals successfully recovered after anti-malarial treatment. None of the volunteers developed parasite relapses within an 18-month follow-up. In conclusion, malaria-naive volunteers can be safely and reproducibly infected with bites of 2–10 An. albimanus mosquitoes carrying P. vivax sporozoites. This challenge method is suitable for vaccine and anti-malarial drug testing. PMID:19861603
Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum
Miles, Alistair; Iqbal, Zamin; Vauterin, Paul; Pearson, Richard; Campino, Susana; Theron, Michel; Gould, Kelda; Mead, Daniel; Drury, Eleanor; O'Brien, John; Ruano Rubio, Valentin; MacInnis, Bronwyn; Mwangi, Jonathan; Samarakoon, Upeka; Ranford-Cartwright, Lisa; Ferdig, Michael; Hayton, Karen; Su, Xin-zhuan; Wellems, Thomas; Rayner, Julian; McVean, Gil; Kwiatkowski, Dominic
2016-01-01
The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired. PMID:27531718
Berhane, Araia; Anderson, Karen; Mihreteab, Selam; Gresty, Karryn; Rogier, Eric; Mohamed, Salih; Hagos, Filmon; Embaye, Ghirmay; Chinorumba, Anderson; Zehaie, Assefash; Dowd, Simone; Waters, Norman C; Gatton, Michelle L; Udhayakumar, Venkatachalam; Cheng, Qin; Cunningham, Jane
2018-03-01
False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2-based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies.
Structure and function based design of Plasmodium-selective proteasome inhibitors
Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew
2016-01-01
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next generation anti-malarial agents. PMID:26863983
Impairment of the Plasmodium falciparum erythrocytic cycle induced by angiotensin peptides.
Saraiva, Victor Barbosa; de Souza Silva, Leandro; Ferreira-DaSilva, Claudio Teixeira; da Silva-Filho, João Luiz; Teixeira-Ferreira, André; Perales, Jonas; Souza, Mariana Conceição; Henriques, Maria das Graças; Caruso-Neves, Celso; de Sá Pinheiro, Ana Acacia
2011-02-18
Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1-7). Parasite infection decreased Ang-(1-7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1-7) decreased the level of infection in an A779 (specific antagonist of Ang-(1-7) receptor, MAS)-sensitive manner. 10(-7) M PD123319, an AT(2) receptor antagonist, partially reversed the effects of Ang-(1-7) and Ang II. However, 10(-6) M losartan, an antagonist of the AT(1) receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10(-8) M Ang II or 10(-8) M Ang-(1-7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10(-7) M A779. 10(-6) M dibutyryl-cAMP increased the level of infection and 10(-7) M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1-7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1-7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.
Structure- and function-based design of Plasmodium-selective proteasome inhibitors.
Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew
2016-02-11
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next-generation anti-malarial agents.
Adeoye, A O; Bewaji, C O
2018-01-10
Adansonia digitata L. Baobab (Bombacaceae) solvent extracts have been reported to possess medicinal properties and are currently been used traditionally for the treatment of malaria and several other diseases and infection; however few reports exist in literature that provides supportive scientific evidence in favour of its medicinal use. This study investigated the efficacy of Adansonia digitata stem bark extract in offering protection against experimental malaria and also examined its remediation effect when administered after established infection. Weanling albino mice were used in the study. The mice were transfected intraperitonially with an inoculums size of 1× 10 7 of chloroquine susceptible strain of plasmodium berghei infected erythrocytes. Mechanisms of action of the extract were investigated by measuring the degree of tissue peroxidation and tissue antioxidant status. Severity of malaria was determined by measuring the serum C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and serum and tissue Alkaline phosphatase (ALP) activity. There was a significant increase in serum CRP, TNF-α concentrations and serum and tissue ALP activity in the control mice following Plasmodium berghei infection. All the treatment had effect on the growth of Plasmodium berghei parasites in mice. The extracts showed a significant dose dependent increase packed cell volume (PCV), percentage chemosupression/clearance and a significant decrease in percentage parasitemia at the two doses when administered after established infection. Methanolic extract (MEAD) at 400mg/kg exhibited the highest chemosupressive activity. The extract significantly reduced the degree of tissue peroxidation, increased the level of reduced glutathione (GSH), catalase and superoxide dismutase activity. Administration of the extract after established infection reduced serum CRP and TNF-α concentrations and serum and tissue ALP activity. Our study suggests that Adansonia digitata protects against Plasmodium berghei induced-malaria, and that administration of the extract after established infection reduced malaria progression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Silveira, Henrique; Ramos, Susana; Abrantes, Patrícia; Lopes, Luís Filipe; do Rosario, Virgílio E; Abrahamsen, Mitchell S
2007-01-01
Background The anti-malarial chloroquine can modulate the outcome of infection during the Plasmodium sporogonic development, interfering with Plasmodium gene expression and subsequently, with transmission. The present study sets to identify Plasmodium genes that might be regulated by chloroquine in the mosquito vector. Methods Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. Anopheles stephensi mosquitoes were fed on Plasmodium yoelii nigeriensis-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed Plasmodium transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis. Results Both transcripts were represented in Plasmodium EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine. Conclusion Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two Plasmodium genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling. PMID:17605769
Ferraguti, Martina; Martínez-de la Puente, Josué; Muñoz, Joaquín; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi
2013-01-01
Haemosporidians, a group of vector-borne parasites that include Plasmodium, infect vertebrates including birds. Although mosquitoes are crucial elements in the transmission of avian malaria parasites, little is known of their ecology as vectors. We examined the presence of Plasmodium and Haemoproteus lineages in five mosquito species belonging to the genera Culex and Ochlerotatus to test for the effect of vector species, season and host-feeding source on the transmission dynamics of these pathogens. We analyzed 166 blood-fed individually and 5,579 unfed mosquitoes (grouped in 197 pools) from a locality in southern Spain. In all, 15 Plasmodium and two Haemoproteus lineages were identified on the basis of a fragment of 478 bp of the mitochondrial cytochrome b gene. Infection prevalence of blood parasites in unfed mosquitoes varied between species (range: 0–3.2%) and seasons. The feeding source was identified in 91 mosquitoes where 78% were identified as bird. We found that i) several Plasmodium lineages are shared among different Culex species and one Plasmodium lineage is shared between Culex and Ochlerotatus genera; ii) mosquitoes harboured Haemoproteus parasites; iii) pools of unfed females of mostly ornithophilic Culex species had a higher Plasmodium prevalence than the only mammophylic Culex species studied. However, the mammophylic Ochlerotatus caspius had in pool samples the greatest Plasmodium prevalence. This relative high prevalence may be determined by inter-specific differences in vector survival, susceptibility to infection but also the possibility that this species feeds on birds more frequently than previously thought. Finally, iv) infection rate of mosquitoes varies between seasons and reaches its maximum prevalence during autumn and minimum prevalence in spring. PMID:23823127
Schoener, E R; Hunter, S; Howe, L
2017-07-01
Although wildlife rehabilitation and translocations are important tools in wildlife conservation in New Zealand, disease screening of birds has not been standardized. Additionally, the results of the screening programmes are often difficult to interpret due to missing disease data in resident or translocating avian populations. Molecular methods have become the most widespread method for diagnosing avian malaria (Plasmodium spp.) infections. However, these methods can be time-consuming, expensive and are less specific in diagnosing mixed infections. Thus, this study developed a new real-time PCR (qPCR) method that was able to detect and specifically identify infections of the three most common lineages of avian malaria in New Zealand (Plasmodium (Novyella) sp. SYAT05, Plasmodium elongatum GRW6 and Plasmodium spp. LINN1) as well as a less common, pathogenic Plasmodium relictum GRW4 lineage. The assay was also able to discern combinations of these parasites in the same sample and had a detection limit of five parasites per microlitre. Due to concerns relating to the presence of the potentially highly pathogenic P. relictum GRW4 lineage in avian populations, an additional confirmatory high resolution (HRM) qPCR was developed to distinguish between commonly identified P. elongatum GRW6 from P. relictum GRW4. The new qPCR assays were tested using tissue samples containing Plasmodium schizonts from three naturally infected dead birds resulting in the identified infection of P. elongatum GRW6. Thus, these rapid qPCR assays have shown to be cost-effective and rapid screening tools for the detection of Plasmodium infection in New Zealand native birds.
Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.
Faust, Christina; Dobson, Andrew P
2015-12-01
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
[Application of Nested PCR in the Diagnosis of Imported Plasmodium Ovale Infection].
Huang, Bing-cheng; Xu, Chao; Li, Jin; Xiao, Ting; Yin, Kun; Liu, Gong-zhen; Wang, Wei-yan; Zhao, Gui-hua; Wei, Yan-bin; Wang, Yong-bin; Zhao, Chang-lei; Wei, Qing-kuan
2015-02-01
To identity Plasmodium ovale infection by 18S rRNA gene nested PCR. Whole blood and filter paper blood samples of malaria patients in Shandong Province were collected during 2012-2013. The parasites were observed under a microscope with Giemsa staining. The genome DNA of blood samples were extracted as PCR templates. Genus- and species-specific primers were designed according to the Plasmodium 18S rRNA gene sequences. Plasmodium ovale-positive specimens were identified by nested PCR as well as verified by sequencing. There were 7 imported cases of P. ovale infection in the province during 2012-2013. Nested PCR results showed that the P. ovale specific band (800 bp) was amplified in all the 7 specimens. Blast results indicated that the PCR products were consistent with the Plasmodium ovale reference sequence in GenBank. Seven imported cases of ovale malaria in Shandong Province in 2012-2013 are confirmed by nested PCR.
Thurber, Mary Irene; Gamble, Kathryn C; Krebs, Bethany; Goldberg, Tony L
2014-12-01
Frozen blood samples from 13 species of free-ranging birds (n = 65) and captive Chilean flamingos (Phoenicopterus chilensis) (n = 46) housed outdoors in the Chicago area were screened for Plasmodium. With the use of a modified polymerase chain reaction, 20/65 (30.8%) of free-ranging birds and 26/46 (56.5%) of flamingos were classified as positive for this parasite genus. DNA sequencing of the parasite cytochrome b gene in positive samples demonstrated that eight species of free-ranging birds were infected with five different Plasmodium spp. cytochrome b lineages, and all positive Chilean flamingos were infected with Plasmodium spp. cytochrome b lineages most closely related to organisms in the Novyella subgenus. These results show that Chilean flamingos may harbor subclinical malaria infections more frequently than previously estimated, and that they may have increased susceptibility to some Plasmodium species.
Jordán-Villegas, Alejandro; Perdomo, Anilza Bonelo; Epstein, Judith E.; López, Jesús; Castellanos, Alejandro; Manzano, María R.; Hernández, Miguel A.; Soto, Liliana; Méndez, Fabián; Richie, Thomas L.; Hoffman, Stephen L.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines. PMID:21292877
Deconvoluting heme biosynthesis to target blood-stage malaria parasites
Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E
2015-01-01
Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178
More, Kunal R.; Siddiqui, Faiza Amber; Pachikara, Niseema; Ramdani, Ghania; Langsley, Gordon; Chitnis, Chetan E.
2014-01-01
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. PMID:25522250
Association of Plasmodium falciparum with Human Endothelial Cells in vitro
Utter, Christopher; Serrano, Adelfa E.; Glod, John W.; Leibowitz, Michael J.
2017-01-01
Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria. PMID:28656007
Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.
2014-01-01
The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853
Oppenheim, Rebecca D.; Limenitakis, Julien; Polonais, Valerie; Seeber, Frank; Barrett, Michael P.; Billker, Oliver; McConville, Malcolm J.; Soldati-Favre, Dominique
2014-01-01
While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens. PMID:25032958
Lapuerta, Magín; Rodríguez-Fernández, José; Armas, Octavio
2010-09-01
Biodiesel fuels (methyl or ethyl esters derived from vegetables oils and animal fats) are currently being used as a means to diminish the crude oil dependency and to limit the greenhouse gas emissions of the transportation sector. However, their physical properties are different from traditional fossil fuels, this making uncertain their effect on new, electronically controlled vehicles. Density is one of those properties, and its implications go even further. First, because governments are expected to boost the use of high-biodiesel content blends, but biodiesel fuels are denser than fossil ones. In consequence, their blending proportion is indirectly restricted in order not to exceed the maximum density limit established in fuel quality standards. Second, because an accurate knowledge of biodiesel density permits the estimation of other properties such as the Cetane Number, whose direct measurement is complex and presents low repeatability and low reproducibility. In this study we compile densities of methyl and ethyl esters published in literature, and proposed equations to convert them to 15 degrees C and to predict the biodiesel density based on its chain length and unsaturation degree. Both expressions were validated for a wide range of commercial biodiesel fuels. Using the latter, we define a term called Biodiesel Cetane Index, which predicts with high accuracy the Biodiesel Cetane Number. Finally, simple calculations prove that the introduction of high-biodiesel content blends in the fuel market would force the refineries to reduce the density of their fossil fuels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Drug Evaluation in the Plasmodium Falciparum-Aotus Model.
1986-09-30
strains of Plasmodium falciparum, Uganda Palo Alto ( chloroquine sensi- tive) or Vietnam Smith (chioroquine resistant), in Aotus trivirgatus, were used...Plasmodium falciparum in the Panamanian owl monkey Aotus Two strains of falciparum malaria, Uganda Palo Alto (sensitive to chloroquine anfd quinine...resistant to pyrimetha- mine) and Vietnam Smith (resistant to chloroquine , quinine and pyrimethamine) were used. Previous evaluation of two stereoisomers of
Case report: spontaneous rupture of spleen in patient with Plasmodium ovale malaria.
Lemmerer, Raphael; Unger, Manuel; Voßen, Matthias; Forstner, Christina; Jalili, Ahmad; Starzengruber, Peter; Werzowa, Johannes; Ramharter, Michael; Winkler, Stefan; Thalhammer, Florian
2016-01-01
Malaria may lead to spontaneous splenic rupture as a rare but potentially lethal complication. Most frequently, this has been reported in patients infected with Plasmodium falciparum and Plasmodium vivax, while other parasitic agents are less likely to be the cause.We report a 29-year-old British Caucasian, who after returning from a business trip in Democratic Republic Congo was diagnosed with tertian malaria caused by Plasmodium ovale.During his in-patient stay, the patient suffered a splenic rupture requiring immediate surgical intervention and splenectomy. Following this surgical intervention, there was an uneventful recovery, and the patient was discharged in a good general condition.
NASA Astrophysics Data System (ADS)
Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.
1984-08-01
A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.
Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...
2015-03-12
Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less
Th1-like Plasmodium-Specific Memory CD4+ T Cells Support Humoral Immunity.
Zander, Ryan A; Vijay, Rahul; Pack, Angela D; Guthmiller, Jenna J; Graham, Amy C; Lindner, Scott E; Vaughan, Ashley M; Kappe, Stefan H I; Butler, Noah S
2017-11-14
Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Aprajita; Lukk, Tiit; Kumar, Vidya
Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less
Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa
Jarvi, S.I.; Farias, M.E.M.; Baker, H.; Freifeld, H.B.; Baker, P.E.; Van Gelder, E.; Massey, J.G.; Atkinson, C.T.
2003-01-01
This study documents the presence of Plasmodium spp. in landbirds of central Polynesia. Blood samples collected from eight native and introduced species from the island of Tutuila, American Samoa were evaluated for the presence of Plasmodium spp. by nested rDNA PCR, serology and/or microscopy. A total of 111/188 birds (59%) screened by nested PCR were positive. Detection of Plasmodium spp. was verified by nucleotide sequence comparisons of partial 18S ribosomal RNA and TRAP (thrombospondin-related anonymous protein) genes using phylogenetic analyses. All samples screened by immunoblot to detect antibodies that cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due to antigenic differences between the Hawaiian and Samoan Plasmodium isolates. Similarly, all samples examined by microscopy (214) were negative. The fact that malaria is present, but not detectable by blood smear evaluation is consistent with low peripheral parasitemia characteristic of chronic infections. High prevalence of apparently chronic infections, the relative stability of the native land bird communities, and the presence of mosquito vectors which are considered endemic and capable of transmitting avian Plasmodia, suggest that these parasites are indigenous to Samoa and have a long coevolutionary history with their hosts.
Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.
Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly
2017-04-26
As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR
Khattignavong, Phonepadith; Soundala, Pheovaly; Lorphachan, Lavy; Matsumoto-Takahashi, Emilie; Strobel, Michel; Reinharz, Daniel; Phommasansack, Manisack; Hongvanthong, Bouasy; Brey, Paul T.
2017-01-01
Background Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas. Methodology/Principal findings A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes. Conclusions/Significance There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented. PMID:29261647
Cosmological implications of quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Kanno, Sugumi
2015-12-01
We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.
Matuschewski, Kai; Haussig, Joana M.
2016-01-01
Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503
Four human Plasmodium species quantification using droplet digital PCR.
Srisutham, Suttipat; Saralamba, Naowarat; Malleret, Benoit; Rénia, Laurent; Dondorp, Arjen M; Imwong, Mallika
2017-01-01
Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.
Zélé, F; Nicot, A; Duron, O; Rivero, A
2012-07-01
In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Interaction between Water and Wind as a Driver of Passive Dispersal in Mangroves
Van der Stocken, Tom; Vanschoenwinkel, Bram; De Ryck, Dennis J. R.; Bouma, Tjeerd J.; Dahdouh-Guebas, Farid; Koedam, Nico
2015-01-01
Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera), resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya). Overall, the effect of wind on dispersal depended on propagule density (g l-1). The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation) appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific variation in dispersal patterns and the likelihood of reaching suitable habitat patches within a propagule's viable period. PMID:25811191
Eziefula, Alice C; Pett, Helmi; Grignard, Lynn; Opus, Salome; Kiggundu, Moses; Kamya, Moses R; Yeung, Shunmay; Staedke, Sarah G; Bousema, Teun; Drakeley, Chris
2014-08-01
Glucose-6-phosphate dehydrogenase (G6PD) enzyme function and genotype were determined in Ugandan children with uncomplicated falciparum malaria enrolled in a primaquine trial after exclusion of severe G6PD deficiency by fluorescent spot test. G6PD A- heterozygotes and hemizygotes/homozygotes experienced dose-dependent lower hemoglobin concentrations after treatment. No severe anemia was observed. Copyright © 2014, Eziefula et al.
Singh, Raksha; Urhehar, Anant Dattatraya
2016-01-01
Introduction Malaria is a human disease of which causes high morbidity and mortality. In Plasmodium falciparum malaria, the resistance to antimalarial drugs, especially chloroquine (CQ) is one of the paramount factors contributing to the global increase in morbidity and mortality, due to malaria. Hence, there is a need for detection of chloroquine drug resistance genes i.e., pfcrt-o (Plasmodium falciparum chloroquine resistance transporter-o) and pfmdr-1 (Plasmodium falciparum multidrug resistance-1) of P. falciparum and pvcrt-o (Plasmodium vivax chloroquine resistance transporter-o) and pvmdr-1 (Plasmodium vivax multidrug resistance-1) of P. vivax by using molecular methods to prevent mortality in malarial cases. Aim To standardize chloroquine drug sensitivity testing by molecular method so as to provide reports of chloroquine within 6-8 hours to physicians for better treatment. Materials and Methods This study was conducted over a period of one year from January to December 2014. A Total of 300 blood samples were collected from malaria suspected patient attending MGM Hospital, Kamothe, Navi Mumbai, India. Out of 300 blood samples, 44 were malaria positive as assessed by Thick and Thin blood smear stained, by Leishman’s method and examination with light microscope. Chloroquine drug sensitivity testing was performed using WHO III plate method (micro test). Nested PCR was done for detection of pfcrt-o and pfmdr-1 for P. falciparum and pvcrt-o, pvmdr-1 genes for P. vivax. Results Total 44 samples were included in this study, out of which 22 samples confirmed for Plasmodium falciparum and 22 samples confirmed for Plasmodium vivax. Out of 22 P. falciparum 15 (68.18%) samples were chloroquine resistant. P. vivax showed chloroquine resistance to 5 samples (22.73%) by method similar to WHO III plate method (micro test) and nested PCR. Conclusion Drug resistance testing by molecular methods is useful for early detection of antimalarial drug resistance. pfmdr-1 along with pfcrt-o can be used as biomarker for chloroquine drug resistance in P. falciparum and pvmdr-1 along with pvcrt-o for P. vivax. PMID:27630842
Dzakah, Emmanuel E; Kang, Keren; Ni, Chao; Wang, Hong; Wu, Peidian; Tang, Shixing; Wang, Jihua; Wang, Jufang; Wang, Xiaoning
2013-06-12
Most rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control. Plasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening. Three PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT's sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO). This study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens.
2013-01-01
Background Most rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control. Method Plasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening. Results Three PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT’s sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO). Conclusion This study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens. PMID:23758950
Temperature dependent energy levels of methylammonium lead iodide perovskite
NASA Astrophysics Data System (ADS)
Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.
2015-06-01
Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.
Are fractal dimensions of the spatial distribution of mineral deposits meaningful?
Raines, G.L.
2008-01-01
It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the definition of the permissive area. Density functions for porphyry copper deposits appear to be significantly different for regions in the Andes, Mexico, United States, and western Canada. Consequently, depending on which regional density function is used, quite different estimates of numbers of undiscovered deposits can be obtained. These fractal properties suggest that geologic studies based on mapping at scales of 1:24,000 to 1:100,000 may not recognize processes that are important in the formation of mineral deposits at scales larger than the crossover points at 30-60 km. ?? 2008 International Association for Mathematical Geology.
Plasmodium knowlesi in travellers, update 2014.
Müller, Mattia; Schlagenhauf, Patricia
2014-05-01
Since the initial discovery of Plasmodium knowlesi in Malaysia, cases have been reported from several neighbouring countries. Tourism has also resulted in an increasing number of cases diagnosed in Europe, America, and Oceania. In this review we focus on the risk of the travel-associated acquisition of P. knowlesi malaria. A search of the literature in PubMed was carried out to identify articles and literature on the distribution of P. knowlesi infections in Southeast Asia and details of its acquisition and importation by travellers to other continents. The cut-off date for the search was December 1, 2013. Search words used were: "Plasmodium knowlesi", "Plasmodium knowlesi infections", "Plasmodium knowlesi travellers", "Plasmodium knowlesi prevalence", "Plasmodium knowlesi host", "Plasmodium knowlesi vector" "Plasmodium knowlesi RDT", and "Plasmodium knowlesi Malaysia". Traveller numbers to Malaysia were obtained from the Tourism Malaysia website. A total of 103 articles were found. Using a selection of these and others identified from the reference lists of the papers, we based our review on a total of 66 articles. P. knowlesi malaria appears to be the most common malaria species in Malaysian Borneo and is also widely distributed on the Malaysian mainland. Furthermore, locally transmitted cases of P. knowlesi malaria have been reported in Thailand, the Philippines, Vietnam, Singapore, Myanmar, Indonesian Borneo, and Cambodia. Two cases have been reported from non-endemic countries in Asia (Japan and Taiwan) in people with a history of travel to Malaysia and the Philippines. Twelve cases were imported to their home countries by travellers from other continents: two from the USA, two from the Netherlands, two from Germany, and one each from Spain, France, Sweden, Finland, Australia, and New Zealand. In most cases, the infection was associated with a trip to or near forested areas. The symptoms were fever (n=12), headache (n=6), chills (n=6), nausea (n=4), myalgia (n=3), back pain (n=3), abdominal problems (n=1), anorexia (n=2), fatigue (n=2), malaise (n=1), arthralgia (n=1), sore throat (n=1) vomiting (n=2), and jaundice (n=1). All patients were treated successfully with currently available antimalaria treatments. The identification of the pathogen by microscopy can be problematic due to the morphological similarity of P. knowlesi to Plasmodium malariae. P. knowlesi appears to be a threat not only to the local population in Malaysia, but also to the estimated 25 million annual tourists and occupational travellers to Malaysia, especially those who visit rural, forested areas of the country. The P. knowlesi risk is not limited to Malaysia, and travellers from Southeast Asia presenting with possible malaria should be considered for a diagnostic work-up that includes P. knowlesi. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Islam, Akand; Sun, Alexander Y.; Yang, Changbing
2016-04-20
We study the convection and mixing of CO 2 in a brine aquifer, where the spread of dissolved CO 2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO 2 saturation volume of the storage formation. Our results suggestmore » that the density increase of resident species causes significant enhancement in CO 2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO 2 sequestration.« less
Islam, Akand; Sun, Alexander Y; Yang, Changbing
2016-04-20
We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.
Conlan, James V; Vongxay, Khamphouth; Fenwick, Stanley; Blacksell, Stuart D; Thompson, R C Andrew
2009-09-01
It is well understood that sociocultural practices strongly influence Taenia solium transmission; however, the extent to which interspecific parasite competition moderates Taenia transmission has yet to be determined. This is certainly the case in Southeast Asia where T. solium faces competition in both the definitive host (people) and the intermediate host (pigs). In people, adult worms of T. solium, T. saginata and T. asiatica compete through density-dependent crowding mechanisms. In pigs, metacestodes of T. solium, T. hydatigena and T. asiatica compete through density-dependent immune-mediated interactions. Here, we describe the biological and epidemiological implications of Taenia competition and propose that interspecific competition has a moderating effect on the transmission dynamics of T. solium in the region. Furthermore, we argue that this competitive ecological scenario should be considered in future research and surveillance activities examining T. solium cysticercosis and taeniasis in Southeast Asia.
When can the cause of a population decline be determined?
Hefley, Trevor J; Hooten, Mevin B; Drake, John M; Russell, Robin E; Walsh, Daniel P
2016-11-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time. © 2016 John Wiley & Sons Ltd/CNRS.
When can the cause of a population decline be determined?
Hefley, Trevor J.; Hooten, Mevin B.; Drake, John M.; Russell, Robin E.; Walsh, Daniel P.
2016-01-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time.
Lubin, Alexandra S; Rueda-Zubiaurre, Ainoa; Matthews, Holly; Baumann, Hella; Fisher, Fabio R; Morales-Sanfrutos, Julia; Hadavizadeh, Kate S; Nardella, Flore; Tate, Edward W; Baum, Jake; Scherf, Artur; Fuchter, Matthew J
2018-04-13
Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.
NASA Astrophysics Data System (ADS)
Takagi, Seiji; Ueda, Tetsuo
2008-03-01
The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.
Kouassi, Bernard L; de Souza, Dziedzom K; Goepogui, Andre; Balde, Siradiou M; Diakité, Lamia; Sagno, Arsène; Djameh, Georgina I; Chammartin, Frédérique; Vounatsou, Penelope; Bockarie, Moses J; Utzinger, Jürg; Koudou, Benjamin G
2016-03-18
Over the past 15 years, mortality and morbidity due to malaria have been reduced substantially in sub-Saharan Africa and local elimination has been achieved in some settings. This study addresses the bio-ecology of larval and adult stages of malaria vectors, Plasmodium infection in Anopheles gambiae s.l. in the city of Conakry, Guinea, and discusses the prospect for malaria elimination. Water bodies were prospected to identify potential mosquito breeding sites for 6 days each in the dry season (January 2013) and in the rainy season (August 2013), using the dipping method. Adult mosquitoes were collected in 15 communities in the five districts of Conakry using exit traps and indoor spraying catches over a 1-year period (November 2012 to October 2013). Molecular approaches were employed for identification of Anopheles species, including An. coluzzii and An. gambiae s.s. Individual An. gambiae mosquitoes were tested for Plasmodium falciparum and P. vivax sporozoites using the VecTest™ malaria panel assay and an enzyme-linked immunosorbent assay. A systematic research of Ministry of Health statistical yearbooks was performed to determine malaria prevalence in children below the age of 5 years. Culex larval breeding sites were observed in large numbers throughout Conakry in both seasons. While Anopheles larval breeding sites were less frequent than Culex breeding sites, there was a high odds of finding An. gambiae mosquito larvae in agricultural sites during the rainy season. Over the 1-year study period, a total of 14,334 adult mosquitoes were collected; 14,135 Culex (98.6%) and 161 (1.1%) from the An. gambiae complex. One-hundred and twelve Anopheles mosquitoes, mainly collected from rice fields and gardens, were subjected to molecular analysis. Most of the mosquitoes were An. gambiae s.s. (n = 102; 91.1%) while the remaining 10 (8.9%) were An. melas. The molecular M form of An. gambiae s.s. was predominant (n = 89; 79.5%). The proportions of kdr genotype in the An. gambiae s.s. M and S form were 65.2 and 81.8% (n = 9), respectively. No sporozoite infection were detected in any of the mosquitoes tested. The prevalence of Plasmodium recorded in children aged below 5 years was relatively low and varied between 2.2 and 7.6% from 2009 to 2012. The low density of larval and adult stages of Anopheles mosquitoes, the absence of infected An. gambiae species and the low prevalence of Plasmodium in under 5-year-old children are important features that might facilitate malaria elimination in Conakry. The heterogeneity in species composition and resistance profiles call for vector control interventions that are tailored to the local bio-ecological setting.
Bryant, Jessica M; Regnault, Clément; Scheidig-Benatar, Christine; Baumgarten, Sebastian; Guizetti, Julien; Scherf, Artur
2017-07-11
Plasmodium falciparum relies on monoallelic expression of 1 of 60 var virulence genes for antigenic variation and host immune evasion. Each var gene contains a conserved intron which has been implicated in previous studies in both activation and repression of transcription via several epigenetic mechanisms, including interaction with the var promoter, production of long noncoding RNAs (lncRNAs), and localization to repressive perinuclear sites. However, functional studies have relied primarily on artificial expression constructs. Using the recently developed P. falciparum clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we directly deleted the var2csa P. falciparum 3D7_1200600 (Pf3D7_1200600) endogenous intron, resulting in an intronless var gene in a natural, marker-free chromosomal context. Deletion of the var2csa intron resulted in an upregulation of transcription of the var2csa gene in ring-stage parasites and subsequent expression of the PfEMP1 protein in late-stage parasites. Intron deletion did not affect the normal temporal regulation and subsequent transcriptional silencing of the var gene in trophozoites but did result in increased rates of var gene switching in some mutant clones. Transcriptional repression of the intronless var2csa gene could be achieved via long-term culture or panning with the CD36 receptor, after which reactivation was possible with chondroitin sulfate A (CSA) panning. These data suggest that the var2csa intron is not required for silencing or activation in ring-stage parasites but point to a subtle role in regulation of switching within the var gene family. IMPORTANCE Plasmodium falciparum is the most virulent species of malaria parasite, causing high rates of morbidity and mortality in those infected. Chronic infection depends on an immune evasion mechanism termed antigenic variation, which in turn relies on monoallelic expression of 1 of ~60 var genes. Understanding antigenic variation and the transcriptional regulation of monoallelic expression is important for developing drugs and/or vaccines. The var gene family encodes the antigenic surface proteins that decorate infected erythrocytes. Until recently, studying the underlying genetic elements that regulate monoallelic expression in P. falciparum was difficult, and most studies relied on artificial systems such as episomal reporter genes. Our study was the first to use CRISPR/Cas9 genome editing for the functional study of an important, conserved genetic element of var genes-the intron-in an endogenous, episome-free manner. Our findings shed light on the role of the var gene intron in transcriptional regulation of monoallelic expression. Copyright © 2017 Bryant et al.
Dobson, Andrew D M; Auld, Stuart K J R
2016-04-01
Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.
Legorreta-Herrera, Martha; Oviedo Meza, Rodrigo; Moreno-Fierros, Leticia
2010-01-01
Malaria is a major global health problem that kills 1-2 million people each year. Despite exhaustive research, naturally acquired immunity is poorly understood. Cry1A proteins are potent immunogens with adjuvant properties and are able to induce strong cellular and humoral responses. In fact, it has been shown that administration of Cry1Ac protoxin alone or with amoebic lysates induces protection against the lethal infection caused by the protozoa Naegleria fowleri. In this work, we studied whether Cry1Ac is able to activate the innate immune response to induce protection against Plasmodium berghei ANKA (lethal) and P. chabaudi AS (nonlethal) parasites in CBA/Ca mice. Treatment with Cry1Ac induced protection against both Plasmodium species in terms of reduced parasitaemia, longer survival time, modulation of pro- and anti-inflammatory cytokines, and increased levels of specific antibodies against Plasmodium. Understanding how to boost innate immunity to Plasmodium infection should lead to immunologically based intervention strategies. PMID:20300584
Siciliano, Giulia; Alano, Pietro
2015-01-01
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.
Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S
2009-05-01
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka
2013-01-01
A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408
Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J
2012-01-01
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.
Tetteh, Kevin K A; Conway, David J
2011-10-13
Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I
2013-01-01
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881
More than just immune evasion: Hijacking complement by Plasmodium falciparum.
Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong
2015-09-01
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio
2016-02-01
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Lobo, Neil F; St Laurent, Brandyce; Sikaala, Chadwick H; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M; Mueller, Jonathan D; Deason, Nicholas A; Hoang, Quynh T; Boldt, Heather L; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H
2015-12-09
The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.
Benoit-Vical, Françoise; Robert, Anne; Meunier, Bernard
1999-01-01
The influence of different metalloporphyrin derivatives on the antimalarial activity of artemisinin was studied with two chloroquine-resistant strains of Plasmodium falciparum (FcB1-Colombia and FcM29-Cameroon) cultured in human erythrocytes. This potentiation study indicates that the manganese complex of meso-tetrakis(4-sulfonatophenyl)porphyrin has a significant synergistic effect on the activity of artemisinin against both Plasmodium strains. PMID:10508044
Waqar, Talal; Khushdil, Arshad; Haque, Khalid
2016-01-01
To ascertain the efficacy of chloroquine as first line agent in treatment of uncomplicated malaria -caused by Plasmodium vivax in children---and to determine its current treatment practice in Pakistan. This pilot study was conducted at the Paediatrics Department of Combined Military Hospital (CMH), Lahore, Pakistan. Forty-eight children between six months and twelve years of age having positive blood film for Plasmodium vivax were included. They were treated with chloroquine as a drug of - choice. Efficacy of chloroquine was assessed by clinical response, absence of parasitaemia on day seven and twenty-eight after initiation of therapy. A survey was also conducted to determine the first line therapeutic choice of Paediatricians in the treatment of uncomplicated Plasmodium vivax malaria in children in Pakistan. The results showed 100% efficacy of chloroquine in treating uncomplicated malaria caused by Plasmodium vivax in children. Artemisin was preferred by 74.28% Paediatricians' in combination therapy as 1st line treatment. Guidelines proposed by Malaria Control Programme Pakistan (MCPP) in collaboration with World Health Organization (WHO) are comprehensive but not being adhered to. The recently reported resistance of Plasmodium vivax to artemisin should urge measures to implement WHO guidelines.
An overview of malaria transmission from the perspective of Amazon Anopheles vectors
Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC
2015-01-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262
Phylogenomic analyses of malaria parasites and evolution of their exported proteins
2011-01-01
Background Plasmodium falciparum is the most malignant agent of human malaria. It belongs to the taxon Laverania, which includes other ape-infecting Plasmodium species. The origin of the Laverania is still debated. P. falciparum exports pathogenicity-related proteins into the host cell using the Plasmodium export element (PEXEL). Predictions based on the presence of a PEXEL motif suggest that more than 300 proteins are exported by P. falciparum, while there are many fewer exported proteins in non-Laverania. Results A whole-genome approach was applied to resolve the phylogeny of eight Plasmodium species and four outgroup taxa. By using 218 orthologous proteins we received unanimous support for a sister group position of Laverania and avian malaria parasites. This observation was corroborated by the analyses of 28 exported proteins with orthologs present in all Plasmodium species. Most interestingly, several deviations from the P. falciparum PEXEL motif were found to be present in the orthologous sequences of non-Laverania. Conclusion Our phylogenomic analyses strongly support the hypotheses that the Laverania have been founded by a single Plasmodium species switching from birds to African great apes or vice versa. The deviations from the canonical PEXEL motif in orthologs may explain the comparably low number of exported proteins that have been predicted in non-Laverania. PMID:21676252
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy.
Austin, Laura S; Kaushansky, Alexis; Kappe, Stefan H I
2014-05-01
Plasmodium parasites infect hepatocytes of their mammalian hosts and undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signalling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy on liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalysed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite's preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. © 2014 John Wiley & Sons Ltd.
Lee, Kim-Sung; Cox-Singh, Janet; Brooke, George; Matusop, Asmad; Singh, Balbir
2009-01-01
Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borno) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans. PMID:19358848
An overview of malaria transmission from the perspective of Amazon Anopheles vectors.
Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G
2015-02-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy
Austin, Laura S.; Kaushansky, Alexis; Kappe, Stefan H.I.
2014-01-01
Summary Plasmodium parasites infect hepatocytes of their mammalian hosts and within undergo obligate liver stage development. The specific host cell attributes that are important for liver infection remain largely unknown. Several host signaling pathways are perturbed in infected hepatocytes, some of which are important in the generation of hepatocyte polyploidy. To test the functional consequence of polyploidy in liver infection, we infected hepatocytes with the rodent malaria parasite Plasmodium yoelii both in vitro and in vivo and examined the ploidy of infected and uninfected hepatocytes by flow cytometry. In both hepatoma cell lines and in the mouse liver, the fraction of polyploid cells was higher in the infected cell population than in the uninfected cell population. When the data were reanalyzed by comparing the extent of Plasmodium infection within each ploidy subset, we found that infection rates were elevated in more highly polyploid cells and lower in diploid cells. Furthermore, we found that the parasite’s preference for host cells with high ploidy is conserved among rodent malaria species and the human malaria parasite Plasmodium falciparum. This parasite preference for host cells of high ploidy cannot be explained by differences in hepatocyte size or DNA replication. We conclude that Plasmodium preferentially infects and develops in polyploid hepatocytes. PMID:24612025
Long-term pathogenic response to Plasmodium relictum infection in Culex pipiens mosquito.
Pigeault, Romain; Villa, Manon
2018-01-01
The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector's longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.
Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E.; Thwai, Kyaw L.; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P.; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O.
2015-01-01
Background. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased placental inflammation and decreased infant birth weight among women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) during pregnancy. Methods. Between 2009 and 2011, delivering women without human immunodeficiency virus infection were enrolled in an observational study of IPTp-SP effectiveness in Malawi. Parasites were detected by polymerase chain reaction (PCR); positive samples were sequenced to genotype the dhfr and dhps loci. The presence of K540E in dhps was used as a marker for the quintuple mutant. Results. Samples from 1809 women were analyzed by PCR; 220 (12%) were positive for P. falciparum. A total of 202 specimens were genotyped at codon 581 of dhps; 17 (8.4%) harbored the sextuple mutant. The sextuple mutant was associated with higher risks of patent infection in peripheral blood (adjusted prevalence ratio [aPR], 2.76; 95% confidence interval [CI], 1.82–4.18) and placental blood (aPR 3.28; 95% CI, 1.88–5.78) and higher parasite densities. Recent SP use was not associated with increased parasite densities or placental pathology overall and among women with parasites carrying dhps A581G. Conclusions. IPTp-SP failed to inhibit parasite growth but did not exacerbate pathology among women infected with sextuple-mutant parasites. New interventions to prevent malaria during pregnancy are needed urgently. PMID:25564249
Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S
2006-01-01
Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349
Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S
2006-08-01
Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897-0.668 (P > 0.95) and 0.0002-0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System.
2011-01-01
Background The characterization of malaria parasite populations circulating in an area is part of site characterization, as a basis for evaluating the impact of malaria interventions on genetic diversity, parasite species, and multiplicity of infection. The present study was aimed at analysing genetic diversity of Plasmodium falciparum merozoite surface proteins 1 and 2 (MSP-1 and MSP-2) and to determine the multiplicity of infection in clinical isolates collected from children living in the Southern district of Brazzaville in the Republic of Congo. Methods A total of 125 isolates from patients with uncomplicated malaria attending Terinkyo and Madibou health centres were collected between January and June 2005 while evaluating the therapeutic efficacy of amodiaquine-artesunate combination. DNA was extracted and msp-1 and msp-2 genes were genotyped using allele-specific nested-PCR. Results Out of 468 distinct fragments detected, 15 msp-1 and 20 msp-2 genotypes were identified. For the msp-1 gene, K1 family was the predominant allelic type carried alone or in association with RO33 and Mad20 types, whereas the 3D7 family was the most prevalent in the msp-2 gene. Overall, the mean multiplicity of infection was 2.2. Out of 125 samples, 104 (83%) harboured more than one parasite genotype. There was no statistical significant difference in the multiplicity of infection by either sex or age of patients. However, a statistically significant correlation was found between parasite densities and the number of genotypes. Conclusion Polymorphism in P. falciparum clinical isolates from Brazzaville was high and mainly of multiple clones. The basis for the positive association between parasite densities and multiplicity of infection is discussed. PMID:21936949
Molecular identification of the chitinase genes in Plasmodium relictum.
Garcia-Longoria, Luz; Hellgren, Olof; Bensch, Staffan
2014-06-18
Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions.
Liu, Weimin; Sundararaman, Sesh A; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Plenderleith, Lindsey J; Ndjango, Jean-Bosco N; Speede, Sheri; Atencia, Rebeca; Cox, Debby; Shaw, George M; Ayouba, Ahidjo; Peeters, Martine; Rayner, Julian C; Hahn, Beatrice H; Sharp, Paul M
2016-07-02
Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kho, Steven; Marfurt, Jutta; Handayuni, Irene; Pava, Zuleima; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2016-06-21
Plasmodium falciparum and Plasmodium vivax infections compromise dendritic cell (DC) function and expand regulatory T (Treg) cells in both clinical disease (malaria) and experimental human sub-microscopic infection. Conversely, in asymptomatic microscopy-positive (patent) P. falciparum or P. vivax infection in endemic areas, blood DC increase or retain HLA-DR expression and Treg cells exhibit reduced activation, suggesting that DC and Treg cells contribute to the control of patent asymptomatic infection. The effect of sub-microscopic (sub-patent) asymptomatic Plasmodium infection on DC and Treg cells in malaria-endemic area residents remains unclear. In a cross-sectional household survey conducted in Papua, Indonesia, 162 asymptomatic adults were prospectively evaluated for DC and Treg cells using field-based flow cytometry. Of these, 161 individuals (99 %) were assessed retrospectively by polymerase chain reaction (PCR), 19 of whom had sub-microscopic infection with P. falciparum and 15 with sub-microscopic P. vivax infection. Flow cytometric data were re-analysed after re-grouping asymptomatic individuals according to PCR results into negative controls, sub-microscopic and microscopic parasitaemia to examine DC and Treg cell phenotype in sub-microscopic infection. Asymptomatic adults with sub-microscopic P. falciparum or P. vivax infection had DC HLA-DR expression and Treg cell activation comparable to PCR-negative controls. Sub-microscopic P. falciparum infection was associated with lower peripheral CD4(+) T cells and lymphocytes, however sub-microscopic Plasmodium infection had no apparent effect on DC sub-set number or Treg cell frequency. In contrast to the impairment of DC maturation/function and the activation of Treg cells seen with sub-microscopic parasitaemia in primary experimental human Plasmodium infection, no phenotypic evidence of dysregulation of DC and Treg cells was observed in asymptomatic sub-microscopic Plasmodium infection in Indonesian adults. This is consistent with DC and Treg cells retaining their functional capacity in sub-microscopic asymptomatic infection with P. falciparum or P. vivax in malaria-endemic areas.
Manin, Benny O.; Daim, Sylvia; Vythilingam, Indra; Drakeley, Chris
2017-01-01
Background Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak. Methodology/Principal findings Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%–100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality. Conclusions/Significance This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts. PMID:28968395
Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I
2008-10-27
The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.
Käll, Filip; Hansson, Martin; Baranova, Tatjana; Karlsson, Olle; Lundström, Karl; Neuenfeldt, Stefan; Hjelm, Joakim
2016-01-01
Investigating the factors regulating fish condition is crucial in ecology and the management of exploited fish populations. The body condition of cod (Gadus morhua) in the Baltic Sea has dramatically decreased during the past two decades, with large implications for the fishery relying on this resource. Here, we statistically investigated the potential drivers of the Baltic cod condition during the past 40 years using newly compiled fishery-independent biological data and hydrological observations. We evidenced a combination of different factors operating before and after the ecological regime shift that occurred in the Baltic Sea in the early 1990s. The changes in cod condition related to feeding opportunities, driven either by density-dependence or food limitation, along the whole period investigated and to the fivefold increase in the extent of hypoxic areas in the most recent 20 years. Hypoxic areas can act on cod condition through different mechanisms related directly to species physiology, or indirectly to behaviour and trophic interactions. Our analyses found statistical evidence for an effect of the hypoxia-induced habitat compression on cod condition possibly operating via crowding and density-dependent processes. These results furnish novel insights into the population dynamics of Baltic Sea cod that can aid the management of this currently threatened population. PMID:27853557
Gupta, Rahul
2018-02-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn.
Detergent-dependent kinetics of truncated Plasmodium falciparum dihydroorotate dehydrogenase.
Malmquist, Nicholas A; Baldwin, Jeffrey; Phillips, Margaret A
2007-04-27
The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.
[Hemoparasites in wild birds in Madagascar].
Raharimanga, V; Soula, F; Raherilalao, M J; Goodman, S M; Sadonès, H; Tall, A; Randrianarivelojosia, M; Raharimalala, L; Duchemin, J B; Ariey, F; Robert, V
2002-01-01
This study aims to evaluate the prevalence and density of haemoparasites in native Malagasy birds. Among the 387 birds, belonging to 43 species sampled at six localities in different bio-climatic zones of the island, 139 (35.9%) showed at least 1 hemoparasite with, by order of frequency, Plasmodium and/or Haemoproteus (19.9%), microfilariae (13.7% of 387 birds), Leucocytozoon (11.1%) and Trypanosoma (1.0%). An analysis to further elucidate these observations took into account the interaction of different environmental variables (altitude, season, site of collection) or aspects of the birds (age, weight, sex). There is evidence that some parasites preferentially infect some bird species or families. The largest male birds harboured the highest prevalences and densities of haemoparasite, regardless of species. These findings extend knowledge of bird/blood parasite relationships of Malagasy birds and provide interesting insights, especially concerning the pathogenicity of this type of parasitism and the parasite transmission by insect vectors.