Science.gov

Sample records for plasmonic hole array

  1. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  2. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  3. Ultrafast optical control of terahertz surface plasmon polariton in subwavelength hole-arrays at noon temperature

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Kasarla, Satish; Zhang, Weili; Tian, Zhen; Lu, Xinchao

    2008-01-01

    We demonstrate ultrafast optical control of surface plasmon assisted terahertz (THz) transmission in a subwavelength metallic hole array on a semiconductor substrate. The transient photoconductivity of the substrate allows modulation of the THz resonance amplitude via optical excitation with a time scale of {approx}10 ps.

  4. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal.

    PubMed

    Dickson, Wayne; Wurtz, Gregory A; Evans, Paul R; Pollard, Robert J; Zayats, Anatoly V

    2008-01-01

    The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.

  5. Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Yan; Qiu, Kang-Sheng; Ma, Hai-Qiang

    2014-10-01

    We present the transmission spectra of light transmitting a metallic thin film perforated with differently shaped subwavelength hole arrays, which are calculated by a plane-wave-based transfer matrix method. We analyze the transmission peak positions and the phase-shift angles of different surface plasmon polariton (SPP) modes by using the microscopic theoretical model proposed by Haitao Liu and Philippe Lalanne [Liu Haitao and Lalanne Philippe 2008 Nature 452 728], in which the phase shift properties of the SPPs scattered by the subwavelength hole arrays are considered. The results show that the transmission peak position and the minus phase shift angle of the SPP increase as the hole size increases. On the other hand, the effective dielectric constant of the metallic film can be deduced by the microscopic theoretical model.

  6. Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.

    2016-04-01

    Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.

  7. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    NASA Astrophysics Data System (ADS)

    Nader, Nima; Vangala, Shivashankar; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  8. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    SciTech Connect

    Nader, Nima Vangala, Shivashankar; Hendrickson, Joshua R.; Leedy, Kevin D.; Cleary, Justin W.; Look, David C.; Guo, Junpeng

    2015-11-07

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  9. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use asmore » transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  10. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    SciTech Connect

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; Hoy, Jessica; Eisaman, Matthew D.; Black, Charles T.; Sfeir, Matthew Y.

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for use as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.

  11. Interferometric Plasmonic Lensing with Nanohole Arrays

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  12. Tailoring terahertz plasmons with silver nanorod arrays

    PubMed Central

    Cao, Wei; Song, Chunyuan; Lanier, Thomas E.; Singh, Ranjan; O'Hara, John F.; Dennis, William M.; Zhao, Yiping; Zhang, Weili

    2013-01-01

    Plasmonic materials that strongly interact with light are ideal candidates for designing subwavelength photonic devices. We report on direct coupling of terahertz waves in metallic nanorods by observing the resonant transmission of surface plasmon polariton waves through lithographically patterned films of silver nanorod (100 nm in diameter) micro-hole arrays. The best enhancement in surface plasmon resonant transmission is obtained when the nanorods are perfectly aligned with the electric field direction of the linearly polarized terahertz wave. This unique polarization-dependent propagation of surface plasmons in structures fabricated from nanorod films offers promising device applications. We conclude that the anisotropy of nanoscale metallic rod arrays imparts a material anisotropy relevant at the microscale that may be utilized for the fabrication of plasmonic and metamaterial based devices for operation at terahertz frequencies.

  13. A phased antenna array for surface plasmons.

    PubMed

    Dikken, Dirk Jan W; Korterik, Jeroen P; Segerink, Frans B; Herek, Jennifer L; Prangsma, Jord C

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  14. A phased antenna array for surface plasmons

    NASA Astrophysics Data System (ADS)

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-04-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons.

  15. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  16. A phased antenna array for surface plasmons.

    PubMed

    Dikken, Dirk Jan W; Korterik, Jeroen P; Segerink, Frans B; Herek, Jennifer L; Prangsma, Jord C

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons.

  17. Long-wavelength infrared surface plasmons on Ga-doped ZnO films excited via 2D hole arrays for extraordinary optical transmission

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Esfahani, Nima Nader; Vangala, Shivashankar; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Thomson, Darren; Look, David C.

    2013-09-01

    Extraordinary optical transmission (EOT) through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  18. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors.

    PubMed

    Weiler, Markus; Quint, Stefan B; Klenk, Simon; Pacholski, Claudia

    2014-12-18

    A chemical route to periodic hole arrays in gold films whose holes are loaded with single gold nanoparticles is presented, paving the road to mass production of highly sensitive plasmonic sensors on large areas.

  19. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors.

    PubMed

    Weiler, Markus; Quint, Stefan B; Klenk, Simon; Pacholski, Claudia

    2014-12-18

    A chemical route to periodic hole arrays in gold films whose holes are loaded with single gold nanoparticles is presented, paving the road to mass production of highly sensitive plasmonic sensors on large areas. PMID:25350760

  20. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.

    PubMed

    Chou, Stephen Y; Ding, Wei

    2013-01-14

    Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorption-length-thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin high-efficiency organic solar cell (SC), termed "plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell", that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal-mesh electrode with subwavelength hole-array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling-efficiency/absorptance as high as 96% (average 90%), broad-band, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard-solar-irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less-4.5 fold or more lower

  1. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  2. VERTICAL PILLAR ARRAYS FOR PLASMON NANOCAVITIES

    SciTech Connect

    Bora, M; Fasenfest, B; Behymer, E; Chang, A; Nguyen, H; Britten, J; Larson, C; Bond, T

    2010-04-02

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 10{sup 3} are possible due to plasmon focusing in the inter-wire space.

  3. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    PubMed Central

    2014-01-01

    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(N-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects. PMID:25137554

  4. Gold nanodisk array surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  5. Plasmon resonant cavities in vertical nanowire arrays

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  6. Plasmonic nanopatch array for optical integrated circuit applications

    PubMed Central

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  7. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  8. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    PubMed Central

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-01-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506

  9. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    NASA Astrophysics Data System (ADS)

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-10-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  10. Electromagnetic interactions in plasmonic nanoparticle arrays.

    PubMed

    Bouhelier, Alexandre; Bachelot, Renaud; Im, Jin Seo; Wiederrecht, Gary P; Lerondel, Gilles; Kostcheev, Sergei; Royer, Pascal

    2005-03-01

    Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.

  11. THz generation from plasmonic nanoparticle arrays.

    PubMed

    Polyushkin, D K; Hendry, E; Stone, E K; Barnes, W L

    2011-11-01

    We investigate the generation of THz pulses when arrays of silver nanoparticles are irradiated by femtosecond laser pulses, providing the first reproducible experimental evidence in support of recent theoretical predictions of such an effect. We assess our results in the context of a model where photoelectrons are produced by plasmon-mediated multiphoton excitation, and THz radiation is generated via the acceleration of the ejected electrons by ponderomotive forces arising from the inhomogeneous plasmon field. By exploring the dependence of the THz emission on the femtosecond pulse intensity and as a function of metal nanoparticle morphology, and by comparing measurements to numerical modeling, we are able to verify the role of the particle plasmon mode in this process.

  12. Bloch oscillations in plasmonic waveguide arrays.

    PubMed

    Block, A; Etrich, C; Limboeck, T; Bleckmann, F; Soergel, E; Rockstuhl, C; Linden, S

    2014-05-12

    The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.

  13. Plasmon enhanced linear and nonlinear photoluminescence in planar nanoparticle arrays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Walsh, Gary F.; Dal Negro, Luca

    2015-09-01

    Light emission from metal nanoparticles has potential appications as a highly sensitive refractive index detector. In order for this protential to be realized the mechanics of plasmon enhanced photoluminescence (PL) in planar nanoparticle arrays must be understude. We present an experimental exploreation of emission spectra and realitive efficiency of gold PL in nanoplasmonic arrays. We demonstrate tunability of metal PL by nanoparticle size and discover the critical role of near-field interparticle coupling on emission efficiency. We show that direct excition of plasmon resonances by photoexcited electron-hole pairs is the primary contributer to the metalic nanoparticle emission spectrum. We additionally show that emission is quenched by near-field interactions between nanoparticles leading to spectral broading by increased non-radiative plasmon decay. Finally, we show a correlation between plasmon life-time and PL efficiency. We explore this phenominan for both linear and nonlinear PL. Experimental results are supported by numerical simulations of plasmon life-time.

  14. Large-area nanogap plasmon resonator arrays for plasmonics applications

    NASA Astrophysics Data System (ADS)

    Jin, Mingliang; van Wolferen, Henk; Wormeester, Herbert; van den Berg, Albert; Carlen, Edwin T.

    2012-07-01

    Large-area (~8000 mm2) Au nanogap plasmon resonator array substrates manufactured using maskless laser interference lithography (LIL) with high uniformity are presented. The periodically spaced subwavelength nanogap arrays are formed between adjacent nanopyramid (NPy) structures with precisely defined pitch and high length density (~1 km cm-2), and are ideally suited as scattering sites for surface enhanced Raman scattering (SERS), as well as refractive index sensing. The two-dimensional grid arrangement of NPy structures renders the excitation of the plasmon resonators minimally dependent on the incident polarization. The SERS average enhancement factor (AEF) has been characterized using over 30 000 individual measurements of benzenethiol (BT) chemisorbed on the Au NPy surfaces. From the 1(a1), βCCC + νCS ring mode (1074 cm-1) of BT on surfaces with pitch λg = 200 nm, AEF = 0.8 × 106 and for surfaces with λg = 500 nm, AEF = 0.3 × 107 from over 99% of the imaged spots. Maximum AEFs > 108 have been measured in both cases.

  15. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays.

    PubMed

    He, Jie; Boegli, Michelle; Bruzas, Ian; Lum, William; Sagle, Laura

    2015-11-17

    For applications ranging from medical diagnostics and drug screening to chemical and biological warfare detection, inexpensive, rapid-readout, portable devices are required. Localized surface plasmon resonance (LSPR) technologies show substantial promise toward meeting these goals, but the generation of portable, multiplexed and/or microfluidic devices incorporating sensitive nanoparticle arrays is only in its infancy. Herein, we have combined photolithography with Hole Mask Colloidal lithography to pattern uniform nanoparticle arrays for both microfluidic and multiplexed devices. The first proof-of-concept study is carried out with 5- and 7-channel microfluidic devices to acquire one-shot binding curves and protein binding kinetic data. The second proof-of-concept study involved the fabrication of a 96-spot plate that can be inserted into a standard plate reader for the multiplexed detection of protein binding. This versatile fabrication technique should prove useful in next generation chips for bioassays and genetic screening. PMID:26494412

  16. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.

    PubMed

    Walsh, Gary F; Dal Negro, Luca

    2013-02-13

    By systematically investigating the light emission and scattering properties of arrays of Au nanoparticles with varying size and separation, we demonstrate tunability and control of metal photoluminescence and unveil the critical role of near-field plasmonic coupling for the engineering of active metal nanostructures. We show that the decay of photoexcited electron-hole pairs into localized surface plasmons (LSPs) dramatically modifies the Au emission wavelength, line shape, and quantum efficiency depending both on particles size and separation. In particular, in arrays with near-field coupled nanoparticles we demonstrate broad light scattering and emission spectra that scale differently with respect to nanoparticle size due to the enhanced LSP nonradiative decay caused by near-field interparticle coupling. Our experimental results are fully supported by semianalytical extinction simulations based on rigorous coupled wave analysis, which demonstrate the importance of tuning plasmonic near-field coupling for the engineering of active devices based on light emitting arrays of metallic nanoparticles. PMID:23339774

  17. Real-time tunable lasing from plasmonic nanocavity arrays

    PubMed Central

    Yang, Ankun; Hoang, Thang B.; Dridi, Montacer; Deeb, Claire; Mikkelsen, Maiken H.; Schatz, George C.; Odom, Teri W.

    2015-01-01

    Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, most plasmon-based nanolasers rely on solid gain materials (inorganic semiconducting nanowire or organic dye in a solid matrix) that preclude the possibility of dynamic tuning. Here we report an approach to achieve real-time, tunable lattice plasmon lasing based on arrays of gold nanoparticles and liquid gain materials. Optically pumped arrays of gold nanoparticles surrounded by liquid dye molecules exhibit lasing emission that can be tuned as a function of the dielectric environment. Wavelength-dependent time-resolved experiments show distinct lifetime characteristics below and above the lasing threshold. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, we achieve dynamic tuning of the plasmon lasing wavelength. Tunable lattice plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time. PMID:25891212

  18. Tuning the 3D plasmon field of nanohole arrays.

    PubMed

    Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois

    2013-12-21

    Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.

  19. Parallel fabrication of plasmonic nanocone sensing arrays.

    PubMed

    Horrer, Andreas; Schäfer, Christian; Broch, Katharina; Gollmer, Dominik A; Rogalski, Jan; Fulmes, Julia; Zhang, Dai; Meixner, Alfred J; Schreiber, Frank; Kern, Dieter P; Fleischer, Monika

    2013-12-01

    A fully parallel approach for the fabrication of arrays of metallic nanocones and triangular nanopyramids is presented. Different processes utilizing nanosphere lithography for the creation of etch masks are developed. Monolayers of spheres are reduced in size and directly used as masks, or mono- and double layers are employed as templates for the deposition of aluminum oxide masks. The masks are transferred into an underlying gold or silver layer by argon ion milling, which leads to nanocones or nanopyramids with very sharp tips. Near the tips the enhancement of an external electromagnetic field is particularly strong. This fact is confirmed by numerical simulations and by luminescence imaging in a confocal microscope. Such localized strong fields can amongst others be utilized for high-resolution, high-sensitivity spectroscopy and sensing of molecules near the tip. Arrays of such plasmonic nanostructures thus constitute controllable platforms for surface-enhanced Raman spectroscopy. A thin film of pentacene molecules is evaporated onto both nanocone and nanopyramid substrates, and the observed Raman enhancement is evaluated.

  20. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters.

    PubMed

    Xiong, Kunli; Emilsson, Gustav; Dahlin, Andreas B

    2016-06-21

    Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores.

  1. Plasmonic Bloch oscillations in monolayer graphene sheet arrays.

    PubMed

    Fan, Yang; Wang, Bing; Huang, He; Wang, Kai; Long, Hua; Lu, Peixiang

    2014-12-15

    We investigate the spatial plasmonic Bloch oscillations (BOs) in the monolayer graphene sheet arrays (MGSAs) as the surface plasmon polaritons (SPPs) between graphene in the arrays experience weak coupling. In order to realize BOs, linear gradient of the potential is introduced by changing the chemical potentials of individual graphene sheets or the interlayer space between graphene. Numerical simulations show that the complete plasmonic BOs can be observed in the former MGSAs. However, only harmonic oscillations occur in the latter of varying interlayer space. Theoretical analysis based on the coupled-mode theory agrees well with the numerical simulations.

  2. Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Hu, Pidong; Liu, Chengpu

    2015-01-01

    An improved plasmonic hole array nanostructure model with the holes blocked by gold mushroom caps is proposed and it can realize a giant transmission with efficiency up to 65%, 182% larger than the unblocked nanohole array, due to the strong coupling between caps and holes, which plays the role of a cavity antenna. Moreover, the numerical investigation confirms that it provides more consistency with the practical experimental situations, than the nanodisk model instead. As expected, the light transmission sensitively depends on the geometric parameters of this new nanostructure; as the cap-hole's gap or cap's diameter vary, there always exists an optimal transmission efficiency. More interesting is that the corresponding optimal wavelength decreases with the gap's increment or the diameter's decrement, particularly in an exponential decaying way, and the decay rate is obviously influenced by the cap's parameters.

  3. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    SciTech Connect

    Kekesi, R. Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G.

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  4. Plasmonic antenna array at optical frequency made by nanoapertures

    SciTech Connect

    Zhang, Z.J.; Huang, X.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, Mu

    2008-10-31

    We show here that the plasmonic array based on nanoapertures in ultrathin silver film radiates at optical frequency and behaves as an optical antenna array (OAA). The far-field radiation originates from the coherent superposition of plasmonic emissions on each bank of the aperture. The radiation of OAA presents a strong directivity, which depends on the in-plane rotation of aperture array, and on the polarization and incidence angle of the excitation light as well. We suggest that these features have potential applications in photovoltaics, light-emitting devices, and optical sensors.

  5. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Qu, Shi-Wei; Yi, Huan

    2014-08-01

    Spoof planar plasmonic waveguides (SPPWs) show potential applications in many microwave and terahertz systems, e.g. imaging, communication and sensing, due to their capability of highly confining spoof surface plasmon polaritons (SPPs) and relatively low propagation loss. Meanwhile, efficient electromagnetic emission from the SPPWs is one of the dominant factors in the practical applications. In this article, we demonstrate a beam-scanning circularly polarized (CP) antenna based on the SPPW of blind-hole array, which can efficiently convert spoof SPPs propagating in the SPPW into free-space emissions. Several centre-inclined rectangular patches are adopted to achieve the CP emission. The antenna array was designed and fabricated in the microwave frequency band, and the measured results validate the good emission performance of the proposed array, e.g. high gain and wide-scan angle. Finally, the proposed idea can be further extended into the terahertz frequency band.

  6. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.

    PubMed

    Mo, Lei; Yang, Liu; Nadzeyka, Achim; Bauerdick, Sven; He, Sailing

    2014-12-29

    Gold absorbers based on plasmonic tapered coaxial holes (PTCHs) are demonstrated theoretically and experimentally. An average absorption of over 0.93 is obtained theoretically in a broad wavelength range from 300 nm to 900 nm without polarization sensitivity due to the structural symmetry. Strong scattering of the incident light by the tapered coaxial holes is the main reason for the high absorption in the short wavelength range below about 550 nm, while gap surface plasmon polaritons propagating along the taper dominate the resonance-induced high absorption in the long wavelength range. Combining two PTCHs with different structural parameters can further enhance the absorption and thus increase the spectral bandwidth, which is verified by a sample fabricated by focused ion beam milling. This design is promising to be extended to other metals to realize effective and efficient light harvesting and absorption.

  7. Plasmon switching effect based on graphene nanoribbon pair arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  8. Regular arrays of Al nanoparticles for plasmonic applications

    SciTech Connect

    Schade, Martin Bohley, Christian; Sardana, Neha; Schilling, Jörg; Fuhrmann, Bodo; Schlenker, Sven; Leipner, Hartmut S.

    2014-02-28

    Optical properties of aluminium nanoparticles deposited on glass substrates are investigated. Laser interference lithography allows a quick deposition of regular, highly periodic arrays of nanostructures with different sizes and distances in order to investigate the shift of the surface plasmon resonance for, e.g., photovoltaic, plasmonic or photonic applications. The variation of the diameter of cylindrical Al nanoparticles exhibits a nearly linear shift of the surface plasmon resonance between 400 nm and 950 nm that is independent from the polarization vector of the incident light. Furthermore, particles with quadratic or elliptic base areas are presented exhibiting more complex and polarization vector dependent transmission spectra.

  9. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications.

    PubMed

    Sannomiya, Takumi; Scholder, Olivier; Jefimovs, Konstantins; Hafner, Christian; Dahlin, Andreas B

    2011-06-20

    Biosensing with nanoholes is one of the most promising applications of nanoplasmonic devices. The sensor properties, however, are complex due to coupled resonances through propagating and localized surface plasmons. This Full Paper demonstrates experimental and simulation studies on different plasmonic hole systems, namely various patterns of circular holes in gold films. In contrast to most previous work, here, the challenging situation of optically thin films is considered. The refractive-index-sensing properties, such as sensitive locations in the nanostructure and sensitive spectral features, are investigated. The multiple multipole program provides the complete field distribution in the nanostructure for different wavelengths. It is shown that the spectral feature most sensitive to refractive-index changes is the extinction minimum, rather than the maximum. The results are consistent with theory for perfect electrical conductors. The spectral response is investigated for molecular adsorption at different positions inside or outside a hole. Furthermore, the optical properties of nanohole arrays with long-range and short-range order are compared and found to demonstrate remarkable similarities. Our results help to predict the resonance wavelengths of nanoholes with arbitrary patterns, including short-range order. The results presented here are highly important since they extend and challenge several aspects of the current understanding of plasmon resonances in nanohole arrays. These theoretical models, simulation results, and experimental data together help provide the understanding necessary for the development of efficient biomolecular analysis tools based on metallic nanoholes.

  10. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance

    NASA Astrophysics Data System (ADS)

    Kondratov, A. V.; Gorkunov, M. V.; Darinskii, A. N.; Gainutdinov, R. V.; Rogov, O. Y.; Ezhov, A. A.; Artemov, V. V.

    2016-05-01

    We study the physical origin of extreme optical chirality of subwavelength arrays of chiral holes in metal. We reconstruct the nanoscale relief of the hole arrays by the atomic-force microscopy and post-process the data to acquire an average unit-cell shape clear of noise and defects. For this shape, we perform the electromagnetic finite difference time domain simulations that reproduce all important features observed by the light-transmission experiments, including the notably strong circular dichroism and optical activity covering the whole range of possible values. To interpret the simulation results, we develop a chiral coupled-mode model which yields analytical expressions that fit accurately the numerical data in a broad wavelength range. Our conclusions undoubtedly link the extreme optical chirality to the plasmon resonances of chiral holes and the associated chiral Fano-type transmission resonance.

  11. Infrared plasmonics with indium-tin-oxide nanorod arrays.

    PubMed

    Li, Shi Qiang; Guo, Peijun; Zhang, Lingxiao; Zhou, Wei; Odom, Teri W; Seideman, Tamar; Ketterson, John B; Chang, Robert P H

    2011-11-22

    This article reports the study of infrared plasmonics with both random and periodic arrays of indium-tin-oxide (ITO) nanorods (NR). A description is given on the synthesis, patterning, and characterization of physical properties of the ITO NR arrays. A classical scattering model, along with a 3-D finite-element-method and a 3-D finite-difference-time-domain numerical simulation method has been used to interpret the unique light scattering phenomena. It is also shown that the intrinsic plasma frequency can be varied through careful postsynthesis processing of the ITO NRs. Examples are given on how coupled plasmon resonances can be tuned through patterning of the ITO NR arrays. In addition, environment dielectric sensing has been demonstrated through the shift of the resonances as a result of index change surrounding the NRs. These initial results suggest potential for further improvement and opportunities to develop a good understanding of infrared plasmonics using ITO and other transparent conducting oxide semiconducting materials.

  12. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.

    PubMed

    Seo, Sujin; Zhou, Xiangfei; Liu, Gang Logan

    2016-07-01

    Plasmonic substrates have fixed sensitivity once the geometry of the structure is defined. In order to improve the sensitivity, significant research effort has been focused on designing new plasmonic structures, which involves high fabrication costs; however, a method is reported for improving sensitivity not by redesigning the structure but by simply assembling plasmonic nanoparticles (NPs) near the evanescent field of the underlying 3D plasmonic nanostructure. Here, a nanoscale Lycurgus cup array (nanoLCA) is employed as a base colorimetric plasmonic substrate and an assembly template. Compared to the nanoLCA, the NP assembled nanoLCA (NP-nanoLCA) exhibits much higher sensitivity for both bulk refractive index sensing and biotin-streptavidin binding detection. The limit of detection of the NP-nanoLCA is at least ten times smaller when detecting biotin-streptavidin conjugation. The numerical calculations confirm the importance of the additive plasmon coupling between the NPs and the nanoLCA for a denser and stronger electric field in the same 3D volumetric space. Tunable sensitivity is accomplished by controlling the number of NPs in each nanocup, or the number density of the hot spots. This simple yet scalable and cost-effective method of using additive heterogeneous plasmon coupling effects will benefit various chemical, medical, and environmental plasmon-based sensors.

  13. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    SciTech Connect

    Singh, Mahi R.; Najiminaini, Mohamadreza; Carson, Jeffrey J. L.; Balakrishnan, Shankar

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  14. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays.

    PubMed

    Arteaga, Oriol; Maoz, Ben M; Nichols, Shane; Markovich, Gil; Kahr, Bart

    2014-06-01

    Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

  15. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications.

    PubMed

    Vazquez-Mena, Oscar; Sannomiya, Takumi; Villanueva, Luis G; Voros, Janos; Brugger, Juergen

    2011-02-22

    The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices. PMID:21192666

  16. Excitation of surface plasmons in graphene-coated nanowire arrays

    NASA Astrophysics Data System (ADS)

    Xia, Sheng-Xuan; Zhai, Xiang; Wang, Ling-Ling; Liu, Jian-Ping; Li, Hong-Ju; Liu, Jian-Qiang; Pan, An-Lian; Wen, Shuang-Chun

    2016-09-01

    One of the important challenges that graphene must overcome before it can legitimately declare its irreplaceable position among the fields of plasmonic materials is to achieve efficiently coupling to external light. In this paper, we demonstrate an effective solution to this problem by exciting localized surface plasmon polaritons (SPPs) on graphene-coated nanowire arrays (GCNAs). These SPPs are analyzed by introducing a universal scaling law that considerably simplifies the understanding of these modes. Meanwhile, numerical experiments are carried out to demonstrate the theoretical analysis of plasmon excitations. The excited SPPs permit the control through both geometrical and physical properties. The proposed structure can be used as a tunable optical filter, a highly sensitive refractive index sensor, and other plasmonic modulation devices.

  17. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire–spacer–plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  18. Plane wave scattering from a plasmonic nanowire array spacer-separated from a plasmonic film

    NASA Astrophysics Data System (ADS)

    Thomas, Arun; Trivedi, Rahul; Dhawan, Anuj

    2016-06-01

    In this paper, we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-spacer-plasmonic film system. The analytical solution presented in this paper is a full-wave solution, which is used to compute the fields scattered by the plasmonic nanostructure system on illumination by a plane electromagnetic wave. The physical structure comprises of an array of plasmonic nanowires made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material and separated from it by a dielectric spacer such as silica or alumina. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric and electromagnetic parameters such as spacer thickness and spacer refractive index, which makes it favourable for various sensing applications such as chemical and biological sensing, strain sensing, position sensing, vibration sensing, and thickness sensing. We report a comparison of our analytical solution with a numerical rigorous coupled wave analysis of the same structure with the plasmonic medium being treated as local in nature.

  19. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  20. Biosensors based on the plasmonic properties of Au microhole arrays

    NASA Astrophysics Data System (ADS)

    Live, Ludovic S.; Breault-Turcot, Julien; Bolduc, Olivier; Masson, Jean-Francois

    2011-08-01

    The plasmonic properties of metallic nanoparticles and macroscopic Au film have been thoroughly investigated for the development of biosensors based on surface plasmon resonance (SPR). Nanoparticle based localized surface plasmon resonance (LSPR) is a technique extremely sensitive to molecular adsorbate, whilst conventional SPR based on the Kretschmann configuration (macroscopic smooth Au film) is especially sensitive to bulk refractive index. SPR currently provides the best RI resolution, a measure typically used for comparison of the potential of plasmonic sensor. A technique that could combine high bulk refractive index resolution and high sensitivity to molecular adsorbate would increase the scope of SPR-based technique by providing lower detection limits. A potential solution may exploit micro-structured Au films. However, the plasmonic properties of micropatterned metallic films are still relatively unknown. We have undertaken the study of the plasmonic properties from Au film with features on the order of 1 to 3 μm. Microtriangle and microhole arrays were fabricated by modified nanosphere lithography, consisting of a polymer microsphere mask deposited in a close-packed hexagonal monolayer, etched by oxygen plasma. Etch time controls the diameter of the microhole and the initial microsphere diameter sets the periodicity. Investigation of the SPR properties in the Kretschmann configuration was undertaken using a SPR with a dove prism and a multi-wavelength scanning angle SPR. The sensitivity of SPR with microhole arrays exhibits an improvement by a factor of 3 in comparison to SPR using a smooth Au film. This is accomplished by tuning the angle to near 73 degrees (with a BK7 glass prism). Moreover, the sensitivity to the immobilization of an antibody was improved by at least a factor of 4 as demonstrated with the kinetics of immobilization for IgY, without employing secondary amplification techniques. No modification to the instrumentation is required and

  1. Tuning the plasmon resonance of a nano-mouth array

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Chen, Xia; Dou, Zhijie; Johnson, Nigel P.; Zhou, Zhang-Kai; Wang, Xuehua; Jin, Chongjun

    2012-08-01

    We have developed a method to fabricate a silver nano-mouth array via a cost-effective inverted hemispherical colloidal lithography method. It shows that the nano-mouth supports a strong localized surface plasmon resonance, which results in an extraordinary optical transmission peak. When the nano-mouth array is transferred onto a polydimethylsiloxane (PDMS) substrate, we show that the localized surface plasmon resonance can be tuned via the swelling and recovery of the PDMS in ethyl acetate solvent. The resonant peak can be tuned with a relative bandwidth of over 10%. We also demonstrate the refractive index sensitivity of the nano-mouth array at a wavelength of 1300 nm. This structure might be useful for optical microfluidic devices and sensors.

  2. Plasmonic Tipless Pyramid Arrays for Cell Poration.

    PubMed

    Courvoisier, Sébastien; Saklayen, Nabiha; Huber, Marinus; Chen, Jun; Diebold, Eric D; Bonacina, Luigi; Wolf, Jean-Pierre; Mazur, Eric

    2015-07-01

    Improving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained. We demonstrate that such a substrate can induce transient poration of cells by a purely optically induced process.

  3. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing.

    PubMed

    Seiler, Spencer T; Rich, Isabel S; Lindquist, Nathan C

    2016-05-01

    Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration. PMID:27010077

  4. Direct spectral imaging of plasmonic nanohole arrays for real-time sensing

    NASA Astrophysics Data System (ADS)

    Seiler, Spencer T.; Rich, Isabel S.; Lindquist, Nathan C.

    2016-05-01

    Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration.

  5. Tunable Plasmonic Nanohole Arrays Actuated by a Thermoresponsive Hydrogel Cushion

    PubMed Central

    2015-01-01

    New plasmonic structure with actively tunable optical characteristics based on thermoresponsive hydrogel is reported. It consists of a thin, template-stripped Au film with arrays of nanoholes that is tethered to a transparent support by a cross-linked poly(N-isopropylacrylamide) (pNIPAAm)-based polymer network. Upon a contact of the porous Au surface with an aqueous environment, a rapid flow of water through the pores enables swelling and collapsing of the underlying pNIPAAm network. The swelling and collapsing could be triggered by small temperature changes around the lower critical solution temperature (LCST) of the hydrogel. The process is reversible, and it is associated with strong refractive index changes of Δn ∼ 0.1, which characteristically alters the spectrum of surface plasmon modes supported by the porous Au film. This approach can offer new attractive means for optical biosensors with flow-through architecture and actively tunable plasmonic transmission optical filters. PMID:27182290

  6. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  7. Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms.

    PubMed

    Liu, Hongmei; Zhang, Xinping; Zhai, Tianrui

    2013-07-01

    Large-area gold nanoring arrays were fabricated using interference lithography and metallic transformation through annealing of colloidal gold nanoparticles. The strong surface tension of the suspension solution and the molten gold, as well as the effective distance of these interaction mechanisms, is responsible for the creation of gold nanorings. The size and shape of the gold nanorings can be controlled by adjusting the size of the holes in the template photoresist grating, which is accomplished in the stage of interference lithography. Furthermore, the concentration of the colloidal gold nanoparticles and the annealing temperature can be utilized to achieve further optimization of the gold nanoring structures. Optical spectroscopic measurements show unique plasmonic response of the nanoring arrays in the visible and in the infrared spectral ranges, which agrees well with the theoretical simulation. This fabrication method provides a simple and low-cost route for achieving metallic nanoring arrays in a large scale for practical applications.

  8. Plasmon coupled nanoparticle arrays for fluorescence, photoluminescence and Raman scattering enhancement.

    NASA Astrophysics Data System (ADS)

    Kaydashev, V. E.; Lyanguzov, N.; Zhilin, D.; Tsaturyan, A.; Raspopova, E. A.; Kaidashev, E. M.

    2016-08-01

    We study the enhancement of the fluorescence an photoluminescence by large homogeneous arrays of plasmon coupled 5-8 nm Au and Ag nanoparticle separated by distances less than 10 nm. A red shift of the major “symmetric” plasmon mode near 780 nm, and additional “anti-symmetric” plasmon mode centered near 310 nm evidence the plasmon coupling in Au particle arrays. The systems were found to be effective in enhancement of the fluorescence/photoluminescence processes.

  9. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection

    NASA Astrophysics Data System (ADS)

    Sergides, M.; Truong, V. G.; Chormaic, S. Nic

    2016-09-01

    The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.

  10. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection.

    PubMed

    Sergides, M; Truong, V G; Chormaic, S Nic

    2016-09-01

    The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required. PMID:27479353

  11. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam.

    PubMed

    Liu, Shenggang; Hu, Min; Zhang, Yaxin; Li, Yuebao; Zhong, Renbin

    2009-09-01

    This paper explores the physics of the electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line charge of electron beam moving parallel to the array. Activated by a uniformly moving line charge, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration or transmission below or above the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained by the computer simulation. The relation among the effective surface plasmon wave, the electromagnetic penetration or transmission of the holes and the diffraction radiation is revealed. The energy dependence of and the influence of the hole thickness on the diffraction radiation and the electromagnetic penetration or transmission are investigated in detail. Therefore, a distinct diffraction radiation phenomenon is discovered.

  12. Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays.

    PubMed

    Shiu, Ruei-Cheng; Lan, Yung-Chiang; Chen, Chin-Min

    2010-12-01

    This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal-dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam. However, the amplitude of oscillation is almost independent of wavelength.

  13. Plasmonic Zener tunneling in metal-dielectric waveguide arrays.

    PubMed

    Shiu, Ruei-Cheng; Lan, Yung-Chiang

    2011-11-01

    We elucidate in this Letter plasmonic Zener tunneling (PZT) in metal-dielectric waveguide arrays (MDWAs) by using numerical simulations and theoretical analyses. PZT in MDWAs occurs at the waveguide entrance and wherever the beam completes Bloch oscillations, because the bandgap between the first and second bands is minimal at the center of the first Brillouin zone. This feature significantly differs from that of optical Zener tunneling in dielectric waveguide arrays. The dependence of the simulated tunneling rate on the gradient of the relative permittivity of the dielectric layers correlates with the tunneling theory, thus confirming the occurrence of PZT in MDWAs.

  14. Mid-infrared extraordinary transmission through Ga-doped ZnO films with 2D hole arrays

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Nader Esfahani, Nima; Vangala, Shiva; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.

    2014-03-01

    Extraordinary optical transmission (EOT), through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) on Ga-Doped ZnO films and can be tuned utilizing the physical parameters such as film thickness, period, hole size, and hole shape, as well as doping of the film. Analytical and finite-difference time-domain calculations are completed for 1 micron thick films with square, circular, and triangular hole arrays demonstrating SPP coupling and EOT. The fundamental plasmonic modes are observed in each of these hole shapes at wavelengths that correspond to strong EOT peaks. Doping tunability for these structures is also observed. Ga-doped ZnO films are grown via pulsed laser deposition (PLD) on silicon with plasma frequencies in the near-infrared. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  15. Extracting kinetic rate constants from surface plasmon resonance array systems.

    PubMed

    Rich, Rebecca L; Cannon, Michelle J; Jenkins, Jerry; Pandian, Prabhakar; Sundaram, Shankar; Magyar, Rachelle; Brockman, Jennifer; Lambert, Jeremy; Myszka, David G

    2008-02-01

    Surface plasmon resonance imaging systems, such as Flexchip from Biacore, are capable of monitoring hundreds of reaction spots simultaneously within a single flow cell. Interpreting the binding kinetics in a large-format flow cell presents a number of potential challenges, including accounting for mass transport effects and spot-to-spot sample depletion. We employed a combination of computer simulations and experimentation to characterize these effects across the spotted array and established that a simple two-compartment model may be used to accurately extract intrinsic rate constants from the array under mass transport-limited conditions. Using antibody systems, we demonstrate that the spot-to-spot variability in the binding kinetics was <9%. We also illustrate the advantage of globally fitting binding data from multiple spots within an array for a system that is mass transport limited.

  16. Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Gold Nanodot Arrays

    SciTech Connect

    Kim, HJ; Lee, SH; Upadhye, AA; Ro, I; Tejedor-Tejedor, MI; Anderson, MA; Kim, WB; Huber, GW

    2014-10-01

    Size-controllable Au nanodot arrays (50, 63, and 83 nm dot size) with a narrow size distribution (+/- 5%) were prepared by a direct contact printing method on an indium tin oxide (ITO) substrate. Titania was added to the Au nanodots using TiO2 sols of 2-3 nm in size. This created a precisely controlled Au nanodot with 110 nm of TiO2 overcoats. Using these precisely controlled nanodot arrays, the effects of Au nanodot size and TiO2 overcoats were investigated for photoelectrochemical water splitting using a three-electrode system with a fiber-optic visible light source. From UV-vis measurement, the localized surface plasmon resonance (LSPR) peak energy (ELSPR) increased and the LSPR line width (G) decreased with decreasing Au nanodot size. The generated plasmonic enhancement for the photoelectrochemical water splitting reaction increased with decreasing Au particle size. The measured plasmonic enhancement for light on/off experiments was 25 times for the 50 nm Au size and 10 times for the 83 nm Au nanodot size. The activity of each catalyst increased by a factor of 6 when TiO2 was added to the Au nanodots for all the samples. The activity of the catalyst was proportional to the quality factor (defined as Q = E-LSPR/Gamma) of the plasmonic metal nanostructure. The enhanced water splitting performance with the decreased Au nanodot size is probably due to more generated charge carriers (electron/hole pair) by local field enhancement as the quality factor increases.

  17. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.

    PubMed

    Kim, Hyung Ju; Lee, Sang Ho; Upadhye, Aniruddha A; Ro, Insoo; Tejedor-Tejedor, M Isabel; Anderson, Marc A; Kim, Won Bae; Huber, George W

    2014-10-28

    Size-controllable Au nanodot arrays (50, 63, and 83 nm dot size) with a narrow size distribution (± 5%) were prepared by a direct contact printing method on an indium tin oxide (ITO) substrate. Titania was added to the Au nanodots using TiO(2) sols of 2-3 nm in size. This created a precisely controlled Au nanodot with 110 nm of TiO(2) overcoats. Using these precisely controlled nanodot arrays, the effects of Au nanodot size and TiO(2) overcoats were investigated for photoelectrochemical water splitting using a three-electrode system with a fiber-optic visible light source. From UV-vis measurement, the localized surface plasmon resonance (LSPR) peak energy (ELSPR) increased and the LSPR line width (Γ) decreased with decreasing Au nanodot size. The generated plasmonic enhancement for the photoelectrochemical water splitting reaction increased with decreasing Au particle size. The measured plasmonic enhancement for light on/off experiments was 25 times for the 50 nm Au size and 10 times for the 83 nm Au nanodot size. The activity of each catalyst increased by a factor of 6 when TiO2 was added to the Au nanodots for all the samples. The activity of the catalyst was proportional to the quality factor (defined as Q = E(LSPR)/Γ) of the plasmonic metal nanostructure. The enhanced water splitting performance with the decreased Au nanodot size is probably due to more generated charge carriers (electron/hole pair) by local field enhancement as the quality factor increases. PMID:25268767

  18. Fabrication of large arrays of plasmonic nanostructures via double casting

    NASA Astrophysics Data System (ADS)

    Lo, Joanne C.; Horsley, David A.; Skinner, Jack L.

    2012-03-01

    Large arrays of periodic nanostructures are widely used for plasmonic applications, including ultrasensitive particle sensing, optical nanoantennas, and optical computing; however, current fabrication processes (e.g., e-beam lithography and nanoimprint lithography) remain time consuming and expensive. Previously, researchers have utilized double casting methods to effectively fabricate large-scale arrays of microscale features. Despite significant progress, employing such techniques at the nanoscale has remained a challenge due to cracking and incomplete transfer of the nanofeatures. To overcome these issues, here we present a double casting methodology for fabricating large-scale arrays of nanostructures. We demonstrate this technique by creating large (0.5 cm × 1 cm) arrays of 150 nm nanoholes and 150 nm nanopillars from one silicon master template with nanopillars. To preclude cracking and incomplete transfer problems, a hard-PDMS/soft-PDMS (h-PDMS/s-PDMS) composite stamp was used to replicate the features from: (i) the silicon template, and (ii) the resulting PDMS template. Our double casting technique can be employed repeatedly to create positive and negative copies of the original silicon template as desired. By drastically reducing the cost, time, and labor associated with creating separate silicon templates for large arrays of different nanostructures, this methodology will enable rapid prototyping for diverse applications in nanotechnological fields.

  19. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays.

    PubMed

    Barik, Avijit; Otto, Lauren M; Yoo, Daehan; Jose, Jincy; Johnson, Timothy W; Oh, Sang-Hyun

    2014-01-01

    We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 μL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors. PMID:24646075

  20. Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation.

    PubMed

    Moerland, Robert J; Eguiluz, Lur; Kaivola, Matti

    2013-02-25

    Nanoscale plasmonic structures allow for control of the emission of single emitters, such as fluorescent molecules and quantum dots, enabling phenomena such as lifetime reduction, emission redirection and color sorting of photons. We present single emitter emission tailored with arrays of holes of heterogeneous size, perforated in a gold film. With spatial control of the local amplitude and phase of the electromagnetic field radiated by the emitter, a desired near- or far-field distribution of the electromagnetic waves can be obtained. This control is established by varying the aspect ratio of the individual holes and the periodicity of the array surrounding the emitter. As an example showing the versatility of the technique, we present the strong focusing of the radiation of a highly divergent dipole source, for both p- and s-polarized waves.

  1. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  2. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  3. Extraordinary optical transmission through a subwavelength composite hole-pillar array

    NASA Astrophysics Data System (ADS)

    Shao, Wei-Jia; Li, Wei-Min; Xu, Xiao-Liang; Wang, Hui-Jie; Wu, Yi-Zhi; Yu, Jing

    2014-11-01

    We numerically investigate the transmission properties of a subwavelength composite hole-pillar array. As the radius of the pillar increases, the transmission properties experience a complex evolution. It is found that the magnetic dipole resonance of the pillar suppresses the surface plasmon polariton resonance (SPPR) at the gold-air interface. There are two strong transmission peaks associated with the magnetic dipole resonance of pillar and SPPR at the gold-silica interface. A peak associated with magnetic quadrupole resonance of the pillar is observed. Moreover, there is a weak peak associated with the coupling between the whispering-gallery plasmon (WGP) mode and magnetic dipole. Our work is helpful for making a dual band optical filter.

  4. Optical filtering properties of subwavelength Tai-chi-shaped metal hole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Liu, Hui; Luo, Hu; Zhu, Weihua; Chen, Zhiyong; Liu, Jun; Guo, Wei

    2015-04-01

    Finite-difference time-domain (FDTD) method is employed to study the optical properties of a novel kind of periodic subwavelength hole arrays composed of Tai-chi-shaped holes in silver film, and the optical transmission properties of femtosecond optical pulse excitation is numerically calculated. We find that this Tai-chi-shaped device has better optical band-pass filtering properties, such as narrower pass band and higher transmissivity in visible wavelengths range, than other devices under consideration. Based on the generation of surface plasmons resonance mode in the dielectric-metal interface, the center wavelength of transmission can be tuned by changing the array periodicities. We observe that the tune ability mainly depends on the space period along the direction parallel to that of the incident pulse polarization. It is also found that both the strength and the wavelength of the transmission peaks of rectangularly distributed metal hole arrays are determined by the polarization of incident light. Additionally, we demonstrate the typical band-pass filtering properties of this Tai-Chi-shaped holes structure. The full-width at half-maximum (FWHM) of the narrow pass band is about 20 nm in visible wavelengths range.

  5. Plasmonic channel waveguides in random arrays of metallic nanoparticles.

    PubMed

    Pisano, Eduardo; Coello, Victor; Garcia-Ortiz, Cesar E; Chen, Yiting; Beermann, Jonas; Bozhevolnyi, Sergey I

    2016-07-25

    We report detailed characterization of surface plasmon-polariton guiding along 1-, 1.5- and 2-μm-wide channels in high-density (~75 μm-2) random arrays of gold 70-nm-high and 50-nm-wide nanoparticles fabricated on a 70-nm-thin gold film supported by a 170-μm-thick silica substrate. The mode propagation losses, effective index dispersion, and scattering parameters are characterized using leakage-radiation microscopy, in direct and Fourier planes, in the wavelength range of 740-840 nm. It is found that the mode supported by 2-μm-wide channels propagates over > 10 μm in straight waveguides, with the corresponding S-bends and Y-splitters functioning reasonably well. The results show that the SPP waves can efficiently be guided by narrow scattering-free channels cut through randomly corrugated surface regions. The potential of this waveguiding mechanism is yet to be fully explored by tuning the scattering mean-free path and localization length via the density and size of random nanoparticles. Nevertheless, the results obtained are encouraging and promising diverse applications of these waveguide components in plasmonic circuitry. PMID:27464159

  6. Tunneling spectroscopy of hole plasmons in a valence-band quantum well

    SciTech Connect

    Neves, B.R.; Foster, T.J.; Eaves, L.; Main, P.C.; Henini, M.; Fisher, D.J.; Lerch, M.L.; Martin, A.D.; Zhang, C.

    1996-10-01

    We investigate the current-voltage characteristics of a {ital p}-doped resonant tunneling diode. In the voltage range slightly above the bias corresponding to resonant tunneling of holes into the first light-hole subband of the quantum well, we observe two satellite peaks which we attribute to plasmon-assisted tunneling transitions. A theoretical model is presented to account for these peaks. The model is based on the excitation of intrasubband and intersubband heavy-hole plasmons in the quantum well by hot holes injected close to the energy of the first light-hole subband. We also study the behavior of the satellites when a magnetic field is applied either parallel to or perpendicular to the current. {copyright} {ital 1996 The American Physical Society.}

  7. Ultrasonic transmission through multiple-sublattice subwavelength holes arrays.

    PubMed

    Estrada, Héctor; Gómez-Lozano, Vicente; Uris, Antonio; Candelas, Pilar; Belmar, Francisco; Meseguer, Francisco

    2012-03-01

    The ultrasonic transmission through plates perforated with 2 × 2 or 3 × 3 square array of subwavelength holes per unit cell are studied by numerical simulations. Calculations are obtained by means of a theoretical model under the rigid-solid assumption. It is demonstrated that when the inter-hole distance within the unit cell is reduced, new transmission dips appear resulting from Wood anomalies that have influence on the second and the third order Fabry-Perot peak. When the inter-hole distance within the unit cell is reduced, the transmission spectrum of the multiple-sublattice holes arrays tends to the transmission spectrum of a plate perforated with only one hole in the unit cell.

  8. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  9. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays.

    PubMed

    Abb, Martina; Wang, Yudong; Papasimakis, Nikitas; de Groot, C H; Muskens, Otto L

    2014-01-01

    We successfully demonstrate surface-enhanced infrared spectroscopy using arrays of indium tin oxide (ITO) plasmonic nanoantennas. The ITO antennas show a strongly reduced plasmon wavelength, which holds promise for ultracompact antenna arrays and extremely subwavelength metamaterials. The strong plasmon confinement and reduced antenna cross section allows ITO antennas to be integrated at extremely high densities with no loss in performance due to long-range transverse interactions. By further reducing the spacing of antennas in the arrays, we access the regime of plasmonic near field coupling where the response is enhanced for both Au and ITO devices. Ultracompact ITO antennas with high spatial and spectral selectivity in spectroscopic applications offer a viable new platform for infrared plasmonics, which may be combined with other functionalities of these versatile materials in devices.

  10. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  11. The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays.

    PubMed

    Tsai, Chia-Yang; Chang, Kai-Hao; Wu, Che-Yao; Lee, Po-Tsung

    2013-06-17

    We investigate both numerically and experimentally the optical properties and biosensing of gold elliptical nanoring (ENR) arrays with various aspect ratios. The gold ENR exhibits a strong localized surface plasmon bonding mode in near-infrared region, whose peak wavelength is red-shifted as increasing the aspect ratio under longitudinal and transverse polarizations. Furthermore, the disk- and hole-like optical properties for longitudinal and transverse modes are observed, which cause different behaviors in field intensity enhancement. For biomolecule sensing, we find that both modes show increased surface sensitivities when enlarging the aspect ratio of gold ENR.

  12. Control of Surface Plasmons Emitted from Arrays of Subwavelength Apertures

    NASA Astrophysics Data System (ADS)

    Blumberg, Girsh; Dennis, Brian; Egorov, Dimitri; Haftel, Michael

    2004-03-01

    We demonstrate that surface plasmons (SPs) can be emitted in the form of long and coherent jets whose intensity and propagation direction can be manipulated by varying the wavelength, incidence angle, and polarization of the excitation light as well as through adjustment periodicity of 2D structures and dielectric properties of the interfaces. We also demonstrate the reverse conversion of SPs back into free propagating light and observe controllable and highly directional beaming. We use for sample gold films on a fused silica substrates with fabricated arrays of subwavelength apertures illuminated by a tunable laser. We image coherent SP modes by a near-field scanning optical microscope (NSOM) and demonstrate emission of SP jets in controlled propagation direction. By adding mirrors and lenses we demonstrate SP standing waves and focusing which concentrates high local density of electromagnetic energy on the gold-air interface. By performing NSOM scans as a function of distance from the gold-air interface we map out the volume distribution of light intensity above the array and confirm highly directional nature of light emitted from periodic 2D structure of subwavelength apertures down to a few microns away from the surface.

  13. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGES

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  14. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  15. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  16. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    SciTech Connect

    Sun, Rui-Nan; Peng, Kui-Qing Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  17. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    NASA Astrophysics Data System (ADS)

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm-1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  18. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating

    NASA Astrophysics Data System (ADS)

    Matthaiakakis, N.; Mizuta, H.; Charlton, M. D. B.

    2016-06-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications.

  19. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.

    PubMed

    Matthaiakakis, N; Mizuta, H; Charlton, M D B

    2016-06-09

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications.

  20. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating

    PubMed Central

    Matthaiakakis, N.; Mizuta, H.; Charlton, M. D. B.

    2016-01-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications. PMID:27278301

  1. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  2. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.

    PubMed

    Matthaiakakis, N; Mizuta, H; Charlton, M D B

    2016-01-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications. PMID:27278301

  3. Multiple coupling in plasmonic metal/dielectric hollow nanocavity arrays for highly sensitive detection

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Zang, Yashu; Yue, Chuang; He, Xu; Yang, Hongtao; Wu, De-Yin; Wu, Min; Kang, Junyong; Wu, Zhihao; Li, Jing

    2015-08-01

    Recently, the plasmonic coupled optical cavity has gained much attention due to its attractive properties in light manipulation, e.g. high Q optical resonance, local field enhancements and extraordinary transmission. The strongly enhanced local field originated from the plasmonic resonance hybridizing with the optical cavity mode presents great potential for application to chemical and biological sensing. Here, the multiple coupling effect between plasmonic mode and optical cavity mode has been demonstrated in self-assembled metal/dielectric hollow-nanosphere (HNS) arrays and the strongly enhanced local field originated from the inter-coupling of the plasmonic cavities was further employed for highly sensitive recyclable SERS sensing.Recently, the plasmonic coupled optical cavity has gained much attention due to its attractive properties in light manipulation, e.g. high Q optical resonance, local field enhancements and extraordinary transmission. The strongly enhanced local field originated from the plasmonic resonance hybridizing with the optical cavity mode presents great potential for application to chemical and biological sensing. Here, the multiple coupling effect between plasmonic mode and optical cavity mode has been demonstrated in self-assembled metal/dielectric hollow-nanosphere (HNS) arrays and the strongly enhanced local field originated from the inter-coupling of the plasmonic cavities was further employed for highly sensitive recyclable SERS sensing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03193a

  4. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-07-01

    Hybrid Pd-Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination.

  5. The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma

    NASA Astrophysics Data System (ADS)

    Hsu, Chuen-Yuan; Huang, Jing-Wen; Gwo, Shangjr; Lin, Kuan-Jiuh

    2010-01-01

    Fabrication of isolated noble metal nanoparticles embedded in transparent substrates is the fasting growing demand for innovative plasmonic technologies. Here we report a simple and effective methodology for the preparation of highly stable plasmonic nanoparticles embedded in a glass surface. Size-controllable (10-70 nm) Au nanoparticles were rapidly prepared when subjected to the home-microwave plasma. Accordingly, the optical extinction maximum of the localized surface plasmon resonance (LSPR) can be systematically tuned in the range 532-586 nm. We find that the plasmonic structures are exceedingly stable toward immersion in ethanol solvents and pass successfully the adhesive tape test, which makes our system highly promising for efficient transmission-LSPR nanosensors. Besides, the attractive features of substrate-bound plasmonic nanostructures include its low cost, versatility, robustness, reusability and a promising ability to make a multi-arrayed LSPR biochip.

  6. Electromagnetic wave transmission through a subwavelength nano-hole in a two-dimensional plasmonic layer.

    PubMed

    Horing, Norman J M; Miessein, Désiré; Gumbs, Godfrey

    2015-06-01

    An integral equation is formulated to describe electromagnetic wave transmission through a subwavelength nano-hole in a thin plasmonic sheet in terms of the dyadic Green's function for the associated Helmholtz problem. Taking the subwavelength radius of the nano-hole to be the smallest length of the system, we have obtained an exact solution of the integral equation for the dyadic Green's function analytically and in closed form. This dyadic Green's function is then employed in the numerical analysis of electromagnetic wave transmission through the nano-hole for normal incidence of the incoming wave train. The electromagnetic transmission involves two distinct contributions; one emanates from the nano-hole, and the other is directly transmitted through the thin plasmonic layer itself (which would not occur in the case of a perfect metal screen). The transmitted radiation exhibits interference fringes in the vicinity of the nano-hole, and they tend to flatten as a function of increasing lateral separation from the hole, reaching the uniform value of transmission through the sheet alone at large separations.

  7. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide.

    PubMed

    Zhang, Jing; Cai, Likang; Bai, Wenli; Song, Guofeng

    2010-10-15

    We propose a hybrid waveguide-plasmon system consisting of gold pillar arrays on top of a dielectric waveguide. The formation of extraordinary transmissions induced by the hybrid waveguide-plasmon resonances is investigated by rigorous coupled-wave analysis. The characteristics of the hybrid resonances can be predicted by introducing the photonic crystal slab theory. Extremely narrow absorption peaks and the electromagnetically induced transparency-like optical property are demonstrated in our hybrid system.

  8. Deterministic Construction of Plasmonic Heterostructures in Well-Organized Arrays for Nanophotonic Materials.

    PubMed

    Liu, Xiaoying; Biswas, Sushmita; Jarrett, Jeremy W; Poutrina, Ekaterina; Urbas, Augustine; Knappenberger, Kenneth L; Vaia, Richard A; Nealey, Paul F

    2015-12-01

    Plasmonic heterostructures are deterministically constructed in organized arrays through chemical pattern directed assembly, a combination of top-down lithography and bottom-up assembly, and by the sequential immobilization of gold nanoparticles of three different sizes onto chemically patterned surfaces using tailored interaction potentials. These spatially addressable plasmonic chain nanostructures demonstrate localization of linear and nonlinear optical fields as well as nonlinear circular dichroism.

  9. Free carrier induced spectral shift for GaAs filled metallic hole arrays.

    PubMed

    Zhang, Jingyu; Xiang, Bin; Sheik-Bahae, Mansoor; Brueck, S R J

    2012-03-26

    For a GaAs filled metallic hole array on a pre-epi GaAs substrate, the free carriers, generated by three-photon absorption (3PA) assisted by strongly enhanced local fields, reduce the refractive index of GaAs in ~200-nm thick active area through band filling and free carrier absorption. Therefore, the surface plasma wave (SPW) resonance, and the related second harmonic (SH) spectrum blue shifts with increasing fluence; For the plasmonic structure on a substrate with surface defects, free carrier recombination dominates. The band gap emission spectral peak wavelength decreases 10-nm with increasing fluence, showing the transition from nonradiative-, at low excitation, to bimolecular-recombination at high carrier concentrations.

  10. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  11. Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

    PubMed Central

    Barman, Tapan; Hussain, Amreen A.; Sharma, Bikash; Pal, Arup R.

    2015-01-01

    Studies on hot carrier science and technology associated with various types of nanostructures are dominating today’s nanotechnology research. Here we report a novel synthesis of polyaniline-gold (PAni-Au) nanocomposite thin films with gold nanostructures (AuNs) of desired shape and size uniformly incorporated in the polymer matrix. According to shape as well as size variation of AuNs, two tunable plasmonic UV-Visible absorption bands are observed in each of the nanocomposites. Plasmonic devices are fabricated using PAni-Au nanocomposite having different UV-Visible plasmon absorption bands. However, all the devices show strong photoelectrical responses in the blue region (400–500 nm) of the visible spectrum. The d-band to sp-band (d-sp) transition of electrons in AuNs produces hot holes that are the only carriers in the material responsible for photocurrent generation in the device. This work provides an experimental evidence of novel plasmonic hot hole generation process that was still a prediction. PMID:26656664

  12. Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition

    NASA Astrophysics Data System (ADS)

    Wambold, Raymond A.; Borst, Benjamin D.; Qi, Jie; Weisel, Gary J.; Willis, Brian G.; Zimmerman, Darin T.

    2016-04-01

    We present a systematic study of tunable, plasmon extinction characteristics of arrays of nanoscale antennas that have potential use as sensors, energy-harvesting devices, catalytic converters, in near-field optical microscopy, and in surface-enhanced spectroscopy. Each device is composed of a palladium triangular-prism antenna and a flat counter-electrode. Arrays of devices are fabricated on silica using electron-beam lithography, followed by atomic-layer deposition of copper. Optical extinction is measured by employing a broadband light source in a confocal, transmission arrangement. We characterize the plasmon resonance behavior by examining the dependence on device length, the gap spacing between the electrodes, material properties, and the device array density, all of which contribute in varying degrees to the measured response. We employ finite-difference time-domain simulations to demonstrate good qualitative agreement between experimental trends and theory and use scanning electron microscopy to correlate plasmonic extinction characteristics with changes in morphology.

  13. Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array.

    PubMed

    Cao, Z L; Ong, H C

    2016-06-13

    We determine the momentum-dependent group velocities of ( ± 1,0) and (0, ± 1) Bloch-like surface plasmon polaritons (SPPs) in two-dimensional Au nanohole array by measuring their propagation lengths and decay lifetimes at different SPP propagation length via angle- and polarization-resolved reflectivity spectroscopy and real- and Fourier-space microscopy. We find the decay length and lifetime, as well as group velocity, are highly dependent on the propagation direction. In particular, close to the Γ-M direction where two SPPs begin to interfere, the group velocity decreases due to the increase of the standing wave character. More importantly, the two SPPs are strongly interacted with each other at the Γ-M direction, resulting in forming the dark and bright modes. We find the group velocity of the dark mode is higher that of the bright mode despite its higher quality factor, or longer decay lifetime. We attribute such difference to the distinct field symmetries of dark and bright modes, yielding different effective indices. While bright mode has fields mostly concentrated at the flat metal region to produce higher effective index and therefore lower velocity, the fields of the dark mode are located near the air hole, resulting in higher velocity. PMID:27410269

  14. Plasmonic silver nanoparticles loaded titania nanotube arrays exhibiting enhanced photoelectrochemical and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Nishanthi, S. T.; Iyyapushpam, S.; Sundarakannan, B.; Subramanian, E.; Pathinettam Padiyan, D.

    2015-01-01

    A combination of electrochemical anodization and photochemical reduction is employed to fabricate highly ordered silver loaded titania nanotubes (Ag/TNT) arrays. The Ag/TNT samples show an extended optical absorbance from UV to visible region owing to the surface plasmon resonance effect of Ag. The photoluminescence intensity of Ag/TNT is significantly lower than that of pure titania revealing a decrease in charge carrier recombination. The photoelectrochemical properties of the prepared samples are studied using linear sweep and transient photocurrent measurements. Compared with pure TNT, the Ag loaded samples show a higher photoelectrochemical activity. The results demonstrate an efficient separation of photogenerated electron-hole pairs and the consequent increase in lifetime of charge carriers by Ag/TNT. The photocatalytic results of methyl orange dye degradation show that the Ag/TNT-3-05 sample exhibits the maximum degradation efficiency of 98.85% with kinetic rate constant of 0.0236(5) min-1 for 180 min light illumination.

  15. Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs.

    PubMed

    Vala, M; Homola, J

    2016-07-11

    A novel method enabling rapid fabrication of 2D periodic arrays of plasmonic nanoparticles across large areas is presented. This method is based on the interference of multiple coherent beams originating from diffraction of large-diameter collimated beam on a transmission phase mask. Mutual orientation of the interfering beams is determined by parameters of the used phase mask. Herein, parameters of the phase mask (periods and modulation depth) are selected to yield an interference pattern with high contrast and narrow well-separated maxima. Finally, multiple beam interference lithography (MBIL)-based fabrication of periodic plasmonic arrays with selected nanomotifs including discs, disc dimers, rods and bowtie antennas is demonstrated. PMID:27410838

  16. Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays.

    PubMed

    Zhou, Bingpu; Xiao, Xiao; Liu, Ting; Gao, Yibo; Huang, Yingzhou; Wen, Weijia

    2016-03-15

    In this work, on-chip bio/chemical sensor was reported based on localized surface plasmon resonance of nanocrescent patterns fabricated via electron beam lithography. The nanocrescent arrays with different dimensional features exhibited controllable plasmonic properties in accordance with the simulation results based on the finite-difference time-domain model. The highest refractive index sensitivity of the fabricated samples was achieved to be ~699.2 nm/RIU with a figure of merit of ~3.1 when the two opposite crescents own a gap of ~43.3 nm. Such obtained plasmonic sensor was further integrated into the microfluidic system which can simply control the specific analyte concentrations via tuning the flow rate ratios between two injecting microstreams. Our method has successfully demonstrated the capability of the nanocrescent patterns as on-chip plasmonic bio/chemical sensor for real-time monitoring of dynamic concentrations in the microchannel. PMID:26436326

  17. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array.

    PubMed

    Wei, Shuhua; Zheng, Mengjie; Xiang, Quan; Hu, Hailong; Duan, Huigao

    2016-09-01

    Low-cost surface-enhanced Raman scattering (SERS) substrate with the largest possible enhancement factor is highly desirable for SERS-based sensing applications. In this work, we systematically investigated how the density of plasmonic nanostructures affects the intensity of SERS signal. By directly depositing of metallic layer on electron-beam-lithography defined dielectric nanoposts, plasmonic structures array with different densities were reliably fabricated for SERS measurements. Two main experimental phenomena were obtained: (1) the SERS intensity did not increase monotonically when increasing the density of plasmonic structures, and (2) these ultra-dense plasmonic structures resulted in the maximal SERS intensity. These results could be well explained based on finite-difference time domain (FDTD) simulations and provide robust experimental evidences to guide the design of the best possible SERS substrate. PMID:27607665

  18. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.

    PubMed

    Jo, Hanggochnuri; Sohn, Ahrum; Shin, Kyung-Sik; Kumar, Brijesh; Kim, Jae Hyun; Kim, Dong-Wook; Kim, Sang-Woo

    2014-01-22

    An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using these well-dispersed Au NPs revealed that such a self-assembled Au NP array can induce a strong plasmonic field. Furthermore, we demonstrated a new architecture of plasmon excitation in a bulk heterojunction (BHJ) inverted organic solar cell (IOSC) using the Au NP array with AAO. The optical response of an active layer poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester was enhanced by this strong plasmonic field associated a well-dispersed Au NP array. A comparative study of AAO with and without Au NPs confirmed plasmonic improvement of the BHJ IOSC. Simulation results showed that Au NPs concentrate the incoming light into a strongly localized field and enhance light absorption in a wide wavelength range.

  19. Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles

    PubMed Central

    Namin, Farhad A.; Yuwen, Yu A.; Liu, Liu; Panaretos, Anastasios H.; Werner, Douglas H.; Mayer, Theresa S.

    2016-01-01

    In this paper, the scattering properties of two-dimensional quasicrystalline plasmonic lattices are investigated. We combine a newly developed synthesis technique, which allows for accurate fabrication of spherical nanoparticles, with a recently published variation of generalized multiparticle Mie theory to develop the first quantitative model for plasmonic nano-spherical arrays based on quasicrystalline morphologies. In particular, we study the scattering properties of Penrose and Ammann- Beenker gold spherical nanoparticle array lattices. We demonstrate that by using quasicrystalline lattices, one can obtain multi-band or broadband plasmonic resonances which are not possible in periodic structures. Unlike previously published works, our technique provides quantitative results which show excellent agreement with experimental measurements. PMID:26911709

  20. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy.

    PubMed

    Aksu, Serap; Yanik, Ahmet A; Adato, Ronen; Artar, Alp; Huang, Min; Altug, Hatice

    2010-07-14

    The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields. In this paper, we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays. The technique relying on deposition of materials through a shadow mask enables plasmonic substrates supporting spectrally sharp collective resonances. We show that reflectance spectra of these antenna arrays are comparable to that of arrays fabricated by electron beam lithography. We also show that nanostencils can be reused multiple times to fabricate a series of infrared nanoantenna arrays with identical optical responses. Finally, we demonstrate fabrication of plasmonic nanostructures in a variety of shapes with a single metal deposition step on different substrates, including nonconducting ones. Our approach, by enabling the reusability of the stencil and offering flexibility on the substrate choice and nanopattern design, could facilitate the transition of plasmonic technologies to the real-world applications. PMID:20560536

  1. Two-dimensional silver nanodot array fabricated using nanoporous alumina for a chemical sensor platform of localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Jung, M.; Kim, T.-R.; Ji, M.-G.; Lee, S.; Woo, D.; Choi, Y.-W.

    2016-03-01

    The noble metal nanostructure has attracted significant attention because of their potential applications as sensitive sensor platform blocks for biological and chemical sensing. The unique optical property of the metal nanostructure is originated from localized surface plasmon resonance (LSPR). The fabrication of metal nanostructure is a key issue for sensor applications of LSPR. In this paper, fabrication technique of two-dimensional Ag nanodot array on an indium tin oxide (ITO) glass substrate via the nanoporous alumina mask and the utilization as a platform for LSPR chemical sensor was studied. Well-ordered Ag nanodot array with approximately 65 nm diameter in periodic pattern of 105 nm was fabricated using the nanoporous alumina with through-holes as an evaporation mask. The LSPR of Ag nanodot array on ITO glass substrate was investigated by UV-vis spectroscopy. The LSPR wavelength-shifts owing to the concentration variances of Methylene Blue (MB) adsorbed on Ag nanodot arrays were examined for application of chemical sensor.

  2. Vacuum nano-hole array embedded organic light emitting diodes.

    PubMed

    Jeon, Sohee; Jeong, Jun-ho; Song, Young Seok; Jeong, Won-Ik; Kim, Jang-Joo; Youn, Jae Ryoun

    2014-03-01

    We demonstrated a nano-hole array (NHA) embedded structure that was fabricated for organic light emitting diodes (OLEDs) using a robust reverse transfer process. The NHA structure is proposed in this study as a strategy for maximizing the diffraction strength of two dimensional photonic crystals (PCs) by engineering vacuum nano-holes inside a dielectric slab. The electroluminescence (EL) intensity of the OLED was improved by more than twice. Such an optical enhancement was evaluated by using the angular dependence of photoluminescence (PL). The FDTD simulation was carried out to optimize the NHA structure for extraction of the emission induced from both vertical and horizontal dipoles. We explored the effect of the NHA structure on the extraction improvement converted from waveguide mode by measuring EL intensities of the devices with a hemisphere lens. In addition, the transfer process employed in this study yielded extremely low surface roughness, and thus outstanding electrical characteristics.

  3. Robustness of plasmon phased array nanoantennas to disorder.

    PubMed

    Arango, Felipe Bernal; Thijssen, Rutger; Brenny, Benjamin; Coenen, Toon; Koenderink, A Femius

    2015-01-01

    We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to variations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments.

  4. Terahertz localized surface plasmon resonance of periodic silicon microring arrays

    NASA Astrophysics Data System (ADS)

    Grant, J.; Shi, X.; Alton, J.; Cumming, D. R. S.

    2011-03-01

    We demonstrate the absorption characteristics of silicon microring resonators at terahertz frequencies. Simulation and experimental data show a dipolar localized surface plasmon resonance (DLSPR) absorption peak. We demonstrate that the frequency position and magnitude of the DLSPR peak may be tuned by varying the geometry and thickness of the microring or by modification of the silicon impurity concentration. Finite difference time domain simulations reveal that there is a strong enhancement of the electric field at the resonant frequency. The absorption properties of our resonator are described in terms of effective optical constants and reveal that the silicon microring is an electric resonator. Surface plasmon resonators are efficient terahertz absorbers and have potential applications in security imaging, biological analysis, spectroscopy and nondestructive testing.

  5. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.

    PubMed

    Dao, Thang Duy; Han, Gui; Arai, Nono; Nabatame, Toshihide; Wada, Yoshiki; Hoang, Chung Vu; Aono, Masakazu; Nagao, Tadaaki

    2015-03-21

    We report on measurements and simulations of the efficient sunlight-driven and visible-active photocatalysts composed of plasmonic metal nanoparticles and ZnO nanowire (NW) arrays fabricated via an all-wet-chemical route. Because of the coupling between the ZnO dielectric response and the excitation of the Ag or Au nanoparticles, efficient electronic excitation can be induced in the vicinity of the metal-ZnO interfaces because optically-excited plasmonic particles can not only concentrate the electromagnetic field at the ZnO/particle interface, but also act as efficient sources of plasmonic hot electrons to be injected into the conduction band of the ZnO catalyst. The catalytic activities of the fabricated ZnO NWs are examined by photodegradation of methylene blue and by photocurrent measurements in a photovoltaic configuration. Numerical electromagnetic simulations were used to understand the behavior of the light on the nanometer-scale to clarify the catalytic enhancement mechanisms in both the ultraviolet (UV) and visible (VIS) regions. In addition, simulation results indicated that a near-surface normal but slightly tilted ZnO NW array geometry would provide an increased optical path length and enhanced multiple scattering and absorption processes arising from the localized surface plasmon resonances of the nanoparticles. The results obtained here clarify the role of the plasmon resonance and provide us with useful knowledge for the development of metal-oxide nano-hybrid materials for solar energy conversion. PMID:25700130

  6. Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection.

    PubMed

    Gao, Yongkang; Xin, Zheming; Zeng, Beibei; Gan, Qiaoqiang; Cheng, Xuanhong; Bartoli, Filbert J

    2013-12-21

    A plasmonic interferometric biosensor that consists of arrays of circular aperture-groove nanostructures patterned on a gold film for phase-sensitive biomolecular detection is demonstrated. The phase and amplitude of interfering surface plasmon polaritons (SPPs) in the proposed device can be effectively engineered by structural tuning, providing flexible and efficient control over the plasmon line shape observed through SPP interference. Spectral fringes with high contrast, narrow linewidth, and large amplitude have been experimentally measured and permit the sensitive detection of protein surface coverage as low as 0.4 pg mm(-2). This sensor resolution compares favorably with commercial prism-based surface plasmon resonance systems (0.1 pg mm(-2)) but is achieved here using a significantly simpler collinear transmission geometry, a miniaturized sensor footprint, and a low-cost compact spectrometer. Furthermore, we also demonstrate superior sensor performance using the intensity interrogation method, which can be combined with CCD imaging to upscale our platform to high-throughput array sensing. A novel low-background interferometric sensing scheme yields a high sensing figure of merit (FOM*) of 146 in the visible region, surpassing that of previous plasmonic biosensors and facilitating ultrasensitive high-throughput detection. PMID:24173621

  7. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays.

    PubMed

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W; Tolstova, Yulia; Mauser, Kelly W; Atwater, Harry A

    2016-01-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm(-1), corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures. PMID:27499258

  8. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    PubMed Central

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-01-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm−1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures. PMID:27499258

  9. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    DOE PAGES

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-08

    In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm–1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less

  10. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Verma, S. S.

    2014-05-01

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag0.75Au0.25, Au0.25Cu0.75 and Ag0.50Cu0.50 have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag0.50Cu0.50 BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells).

  11. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    SciTech Connect

    Bansal, Amit Verma, S. S.

    2014-05-15

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag{sub 0.75}Au{sub 0.25}, Au{sub 0.25}Cu{sub 0.75} and Ag{sub 0.50}Cu{sub 0.50} have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag{sub 0.50}Cu{sub 0.50} BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells)

  12. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays.

    PubMed

    Walsh, Gary F; Dal Negro, Luca

    2013-07-10

    In this communication, we systematically investigate the effects of Fano-type coupling between long-range photonic resonances and localized surface plasmons on the second harmonic generation from periodic arrays of Au nanoparticles arranged in monomer and dimer geometries. Specifically, by scanning the wavelength of an ultrafast tunable pump laser over a large range, we measure the second harmonic excitation spectra of these arrays and demonstrate their tunability with particle size and separation. Moreover, through a comparison with linear optical transmission spectra, which feature asymmetric Fano-type lineshapes, we demonstrate that the second harmonic generation is enhanced when coupled photonic-plasmonic resonances of the arrays are excited at the fundamental pump wavelength, thus boosting the intensity of the electromagnetic near-fields. Our experimental results, which are supported by numerical simulations of linear optical transmission and near-field enhancement spectra based on the Finite Difference Time Domain method, demonstrate a direct correlation between the onset of Fano-type coupling and the enhancement of second harmonic generation in arrays of Au nanoparticles. Our findings enable the engineering of the nonlinear optical response of Fano-type coupled nanoparticle arrays that are relevant to a number of device applications in nonlinear nano-optics and plasmonics, such as on-chip frequency generators, modulators, switchers, and sensors.

  13. Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.

    PubMed

    Jana, Debrina; Lehnhoff, Emily; Bruzas, Ian; Robinson, Jendai; Lum, William; Sagle, Laura

    2016-08-01

    Selectivity is often a major obstacle for localized surface plasmon resonance-based biosensing in complex biological solutions. An additional degree of selectivity can be achieved through the incorporation of shape complementarity on the nanoparticle surface. Here, we report the versatile fabrication of substrate-bound Au-Ag nanobowl arrays through the galvanic ion replacement of silver nanodisk arrays. Both localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) were carried out to detect the binding of analytes of varying size to the nanobowl arrays. Large increases in the LSPR and SERS response were measured for analytes that were small enough to enter the nanobowls, compared to those too large to come into contact with the interior of the nanobowls. This size-selective sensing should prove useful in both size determination and differentiation of large analytes in biological solutions, such as viruses, fungi, and bacterial cells.

  14. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures.

    PubMed

    Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A

    2015-06-23

    Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.

  15. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.

    PubMed

    Murai, Shunsuke; Fujita, Koji; Daido, Yohei; Yasuhara, Ryuichiro; Kamakura, Ryosuke; Tanaka, Katsuhisa

    2016-01-25

    We have fabricated two-dimensional periodic arrays of titanium nitride (TiN) nanoparticles from epitaxial thin films. The thin films of TiN, deposited on sapphire and single crystalline magnesium oxide substrates by a pulsed laser deposition, are metallic and show reasonably small optical loss in the visible and near infrared regions. The thin films prepared were structured to the arrays of nanoparticles with the pitch of 400 nm by the combination of nanoimprint lithography and reactive ion etching. Optical transmission indicates that the arrays support the collective plasmonic modes, where the localized surface plasmon polaritons in TiN nanoparticles are radiatively coupled through diffraction. Numerical simulation visualizes the intense fields accumulated both in the nanoparticles and in between the particles, confirming that the collective mode originates from the simultaneous excitation of localized surface plasmon polaritons and diffraction. This study experimentally verified that the processing of TiN thin films with the nanoimprint lithography and reactive ion etching is a powerful and versatile way of preparing plasmonic nanostructures. PMID:26832498

  16. High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays

    SciTech Connect

    Cao, Z. L.; Wong, S. L.; Ong, H. C.; Wu, S. Y.; Ho, H. P.

    2014-04-28

    We show the spectral figure-of-merit (FOM) from nanohole arrays can be larger than 1900/RIU by phase-based surface plasmon resonance. By using temporal coupled mode theory, we find the p-s polarization phase jump is the sharpest when both the absorption and radiative decay rates of surface plasmon polaritons are matched, yielding an extremely small spectral differential phase linewidth and thus superior FOM. The result is supported by numerical simulation and experiment. As a demonstration, we show the phase detection outperforms the conventional spectral counterpart significantly by sensing the binding of bovine serum albumin antibodies under identical condition.

  17. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection

    NASA Astrophysics Data System (ADS)

    Duan, Bo; Zhou, Jiajing; Fang, Zheng; Wang, Chenxu; Wang, Xiujuan; Hemond, Harold F.; Chan-Park, Mary B.; Duan, Hongwei

    2015-07-01

    We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed ``signal-off'' detection of DNA sequences of bacterial pathogens.We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of

  18. Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays

    SciTech Connect

    Nikitin, Andrey G.

    2014-02-10

    This Letter reports theoretical and experimental study of transverse-magnetic-like lattice plasmon modes originating from diffraction in periodic two dimensional arrays of metal nanoparticles. These modes lead to the transmission and reflection spectra exhibiting narrow linewidth Fano-like resonances which can appear as maxima, minima, or can have asymmetric peak-and-dip profile. The dependencies of the position and lineshape of the resonance on the lattice periodicity and angle of incidence are investigated. Numerical simulations of electric field distributions for different excitation conditions of lattice plasmon modes are also performed.

  19. Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Nikitin, Andrey G.

    2014-02-01

    This Letter reports theoretical and experimental study of transverse-magnetic-like lattice plasmon modes originating from diffraction in periodic two dimensional arrays of metal nanoparticles. These modes lead to the transmission and reflection spectra exhibiting narrow linewidth Fano-like resonances which can appear as maxima, minima, or can have asymmetric peak-and-dip profile. The dependencies of the position and lineshape of the resonance on the lattice periodicity and angle of incidence are investigated. Numerical simulations of electric field distributions for different excitation conditions of lattice plasmon modes are also performed.

  20. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities.

    PubMed

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-12-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  1. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  2. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities.

    PubMed

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-12-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors. PMID:27644237

  3. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    SciTech Connect

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  4. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  5. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.

    PubMed

    Zheng, Peng; Cushing, Scott K; Suri, Savan; Wu, Nianqiang

    2015-09-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized surface plasmon resonance (SPR) and propagating surface plasmon polariton (SPP). In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the 'gap' defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  6. Plasmonic properties of nanoparticle-film systems and periodic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Le, Fei

    In this thesis we perform theoretical investigations on the optical properties of geometrically infinite metallic nano-structures such as nanoparticle/film systems and periodic nanoparticle arrays. We apply both Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) methods and we obtain quantitative agreement with experimental measurements as well as other theoretical methods such as Mie Theory and Finite Element simulation. For the nanoparticle over film structure, our research shows that the plasmonic interaction between the nanoparticle and the film is an electromagnetic analogue of the spinless Anderson-Fano model, which was used to describe the interaction of a localized electronic state with a continuous band of electronic states. Three characteristic regimes of the model are realized as the energy of the nanoparticle plasmon resonance lies above, within, or below the energy band of the surface plasmon state. These three interaction regimes are controlled by the film thickness. In the thin film limit, the plasmonic coupling between the nanoshell and the film induces a low-energy virtual state (VS) mainly composed of delocalized film, which can be further tuned as the aspect ratio of the nanoshell changes. The calculations are found to agree well with experimental measurements. Using FDTD method, we show that the electromagnetic field enhancement induced by the VS in the thin film limit can be very large and the nanoparticle/film system could serve as an ideal substrate for Surface Enhanced Raman Spectroscopy (SERS) and Tip Enhanced Raman Spectroscopy (TERS). The plasmonic properties of nanoparticle arrays are investigated using FDTD with Periodic Boundary Conditions (PBC). Our research shows that 2D hexagonal (hcp) nanoshell arrays possess ideal properties as a substrate that combines SERS and Surface Enhanced Infrared Absorption (SEIRA), with large electric field enhancements at the same spatial locations in the structure. With small

  7. Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter.

    PubMed

    Shen, Yang; Fang, Guisheng; Cerjan, Alexander; Chi, Zhenguo; Fan, Shanhui; Jin, Chongjun

    2016-08-25

    Surface plasmon polaritons (SPPs) show great promise in providing an ultracompact platform for integrated photonic circuits. However, challenges remain in easily and efficiently coupling light into and subsequently routing SPPs. Here, we theoretically propose and experimentally demonstrate a switchable bi/tridirectional beam splitter which can simultaneously perform both tasks. The photonic device consists of a periodic array of slanted gold 'mushrooms' composed of angled dielectric pillars with gold caps extruding from a periodic array of perforations in a gold film. The unidirectional coupling results from the interference of the in-plane guided modes scattered by a pair of dislocated gold gratings, while the output channel is determined by the polarization of the incident beam. This device, in combination with dynamic polarization modulation techniques, has the potential to serve as a router or switch in plasmonic integrated circuits. PMID:27523083

  8. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.

    PubMed

    Jia, Peipei; Jiang, Hao; Sabarinathan, Jayshri; Yang, Jun

    2013-05-17

    Surface plasmon resonance sensors of the nanohole array type provide a promising platform for label-free biosensing on surfaces. For their extensive use, an efficient fabrication procedure to make nanoscale features on metallic films is required. We develop a simple and robust template-transfer approach to structure periodic nanohole arrays in optically thick Au films on poly(dimethylsiloxane) substrates. This technique significantly simplifies the process of sensor fabrication and reduces the cost of the device. A spectral analysis approach is also developed for improving the sensor performance. The sensitivity of the resulting sensor to refractive index change is 522 nm/RIU (refractive index unit) and the resolution is improved to 2 × 10(-5) RIU, which are among the best reported values for localized surface plasmon resonance sensors. We also demonstrate the limit of detection of this sensor for cardiac troponin-I.

  9. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  10. Vector magnetic measurement based on directional scattering between polarized plasmon wave and arrayed nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Liu, Fu; Wu, Qiang; Li, Jie; Cheng, Linghao; Guan, Bai-Ou

    2015-09-01

    A vector magnetic field sensor based on surface plasmon resonance (SPR) of a 15° tilted fiber Bragg grating (TFBG) and magnetic fluid is proposed and experimentally demonstrated. Both the orientation and the amplitude of the magnetic fields can be determined unambiguously via the wavelength and intensity monitoring of the SPR, which is essentially dominated by the arrayed Fe3O4 nanoparticles over the nanometric-film of fiber surface.

  11. Carbon-on-metal films for surface plasmon resonance detection of DNA arrays.

    PubMed

    Lockett, Matthew R; Weibel, Stephen C; Phillips, Margaret F; Shortreed, Michael R; Sun, Bin; Corn, Robert M; Hamers, Robert J; Cerrina, Franco; Smith, Lloyd M

    2008-07-01

    Surface plasmon resonance (SPR) imaging affords label-free monitoring of biomolecule interactions in an array format. A surface plasmon conducting metal thin film is required for SPR measurements. Gold thin films are traditionally used in SPR experiments as they are readily functionalized with thiol-containing molecules through formation of a gold-sulfur bond. The lability of this gold-thiol linkage upon exposure to oxidizing conditions and ultraviolet light renders these surfaces incompatible with light-directed synthetic methods for fabricating DNA arrays. It is shown here that applying a thin carbon overlayer to the gold surface yields a chemically robust substrate that permits light-directed synthesis and also supports surface plasmons. DNA arrays fabricated on these carbon-metal substrates are used to analyze two classes of biomolecular interactions: DNA-DNA and DNA-protein. This new strategy allows the combinatorial study of binding interactions directly from native, unmodified biomolecules of interest and offers the possibility of discovering new ligands in complex mixtures such as cell lysates.

  12. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays

    PubMed Central

    Adato, Ronen; Yanik, Ahmet A.; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.; Hong, Mi K.; Erramilli, Shyamsunder; Altug, Hatice

    2009-01-01

    Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-label based methods. Here, we developed a new tool based on collective excitation of plasmonic nanoantenna arrays and demonstrated direct detection of vibrational signatures of single protein monolayers. We first tailored the geometry of individual nanoantennas to form resonant structures that match the molecular vibrational modes. The tailored nanoantennas are then arranged in such a way that their in-phase dipolar coupling leads to a collective excitation of the ensemble with strongly enhanced near fields. The combined collective and individual plasmonic responses of the antenna array play a critical role in attaining signal enhancement factors of 104–105. We achieved measurement of the vibrational spectra of proteins at zeptomole levels for the entire array, corresponding to only 145 molecules per antenna. The near-field nature of the plasmonic enhancement of the absorption signals is demonstrated with progressive loading of the nanoantennas with varying protein film thicknesses. Finally, an advanced model based on nonequilibrium Green's function formalism is introduced, which explains the observed Fano-type absorption line-shapes and tuning of the absorption strengths with the antenna resonance. PMID:19880744

  13. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.

    PubMed

    Adato, Ronen; Yanik, Ahmet A; Amsden, Jason J; Kaplan, David L; Omenetto, Fiorenzo G; Hong, Mi K; Erramilli, Shyamsunder; Altug, Hatice

    2009-11-17

    Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-label based methods. Here, we developed a new tool based on collective excitation of plasmonic nanoantenna arrays and demonstrated direct detection of vibrational signatures of single protein monolayers. We first tailored the geometry of individual nanoantennas to form resonant structures that match the molecular vibrational modes. The tailored nanoantennas are then arranged in such a way that their in-phase dipolar coupling leads to a collective excitation of the ensemble with strongly enhanced near fields. The combined collective and individual plasmonic responses of the antenna array play a critical role in attaining signal enhancement factors of 10(4)-10(5). We achieved measurement of the vibrational spectra of proteins at zeptomole levels for the entire array, corresponding to only 145 molecules per antenna. The near-field nature of the plasmonic enhancement of the absorption signals is demonstrated with progressive loading of the nanoantennas with varying protein film thicknesses. Finally, an advanced model based on nonequilibrium Green's function formalism is introduced, which explains the observed Fano-type absorption line-shapes and tuning of the absorption strengths with the antenna resonance. PMID:19880744

  14. Tuning the wavelength of spoof plasmons by adjusting the impedance contrast in an array of penetrable inclusions

    NASA Astrophysics Data System (ADS)

    Cordero, M. L.; Maurel, A.; Mercier, J.-F.; Félix, S.; Barra, F.

    2015-08-01

    While spoof plasmons have been proposed in periodic arrays of sound-hard inclusions, we show that they also exist when inclusions are penetrable. Moreover, we show that their wavelength can be tuned by the impedance mismatch between the inclusion material and the surrounding medium, beyond the usual effect of filling fraction in the array. It is demonstrated that sound-soft materials increase the efficiency in the generation of sub-wavelength plasmons, with much lower wavelengths than sound-hard materials and than a homogeneous slab. An application to the generation of acoustic spoof plasmons by an ultra compact array of air/polydimethylsiloxane inclusions in water is proposed with plasmon wavelength tunable up to deep sub-wavelength scales.

  15. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  16. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ketterson, John B.; Chang, Robert P. H.

    2016-04-01

    All-optical control of plasmons can enable optical switches with high speeds, small footprints and high on/off ratios. Here we demonstrate ultrafast plasmon modulation in the near-infrared (NIR) to mid-infrared (MIR) range by intraband pumping of indium tin oxide nanorod arrays (ITO-NRAs). We observe redshifts of localized surface plasmon resonances arising from a change of the plasma frequency of ITO, which is governed by the conduction band non-parabolicity. We generalize the plasma frequency for non-parabolic bands, quantitatively model the fluence-dependent plasma frequency shifts, and show that different from noble metals, the lower electron density in ITO enables a remarkable change of electron distributions, yielding a significant plasma frequency modulation and concomitant large transient bleaches and induced absorptions, which can be tuned spectrally by tailoring the ITO-NRA geometry. The low electron heat capacity explains the sub-picosecond kinetics that is much faster than noble metals. Our work demonstrates a new scheme to control infrared plasmons for optical switching, telecommunications and sensing.

  17. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering

    PubMed Central

    Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang

    2015-01-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  18. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays

    SciTech Connect

    Mahmoud, Mahmoud A.

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  19. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.

    PubMed

    Mahmoud, Mahmoud A

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  20. Multiscale plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Henzie, Joel

    Metallic nanostructures are able to confine and manipulate electromagnetic fields because light can couple to free electron oscillations called surface plasmons (SPs). These plasmons exist on metal surfaces as localized (short-range) or as propagating (long-range) modes depending upon the size and geometry of the nanostructure. This dichotomy is primarily an issue of scale that has largely been studied with sample geometries dominated by one type of plasmon mode. We believe this difference in length scale provides a unique opportunity to design new plasmonic nanostructures with effective, tunable optical properties by organizing metallic building blocks over multiple length scales. This approach takes advantage of both propagating and confined plasmon modes in the same nanoscale system, with tunable coupling between different SPs. This dissertation describes a new set of techniques for high-throughput nanofabrication based on soft lithography. We have generated metallic structures that expand on the fundamental science of surface plasmons, and our major observations include: (i) metallic pyramids with nanoscale tips that exhibit multipolar optical resonances depending on the direction and polarization of the incident light. (ii) SP standing waves between microscale arrays of nanoscale holes that enhance light transmission through the holes by a factor of 8X. (iii) Plasmonic metamaterials that exhibit optical properties by changing the lattice spacings of subwavelength nanohole arrays. (iv) Ultra-narrow, hybridized plasmon resonances and far-field beaming with finite-arrays of nanoholes. Such unique metallic structures have established a better understanding of the relationship between localized and propagating SPs and now enable an accessible platform for applied studies in nanophotonics and single molecule imaging.

  1. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  2. Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing.

    PubMed

    Yan, Bo; Boriskina, Svetlana V; Reinhard, Björn M

    2011-12-20

    Nanoparticle Cluster Arrays (NCAs) are a class of electromagnetic materials that comprise chemically defined nanoparticles assembled into clusters of defined size in an extended deterministic arrangement. NCAs are fabricated through integration of chemically synthesized building blocks into predefined patterns using a hybrid top-down/bottom-up fabrication approach that overcomes some of the limitations of conventional top-down fabrication methods with regard to minimum available feature size and structural complexity. NCAs can sustain near-field interactions between nanoparticles within individual clusters as well as between entire neighboring clusters. The availability of near-field interactions on multiple length scales - together with the ability to further enhance the coupled plasmon modes through photonic modes in carefully designed array morphologies - leads to a multiscale cascade electromagnetic field enhancement throughout the array. This feature article introduces the design and fabrication fundamentals of NCAs and characterizes the electromagnetic coupling mechanisms in the arrays. Furthermore, it reviews how the optical properties of NCAs can be tuned through the size and shape of the nanoparticle building blocks and the geometry, size, and separation of the assembled clusters. NCAs have potential applications in many different areas; this feature article focuses on plasmon enhanced biosensing and surface enhanced Raman spectroscopy (SERS), in particular.

  3. Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing

    PubMed Central

    Yan, Bo; Boriskina, Svetlana V.; Reinhard, Björn M.

    2011-01-01

    Nanoparticle Cluster Arrays (NCAs) are a class of electromagnetic materials that comprise chemically defined nanoparticles assembled into clusters of defined size in an extended deterministic arrangement. NCAs are fabricated through integration of chemically synthesized building blocks into predefined patterns using a hybrid top-down/bottom-up fabrication approach that overcomes some of the limitations of conventional top-down fabrication methods with regard to minimum available feature size and structural complexity. NCAs can sustain near-field interactions between nanoparticles within individual clusters as well as between entire neighboring clusters. The availability of near-field interactions on multiple length scales - together with the ability to further enhance the coupled plasmon modes through photonic modes in carefully designed array morphologies - leads to a multiscale cascade electromagnetic field enhancement throughout the array. This feature article introduces the design and fabrication fundamentals of NCAs and characterizes the electromagnetic coupling mechanisms in the arrays. Furthermore, it reviews how the optical properties of NCAs can be tuned through the size and shape of the nanoparticle building blocks and the geometry, size, and separation of the assembled clusters. NCAs have potential applications in many different areas; this feature article focuses on plasmon enhanced biosensing and surface enhanced Raman spectroscopy (SERS), in particular. PMID:22299057

  4. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays.

    PubMed

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  5. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    PubMed Central

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  6. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Gao, Li; Zhang, Yihui; Xie, Xu; Doshay, Sage; Fang, Hui; Fan, Jonathan A.; Nordlander, Peter; Huang, Yonggang; Rogers, John A.; Deesha, Shad; Xu, Siyi

    2015-09-01

    Large scale, dense arrays of plasmonic nanodisks (Au) on low modulus, high elongation elastomeric substrates (PDMS) represent a class of tunable optical system, with reversible ability to shift plasmon resonances, originating from array deformation, over a range of nearly 600nm in the visible region. At the most extreme levels of mechanical deformation (strains <100%), non-linear buckling processes transform initially planar arrays into three dimensional configurations, in which the nanodisks rotate out of the plane, giving rise to an increase of transition rate, to form linear arrays with `wavy' geometries. Analytical and finite element models capture not only the physics of these buckling processes, including all of distinct modes that occur, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, with potential relevance to soft optical sensors that integrate on or in the human body.

  7. Unified Theory of Surface-Plasmonic Enhancement and Extinction of Light Transmission through Metallic Nanoslit Arrays

    PubMed Central

    Yoon, Jae Woong; Lee, Jun Hyung; Song, Seok Ho; Magnusson, Robert

    2014-01-01

    Metallic nanostructures are of immense scientific interest owing to unexpectedly strong interaction with light in deep subwavelength scales. Resonant excitations of surface and cavity plasmonic modes mediate strong light localization in nanoscale objects. Nevertheless, the role of surface plasmon-polaritons (SPP) in light transmission through a simple one-dimensional system with metallic nanoslits has been the subject of longstanding debates. Here, we propose a unified theory that consistently explains the controversial effects of SPPs in metallic nanoslit arrays. We show that the SPPs excited on the entrance and exit interfaces induce near-total internal reflection and abrupt phase change of the slit-guided mode. These fundamental effects quantitatively describe positive and negative effects of SPP excitation in a self-consistent manner. Importantly, the theory shows excellent agreement with rigorous numerical calculations while providing profound physical insight into the properties of nanoplasmonic systems. PMID:25022910

  8. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

    NASA Astrophysics Data System (ADS)

    Qian, Li-Hua; Yi, Li-Zhi; Wang, Gui-Sheng; Zhang, Chao; Yuan, Song-Liu

    2016-04-01

    Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

  9. Tunable, broadband and high-efficiency Si/Ge hot luminescence with plasmonic nanocavity array

    NASA Astrophysics Data System (ADS)

    Qi, Gongmin; Zhang, Miao; Wang, Lin; Mu, Zhiqiang; Ren, Wei; Li, Wei; Di, Zengfeng; Wang, Xi

    2016-06-01

    In addition to the massive application in the electronics industry for decades, silicon has been considered as one of the best candidates for the photonics industry. However, a high-efficiency, broadband light source is still a challenge. In this paper, we theoretically propose a Si/Ge based platform consisting of plasmonic nanocavity array to realize the tunable, broadband, and high-efficiency Si/Ge hot luminescence from infrared to visible region with large luminescence enhancement (about 103). It is demonstrated that the large luminescence enhancement is due to the resonance between the intrinsic hot luminescence and the plasmonic nanocavity modes with ultra-small effective mode volumes. And, the size and Ge composition of Si 1 - x Ge x nanowire can be tuned to realize the tunable and broadband luminescence. This study gives rise to many applications in silicon photonics, like ultrafast optical communications, sensors, and on-chip spectral measurements.

  10. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    NASA Astrophysics Data System (ADS)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  11. Rapid Determination of RNA Accessible Sites by Surface Plasmon Resonance Detection of Hybridization to DNA arrays

    PubMed Central

    Mandir, Joshua B.; Lockett, Matthew R.; Phillips, Margaret F.; Allawi, Hatim T.; Lyamichev, Victor I.; Smith, Lloyd M.

    2009-01-01

    RNA accessible sites are the regions in an RNA molecule, which are available for hybridization with complementary DNA or RNA molecules. The identification of these accessible sites is a critical first step in identifying antisense-mediated gene suppression sites, as well as in a variety of other RNA-based analysis methods. Here, we present a rapid, hybridization-based, label-free method of identifying RNA accessible sites with surface plasmon resonance imaging (SPRi) on in situ synthesized oligonucleotide arrays prepared on carbon-on-metal substrates. The accessible sites of three pre-miRNAs, miRNA precursors of ~75 nt in length, were determined by hybridizing the RNA molecules to RNA-specific tiling arrays. An array comprised of all possible 6mer oligonucleotide sequences was also utilized in this work, offering a universal platform capable of studying RNA molecules in a high throughput manner. PMID:19874056

  12. Extraordinary transmittance in three dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films.

    PubMed

    Chen, H L; Chuang, S Y; Lee, W H; Kuo, S S; Su, W F; Ku, S L; Chou, Y F

    2009-02-01

    We used a reversal imprinting-in-metal (RIM) process to fabricate various three-dimensional (3D) metal structures under low pressure. Molds featuring different shapes were used to pattern various subwavelength metal structures, including pyramidal, hole-array, and crater-like structures. Refractive index matching and cavity effects both enhanced the degree of transmission of these structured metal films. The crater-like structure appears to be a promising material because of the unique properties imparted by the elongated and gradually tapering spacing of its cavities. From both near-field simulations and experimentally obtained optical spectra, we found that the cavity effect in the crater-like structure led to significantly enhanced transmission of the optical intensity. Thus, this RIM process allows the ready fabrication of various two- and three-dimensional metallic structures for use in surface plasmon-based devices.

  13. Plasmonic Based Sensing Using an Array of Au-Metal Oxide Thin Films

    SciTech Connect

    Joy, N.; Rogers, Phillip H.; Nandasiri, Manjula I.; Thevuthasan, Suntharampillai; Carpenter, Michael A.

    2012-12-04

    An optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H2, CO, and NO2 at a temperature of 500°C in an oxygen-containing background. The three element sensing array used Au nanoparticles embedded in separate thin films of yttria stabilized zirconia (YSZ), CeO2, and TiO2. A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H2 and CO, and a red shift for the oxidizing gas NO2. A more in-depth look at the sensing response was performed using the multivariate methods of principal component analysis (PCA) analysis and linear discriminant analysis (LDA) on data from across the entire absorbance spectrum range. Qualitative results from both methods showed good separation between the three analytes for both the full array and the Au-TiO2 sample. Quantification of LDA cluster separation using the Mahalanobis distance showed better cluster separation for the array, but there were some instances with the lowest concentrations where the single Au-TiO2 film had better separation than the array. A second method to quantify cluster separation in LDA space was developed using multidimensional volume analysis of the individual cluster volume, overlapped cluster volume and empty volume between clusters. Compared to the individual sensing elements, the array showed less cluster overlap, smaller cluster volumes, and more space between clusters, all of which were expected for improved separability between the analytes.

  14. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Zhou, Jianhua; Liu, Tianran; Tao, Yuting; Jiang, Ruibin; Liu, Mingxuan; Xiao, Guohui; Zhu, Jinhao; Zhou, Zhang-Kai; Wang, Xuehua; Jin, Chongjun; Wang, Jianfang

    2013-08-01

    Localized surface plasmon resonance (LSPR)-based sensing has found wide applications in medical diagnosis, food safety regulation and environmental monitoring. Compared with commercial propagating surface plasmon resonance (PSPR)-based sensors, LSPR ones are simple, cost-effective and suitable for measuring local refractive index changes. However, the figure of merit (FOM) values of LSPR sensors are generally 1-2 orders of magnitude smaller than those of PSPR ones, preventing the widespread use of LSPR sensors. Here we describe an array of submicrometer gold mushrooms with a FOM reaching ~108, which is comparable to the theoretically predicted upper limit for standard PSPR sensors. Such a high FOM arises from the interference between Wood’s anomaly and the LSPRs. We further demonstrate the array as a biosensor for detecting cytochrome c and alpha-fetoprotein, with their detection limits down to 200 pM and 15 ng ml-1, respectively, suggesting that the array is a promising candidate for label-free biomedical sensing.

  15. Critical dimension control for 32 nm random contact hole array with resist reflow process

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; Kang, Young-Min; Park, Seung-Wook; Hong, Joo-Yoo; Oh, Hye-Keun

    2007-10-01

    50 nm random contact hole array by resist reflow process (RRP) was studied to make 32 nm node device. Patterning of smaller contact hole array is harder than patterning the line and space. RRP has a lot of advantages, but RRP strongly depends on pattern array, pitch, and shape. Thus, we must have full knowledge for pattern dependency after RRP, and then we need to have optimum optical proximity corrected mask including RRP to compensate the pattern dependency in random array. To make optimum optical proximity and RRP corrected mask, we must have better understanding that how much resist flows and where the contact hole locations are after RRP. A simulation is made to correctly predict RRP result by including the RRP parameters such as viscosity, adhesion force, surface tension and location of the contact hole. As a result, we made uniform 50 nm contact hole patterns even for the random contact hole array and for different shaped contact hole array by optical proximity corrected RRP.

  16. Controlled plasmon enhanced fluorescence by silver nanoparticles deposited onto nanotube arrays.

    PubMed

    Zhang, Zhenglong; Wu, Yanni; Dong, Jun; Gao, Wei; Han, Qingyan; Zheng, Hairong

    2016-09-14

    Three-dimensional (3D) plasmonic nanostructures of porous alumina array (PAA) with silver nanoparticles (AgNPs) were prepared for enhancing fluorescence emission. In order to avoid fluorescence quenching effects and obtain clear fluorescence enhancement, the molecules were separated by using such 3D substrates, and the mean distance between the molecules and nanoparticles' surface can be easily controlled by changing the diameters of the PAA tube. It was found that the PAA tube with smaller size provides better fluorescence enhancement. Enhanced cross section, a new fluorescence enhanced factor, combined with the simulation of localized electromagnetic field enhancement was presented to understand the experimental results.

  17. Controlled plasmon enhanced fluorescence by silver nanoparticles deposited onto nanotube arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Wu, Yanni; Dong, Jun; Gao, Wei; Han, Qingyan; Zheng, Hairong

    2016-09-01

    Three-dimensional (3D) plasmonic nanostructures of porous alumina array (PAA) with silver nanoparticles (AgNPs) were prepared for enhancing fluorescence emission. In order to avoid fluorescence quenching effects and obtain clear fluorescence enhancement, the molecules were separated by using such 3D substrates, and the mean distance between the molecules and nanoparticles’ surface can be easily controlled by changing the diameters of the PAA tube. It was found that the PAA tube with smaller size provides better fluorescence enhancement. Enhanced cross section, a new fluorescence enhanced factor, combined with the simulation of localized electromagnetic field enhancement was presented to understand the experimental results.

  18. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.

    PubMed

    Wang, Yi; Wang, Hailong; Wang, Yuyang; Shen, Yanting; Xu, Shuping; Xu, Weiqing

    2016-06-22

    Plasmonic nanogaps serve as a useful configuration for light concentration and local field amplification owing to the extreme localization of surface plasmons. Here, a smart plasmonic nanogap device is fabricated by the dynamic response of an Ag decorated hierarchically structural vertical polymer nanorod array under the light irradiation. Seven nanorods in one unit bend because of plasmonic heating effect and they are centrally collected due to the attraction of the plasmon-induced polaritons, leading to the significantly enhanced local electromagnetic field at the sub-10 nm gaps among the constricted nanorod tops. Compared with tuning capillarity in microscale by wetting and drying, using light as external stimuli is much easier and more tunable in nanoscale. This plasmonic nanogap device is used for a surface-enhanced Raman scattering (SERS) substrate. Its hydrophobic surface with a contact angle of 142 degree can make the probed aqueous solution only access to the Ag tips of nanorods. Thus, the analytes can be driven to the "hot spot" regions where located at the tops of nanorods during the solvent evaporation process, which is beneficial to SERS detection. Discovery of this smart plasmon-driven process broadens the scope for further functionality of both the dynamic nanostructure design and the smart plasmonic devices in the communities of chemistry, biomedicine, and microfluidic engineering. PMID:27250862

  19. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array.

    PubMed

    Shrestha, Vivek R; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-11-12

    Nanophotonic devices enabled by aluminum plasmonics are saliently advantageous in terms of their low cost, outstanding sustainability, and affordable volume production. We report, for the first time, aluminum plasmonics based highly transmissive polarization-independent subtractive color filters, which are fabricated just with single step electron-beam lithography. The filters feature selective suppression in the transmission spectra, which is realized by combining the propagating and nonpropagating surface plasmons mediated by an array of opaque and physically thin aluminum nanopatches. A broad palette of bright, high-contrast subtractive colors is successfully demonstrated by simply varying the pitches of the nanopatches. These subtractive color filters have twice the photon throughput of additive counterparts, ultimately providing elevated optical transmission and thus stronger color signals. Moreover, the filters are demonstrated to conspicuously feature a dual-mode operation, both transmissive and reflective, in conjunction with a capability to exhibit micron-scale colors in arbitrary shapes. They are anticipated to be diversely applied to digital display, digital imaging, color printing, and sensing.

  20. Rabi oscillations of surface plasmon polaritons in graphene-pair arrays.

    PubMed

    Wang, Feng; Qin, Chengzhi; Wang, Bing; Ke, Shaolin; Long, Hua; Wang, Kai; Lu, Peixiang

    2015-11-30

    We investigate the Bloch mode conversion of surface plasmon polaritons in a periodic array of graphene pairs with each consisting of two separated parallel graphene sheets. The employment of graphene pair as a unit cell in the array yields two Bloch modes belonging to different bands. By periodically modulating the permittivity of dielectrics between graphene along the propagation direction, the interband transitions occur and the modes will alternatively couple to each other, similar to traditional Rabi oscillations in quantum systems. The indirect Rabi oscillations can also be observed through introducing transverse modulation momentum. The period of Rabi oscillations can be optimized by taking advantage of the flexible tunability of graphene. The study suggests that the structure have applications in optical switches and mode converters operating on deep-subwavelength scale.

  1. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    PubMed

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection.

  2. Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

    NASA Astrophysics Data System (ADS)

    Cesca, Tiziana; Michieli, Niccolò; Kalinic, Boris; Sánchez-Espinoza, Ana; Rattin, Marco; Russo, Valentina; Mattarello, Valentina; Scian, Carlo; Mazzoldi, Paolo; Mattei, Giovanni

    2015-07-01

    The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid-state nanophotonic devices with enhanced ultrafast nonlinear optical properties.The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid

  3. Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array.

    PubMed

    Lee, Bumsu; Park, Joohee; Han, Gang Hee; Ee, Ho-Seok; Naylor, Carl H; Liu, Wenjing; Johnson, A T Charlie; Agarwal, Ritesh

    2015-05-13

    The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton-plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS2 excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton-plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses.

  4. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-03-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  5. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  6. Spatial and spectral selective characteristics of the plasmonic sensing using metallic nanoslit arrays

    NASA Astrophysics Data System (ADS)

    Ge, Caiwang; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Tao, Yifei; Zhang, Jingran; Li, Rongzhen; Luo, Linbao

    2016-01-01

    A novel spatial and spectral selective plasmonic sensing based on the metal nanoslit arrays has been proposed and investigated theoretically, which shows a high performance in the multiplexing biomolecular detections. By properly tuning the geometric parameters of metal nanoslit arrays, the enhanced optical fields at different regions can be obtained selectively due to the excitation of SPP, cavity mode (CM), and their coupling effects. Simulation results show that the resonances of the metal nanoslit arrays at different spatial locations and different wavelengths can be achieved simultaneously. A relative bigger red-shift of 57 nm can be realized when a layer of biomolecular film is adsorbing at the slit walls, and the corresponding total intensity difference will be enhanced near 10 times compared to that at the top surface. In addition, when a BSA protein monolayer is adsorbing at slit walls with different slit widths, the corresponding wavelength shifts can reach to more than 80 nm by modulating the widths of the slit. The simulated results demonstrate that our designed metal nanoslit arrays can serve as a portable, low-cost biosensing with a high spatial and spectral selective performance.

  7. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  8. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps. PMID:25384425

  9. Oil-in-water emulsion as fabrication platform for uniform plasmon-controlled two-dimensional metallic nanoparticle array

    NASA Astrophysics Data System (ADS)

    Kagawa, Ryusuke; Takeyasu, Nobuyuki; Kaneta, Takashi; Takemoto, Yoshito

    2016-07-01

    Gold/silver nanoparticles were trapped at the oil/water interface of oil droplets dispersed in water. The metallic nanoparticles were self-assembled into a uniform two-dimensional large array structure through the aggregation and coalescence of the nanoparticle-covered oil droplets. The plasmon resonance of the array structure was tunable and a surface-enhanced Raman scattering measurement was performed with the silver nanoparticle array. The enhancement factor was ∼105 and enhanced Raman signals were observed over the whole array ( ≳ \\text{cm}2) with high reproducibility, which is an advantage of a self-assembly method using a liquid/liquid interface.

  10. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors. PMID:21197062

  11. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3 × 3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800 nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  12. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-07-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices.

  13. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    SciTech Connect

    Fang, H.; Akinoglu, E. M.; Fumagalli, P.; Caballero, B.; García-Martín, A.; Papaioannou, E. Th.; Cuevas, J. C.; Giersig, M.

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  14. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  15. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Sikdar, Debabrata; Kornyshev, Alexei A.

    2016-09-01

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting.

  16. Combining the Masking and Scaffolding Modalities of Colloidal Crystal Templates: Plasmonic Nanoparticle Arrays with Multiple Periodicities

    PubMed Central

    2015-01-01

    Surface patterns with prescribed structures and properties are highly desirable for a variety of applications. Increasing the heterogeneity of surface patterns is frequently required. This work opens a new avenue toward creating nanoparticle arrays with multiple periodicities by combining two generally separately applied modalities (i.e., scaffolding and masking) of a monolayer colloidal crystal (MCC) template. Highly ordered, loosely packed binary and ternary surface patterns are realized by a single-step thermal treatment of a gold thin-film-coated MCC and a nonclose-packed MCC template. Our approach enables control of the parameters defining these nanoscale binary and ternary surface patterns, such as particle size, shape, and composition, as well as the interparticle spacing. This technique enables preparation of well-defined binary and ternary surface patterns to achieve customized plasmonic properties. Moreover, with their easy programmability and excellent scalability, the binary and ternary surface patterns presented here could have valuable applications in nanophotonics and biomedicine. Specific examples include biosensing via surface-enhanced Raman scattering, fabrication of plasmonic-enhanced solar cells, and water splitting. PMID:25620849

  17. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography.

    PubMed

    Luo, Jun; Zeng, Bo; Wang, Changtao; Gao, Ping; Liu, Kaipeng; Pu, Mingbo; Jin, Jinjin; Zhao, Zeyu; Li, Xiong; Yu, Honglin; Luo, Xiangang

    2015-11-28

    Nanofabrication technology with high-resolution, high-throughput and low-cost is essential for the development of nanoplasmonic and nanophotonic devices. At present, most metasurfaces are fabricated in a point by point writing manner with electron beam lithography or a focused ion beam, which imposes a serious cost barrier with respect to practical applications. Near field optical lithography, seemingly providing a high-resolution and low-cost way, however, suffers from the ultra shallow depth and poor fidelity of obtained photoresist patterns due to the exponential decay feature of evanescent waves. Here, we propose a method of surface plasmonic imaging lithography by introducing a reflective plasmonic lens to amplify and compensate evanescent waves, resulting in the production of nano resist patterns with high fidelity, contrast and enhanced depth beyond that usually obtained by near field optical lithography. As examples, a discrete and anisotropically arrayed nano-slots mask pattern with different orientations and a size of 40 nm × 120 nm could be imaged in photoresist and transferred successfully onto a metal layer through an etching process. Evidence for the pattern quality is given by virtue of the fabricated metasurface lens devices showing good focusing performance in experiments. It is believed that this method provides a parallel, low-cost, high-throughput and large-area nanofabrication route for fabricating nanostructures of holograms, vortex phase plates, bio-sensors and solar cells etc. PMID:26507847

  18. Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays.

    PubMed

    Butun, Serkan; Tongay, Sefaattin; Aydin, Koray

    2015-04-01

    Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/detector applications, and flexible electronics. However, for optoelectronics and photonics applications, inherent monolayer thickness poses a significant challenge for the interaction of light with the material, which therefore results in poor light emission and absorption behavior. Here, we demonstrate enhanced light emission from large-area monolayer MoS2 using plasmonic silver nanodisc arrays, where enhanced photoluminescence up to 12-times has been measured. Observed phenomena stem from the fact that plasmonic resonance couples to both excitation and emission fields and thus boosts the light-matter interaction at the nanoscale. Reported results allow us to engineer light-matter interactions in two-dimensional materials and could enable highly efficient photodetectors, sensors, and photovoltaic devices, where photon absorption and emission efficiency highly dictate the device performance.

  19. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    PubMed Central

    Sikdar, Debabrata; Kornyshev, Alexei A.

    2016-01-01

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting. PMID:27652788

  20. Fabrication of 3-{mu}m diameter pin hole array (PHA) on thick W substrates

    SciTech Connect

    Levato, T.; Pathak, N. C.; Ciricosta, O.; Cecchetti, C. A.; Koester, P.; Labate, L.; Giulietti, A.; Gizzi, L. A.; Giulietti, D.; De Angelis, F.; Di Fabrizio, E.; Delogu, P.

    2010-02-02

    Pin-hole arrays are used for a variety of applications including, for example, X-ray imaging of laser-plasmas for fusion relevant studies. More recently, a novel X-ray imaging technique has been proposed (this conference L. A. Gizzi et al.) within the High Power Laser Energy Research Facility (HiPER) to obtain spectrally resolved X-ray imaging using single photon detection. This technique requires a large number of images or, alternatively, large arrays of pin-holes, possibly with very small diameter (<<10 {mu}m). In view of this, a technique was implemented for the fabrication of large arrays of pin-holes in thick metal substrates. Here we report on the optimizations of the laser-matter interaction process to obtain high aspect ratio cylinder-like pin-hole on heavy metal substrate by using a frequency-doubled Ti:Sa femtosecond laser pulses operating at 10 Hz. The influence of an air breakdown and a (ns)prepulse, on the drilled pin-hole, is showed by means of SEM images both for surface effects and internal quality of the channels, with evidence of micro and nano-sized structures. The holes drilled at an intensity just below the laser breakdown threshold for plasma creation in air, have an internal diameter of about 3 {mu}m on a W substrate of 70 {mu}m thickness, a micro-cylinder-like shape and no detectable deviations of the axis from a straight line. Arrays of up to 800 pin-holes were produced with the pin-hole properties being highly stable across the array. The final X-ray transmission is showed by using a mu-focus X-ray source.

  1. Large-Scale Plasmonic nanoCones Array For Spectroscopy Detection.

    PubMed

    Das, Gobind; Battista, Edmondo; Manzo, Gianluigi; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo

    2015-10-28

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail, we have investigated the effect of a Au-based nanoCone array, fabricated by means of direct nanoimprint technique over large area (mm(2)), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 × 10(5) with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e., an increase in photonics density at the apex of cones).

  2. Controlling surface plasmons and local field by two-dimensional arrays of metallic nano-bottles

    NASA Astrophysics Data System (ADS)

    Iu, Hei; Ong, Daniel H. C.; Wan, Jones T. K.; Li, Jia

    2008-03-01

    In recent years, studies of surface plasmon polaritons (SPPs) have been intensive. It is of great interest to control SPPs with great precision and flexibility. In this talk, we present our recent work on SPPs manipulation by using two-dimensional arrays of bottle-shaped, metallic cavities. We propose that by tuning the geometry of such ``nano-bottle'' contained in a two-dimensional nano-scale array it is possible to control the resonance frequencies and near field patterns of different SPP modes. The dispersion relations are not sensitive to the sizes and depths of the nano-bottles, but depends strongly on the polarization In particular, by using different polarizations, it is observed that different types of SPPs, either propagating or localized, can be excited independently. Moreover, we attempt to control the local field by closing up the aperture of the nano-bottle. We have found that the local field slowly moves up from the bottom to the neck of bottle by increasing its depth. In addition, the field intensity can be fine-tuned by controlling the topology of the bottleneck, for example, a smaller and thinner neck leads to stronger field intensity. As a result, we believe these nano-bottle arrays are good candidates for making high sensitivity chemical and biological sensors.

  3. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    PubMed Central

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems. PMID:26948142

  4. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  5. Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays.

    PubMed

    Tok, Rüştü Umut; Sendur, Kürşat

    2013-08-15

    We demonstrate theoretically that by embedding plasmonic honeycomb nanoantenna arrays into the active layers of inorganic (c-Si) and organic (P3HT:PCBM/PEDOT:PSS) thin film solar cells, absorption efficiency can be improved. To obtain the solar cell absorption spectrum that conforms to the solar radiation, spectral broadening is achieved by breaking the symmetry within the Wigner-Seitz unit cell on a uniform hexagonal grid. For optimized honeycomb designs, absorption efficiency enhancements of 106.2% and 20.8% are achieved for c-Si and P3HT:PCBM/PEDOT:PSS thin film solar cells, respectively. We have demonstrated that the transverse modes are responsible for the enhancement in c-Si solar cells, whereas both the longitudinal and transverse modes, albeit weaker, are the main enhancement mechanisms for P3HT:PCBM/PEDOT:PSS solar cells. For both inorganic and organic solar cells, the absorption enhancement is independent of polarization.

  6. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  7. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.

    PubMed

    Wang, Lei; Zhou, Xuemei; Nguyen, Nhat Truong; Schmuki, Patrik

    2015-02-01

    Hematite nanoflake arrays were decorated with Au nanoparticles through a simple solution chemistry approach. We show that the photoactivity of Au-decorated Fe2 O3 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the UV/Visible region compared with the bare Fe2 O3 . Au-nanoparticle-decorated Fe2 O3 nanoflake electrodes exhibit a significant cathodic shift of the onset potential up to 0.6 V [vs. reversible hydrogen electrode (RHE)], and a two times increase in the water oxidation photocurrent is achieved at 1.23 VRHE . A maximum photocurrent of 2.0 mA cm(-2) at 1.6 VRHE is obtained in 1 M KOH under AM 1.5 (100 mW cm(-2) ) conditions. The enhancement in photocurrent can be attributed to the Au nanoparticles acting as plasmonic photosensitizers that increase the optical absorption.

  8. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.

    PubMed

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  9. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.

    PubMed

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale. PMID:27145724

  10. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array

    NASA Astrophysics Data System (ADS)

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  11. Broadband light absorption of silicon nanowires embedded in Ag nano-hole arrays

    NASA Astrophysics Data System (ADS)

    Rao, Lei; Ji, Chun-Lei; Li, Ming

    2016-09-01

    Silicon nanowires (SiNWs) embedded in Ag nano-hole arrays with broadband light absorption is proposed in this paper. Finite Difference Time Domain (FDTD) simulations were utilized to obtain absorptivity and band diagrams for both SiNWs and SiNWs embedded in Ag nano-hole arrays. A direct relationship between waveguide modes and extraordinary absorptivity is established qualitatively, which helps to optimal design the structure parameters to achieve broadband absorptivity. After introducing Ag nano-hole arrays at the rear side of SiNWs, the band modes are extended into leaky regions and light energy can be fully absorbed, resulting in high absorptivity at long wavelength. Severe reflection is also suppressed by light trapping capability of SiNWs at short wavelength. Over 70% average absorptivity from 400 nm to 1100 nm is realized finally. This kinds of design give promising route for high efficiency solar cells and optical absorbers.

  12. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  13. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  14. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.

    PubMed

    Drozdowicz-Tomsia, Krystyna; Baltar, Henrique T M C M; Goldys, Ewa M

    2012-06-19

    We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies. PMID:22439753

  15. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    NASA Astrophysics Data System (ADS)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  16. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films.

    PubMed

    Lee, Kuang-Li; Chen, Pei-Wen; Wu, Shu-Han; Huang, Jhih-Bin; Yang, Sen-Yeu; Wei, Pei-Kuen

    2012-04-24

    Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, high-throughput and low-cost fabrication techniques are the main issues which should be addressed. In this study, chip-based nanostructures for intensity-sensitive detection were fabricated and tested using a thermal-annealing-assisted template-stripping method. Large-area uniform nanoslit arrays with a 500 nm period and various slit widths, from 30 to 165 nm, were made on plastic films. A transverse magnetic-polarized wave in these gold nanostructures generated sharp and asymmetric Fano resonances in transmission spectra. The full width at half-maximum bandwidth decreased with the decrease of the slit width. The narrowest bandwidth was smaller than 10 nm. Compared to nanoslit arrays on glass substrates using electron-beam lithography, the proposed chip has a higher intensity sensitivity up to 10367%/RIU (refractive index unit) and reaches a figure of merit up to 55. The higher intensity sensitivity for the template-stripped nanostructure is attributed to a smoother gold surface and larger grain sizes on the plastic film, which reduces the surface plasmon propagation loss.

  17. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics.

    PubMed

    Nugroho, Ferry A A; Iandolo, Beniamino; Wagner, Jakob B; Langhammer, Christoph

    2016-02-23

    Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self-assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we demonstrate the superior and hysteresis-free plasmonic hydrogen-sensing performance of the AuPd alloy nanoparticle system.

  18. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    , Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green

  19. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection

    NASA Astrophysics Data System (ADS)

    Long, Mingzhu; Chen, Zefeng; Zhang, Tiankai; Xiao, Yubin; Zeng, Xiaoliang; Chen, Jian; Yan, Keyou; Xu, Jianbin

    2016-03-01

    We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a Voc of 1.05 V, Jsc of 22.9 mA cm-2, FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer.We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure

  20. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays

    NASA Astrophysics Data System (ADS)

    Fedorov, N.; Geoffroy, G.; Duchateau, G.; Štolcová, L.; Proška, J.; Novotný, F.; Domonkos, M.; Jouin, H.; Martin, P.; Raynaud, M.

    2016-08-01

    The process of photoelectron emission from gold surfaces covered with nano-objects that are organized in the form of a periodic array is addressed in the short laser pulse regime (≤slant 50 fs) at moderate intensities ∼ {{10}10} W cm‑2 and for various laser wavelengths. The emission spectrum from a gold single crystal measured under the same conditions is used for reference. The comparison of the photo-emission yield and the energy of the ejected electrons with their counterparts from the (more simple) reference system shows that the periodic conditions imposed on the target surface drastically enhance both quantities. In addition to the standard mechanism of Coulomb explosion, a second mechanism comes into play, driven by surface plasmon excitation. This can be clearly demonstrated by varying the laser wavelength. This interpretation of the experimental data is supported by predictions from model calculations that account both for the primary quantum electron emission and for the subsequent surface-plasmon-driven acceleration in the vacuum. Despite the fact that the incident laser intensity is as low as ∼ 5× {{10}10} W cm‑2, such a structured target permits generating electrons with energies as high as 300 eV. Experiments with two incident laser beams of different wavelengths with an adjustable delay, have also been carried out. The results show that there exist various channels for the decay of the photo-emission signal, depending on the target type. These observations are shedding light on the various relaxation mechanisms that take place on different timescales.

  1. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays.

    PubMed

    Fedorov, N; Geoffroy, G; Duchateau, G; Štolcová, L; Proška, J; Novotný, F; Domonkos, M; Jouin, H; Martin, P; Raynaud, M

    2016-08-10

    The process of photoelectron emission from gold surfaces covered with nano-objects that are organized in the form of a periodic array is addressed in the short laser pulse regime ([Formula: see text] fs) at moderate intensities [Formula: see text] W cm(-2) and for various laser wavelengths. The emission spectrum from a gold single crystal measured under the same conditions is used for reference. The comparison of the photo-emission yield and the energy of the ejected electrons with their counterparts from the (more simple) reference system shows that the periodic conditions imposed on the target surface drastically enhance both quantities. In addition to the standard mechanism of Coulomb explosion, a second mechanism comes into play, driven by surface plasmon excitation. This can be clearly demonstrated by varying the laser wavelength. This interpretation of the experimental data is supported by predictions from model calculations that account both for the primary quantum electron emission and for the subsequent surface-plasmon-driven acceleration in the vacuum. Despite the fact that the incident laser intensity is as low as [Formula: see text] W cm(-2), such a structured target permits generating electrons with energies as high as 300 eV. Experiments with two incident laser beams of different wavelengths with an adjustable delay, have also been carried out. The results show that there exist various channels for the decay of the photo-emission signal, depending on the target type. These observations are shedding light on the various relaxation mechanisms that take place on different timescales. PMID:27299999

  2. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    PubMed Central

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  3. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.

    PubMed

    Li, Wanbo; Qiu, Yongcai; Zhang, Li; Jiang, Lelun; Zhou, Zhangkai; Chen, Huanjun; Zhou, Jianhua

    2016-05-15

    Aluminum-based localized surface plasmon resonance (LSPR) holds attractive properties include low cost, high natural abundance, and ease of processing by a wide variety of methods including complementary metal oxide semiconductor process, making itself having an edge over conventional ones induced by noble metal. However, the inherent drawbacks of plasmonic mode limited on UV-green wavelength, low refractive index sensitivity, as well as heavy-shape-dependence greatly prevent aluminum plasmonics from real-life biosensing. Here, we demonstrated a uniform quasi-3-dimensional Al nanopyramid array (NPA) structure with tunable ultraviolet-visible-infrared (UV-vis-NIR) plasmon resonances for biosensing. By changing the reflection measuring angle, we could easily obtain typical peaks simultaneously exhibited on the reflectance spectrum across UV-vis-NIR wave region. The Al NPAs carried out high refractive index sensitivities which even comparable with that of noble metal, and can be used as a biosensor for directly detecting cytochrome c and carbohydrate antigen 199 in air after the sensing surface was washed cleanly and dried; the limits of detection were determined to be 800 nM and 29 ng/mL, respectively. Our proposed work therefore initiates the low-cost, high-performance biosensing using aluminum plasmonics, which would find wide applications in rapid diagnosis, mobile-healthcare and environmental monitoring.

  4. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.

    PubMed

    Sugawa, Kosuke; Tamura, Takahiro; Tahara, Hironobu; Yamaguchi, Daisuke; Akiyama, Tsuyoshi; Otsuki, Joe; Kusaka, Yasuyuki; Fukuda, Nobuko; Ushijima, Hirobumi

    2013-11-26

    Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.

  5. Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection.

    PubMed

    Long, Mingzhu; Chen, Zefeng; Zhang, Tiankai; Xiao, Yubin; Zeng, Xiaoliang; Chen, Jian; Yan, Keyou; Xu, Jianbin

    2016-03-28

    We developed a molecule/polymer composite hole transporting material (HTM) with a periodic microstructure for morphology replication of a corrugated Au electrode, which in combination plays a dual role in the optical and electronic enhancement of high performance perovskite solar cells (PSCs). The electro-optics revealed that perovskite couldn't readily extinct the red light even though the thickness increased to 370 nm, but we found that the quasi periodic microstructure composite (PMC) HTM in combination with the conformal Au electrode could promote the absorption through the enhanced cavity effects, leading to comparable absorption even using much thinner perovskite (240 nm). We identified that the cavity was the combination of Fabry-Pérot interferometer and surface plasmonic resonance, with light harvesting enhancement through surface plasmon polariton or waveguide modes that propagate in the plane of the perovskite layer. On the other hand, the PMC HTM increased hole conductivity by one order of magnitude with respect to standard spiro-OMeTAD HTM due to molecular packing and self-assembly, embodying traceable hole mobility and density elevation up to 3 times, and thus the hysteresis was greatly avoided. Owing to dual optical and electronic enhancement, the PMC PSC afforded high efficiency PSC using as thin as 240 nm perovskite layer, delivering a V(oc) of 1.05 V, J(sc) of 22.9 mA cm(-2), FF of 0.736, and efficiency amounting to 17.7% PCE, the highest efficiency with ultrathin perovskite layer. PMID:26377231

  6. Graphene Plasmonics

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Abeysinghe, Don; Nader, Nima; Hendrickson, Joshua; Cleary, Justin; Elhamri, Said

    Plasmon, the collective free charge carrier oscillation, has been a popular research theme recently mostly associated with surface plasmon in metal nanoparticles. After the discovery of graphene, researchers soon began to study plasmonic effects with or within graphene, for instance, decorating graphene with metal nanoparticles to enhance optical processes via plasmonic field enhancement. Following that, people also gained interests in studying the intrinsic plasmon of graphene. Graphene, a tunable semimetal under field effect, demonstrates tunable plasmon resonances at room temperature, which enables new capabilities beyond those of metal-nanoparticle surface plasmons. In this project, we would like to show intrinsic graphene plasmon resonances in that we experimentally demonstrated polarization dependent and gate-bias tunable plasmon-resonance absorption in the mid-infrared regime of 5-14 um by utilizing an array of graphene nanoribbon resonators. By scaling nanoribbon width and charge densities, we probed graphene plasmons with plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. The result reveals the intriguing nature of graphene plasmon in graphene nanoribbons where the nanoribbon edge plays critical roles by introducing extra doping and damping the graphene plasmon resonance.

  7. Absorption property and nanosensing via double metal films with rectangle holes array

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Zhang, Huafeng

    2016-11-01

    A theoretical investigation of plasmonic absorption and nanosensing based on a three dimensional nanostructure is presented. The structure consists of double metal films covered with rectangle nanoholes array. A dielectric layer is located between the double metal films with the function of confining electromagnetic fields. Optical absorption properties of the designed nanostructure are investigated by finite-difference time-domain method, obvious peaks appear in the absorption spectra is due to the Fabry-Perot resonance effect and localized surface plasmon resonance of the rectangle nanoholes. The absorption spectra dependence on the environmental and dielectric layer refractive index, which makes it an outstanding candidate for nanosensing. The results of this study may have potential application in absorption switching and nanosensors.

  8. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves

    PubMed Central

    Beermann, Jonas; Eriksen, René L.; Holmgaard, Tobias; Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic black surfaces formed by two-dimensional arrays of ultra-sharp convex metal grooves, in which the incident radiation is converted into gap surface plasmon polaritons (GSPPs) and subsequently absorbed (via adiabatic nanofocusing), are fabricated and investigated experimentally for gold, nickel, and palladium, using scanning electron microscopy, optical microscopy, and reflection spectroscopy for their characterization. Absolute reflectivity spectra obtained for all fabricated arrays demonstrate very efficient and broadband absorption of unpolarized light exceeding the level of 95%, averaged over the investigated wavelength range of 400–985 nm. The highest averaged absorption level (~97%) is achieved with 250-nm-period arrays in palladium that also has the highest melting temperature (~1552°C), promising thereby potential applications for broadband absorption, e.g., within thermophotovoltaics. For one-dimensional arrays, GSPPs are excited only with the electric field polarized perpendicular to the groove orientation, resulting in 94–96% absorption of the appropriately polarized light for the arrays in nickel and palladium while featuring practically flat surface reflectivity spectra for the orthogonal polarization. The largest ratio (~10.7) between averaged reflectivities for orthogonal polarizations is achieved with the groove arrays in palladium, pointing thereby towards applications as broadband and low-dispersion linear polarizers operating in reflection, e.g., within ultra-fast optics. PMID:25365991

  9. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  10. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.

    PubMed

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-28

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.

  11. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm

  12. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    PubMed

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.

  13. Far-infrared transmission through periodic arrays of cross-shaped holes

    NASA Astrophysics Data System (ADS)

    Yan, Luyi; Long, Chang; Tanner, David; Bradman, N.; McFarland, N.; Marbruger, J. B.

    2013-03-01

    The far-infrared transmission of light incident on a free-standing metal film perforated with periodic cross-shaped holes is investigated. These metal-mesh filters show enhanced ``extraordinary'' infrared transmission at particular wavelengths. A number of filter samples having different periodicities and geometries have been measured over frequencies from 20-650 cm-1/0.6-19.5 THz. The results will be compared with calculations from surface plasmon polariton (SPP) theory. It is shown that for certain periodicity and geometry, the SPP mode and the localized surface plasmon (LSP) mode may have their resonance peaks nearly superimposed on each other. The bandwidth of this transmission peak is related to the ratio of the width and length of the cross-shaped holes. The correlation between transmission properties and the incident angle of the far-infrared light has also been measured for both polarization conditions. As the incident angle is increased, the transmission peak shows a blue shift when illuminated by s-polarized light, while for p-polarized light it splits into two parts which shift in opposite directions.

  14. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays.

    PubMed

    Yang, Zhi; Zhu, Xingzhong; Huang, Xiaolu; Cheng, Yingwu; Liu, Yun; Geng, Huijuan; Wu, Yue; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2013-11-25

    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.

  15. Highly uniform hole spacing micro brushes based on aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Zhu, Xingzhong; Huang, Xiaolu; Cheng, Yingwu; Liu, Yun; Geng, Huijuan; Wu, Yue; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2013-11-01

    Highly uniform hole spacing micro brushes were fabricated based on aligned carbon nanotube (CNT) arrays synthesized by chemical vapor deposition method with the assistance of anodic aluminum oxide (AAO) template. Different micro brushes from CNT arrays were constructed on silicon, glass, and polyimide substrates, respectively. The micro brushes had highly uniform hole spacing originating from the regularly periodic pore structure of AAO template. The CNT arrays, serving as bristles, were firmly grafted on the substrates. The brushes can easily clean particles with scale of micrometer on the surface of silicon wafer and from the narrow spaces between the electrodes in a series of cleaning experiments. The results show the potential application of the CNT micro brushes as a cleaning tool in microelectronics manufacture field.

  16. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    SciTech Connect

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I.; Belkhir, Abderrahmane

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  17. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    PubMed Central

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  18. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems. PMID:23805835

  19. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.

    PubMed

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion. PMID:27215703

  20. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    PubMed Central

    Siuzdak, Katarzyna; Atanasov, Peter A; Bittencourt, Carla; Dikovska, Anna; Nedyalkov, Nikolay N; Śliwiński, Gerard

    2014-01-01

    Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability. PMID:25551038

  1. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  2. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  3. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  4. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  5. Regio-selective decoration of nanocavity metal arrays: contributions from localized and delocalized plasmons to surface enhanced Raman spectroscopy.

    PubMed

    Jose, Bincy; Mallon, Colm T; Forster, Robert J; Keyes, Tia E

    2011-08-28

    Spherical cap gold nanocavity arrays with internal diameters of 240, 430, 600 and 820 nm were fabricated on smooth gold films using nanosphere lithography with electrochemical metal deposition. Each array was prepared to the same normalized film thickness to diameter ratios, t(N), of 0.8 ± 0.04. Selective modification of the top surface and interior walls of the gold nanocavity arrays with [Ru(bpy)(2)(Qbpy)](2+), where bpy is 2,2'-bipyridyl and Qbpy is 2,2':4,4'':4,4''-quarterpyridyl, was accomplished using a two step adsorption process exploiting the assembled polystyrene spheres as masks. This selective modification approach permitted direct quantitative comparison, for the first time, of plasmonic enhancement of Raman signal and luminescence signal from a monolayer adsorbed at the top surface versus interior walls of all-gold nanocavity arrays. For all cavity sizes, significantly greater Raman and luminescence signal enhancement was observed from [Ru(bpy)(2)(Qbpy)](2+) monolayer adsorbed at the top surface of the array compared with the cavity walls. This disparity in Raman intensity from top versus cavity interior increased as the cavity dimensions decreased. For example, the Raman signal intensity from [Ru(bpy)(2)(Qbpy)](2+) adsorbed at the top surface of 240 nm gold arrays was 170 times greater than SERS signal for this material adsorbed at the interior walls of this array, whereas the relative Raman signal enhancement was 6 from top versus interior for the 820 nm internal radius arrays under 785 nm excitation. The origin of the relatively greater signal at the top surface is discussed in the context of plasmonic distribution at each surface.

  6. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.

    PubMed

    Zhang, Xing; Liu, Yang; Kang, Zhenhui

    2014-03-26

    Plasmonic photoelectrochemical (PEC) water splitting is very promising in the conversion of abundant solar energy into chemical energy. However, the solar-to-hydrogen efficiencies reported so far are still too low for practical use, which can be improved by optimizing the design and synthesis of individual blocks (i. e., the compositions, sizes, shapes of the metal and the coupling semiconductors) and the assembly of these blocks into targeted three-dimensional (3D) structures. Here, we constructed a composite plasmonic metal/semiconductor photoanode by decorating gold nanoparticles (Au NPs) on 3D branched ZnO nanowire arrays (B-ZnO NWs) through a series of simple solution chemical routes. The 3D ordered Au/B-ZnO NWs photoanodes exhibited excellent PEC activities in both ultraviolet and visible region. The improved photoactivities in visible region were demonstrated to be caused by the surface-plasmon-resonance effect of Au NPs. The photoconversion efficiency of Au/B-ZnO NWs photoanode reached 0.52% under simulated sunlight illumination. This is a high value of solar-to-hydrogen efficiencies reported till nowadays for plasmonic PEC water splitting, which was mainly benefit from the extensive metal/semiconductor interfaces for efficient extraction of hot electron from Au NPs and excellent charge-carries collection efficiency of the 3D ordered Au/B-ZnO NWs photoelectrode. PMID:24598779

  7. Critical Dimension Control for 32 nm Node Random Contact Hole Array Using Resist Reflow Process

    NASA Astrophysics Data System (ADS)

    Park, Joon-Min; Kang, Young-Min; Hong, Joo-Yoo; Oh, Hye-Keun

    2008-02-01

    A 50 nm contact hole (CH) random array fabricated by resist reflow process (RRP) was studied to produce 32 nm node devices. RRP is widely used for mass production of semiconductor devices, but RRP has some restrictions because the reflow strongly depends on the array, pitch, and shape of CH. Thus, we must have full knowledge on pattern dependency after RRP, and we need to have an optimum optical proximity corrected mask including RRP to compensate the pattern dependency in random array. To fabricate optimum optical proximity- and RRP-corrected mask, we must have a better understanding of how much resist flows and CH locations after RRP. A simulation is carried out to correctly predict the RRP result by including RRP parameters such as viscosity, adhesion force, surface tension, and location of CH. As a result, we obtained uniform 50 nm CH patterns even for the random and differently shaped CH arrays by optical proximity-corrected RRP.

  8. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Han, Jiaguang; Lu, Xinchao; Zhang, Weili

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  9. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  10. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Isić, Goran; Gajić, Radoš

    2013-01-01

    High confinement of surface plasmon polaritons in graphene at infrared frequencies enhances the light-matter interaction and can be used for the sensing of the environment. The considered sensing platform consists of parallel graphene ribbons which enables efficient coupling of an electromagnetic field into localized surface plasmons. Changes in the environment are then detected by measuring the resulting frequency shifts of the plasmonic resonances. It is shown that the graphene ribbons have the sensitivity comparable to the sensitivity of noble metal nanoparticles at visible frequencies, which enable sensing of only several nanometers thick films at wavelengths around ten microns. At the same time, the tunability of graphene plasmons enables a design of broadband substrates for surface enhanced infrared absorption of thin films. By changing the Fermi level in graphene, the plasmonic resonance of graphene ribbons can be adjusted to desired vibrational mode which facilitates detection of multiple absorption bands.

  11. Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Hao, Qingzhen; Ma, Yi; Lu, Mengqian; Zhang, Bingxin; Lapsley, Michael; Khoo, Iam-Choon; Jun Huang, Tony

    2012-01-01

    We experimentally demonstrated a light-driven reconfigurable near perfect plasmonic absorber working at dual frequencies in infrared range. By employing nanodisks with different sizes in certain arrangement, near perfect absorption of incident electromagnetic waves can be achieved for different working frequencies due to the resonance between the incident light and the nanodisk of different sizes. We showed that optically induced changes in the dielectric constant of the adjacent liquid crystal layer is an effective means to tune the absorption bands of an asymmetric gold nanodisk array. Our liquid crystal based infrared plasmonic absorber can be tuned by using visible light in real time. A tunable range of 25 nm has been confirmed by both simulation and experiment.

  12. Numerical study of rotating detonation engine with an array of injection holes

    NASA Astrophysics Data System (ADS)

    Yao, S.; Han, X.; Liu, Y.; Wang, J.

    2016-10-01

    This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.

  13. Pin-Hole Array Correlation Imaging: Highly Parallel Fluorescence Correlation Spectroscopy

    PubMed Central

    Needleman, Daniel J.; Xu, Yangqing; Mitchison, Timothy J.

    2009-01-01

    Abstract In this work, we describe pin-hole array correlation imaging, a multipoint version of fluorescence correlation spectroscopy, based upon a stationary Nipkow disk and a high-speed electron multiplying charged coupled detector. We characterize the system and test its performance on a variety of samples, including 40 nm colloids, a fluorescent protein complex, a membrane dye, and a fluorescence fusion protein. Our results demonstrate that pin-hole array correlation imaging is capable of simultaneously performing tens or hundreds of fluorescence correlation spectroscopy-style measurements in cells, with sufficient sensitivity and temporal resolution to study the behaviors of membrane-bound and soluble molecules labeled with conventional chemical dyes or fluorescent proteins. PMID:19527665

  14. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays.

    PubMed

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J

    2015-12-21

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace levels. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species to diffuse and react with the materials, decrease charge transfer rates and block intense hot-spots. No ex situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decreases the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays by exploiting a shock pressure generated by the laser ablation of graphite and the water impermeable nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities is investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, and chemical/thermal stability, is instantaneous in nature, possesses a large scale and room temperature processing capability, and can be further extended to integrate other 2D materials with various 0-3D nanomaterials.

  15. Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Yuan; Liu, Wen; Li, Zhao-Feng; Liu, Min; Liu, Yu-Sheng; Wang, Xiao-Dong; Yang, Fu-Hua

    2016-10-01

    We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation. With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 mA/cm2 is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 mA/cm2 is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry-Perot resonance enhances the light absorption after adding an Ag mirror. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274066, 61474115, and 61504138) and the National High Technology Research and Development Program of China (Grant No. 2014AA032602).

  16. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    SciTech Connect

    Lin, Weihua Wang, Qian; Dong, Anhua; Li, Qiuze

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.

  17. "Spot and hop": internal referencing for surface plasmon resonance imaging using a three-dimensional microfluidic flow cell array.

    PubMed

    Eddings, Mark A; Eckman, Josh W; Arana, Carlos A; Papalia, Giuseppe A; Connolly, John E; Gale, Bruce K; Myszka, David G

    2009-02-15

    We have developed a novel referencing technique for surface plasmon resonance imaging systems referred to as "spot and hop." The technique enables internal referencing for individual flow cells in a parallel processing microfluidic network. Internal referencing provides the ability to correct for nonspecific binding and instrument drift, significantly improving data quality at each region of interest. The performance of a 48-flow-cell device was demonstrated through a series of studies, including "rise and fall" time, ligand preconcentration, ligand immobilization, analyte binding, and regeneration tests. Interfacing parallel processing fluidics with imaging systems will significantly expand the throughput and applications of array-based optical biosensors while retaining high data quality.

  18. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting.

    PubMed

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-01-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices. PMID:27443692

  19. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting

    PubMed Central

    Liu, Yichong; Yan, Xiaoqin; Kang, Zhuo; Li, Yong; Shen, Yanwei; Sun, Yihui; Wang, Li; Zhang, Yue

    2016-01-01

    One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices. PMID:27443692

  20. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; de Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-01

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting.

  1. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.

    PubMed

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; De Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-21

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting. PMID:27350590

  2. Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography.

    PubMed

    Chen, Si; Svedendahl, Mikael; Antosiewicz, Tomasz J; Käll, Mikael

    2013-10-22

    Ultrasensitive biosensing is one of the main driving forces behind the dynamic research field of plasmonics. We have previously demonstrated that the sensitivity of single nanoparticle plasmon spectroscopy can be greatly enhanced by enzymatic amplification of the refractive index footprint of individual protein molecules, so-called plasmon-enhanced enzyme-linked immunosorbent assay (ELISA). The technique, which is based on generation of an optically dense precipitate catalyzed by horseradish peroxidase at the metal surface, allowed for colorimetric analysis of ultralow molecular surface coverages with a limit of detection approaching the single molecule limit. However, the plasmonic response induced by a single enzyme can be expected to vary for a number of reasons, including inhomogeneous broadening of the sensing properties of individual particles, variation in electric field enhancement over the surface of a single particle and variation in size and morphology of the enzymatic precipitate. In this report, we discuss how such inhomogeneities affect the possibility to quantify the number of molecules bound to a single nanoparticle. The discussion is based on simulations and measurements of large arrays of well-separated gold nanoparticles fabricated by electron beam lithography (EBL). The new data confirms the intrinsic single-molecule sensitivity of the technique but we were not able to clearly resolve the exact number of adsorbed molecules per single particle. The results indicate that the main sources of uncertainty come from variations in sensitivity across the surface of individual particles and between different particles. There is also a considerable uncertainty in the actual precipitate morphology produced by individual enzyme molecules. Possible routes toward further improvements of the methodology are discussed.

  3. Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging.

    PubMed

    Natarajan, Sriram; Katsamba, Phini S; Miles, Adam; Eckman, Josh; Papalia, Giuseppe A; Rich, Rebecca L; Gale, Bruce K; Myszka, David G

    2008-02-01

    Arraying proteins is often more challenging than creating oligonucleotide arrays. Protein concentration and purity can severely limit the capacity of spots created by traditional pin and ink jet printing techniques. To improve protein printing methods, we have developed a three-dimensional microfluidic system to deposit protein samples within discrete spots (250-microm squares) on a target surface. Our current technology produces a 48-spot array within a 0.5 x 1 cm target area. A chief advantage of this method is that samples may be introduced in continuous flow, which makes it possible to expose each spot to a larger volume of sample than would be possible with standard printing methods. Using Biacore Flexchip (Biacore AB) surface plasmon resonance array-based biosensor as a chip reader, we demonstrate that the microfluidic printer is capable of spotting proteins that are dilute (<0.1 microg/ml) and contain high concentrations of contaminating protein (>10,000-fold molar excess). We also show that the spots created by the microfluidic printer are more uniform and have better-defined borders than what can be achieved with pin printing. The ability to readily print proteins using continuous flow will help expand the application of protein arrays.

  4. Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO{sub 2} spacer layers

    SciTech Connect

    Damm, Signe; Fedele, Stefano; Rice, James H.; Murphy, Antony; Holsgrove, Kristina; Arredondo, Miryam; Pollard, Robert; Barry, James N.; Dowling, Denis P.

    2015-05-04

    Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO{sub 2} dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.

  5. Plasmonics: Electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark; Hartman, John; Atwater, Harry

    2000-03-01

    Integrated optics faces the fundamental limitation that, for the guiding, modulation, and amplification of light, structures are needed that have dimensions comparable to the wavelength of light. Recently, it was theoretically shown that this problem can be circumvented by transporting electromagnetic energy along linear chains of closely spaced metal nanoparticles. This transport relies on the near-field electrodynamic interaction between metal particles that sets up coupled plasmon modes. We have modeled the transport properties of corners, T's, and switches that consist of chains of metal nanoparticles. It is shown that propagation is coherent and the group velocities can exceed saturated velocities of electrons in semiconductors ( ~ 105 m/s). High efficiency transmission of energy around sharp corners (bending radius << wavelength of visible light) is possible. The transmission is a strong function of the frequency and polarization direction of the plasmon mode. Finally, the operation of a plasmon switch is modeled in which plasmon waves can be switched. Suggestions are given for the choice of metal particle and host material. These "plasmonic devices" potentially are among the smallest structures with optical functionality.

  6. Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays.

    PubMed

    Lin, Qing-Yuan; Li, Zhongyang; Brown, Keith A; O'Brien, Matthew N; Ross, Michael B; Zhou, Yu; Butun, Serkan; Chen, Peng-Cheng; Schatz, George C; Dravid, Vinayak P; Aydin, Koray; Mirkin, Chad A

    2015-07-01

    Control of both photonic and plasmonic coupling in a single optical device represents a challenge due to the distinct length scales that must be manipulated. Here, we show that optical metasurfaces with such control can be constructed using an approach that combines top-down and bottom-up processes, wherein gold nanocubes are assembled into ordered arrays via DNA hybridization events onto a gold film decorated with DNA-binding regions defined using electron beam lithography. This approach enables one to systematically tune three critical architectural parameters: (1) anisotropic metal nanoparticle shape and size, (2) the distance between nanoparticles and a metal surface, and (3) the symmetry and spacing of particles. Importantly, these parameters allow for the independent control of two distinct optical modes, a gap mode between the particle and the surface and a lattice mode that originates from cooperative scattering of many particles in an array. Through reflectivity spectroscopy and finite-difference time-domain simulation, we find that these modes can be brought into resonance and coupled strongly. The high degree of synthetic control enables the systematic study of this coupling with respect to geometry, lattice symmetry, and particle shape, which together serve as a compelling example of how nanoparticle-based optics can be useful to realize advanced nanophotonic structures that hold implications for sensing, quantum plasmonics, and tunable absorbers.

  7. Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Croënne, Charles; Garet, Frédéric; Lheurette, Éric; Coutaz, Jean-Louis; Lippens, Didier

    2009-03-01

    We report on the electromagnetic response of a stack of subwavelength hole metal arrays. The samples were designed for exhibiting left handed dispersion branches under normal incidence, and their transmissivities were optimized via the fabrication of elliptical-shaped holes. They are constituted of benzocyclobutene layers with tens of micron thicknesses and submicron-thick gold films patterned by photolithography. Experimental evidence, achieved by time-domain terahertz spectroscopy and supported by full wave simulations, of a ground left handed dispersion branch is found around 0.45 THz. The insertion losses are -3 dB for a five-layer structure, this good level being explained by the matching of the impedance.

  8. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  9. Plasmonic vertical dimer arrays as elements for biosensing.

    PubMed

    Horrer, Andreas; Krieg, Katrin; Freudenberger, Kathrin; Rau, Sabrina; Leidner, Lothar; Gauglitz, Günter; Kern, Dieter P; Fleischer, Monika

    2015-11-01

    Localized surface plasmon resonances of metallic nanoparticles can be used for biosensing because of their sensitive dependence on the refractive index of the surrounding medium. The binding of molecules to the particles causes a change of the effective refractive index in their close vicinity, which leads to a reversible shift of the resonance. We present simulations and sensing experiments of a plasmon resonance based biosensor that makes use of the narrow antisymmetric resonance in coupled plasmonic vertical dimers. The sensitivity of the antisymmetric resonance is compared with that of a surface lattice resonance for refractive index sensing of bulk and of thin layers of molecules. The functionality of such a sensor surface is demonstrated via a testosterone immunoassay for detection of antibody from a solution by binding to surface-immobilized antigen in a fluidic channel. PMID:26345439

  10. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  11. Strong coupling in molecular exciton-plasmon Au nanorod array systems

    NASA Astrophysics Data System (ADS)

    Fedele, Stefano; Hakami, Manal; Murphy, Antony; Pollard, Robert; Rice, James

    2016-02-01

    We demonstrate here a strong coupling between localized surface plasmon modes in self-standing nanorods with excitons in a molecular J-aggregate layer through angular tuning. The enhanced exciton-plasmon coupling creates a Fano like line shape in the differential reflection spectra associated with the formation of hybrid states, leading to anti-crossing of the upper and lower polaritons with a Rabi frequency of 125 meV. The recreation of a Fano like line shape was found in photoluminescence demonstrating changes in the emission spectral profile under strong coupling.

  12. Cloaking from surface plasmon polaritons by a circular array of point scatterers.

    PubMed

    Baumeier, Björn; Leskova, Tamara A; Maradudin, Alexei A

    2009-12-11

    In recent years it has been demonstrated both theoretically and experimentally that it is possible to cloak a predefined region of space from interaction with external volume electromagnetic waves, rendering an arbitrary object inside this region invisible to an outside observer. The several strategies that have been developed for achieving such cloaking cannot be applied directly to the cloaking of a surface feature from surface plasmon polaritons propagating on that surface. Here we demonstrate that it is possible to generate an arrangement of two concentric rings of point scatterers on a metal surface that significantly reduces the scattering of surface plasmon polaritons from an object enclosed within this circular structure. PMID:20366219

  13. Cloaking from surface plasmon polaritons by a circular array of point scatterers.

    PubMed

    Baumeier, Björn; Leskova, Tamara A; Maradudin, Alexei A

    2009-12-11

    In recent years it has been demonstrated both theoretically and experimentally that it is possible to cloak a predefined region of space from interaction with external volume electromagnetic waves, rendering an arbitrary object inside this region invisible to an outside observer. The several strategies that have been developed for achieving such cloaking cannot be applied directly to the cloaking of a surface feature from surface plasmon polaritons propagating on that surface. Here we demonstrate that it is possible to generate an arrangement of two concentric rings of point scatterers on a metal surface that significantly reduces the scattering of surface plasmon polaritons from an object enclosed within this circular structure.

  14. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang-Chen; Chang, Chia-Chen; Lu, Chia-Chen; Wei, Chia-Fong; Lin, Chuan-Sheng; Lai, Hsin-Chih; Lin, Chii-Wann

    2012-03-01

    Tubercle bacillus [TB] is one of the most important chronic infectious diseases that cause millions of deaths annually. While conventional smear microscopy and culture methods are widely used for diagnosis of TB, the former is insensitive, and the latter takes up to 6 to 8 weeks to provide a result, limiting the value of these methods in aiding diagnosis and intermediate decisions on treatment. Therefore, a rapid detection method is essential for the diagnosis, prognosis assessment, and recurrence monitoring. A new surface plasmon resonance [SPR] biosensor based on an array format, which allowed immobilizing nine TB antigens onto the sensor chip, was constructed. Simultaneous determination of multiple TB antibodies in serum had been accomplished with this array-based SPR system. The results were compared with enzyme-linked immunosorbent assay, a conventional immunological method. Array-based SPR showed more advantages in providing label-free and real-time detection. Additionally, the high sensitivity and specificity for the detection of TB infection showed its potential for future development of biosensor arrays for TB diagnosis.

  15. Plasmonic enhancement of UV emission from ZnO thin films induced by Al nano-concave arrays

    NASA Astrophysics Data System (ADS)

    Norek, Małgorzata; Łuka, Grzegorz; Włodarski, Maksymilian

    2016-10-01

    Surface plasmons (SPs) supported by Al nano-concave arrays with increasing interpore distance (Dc) were used to enhance the ultraviolet light emission from ZnO thin films. Two sets of samples were prepared: in the first set the thin ZnO films were deposited directly on Al nanoconcaves (the Al/ZnO samples) and in the second set a 10 nm - Al2O3 spacer was placed between the textured Al and the ZnO films (the Al/Al2O3-ALD/ZnO samples). In the Al/ZnO samples the enhancement was limited by a nonradiative energy dissipation due to the Ohmic loss in the Al metal. However, for the ZnO layer deposited directly on Al nanopits synthesized at 150 V (Dc = 333 ± 18 nm), the largest 9-fold enhancement was obtained by achieving the best energy fit between the near band-edge (NBE) emission from ZnO and the λ(0,1) SPP resonance mode. In the Al/Al2O3-ALD/ZnO samples the amplification of the UV emission was smaller than in the Al/ZnO samples due to a big energy mismatch between the NBE emission and the λ(0,1) plasmonic mode. The results obtained in this work indicate that better tuning of the NBE - λ(0,1) SPP resonance mode coupling is possible through a proper modification of geometrical parameters in the Al/Al2O3-ALD/ZnO system such as Al nano-concave spacing and the thickness of the corresponding layer. This approach will reduce the negative influence of the non-radiative plasmonic modes and most likely will lead to further enhancement of the SP-modulated UV emission from ZnO thin films.

  16. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays.

    PubMed

    Miao, Jinshui; Hu, Weida; Jing, Youliang; Luo, Wenjin; Liao, Lei; Pan, Anlian; Wu, Shiwei; Cheng, Jingxin; Chen, Xiaoshuang; Lu, Wei

    2015-05-01

    2D Molybdenum disulfide (MoS2 ) is a promising candidate material for high-speed and flexible optoelectronic devices, but only with low photoresponsivity. Here, a large enhancement of photocurrent response is obtained by coupling few-layer MoS2 with Au plasmonic nanostructure arrays. Au nanoparticles or nanoplates placed onto few-layer MoS2 surface can enhance the local optical field in the MoS2 layer, due to the localized surface plasmon (LSP) resonance. After depositing 4 nm thick Au nanoparticles sparsely onto few-layer MoS2 phototransistors, a doubled increase in the photocurrent response is observed. The photocurrent of few-layer MoS2 phototransistors exhibits a threefold enhancement with periodic Au nanoarrays. The simulated optical field distribution confirms that light can be trapped and enhanced near the Au nanoplates. These findings offer an avenue for practical applications of high performance MoS2 -based optoelectronic devices or systems in the future.

  17. Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Kaakkunen, J. J. J.; Paivasaari, K.; Vahimaa, P.

    2011-05-01

    We present a novel method to fabricate hole arrays by forming a four-beam interference pattern with two gratings. In this method a femtosecond laser beam is split into four and collected to interfere using two cascaded diffractive gratings. One benefit of this grating pair is that it is achromatic, because of the geometry of the grating pair, and therefore it is suitable for femtosecond ablation. Grating pairs were designed and fabricated for a standard Ti:sapphire femtosecond laser, with 800-nm central wavelength, so that the interference pattern generates holes with less than 1-μm diameter. Holes with this size diffract with a colorful visual appearance in the visible wavelength range and therefore these structures are suitable for security, authentication and decorative marking. We show that this method is suitable for fast ablation of hole arrays in both silicon and steel.

  18. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-02-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10‑5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers.

  19. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    PubMed Central

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk; Eom, Seok Chan; Mortensen, N. Asger; Shin, Jung H.

    2016-01-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements. By controlling both lateral and vertical confinement via a metal edge, the mode volume is successfully reduced down to 1.3 × 10−5 λ03. The advantage of such mode confinement is demonstrated by applying the resonators biosensing. Using bovine serum albumin (BSA) molecules, a dramatic enhancement of surface sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers. PMID:26923610

  20. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  1. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    SciTech Connect

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  2. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu{sub 2}O heterojunction

    SciTech Connect

    Kaur, Gurpreet Yadav, K. L.; Mitra, Anirban

    2015-08-03

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu{sub 2}O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu{sub 2}O.

  3. Meta-Optics with Nanowire Grid Arrays: Hyperbolic Fabry-Perot Modes and Hyperbolic Tamm Plasmons

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Keene, David; Lepain, Matthew

    2015-03-01

    In this talk we introduce a new class of structures - cavities formed by metal-dielectric metasurfaces. These cavities support a zoo of various resonances, including hyperbolic Tamm plasmons and hyperbolic Fabry-Perot modes, which feature anisotropic clover-leaf dispersion parallel to the metasurface and strong coupling between TM and TE polarizations in the modes. The properties and spectrum of the modes are highly tunable by the dimensional and material parameters of the structure and can be used for directional emission, modification of radiation produced by electric dipole emitters into magnetic dipole radiation as well as 90 degree polarization rotators and polarization rotation mirrors.

  4. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto; Shankar, Francesco; Bernardi, Mariangela; Sheth, Ravi K.

    2016-11-01

    Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at $f=1$yr$^{-1}$ drops from $1.3\\times10^{-15}$ to $4\\times10^{-16}$. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.

  5. Earthquake source parameters determined by the SAFOD Pilot Hole seismic array

    USGS Publications Warehouse

    Imanishi, K.; Ellsworth, W.L.; Prejean, S.G.

    2004-01-01

    We estimate the source parameters of #3 microearthquakes by jointly analyzing seismograms recorded by the 32-level, 3-component seismic array installed in the SAFOD Pilot Hole. We applied an inversion procedure to estimate spectral parameters for the omega-square model (spectral level and corner frequency) and Q to displacement amplitude spectra. Because we expect spectral parameters and Q to vary slowly with depth in the well, we impose a smoothness constraint on those parameters as a function of depth using a linear first-differenfee operator. This method correctly resolves corner frequency and Q, which leads to a more accurate estimation of source parameters than can be obtained from single sensors. The stress drop of one example of the SAFOD target repeating earthquake falls in the range of typical tectonic earthquakes. Copyright 2004 by the American Geophysical Union.

  6. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect

    Park, Sang-Gil; Jeong, Ki-Hun; Lee, Kanghee; Han, Daehoon; Ahn, Jaewook

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  7. Plasmon resonance imaging apparatus having nano-lycurgus-cup arrays and methods of use

    DOEpatents

    Liu, Gang Logan; Gartia, Manas Ranjan; Hsiao, Austin Yin Kyai

    2016-10-11

    Apparatus and methods are disclosed that are configured to permit nanoplasmonic spectroscopy sensing in the form of colorimetric sensing. An example apparatus involves: (a) an array layer having a top surface and a bottom surface, wherein a plurality of nanoholes are defined in the top surface of the array layer, wherein the plurality of nanoholes each have at least one sidewall surface and a bottom surface, (b) a thin metal film disposed on the top surface of the array layer and on the bottom surface of each of the plurality of nanoholes, and (c) a plurality of nanoparticles disposed on the at least one sidewall surface of the plurality of nanoholes.

  8. High Brightness Plasmon-Enhanced Nanostructured Gold Photoemitters

    SciTech Connect

    Gong, Yu; Joly, Alan G.; Kong, Lingmei; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-30

    Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

  9. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  10. Plasmonic photocatalysis.

    PubMed

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  11. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Miyazaki, H. T.; Kasaya, T.; Yamamoto, K.; Inoue, Y.; Fujimura, K.; Kanakugi, T.; Okada, M.; Hatade, K.; Kitagawa, S.

    2008-01-01

    We have demonstrated thermal emission of linearly polarized and narrow-band midinfrared waves from subwavelength gratings of narrow and deep rectangular cavities engraved on a Au surface. 100-nm-wide and 1000-nm-deep, high-aspect trenches were accurately manufactured by inversion from master molds. Organ pipe resonance of surface plasmons in the cavities exhibits a Lorentzian emission peak centered at 2.5-5.5μm. The maximum emittance reaches 0.90 and the peak width Δλ /λ is as narrow as 0.13-0.23. This simple emitter is expected to play a key role in the infrared sensing technologies for analyzing our environment.

  12. Sub-10 nm near-field localization by plasmonic metal nanoaperture arrays with ultrashort light pulses

    PubMed Central

    Lee, Hongki; Kim, Chulhong; Kim, Donghyun

    2015-01-01

    Near-field localization by ultrashort femtosecond light pulses has been investigated using simple geometrical nanoapertures. The apertures employ circular, rhombic, and triangular shapes to localize the distribution of surface plasmon. To understand the geometrical effect on the localization, aperture length and period of the nanoapertures were varied. Aperture length was shown to affect the performance more than aperture period due mainly to intra-aperture coupling of near-fields. Triangular apertures provided the strongest spatial localization below 10 nm in size as well as the highest enhancement of field intensity by more than 7000 times compared to the incident light pulse. Use of ultrashort pulses was found to allow much stronger light localization than with continuous-wave light. The results can be used for super-localization sensing and imaging applications where spatially localized fields can break through the limits in achieving improved sensitivity and resolution. PMID:26628326

  13. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS

    PubMed Central

    2015-01-01

    We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared to dead-ended nanohole arrays, suspended nanohole arrays capable of flow-through detection increased the measured SERS signal intensity by 50 times. For directed transport of analytes, we present a novel methodology utilizing surface tension to generate spontaneous flow through the nanoholes with flow rates of 1 μL/min, obviating the need for external pumps or microfluidic interconnects. Using this method for SERS, we obtained a 50 times higher signal as compared to diffusion-limited transport and could detect 100 pM 4-mercaptopyridine. The suspended nanohole substrates presented herein possess a uniform and reproducible geometry and show the potential for improved analyte transport and SERS detection. PMID:25678744

  14. All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photo-Switchable Gratings and Au Nanodisk Arrays

    PubMed Central

    Liu, Yan Jun; Zheng, Yue Bing; Liou, Justin; Chiang, I-Kao; Khoo, Iam Choon; Huang, Tony Jun

    2011-01-01

    We conduct a real-time study of all-optical modulation of localized surface plasmon resonance (LSPR) coupling in a hybrid system that integrates a photo-switchable optical grating with a gold nanodisk array. This hybrid system enables us to investigate two important interactions: 1) LSPR-enhanced grating diffraction, and 2) diffraction-mediated LSPR in the Au nanodisk array. The physical mechanism underlying these interactions was analyzed and experimentally confirmed. With its advantages in cost-effective fabrication, easy integration, and all-optical control, the hybrid system described in this work could be valuable in many nanophotonic applications. PMID:21643480

  15. Explosive performance measurements on large, multiple-hole arrays and large masses of conventional explosive

    SciTech Connect

    McKown, T.O.; Eilers, D.D.; Williams, P.E.

    1995-12-31

    The COntinuous Reflectometry for Radius vs. Time EXperiment (CORRTEX) system was developed by the Los Alamos National Laboratory for determining the energy released in a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system, fielding techniques, and the methods and software for data reduction and analysis were developed over a 15 year period with hundreds of measurements made on nuclear tests and high explosive experiments. CORRTEX is a compact, portable, fast-sampling, microprocessor-controlled system, based on time domain reflectometry, requiring only a 24 volt power source and a sensing element. Only the sensing element (a length of 50 ohm coaxial cable) is expended during the detonation. In 1979, the CORRTEX system was shown to be ideally suited for chemical explosive performance measurements. Its utility for diagnosing chemical explosives was further demonstrated with successful measurements on large multiple-hole chemical shots in rock quarries and strip mines. Accurate timing of the detonation of sequenced or ripple fired arrays, as well as data characterizing the initiation, explosive performance and detonation anomalies are obtained. This information can serve as the basis for empirical or modeled improvements to blasting operations. A summary of the special CORRTEX features and well developed analysis techniques together with the experiment designs, data, and conclusions regarding the measurements and explosive performance from several array detonations and the Chemical Kiloton Experiment, 2.9 million pounds of an ammonium nitrate-fuel oil (ANFO) and emulsion blend conducted on the Nevada Test Site in 1993, are presented.

  16. Explosive performance measurements on large, multiple-hole arrays and large masses of conventional explosive

    SciTech Connect

    McKown, T.O.; Eilers, D.D.; Williams, P.E.

    1994-11-01

    The COntinuous Reflectometry for Radius vs. Time EXperiment (CORRTEX) system was developed by the Los Alamos National Laboratory for determining the energy released in a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system, fielding techniques, and the methods and software for data reduction and analysis were developed over a 15 year period with hundreds of measurements made on nuclear tests and high explosive experiments. CORRTEX is a compact, portable, fast-sampling, microprocessor-controlled system, based on time domain reflectometry, requiring only a 24 volt power source and a sensing element. Only the sensing element (a length of 50 ohm coaxial cable) is expended during the detonation. In 1979, the CORRTEX system was shown to be ideally suited for chemical explosive performance measurements. Its utility for diagnosing chemical explosives was further demonstrated with successful measurements on large multiple-hole chemical shots in rock quarries and strip mines. Accurate timing of the detonation of sequenced or ripple fired arrays, as well as data characterizing the initiation, explosive performance and detonation anomalies are obtained. This information can serve as the basis for empirical or modeled improvements to blasting operations. A summary of the special CORRTEX features and well developed analysis techniques together with the experiment designs, data, and conclusions regarding the measurements and explosive performance from several array detonations and the Chemical Kiloton Experiment, 2.9 million pounds of an ammonium nitrate-fuel oil (ANFO) and emulsion blend conducted on the Nevada Test Site in 1993, are presented.

  17. Yagi-Uda optical antenna array collimated laser based on surface plasmons

    NASA Astrophysics Data System (ADS)

    Ma, Long; Lin, Jie; Ma, Yuan; Liu, Bin; Tan, Jiubin; Jin, Peng

    2016-06-01

    The divergence and directivity of a laser with a periodic Yagi-Uda optical antenna array modulated surface are investigated by finite element method. The nanoparticle optical antenna arrays are optimized to achieve the high directivity and the small divergence by using of Helmholtz's reciprocity theorem. When the nanoparticle antenna replaced by a Yagi-Uda antenna with same size, the directivity and the signal-to-noise ratio of the modulated laser beam are notably enhanced. The main reason is that the directors of the Yagi-Uda antennas induce more energy to propagate towards the antenna transmitting direction. The results can provide valuable guidelines in designing collimated laser, which can be widely applied in the field of biologic detection, spatial optical communication and optical measurement.

  18. Mid-infrared surface plasmon coupled emitters utilizing intersublevel transitions in InAs quantum dots.

    SciTech Connect

    Lyon, Stephen A.; Chow, Weng Wah; Passmore, Brandon Scott; Ribaudo, Troy; Adams, David; Wasserman, Daniel; Shaner, Eric Arthur

    2010-08-01

    We demonstrate mid-infrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots coupled to surface plasmon modes on metal hole arrays. Subwavelength metal hole arrays with different periodicity are patterned into the top contact of the broadband (9-15 {micro}m) quantum dot material and the measured electroluminescence is compared to devices without a metal hole array. The resulting normally directed emission is narrowed and a splitting in the spectral structure is observed. By applying a coupled quantum electrodynamic model and using reasonable values for quantum dot distributions and plasmon linewidths we are able to reproduce the experimentally measured spectral characteristics of device emission when using strong coupling parameters.

  19. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  20. Tunable polymer brush/Au NPs hybrid plasmonic arrays based on host-guest interaction.

    PubMed

    Fang, Liping; Li, Yunfeng; Chen, Zhaolai; Liu, Wendong; Zhang, Junhu; Xiang, Siyuan; Shen, Huaizhong; Li, Zibo; Yang, Bai

    2014-11-26

    The fabrication of versatile gold nanoparticle (Au NP) arrays with tunable optical properties by a novel host-guest interaction are presented. The gold nanoparticles were incorporated into polymer brushes by host-guest interaction between β-cyclodextrin (β-CD) ligand of gold nanoparticles and dimethylamino group of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). The gold nanoparticle arrays were prepared through the template of PDMAEMA brush patterns which were fabricated combining colloidal lithography and surface-initiated atom-transfer radical polymerization (SI-ATRP). The structure parameters of gold nanoparticle patterns mediated by polymer brushes such as height, diameters, periods and distances, could be easily tuned by tailoring the etching time or size of colloidal spheres in the process of colloidal lithography. The change of optical properties induced by different gold nanoparticle structures was demonstrated. The direct utilization of PDMAEMA brushes as guest avoids a series of complicated modification process and the PDMAEMA brushes can be grafted on various substrates, which broaden its applications. The prepared gold naoparticle arrays are promising in applications of nanosensors, memory storage and surface enhanced spectroscopy. PMID:25347749

  1. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  2. Plasmonic photoanodes for solar water splitting with visible light.

    PubMed

    Lee, Joun; Mubeen, Syed; Ji, Xiulei; Stucky, Galen D; Moskovits, Martin

    2012-09-12

    We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO(2), forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.

  3. Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique

    NASA Astrophysics Data System (ADS)

    Brok, J. M.; Urbach, H. P.

    2006-04-01

    We discuss a mode expansion technique to rigorously model the diffraction from three-dimensional pits and holes in a perfectly conducting layer with finite thickness. On the basis of our simulations we predict extraordinary transmission through a single hole, caused by the Fabry-Perot effect inside the hole. Furthermore, we study the fundamental building block for extraordinary transmission through hole arrays: two and three holes. Coupled electromagnetic surface waves, the perfect conductor equivalent of a surface plasmon, are found to play a key role in the mutual interaction between two or three holes.

  4. Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique.

    PubMed

    Brok, J M; Urbach, H P

    2006-04-01

    We discuss a mode expansion technique to rigorously model the diffraction from three-dimensional pits and holes in a perfectly conducting layer with finite thickness. On the basis of our simulations we predict extraordinary transmission through a single hole, caused by the Fabry-Perot effect inside the hole. Furthermore, we study the fundamental building block for extraordinary transmission through hole arrays: two and three holes. Coupled electromagnetic surface waves, the perfect conductor equivalent of a surface plasmon, are found to play a key role in the mutual interaction between two or three holes.

  5. Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection.

    PubMed

    Zhang, Kun; Zhao, Jingjing; Xu, Huiying; Li, Yixin; Ji, Ji; Liu, Baohong

    2015-08-01

    A smart and multifunctional paper-based SERS sensing card is generated through patterning self-assembled interfacial arrays of gold nanoparticles (AuNPs) on the tip of an arrow-shaped paper strip. It is found that the closely packed monolayer of AuNPs is evenly distributed on the paper surface, resulting in a multitude of SERS hot spots over the detection zone. The paper card, with its inherent ability to separate and preconcentrate analytes by the capillary force and polarity difference between sample components, was exploited successfully as an integrated platform, allowing for sub-attomolar (50 × 10(-18) M) detection from microliter-volume (10 μL) samples. Furthermore, the simple preparation (lithography-free process), fast detection (<5 min), and low cost (<3 cents) demonstrate that the paper card is a practical and portable sensing interface for wide application in environmental and food analysis. PMID:26186409

  6. Polarized interference imaging of dense disordered plasmonic nanoparticle arrays for biosensor applications

    NASA Astrophysics Data System (ADS)

    Bergs, Gatis; Malinovskis, Uldis; Poplausks, Raimonds; Apsite, Indra; Erts, Donats; Prikulis, Juris

    2015-09-01

    We report on light scattering by dense short-range ordered gold and silver nanoparticle arrays with 25 nm diameter and 50 nm center separation produced by masked deposition through anodized aluminum oxide membranes. Local resonant regions are formed, which scatter light with polarization components perpendicular to the incident wave due to electromagnetic coupling between particles at random angles. The observed cross-polarized far-field images have a granular structure that morphs in response to environmental variations in the article near field. We quantify the changes in the recorded images by 2D correlation matrix calculation and demonstrate the application of this approach to biomolecular sensing by using various concentrations of cysteine solution as a model system. The presented method may potentially compete with colorimetric sensor techniques since the detection setup does not require any spectroscopic instruments.

  7. Dark current and photocurrent analysis of plasmonic nano-antenna photodetector

    NASA Astrophysics Data System (ADS)

    Kemsri, Thitikorn

    Surface plasmonic resonance (SPR) plays important roles in performance enhancement in the Quantum Dot Infrared Photodetector. It can increase the photoresponse, SPR induced surface confinement and electromagnetic field enhancement. The angular dependence of the SPR enhancement effect has been fully investigated. In this thesis, the angular dependent effects of the two dimensional subwavelength hole array (2DSHA) and circular disk array (CDA) plasmonic structures are analyzed and compared with regular quantum dot photodetector. The photocurrent and dark current of both SPR structures are at different angles. The CDA plasmonic structure shows stronger angular dependence pattern than the 2DSHA plasmonic structure. The angular dependence is analyzed and agrees with the radiation pattern of a circular aperture antenna.

  8. Oscillatory penetration of near-fields in plasmonic excitation at metal-dielectric interfaces

    PubMed Central

    Lee, S. C.; Kang, J. H.; Park, Q-H.; Krishna, S.; Brueck, S. R. J.

    2016-01-01

    The electric field immediately below an illuminated metal-film that is perforated with a hole array on a dielectric consists of direct transmission and scattering of the incident light through the holes and evanescent near-field from plasmonic excitations. Depending on the size and shape of the hole apertures, it exhibits an oscillatory decay in the propagation direction. This unusual field penetration is explained by the interference between these contributions, and is experimentally confirmed through an aperture which is engineered with four arms stretched out from a simple circle to manipulate a specific plasmonic excitation available in the metal film. A numerical simulation quantitatively supports the experiment. This fundamental characteristic will impact plasmonics with the near-fields designed by aperture engineering for practical applications. PMID:27090841

  9. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2014-12-01

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL.Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation

  10. European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Babak, S.; Petiteau, A.; Sesana, A.; Brem, P.; Rosado, P. A.; Taylor, S. R.; Lassus, A.; Hessels, J. W. T.; Bassa, C. G.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lee, K. J.; Lentati, L.; Liu, K.; Mingarelli, C. M. F.; Osłowski, S.; Perrodin, D.; Possenti, A.; Purver, M. B.; Sanidas, S.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.

    2016-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 × 10-15 < A < 1.5 × 10-14 at 5 nHz < f < 7 nHz. This limit varies by a factor of five, depending on the assumed source position and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit - obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars - is A ≈ 10-14. These limits, the most stringent to date at f < 10 nHz, exclude the presence of sub-centiparsec binaries with chirp mass M_c>10^9 M_{⊙} out to a distance of about 25 Mpc, and with M_c>10^{10} M_{⊙} out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-the-art SMBHB population models predict <1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.

  11. Metastable inhomogeneous vortex configuration with non-uniform filling fraction inside a blind hole array patterned in a BSCCO single crystal and concentrating magnetic flux inside it

    NASA Astrophysics Data System (ADS)

    Shaw, Gorky; Banerjee, S. S.; Tamegai, T.; Suderow, Hermann

    2016-06-01

    Using magneto-optical imaging, we map the local magnetic field distribution inside a hexagonally ordered array of blind holes patterned in BSCCO single crystals. The nature of the spatial distribution of local magnetic field and shielding currents across the array reveals the presence of a non-uniform vortex configuration partially matched with the blind holes at sub-matching fields. We observe that the filling fraction is different in two different regions of the array. The mean vortex configuration within the array is described as a patchy vortex configuration with the patches having different mean filling fraction. The patchy nature of the vortex configuration is more pronounced at partial filling of the array at low fields while the configuration becomes more uniform with a unique filling fraction at higher fields. The metastable nature of this patchy vortex configuration is revealed by the application of magnetic field pulses of fixed height or individual pulses of varying height to the array. The metastability of the vortex configuration allows a relatively easy way of producing flux reorganization and flux focusing effects within the blind hole array. The effect of the magnetic field pulses modifies the vortex configuration within the array and produces a uniform enhancement in the shielding current around the patterned array edges. The enhanced shielding current concentrates magnetic flux within the array by driving vortices away from the edges and towards the center of the array. The enhanced shielding current also prevents the uninhibited entry of vortices into the array. We propose that the metastable patchy vortex configuration within the blind hole array is due to a non-uniform pinning landscape leading to non-uniform filling of individual blind holes.

  12. Perforating domed plasmonic films for broadband and omnidirectional antireflection.

    PubMed

    Ai, Bin; Gu, Panpan; Möhwald, Helmuth; Zhang, Gang

    2016-08-25

    Domed Ag nano-hole/disk array films exhibit a reflectivity of less than 0.7% over a wide spectral range (400-1000 nm) and even lower values down to 0.05% with an oblique incidence angle; this unique optical response is attributed to three key factors: diffractive scattering loss on nanostructures, localized plasmonic absorption and curved surface (domed units). PMID:27510646

  13. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions.

    PubMed

    Zhou, Zhang-Kai; Xue, Jiancai; Zheng, Zebo; Li, Jiahua; Ke, Yanlin; Yu, Ying; Han, Jun-Bo; Xie, Weiguang; Deng, Shaozhi; Chen, Huanjun; Wang, Xuehua

    2015-10-01

    Strongly coupled plasmonic nanostructures with sub-10 nm gaps can enable intense electric field enhancements which greatly benefit the various light-matter interactions. From the point view of practical applications, such nanostructures should be of low-cost, facile fabrication and processing, large-scale with high-yield of the ultrasmall gaps, and easy for integration with other functional components. However, nowadays techniques for reliable fabrication of these nanostructures usually involve complex, time-consuming, and expensive lithography procedures, which are limited either by their low-throughput or the small areas obtained. On the other hand, so far most of the studies on the sub-10 nm gap nanostructures mainly focused on the surface-enhanced Raman scattering and high-harmonic generations, while leaving other nonlinear optical properties unexplored. In this work, using a scalable process without any lithography procedures, we demonstrated a centimeter-scale ordered plasmonic nanorod array film (PNRAF) with well-defined sub-10 nm interparticle gaps as a versatile platform for strongly enhanced light-matter interactions. Specifically, we showed that due to its plasmon-induced localized electromagnetic field enhancements, the Au PNRAF could exhibit extraordinary intrinsic multi-photon avalanche luminescence (MAPL) and nonlinear saturable absorption (SA). Furthermore, the PNRAF can be easily integrated with semiconductor quantum dots (SQDs) as well as wide bandgap semiconductors to strongly enhance their fluorescence and photocurrent response, respectively. Our method can be easily generalized to nanorod array films consisting of other plasmonic metals and even semiconductor materials, which can have multiple functionalities derived from different materials. Overall, the findings in our study have offered a potential strategy for design and fabrication of nanostructures with ultrasmall gaps for future photonic and optoelectronic applications.

  14. Generation of Localized Surface Plasmon Resonance Using Hybrid Au-Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection.

    PubMed

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au-Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  15. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    PubMed Central

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  16. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties

    NASA Astrophysics Data System (ADS)

    Niu, Lihong; Jiang, Xiaohong; Zhao, Yaolong; Ma, Haiguang; Yang, Jingjing; Cheng, Ke; Du, Zuliang

    2016-08-01

    In this paper, a novel method using the modified Langmuir–Blodgett and float-transfer techniques was introduced to construct the perfect PS monolayer nanosphere template with large area up to cm2. Based on such templates, the diameter, length, packing density, and the shape of Si nanopillar arrays (Si NPAs) could be precisely controlled and tuned through the modified nanosphere lithography combined with a metal-assisted chemical etching (NSL-MACE) method. Manipulation of the etching time can effectively avoid permanent deformation/clumping to generate size-tunable Si NPAs. The optical properties of the Si NPAs can be controlled by the Si NPA morphologies resulting from the different reactive ion etching (RIE) time and chemical etching time. The enhanced antireflective property and electromagnetic field effect of Au/Si NPAs were proved by the results. The new modified NSL-MACE technique with the capability of scale-up fabrication of Si NPAs would be helpful for potential applications in optoelectronic devices.

  17. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties.

    PubMed

    Niu, Lihong; Jiang, Xiaohong; Zhao, Yaolong; Ma, Haiguang; Yang, Jingjing; Cheng, Ke; Du, Zuliang

    2016-08-01

    In this paper, a novel method using the modified Langmuir-Blodgett and float-transfer techniques was introduced to construct the perfect PS monolayer nanosphere template with large area up to cm(2). Based on such templates, the diameter, length, packing density, and the shape of Si nanopillar arrays (Si NPAs) could be precisely controlled and tuned through the modified nanosphere lithography combined with a metal-assisted chemical etching (NSL-MACE) method. Manipulation of the etching time can effectively avoid permanent deformation/clumping to generate size-tunable Si NPAs. The optical properties of the Si NPAs can be controlled by the Si NPA morphologies resulting from the different reactive ion etching (RIE) time and chemical etching time. The enhanced antireflective property and electromagnetic field effect of Au/Si NPAs were proved by the results. The new modified NSL-MACE technique with the capability of scale-up fabrication of Si NPAs would be helpful for potential applications in optoelectronic devices.

  18. Large-area, size-tunable Si nanopillar arrays with enhanced antireflective and plasmonic properties

    NASA Astrophysics Data System (ADS)

    Niu, Lihong; Jiang, Xiaohong; Zhao, Yaolong; Ma, Haiguang; Yang, Jingjing; Cheng, Ke; Du, Zuliang

    2016-08-01

    In this paper, a novel method using the modified Langmuir-Blodgett and float-transfer techniques was introduced to construct the perfect PS monolayer nanosphere template with large area up to cm2. Based on such templates, the diameter, length, packing density, and the shape of Si nanopillar arrays (Si NPAs) could be precisely controlled and tuned through the modified nanosphere lithography combined with a metal-assisted chemical etching (NSL-MACE) method. Manipulation of the etching time can effectively avoid permanent deformation/clumping to generate size-tunable Si NPAs. The optical properties of the Si NPAs can be controlled by the Si NPA morphologies resulting from the different reactive ion etching (RIE) time and chemical etching time. The enhanced antireflective property and electromagnetic field effect of Au/Si NPAs were proved by the results. The new modified NSL-MACE technique with the capability of scale-up fabrication of Si NPAs would be helpful for potential applications in optoelectronic devices.

  19. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core–shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  20. Single standing carbon nanotube array in gate holes using a silicon nitride cap layer

    SciTech Connect

    Lim, Sung Hoon; Yoon, Hyun Sik; Moon, Jong Hyun; Park, Kyu Chang; Jang, Jin

    2005-12-12

    We studied the growth of a single standing carbon nanotube (CNT) which was grown by plasma-enhanced chemical vapor deposition in the gate hole formed by conventional photolithography in the silicon nitride. The number of CNT per hole increases with increasing the gate hole diameter and a single CNT could be grown in a 3 {mu}m hole. A single standing CNT in a gate hole exhibited the turn-on field of 1.6 V/{mu}m and the current density of 16 {mu}A at 3.3 V/{mu}m. The emission currents follow the Fowler-Nordheim equation with a field enhancement factor of 1.14x10{sup 7}.

  1. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.

    PubMed

    Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

    2015-01-21

    Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ∼9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their "remote" separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL. PMID:25475883

  2. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  3. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  4. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution

    PubMed Central

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-01-01

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ > 420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs. PMID:26067850

  5. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-01-01

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ>420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs. PMID:26067850

  6. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation.

    PubMed

    Niu, Junfeng; Dai, Yunrong; Yin, Lifeng; Shang, Jianying; Crittenden, John C

    2015-07-14

    Triclosan (TCS) is a potential threat to the environment and human health. Photocatalysis can be used to degrade TCS, but the photocatalytic efficiency is usually limited by the photoabsorptivity and photostability of the photocatalyst. In addition, some toxic by-products might also be generated during photocatalytic processes. In this study, we prepared Au-coated Cu2O nanowire arrays (Au-Cu2O NWAs) by beam sputtering Au onto Cu2O nanowires grown from a Cu foil. We found that photocatalytic degradation of TCS under visible light (420 nm < λ < 780 nm) irradiation and Au-Cu2O NWAs had several advantages. Au-Cu2O NWAs had good photoabsorptivity, high photostability (negligible activity loss after 16 runs), excellent photocatalytic activity (47.6 times faster than that of Cu2O), and low yield of dichlorodibenzo-dioxins/dichlorohydroxydibenzofurans. The degradation intermediates were identified as chlorophenoxyphenol, phenoxyphenol, chlorophenol, catechol, phenol, benzoquinone, and lower volatile acids. We developed the degradation pathway of TCS which follows electron reduction and then oxidation by reactive oxygen species. The mechanism was developed and strengthened using the radical trapping and other measurements. The unusual mechanism and photostability of Au-Cu2O NWAs were attributed to the Au/Cu2O/Cu "sandwich"-like structure. This structure yields a sustained and steady internal electric field, raises the conduction band of Cu2O, reinforces the reductive activity of the photo-generated electrons, and eliminates the photo-generated holes that are responsible for the photo-etching of Cu2O.

  7. Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Simon, Joseph; Burke-Spolaor, Sarah

    2016-07-01

    Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes (SMBHs). But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on predictions of the strain spectrum and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and pulsar timing array (PTA) limits on the gravitational wave background of binary SMBHs. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, {M}\\bullet {--}{M}{bulge}, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in galaxy stellar mass functions. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the {M}\\bullet {--}{M}{bulge} relation. We find our limits to be in contention with strain predictions using two leading measurements of this relation. We investigate several possible reasons for this disagreement. If we take the {M}\\bullet {--}{M}{bulge} relations to be correct within a simple power-law model for the gravitational wave background, then the inconsistency is reconcilable by allowing for an additional “stalling” time between a galaxy merger and evolution of a binary SMBH to sub-parsec scales, with lower limits on this timescale of ˜1-2 Gyr.

  8. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies.

  9. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  10. Far-field control of focusing plasmonic waves through disordered nanoholes.

    PubMed

    Seo, Eunsung; Ahn, Joonmo; Choi, Wonjun; Lee, Hakjoon; Jhon, Young Min; Lee, Sanghoon; Choi, Wonshik

    2014-10-15

    Control of near-field waves is the key to going beyond the diffraction limit in imaging and manipulating target objects. Here we present the focusing of plasmonic waves, a type of near-field waves, by the wavefront shaping of far-field waves. We coupled far-field waves to a random array of holes on a thin gold film to generate speckled plasmonic waves. By controlling the phase pattern of the incident waves with the wavelength of 637 nm, we demonstrated the focusing of plasmonic waves down to 170 nm at arbitrary positions. Our study shows the possibility of using disordered nanoholes as a plasmonic lens with high flexibility in the far-field control.

  11. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.

    PubMed

    Yilmaz, Mehmet; Senlik, Erhan; Biskin, Erhan; Yavuz, Mustafa Selman; Tamer, Ugur; Demirel, Gokhan

    2014-03-28

    The detection of molecules at an ultralow level by Surface-Enhanced Raman Spectroscopy (SERS) has recently attracted enormous interest for various applications especially in biological, medical, and environmental fields. Despite the significant progress, SERS systems are still facing challenges for practical applications related to their sensitivity, reliability, and selectivity. To overcome these limitations, in this study, we have proposed a simple yet facile concept by combining 3-D anisotropic gold nanorod arrays with colloidal gold nanoparticles having different shapes for highly reliable, selective, and sensitive detection of some hazardous chemical and biological warfare agents in trace amounts through SERS. The gold nanorod arrays were created on the BK7 glass slides or silicon wafer surfaces via the oblique angle deposition (OAD) technique without using any template material or lithography technique and their surface densities were adjusted by manipulating the deposition angle (α). It is found that gold nanorod arrays fabricated at α = 10° exhibited the highest SERS enhancement in the absence of colloidal gold nanoparticles. Synergetic enhancement was obviously observed in SERS signals when combining gold nanorod arrays with colloidal gold nanoparticles having different shapes (i.e., spherical, rod, and cage). Due to their ability to produce localized surface plasmons (LSPs) in transverse and longitudinal directions, utilization of colloidal gold nanorods as a synergetic agent led to an increase in the enhancement factor by about tenfold compared to plain gold nanorod arrays. Moreover, we have tested our approach to detect some chemical and biological toxins namely dipicolinic acid (DIP), methyl parathion (MP), and diethyl phosphoramidate (DP). For all toxins, Raman spectra with high signal-to-noise ratios and reproducibility were successfully obtained over a broad concentration range (5 ppm-10 ppb). Our results suggest that the slightly tangled and

  12. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  13. Key Science with the Square Kilometer Array: Strong-field Tests of Gravity using Pulsars and Black Holes

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Kramer, M.; Backer, D. C.; Lazio, T. J. W.; Science Working Groupthe Square Kilometer Array Team

    2005-12-01

    A Galactic census of pulsars with the SKA will discover most of the active pulsars in the Galaxy beamed toward us. The sheer number of pulsars discovered, along with the exceptional timing precision the SKA can provide, will revolutionize the field of pulsar astrophysics and will enable significant tests of theories of gravity. Census discoveries will almost certainly include pulsar-black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic center. These systems provide unique opportunties for probing the ultra-strong field limit of relativistic gravity and will complement future gravitational wave detections using LISA-like instruments. SKA measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem. The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky that can be used as multiple arms of a cosmic gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources. In addition to gravitational tests, the large number of lines of sight will provide a detailed map of the Galaxy's electron density and magnetic fields and important information on the dynamics and evolutionary histories of neutron stars. The census will provide examples of nearly every possible outcome of the evolution of massive stars, including (as above) pulsar black-hole systems and sub-millisecond pulsars, if they exist. These objects will yield constraints on the equation of state of matter at super-nuclear densities. Masses of pulsars and their binary companions planets, white dwarfs, other neutron stars, and black holes will be determined to ˜ 1% for hundreds of objects. The SKA will also provide partial censuses of nearby galaxies through periodicity and giant-pulse detections, yielding important information on the intergalactic medium.

  14. Surface Plasmon Resonance and Dielectric Core Effects on Two-Dimensional Periodic Arrays of Silver Nanospheres in a Square Lattice Embedded at Different Depths in a Silica Substrate

    NASA Astrophysics Data System (ADS)

    Sun, Yuh-Sien; Jheng, Ci-Yao

    2013-12-01

    The dielectric core effects and surface plasmon resonance (SPR) modes of a two-dimensional (2D) periodic array of silver nanospheres (PASNSs) in a square lattice embedded at different depths in a silica substrate normally illuminated with the x-polarization plane wave are numerically investigated by using the finite element method with three-dimensional calculations. The unit cell of the 2D PASNSs examined is a unique structure, which is composed of a metallic nanoshell and a dielectric core (DC). Results show that the near-field optical properties and SPR modes obtained from the embedding cases of 2D PASNS are quite different from those of the solid cases of their counterpart, resulting in a field intensity increase and a redshift due to the plasmon hybridization of metallic nanoshells and their DCs. The strength of the hybridization depends on the geometry of the composite metallic nanoparticles and the surrounding media. On the basis of our simulations, we find two important parameters, i.e., the permittivity of the media filling DCs and the depth of the 2D PASNSs embedded in a silica substrate, which can affect the transmittance spectra and the position of SPR wavelengths. The intensity of transmittance spectra is reduced and the peak resonance is redshifted as the depth of the embedded 2D PASNSs is increased.

  15. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhang-Kai; Xue, Jiancai; Zheng, Zebo; Li, Jiahua; Ke, Yanlin; Yu, Ying; Han, Jun-Bo; Xie, Weiguang; Deng, Shaozhi; Chen, Huanjun; Wang, Xuehua

    2015-09-01

    Strongly coupled plasmonic nanostructures with sub-10 nm gaps can enable intense electric field enhancements which greatly benefit the various light-matter interactions. From the point view of practical applications, such nanostructures should be of low-cost, facile fabrication and processing, large-scale with high-yield of the ultrasmall gaps, and easy for integration with other functional components. However, nowadays techniques for reliable fabrication of these nanostructures usually involve complex, time-consuming, and expensive lithography procedures, which are limited either by their low-throughput or the small areas obtained. On the other hand, so far most of the studies on the sub-10 nm gap nanostructures mainly focused on the surface-enhanced Raman scattering and high-harmonic generations, while leaving other nonlinear optical properties unexplored. In this work, using a scalable process without any lithography procedures, we demonstrated a centimeter-scale ordered plasmonic nanorod array film (PNRAF) with well-defined sub-10 nm interparticle gaps as a versatile platform for strongly enhanced light-matter interactions. Specifically, we showed that due to its plasmon-induced localized electromagnetic field enhancements, the Au PNRAF could exhibit extraordinary intrinsic multi-photon avalanche luminescence (MAPL) and nonlinear saturable absorption (SA). Furthermore, the PNRAF can be easily integrated with semiconductor quantum dots (SQDs) as well as wide bandgap semiconductors to strongly enhance their fluorescence and photocurrent response, respectively. Our method can be easily generalized to nanorod array films consisting of other plasmonic metals and even semiconductor materials, which can have multiple functionalities derived from different materials. Overall, the findings in our study have offered a potential strategy for design and fabrication of nanostructures with ultrasmall gaps for future photonic and optoelectronic applications.Strongly coupled

  16. Enhanced infrared transmission from gold wire-grid arrays via surface plasmons in continuous graphene (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Liu, Zizhuo; Bütün, Serkan; Palacios, Edgar; Aydin, Koray

    2015-09-01

    Enhanced transmission of light through nanostructures has always been of great interest in the field of plasmonics and nanophotonics. With the aid of near-field effects, the transmission of the electromagnetic waves can be enhanced or suppressed. Much of the work on enhanced transmission has been shown to be frequency-selective. However it is possible to increase the transmission over a large frequency range by using graphene, which has shown broadband properties in many applications. Here, we propose enhanced transmission in wire grid gold structure making use of continuous graphene sheets. We use finite-difference time-domain simulations to study the optical properties of this graphene-metal hybrid structure at mid infrared (mid-IR) wavelengths. The grating structure in wire grid gold provides an ideal platform to match the momentum and excite the surface plasmon polaritons (SPPs) in monolayer graphene. Our numerical calculations show that the local electromagnetic field around the graphene is largely enhanced due to surface plasmons. Moreover, with the highly confined SPPs coupling with the incident light, the transmission through the whole structure can be broadly enhanced in the mid infrared region. We also analyze the effect of the spectrum with different periods and gold nanowire widths to evaluate the size effects of the plasmons in graphene. In addition, by tuning the Fermi level, one can control the wavelength range at which the transmission is enhanced. The mechanism of the enhancement will be explained in the calculated electric field distribution. And we will also highlight the opportunities of graphene for applications such as tunable transmission and active photonic modulator.

  17. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.

    PubMed

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-07-16

    Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors' output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1). For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.

  18. Subwavelength focusing and guiding of surface plasmons.

    PubMed

    Yin, Leilei; Vlasko-Vlasov, Vitali K; Pearson, John; Hiller, Jon M; Hua, Jiong; Welp, Ulrich; Brown, Dennis E; Kimball, Clyde W

    2005-07-01

    The constructive interference of surface plasmon polaritons (SPP) launched by nanometric holes allows us to focus SPP into a spot of high near-field intensity having subwavelength width. Near-field scanning optical microscopy is used to map the local SPP intensity. The resulting SPP patterns and their polarization dependence are accurately described in model calculations based on a dipolar model for the SPP emission at each hole. Furthermore, we show that the high SPP intensity in the focal spot can be launched and propagated on a Ag strip guide with a 250 x 50 nm2 cross section, thus overcoming the diffraction limit of conventional optics. The combination of focusing arrays and nano-waveguides may serve as a basic element in planar nano-photonic circuits.

  19. Vast Hole- and Electron-Polaron Spatial Extent in Oligomeric π-Conjugated Porphyrin Arrays

    NASA Astrophysics Data System (ADS)

    Angiolillo, Paul; Rawson, Jeff; Therien, Michael

    meso-Ethyne bridged π-conjugated zinc porphyrin oligomers (PZnn compounds) have been demonstrated to evince lowest excited singlet states that are globally delocalized. It has also previously been shown that hole-polaron states of these oligomers exhibit delocalization lengths that mirror the molecular spatial dimension, 7.5 nm in the case of the heptamer. Here we demonstrate that the electron-polaron states in PZnn compounds also feature vast areal delocalization. This finding is evidenced by concurrent optical and electron spin resonance measurements, coupled with electronic structure calculations that suggest atypically small reorganization energies for one-electron reduction of these materials. These results are buttressed by electron spin relaxation measurements of PZnn electron polarons that show that both T1 and T2 relaxation times are unusually large, on the order of 103 ns and 102 ns, respectively. Since rapid charge delocalization defines an important mechanism that mitigates Coulombic stabilization of photogenerated electron-hole pairs to create separated free charge carriers, and spin polarization lifetimes feature prominently in spin currents, these findings identify conjugated materials with exceptional optical, electronic, and spintronic properties.

  20. Two-dimensional crossover and strong coupling of plasmon excitations in arrays of one-dimensional atomic wires

    NASA Astrophysics Data System (ADS)

    Lichtenstein, T.; Aulbach, J.; Schäfer, J.; Claessen, R.; Tegenkamp, C.; Pfnür, H.

    2016-04-01

    Dimensional crossover is of high relevance to understanding real-world quasi-one-dimensional (1D) systems. Here we study the collective excitations, measured as plasmon dispersions in an electron energy loss experiment, in a tunable family of model systems, namely, Au chains on stepped Si(h h k ) substrates, that allow variations of chain widths and interchain spacings. We indeed observe 1D-like dispersions, but with a significant influence of higher dimensions. Surprisingly, we find that it is not the interchain coupling but the width of the conduction channel, as confirmed by tunneling spectroscopy, that dominates the excitations.

  1. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect

    Wei, Tongbo Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin; Lan, Ding

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  2. Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.

    PubMed

    Passmore, Brandon S; Adams, David C; Ribaudo, Troy; Wasserman, Dan; Lyon, Stephen; Davids, Paul; Chow, Weng W; Shaner, Eric A

    2011-02-01

    We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally narrowed quantum-dot electroluminescence was observed for devices with varying subwavelength hole spacing. Devices designed for 9, 10, and 11 μm wavelength emission also exhibit a significant spectral splitting. The association of the splitting with quantum-dot Rabi oscillation is consistent with results from a calculation of spontaneous emission from an interacting plasmonic field and quantum-dot ensemble. The fact that this Rabi oscillation can be observed in an incoherently excited, highly inhomogeneously broadened system demonstrates the utility of intersublevel transitions in quantum dots for investigations of coherent transient and quantum coherence phenomena.

  3. Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays

    NASA Astrophysics Data System (ADS)

    Camacho, Miguel; Boix, Rafael R.; Medina, Francisco

    2016-06-01

    The authors present a computationally efficient technique for the analysis of extraordinary transmission through both infinite and truncated periodic arrays of slots in perfect conductor screens of negligible thickness. An integral equation is obtained for the tangential electric field in the slots both in the infinite case and in the truncated case. The unknown functions are expressed as linear combinations of known basis functions, and the unknown weight coefficients are determined by means of Galerkin's method. The coefficients of Galerkin's matrix are obtained in the spatial domain in terms of double finite integrals containing the Green's functions (which, in the infinite case, is efficiently computed by means of Ewald's method) times cross-correlations between both the basis functions and their divergences. The computation in the spatial domain is an efficient alternative to the direct computation in the spectral domain since this latter approach involves the determination of either slowly convergent double infinite summations (infinite case) or slowly convergent double infinite integrals (truncated case). The results obtained are validated by means of commercial software, and it is found that the integral equation technique presented in this paper is at least two orders of magnitude faster than commercial software for a similar accuracy. It is also shown that the phenomena related to periodicity such as extraordinary transmission and Wood's anomaly start to appear in the truncated case for arrays with more than 100 (10 ×10 ) slots.

  4. A near-transparent 90∘ polarization rotator with an array of L-shaped holes inside a glass cube

    NASA Astrophysics Data System (ADS)

    Liao, Yan-Lin; Zhao, Yan; Lu, He-Ping

    2016-07-01

    We report a near-transparent 90∘ polarization rotator by using a single-layer microstructure. The co-polarization light has been suppressed by using destructive interference. At the same time, the transmission of cross-polarization light has been improved with inference effect between surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). This efficient polarization rotation mechanism may be very useful in designing polarization rotators.

  5. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  6. Molecular Plasmonics

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew J.; Willets, Katherine A.

    2016-06-01

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  7. Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Chen, Jiaoyan; Wang, Haiyan; Liu, Huangqing

    2016-01-01

    Visible-light-driven responsive Au/TiO2 nanotube arrays nanocomposites (LE-Au/TNTs) are prepared by depositing self-assembled monolayer of 3-mercaptopropionic acid (MPA) inside TNTs and then removing the ligands on the surface of Au through direct ligand-exchange method, which is beneficial for formation of intimate Au/TNTs Schottky contact after a mild annealing process. Under visible light illumination (λ > 400 nm), the photocurrent density of LE-Au/TNTs is 202 μA/cm2, which is the highest value ever reported in Au/TiO2 systems. Moreover, the incident photon to current conversion efficiency (IPCE) of LE-Au/TNTs at surface plasmonic resonance induced absorption peak (555 nm) is 7.4%. It is worth noted that the hydrogen evolution rates of the LE-Au/TNTs under simulated solar irradiation (AM1.5G, 100 mW/cm2) are 22.5 μmol/h, which is much higher than that of pristine TNTs (8.1 μmol/h). In addition, the LE-Au/TNTs show higher photoelectrochemical water splitting performance than the Au/TNTs prepared by direct impregnation-precipitation (IPAu/TNTs) strategy, which is ascribed to the close Schottky contact between Au and TNTs for better charge separation and transfer.

  8. Biomarkers probed in saliva by surface plasmon resonance imaging coupled to matrix-assisted laser desorption/ionization mass spectrometry in array format.

    PubMed

    Musso, Johana; Buchmann, William; Gonnet, Florence; Jarroux, Nathalie; Bellon, Sophie; Frydman, Chiraz; Brunet, Didier-Luc; Daniel, Regis

    2015-02-01

    Detection of protein biomarkers is of major interest in proteomics. This work reports the analysis of protein biomarkers directly from a biological fluid, human saliva, by surface plasmon resonance imaging coupled to mass spectrometry (SPRi-MS), using a functionalized biochip in an array format enabling multiplex SPR-MS analysis. The SPR biochip presented a gold surface functionalized by a self-assembled monolayer of short poly(ethylene oxide) chains carrying an N-hydroxysuccinimide end-group for the immobilization of antibodies. The experiments were accomplished without any sample pre-purification or spiking with the targeted biomarkers. SPRi monitoring of the interactions, immune capture from the biochip surface, and finally on-chip matrix-assisted laser desorption/ionization-MS structural identification of two protein biomarkers, salivary α-amylase and lysozyme, were successively achieved directly from saliva at the femtomole level. For lysozyme, the on-chip MS identification was completed by a proteomic analysis based on an on-chip proteolysis procedure and a peptide mass fingerprint. PMID:25524230

  9. Terahertz spectroscopy of plasmonic fractals.

    PubMed

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(<2). Furthermore, a sum rule for the transmission resonances and antiresonances in plasmonic fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  10. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.

    PubMed

    Liu, Wenjing; Lee, Bumsu; Naylor, Carl H; Ee, Ho-Seok; Park, Joohee; Johnson, A T Charlie; Agarwal, Ritesh

    2016-02-10

    We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices.

  11. Surface plasmons induced in Al spherical nanoparticles by Auger effect

    NASA Astrophysics Data System (ADS)

    García Gallardo, J.; Gervasoni, J. L.; Kövér, L.

    2016-02-01

    In this work we study the surface plasmon generation by electron-hole interaction in an aluminum spherical nano-particle due to the Auger electron-hole interaction by means of the Hamiltonian formalism.

  12. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

    NASA Astrophysics Data System (ADS)

    Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.

    2010-01-01

    A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.

  13. Observation of Rabi Splitting from Surface-plasmon Coupled Conduction-state Transitions in Electrically-excited InAs Quantum Dots

    SciTech Connect

    Passmore, Brian S.; Adams, David C.; Ribaudo, Troy; Wasserman, Daniel; Lyon, Stephen; Chow, Weng W.; Shaner, Eric A.

    2011-02-09

    We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally narrowed quantum-dot electroluminescence was observed for devices with varying subwavelength hole spacing. Devices designed for 9, 10, and 11 μm wavelength emission also exhibit a significant spectral splitting. The association of the splitting with quantum-dot Rabi oscillation is consistent with results from a calculation of spontaneous emission from an interacting plasmonic field and quantum-dot ensemble. The fact that this Rabi oscillation can be observed in an incoherently excited, highly inhomogeneously broadened system demonstrates the utility of intersublevel transitions in quantum dots for investigations of coherent transient and quantum coherence phenomena.

  14. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - I. Source extraction and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Perley, R. A.

    2016-09-01

    This is the first of two papers describing the observations and cataloguing of deep 3-GHz observations of the Lockman Hole North using the Karl G. Jansky Very Large Array. The aim of this paper is to investigate, through the use of simulated images, the uncertainties and accuracy of source-finding routines, as well as to quantify systematic effects due to resolution, such as source confusion and source size. While these effects are not new, this work is intended as a particular case study that can be scaled and translated to other surveys. We use the simulations to derive uncertainties in the fitted parameters, as well as bias corrections for the actual catalogue (presented in Paper II). We compare two different source-finding routines, OBIT and AEGEAN, and two different effective resolutions, 8 and 2.75 arcsec. We find that the two routines perform comparably well, with OBIT being slightly better at de-blending sources, but slightly worse at fitting resolved sources. We show that 30-70 per cent of sources are missed or fit inaccurately once the source size becomes larger than the beam, possibly explaining source count errors in high-resolution surveys. We also investigate the effect of blending, finding that any sources with separations smaller than the beam size are fit as single sources. We show that the use of machine-learning techniques can correctly identify blended sources up to 90 per cent of the time, and prior-driven fitting can lead to a 70 per cent improvement in the number of de-blended sources.

  15. Dynamic coupling of plasmonic resonators

    NASA Astrophysics Data System (ADS)

    Lee, Suyeon; Park, Q.-Han

    2016-02-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments.

  16. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  17. Plasmonic properties and applications of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhen, Yurong

    Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A

  18. DOES STELLAR FEEDBACK CREATE H I HOLES? A HUBBLE SPACE TELESCOPE/VERY LARGE ARRAY STUDY OF HOLMBERG II

    SciTech Connect

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C.; Lee, Janice; Walter, Fabian E-mail: skillman@astro.umn.ed E-mail: adolphin@raytheon.co E-mail: jlee@obs.carnegiescience.ed

    2009-10-20

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes approx100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens

  19. Does Stellar Feedback Create H I Holes? A Hubble Space Telescope/Very Large Array Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C., Jr.; Lee, Janice; Walter, Fabian

    2009-10-01

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes ~100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or

  20. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    NASA Astrophysics Data System (ADS)

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  1. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.

    PubMed

    Bakhti, Saïd; Tishchenko, Alexandre V; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D; Schuck, P James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  2. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    PubMed Central

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  3. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.

    PubMed

    Bakhti, Saïd; Tishchenko, Alexandre V; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D; Schuck, P James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  4. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  5. A Very Large Array Search for Intermediate-mass Black Holes in Globular Clusters in M81

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Middleton, M. J.

    2016-07-01

    Nantais et al. used the Hubble Space Telescope to localize probable globular clusters (GCs) in M81, a spiral galaxy at a distance of 3.63 Mpc. Theory predicts that GCs can host intermediate-mass black holes (IMBHs) with masses {M}{{BH}}˜ 100{--}{100,000} {M}⊙ . Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, bolster gravitational-wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. We used the NRAO Karl G. Jansky Very Large Array to search for the radiative signatures of IMBH accretion from 206 probable GCs in a mosaic of M81. The observing wavelength was 5.5 cm, and the spatial resolution was 1.″5 (26.4 pc). None of the individual GCs are detected, nor are weighted-mean image stacks of the 206 GCs and the 49 massive GCs with stellar masses {M}\\star ≳ {200,000} {M}⊙ . We apply a semiempirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived, hard X-ray state, is consistent with a given radio luminosity. The 3σ radio-luminosity upper limits correspond to IMBH masses of \\overline{{M}{{BH}}({{all}})}\\lt {42,000}\\quad {M}⊙ for the all-cluster stack and \\overline{{M}{{BH}}({{massive}})}\\lt {51,000}\\quad {M}⊙ for the massive-cluster stack. We also apply the empirical fundamental-plane relation to two X-ray-detected clusters, finding that their individual IMBH masses at 95% confidence are M BH < 99,000 M ⊙ and {M}{{BH}}\\lt {15,000} {M}⊙ . Finally, no analog of HLX-1, a strong IMBH candidate in an extragalactic star cluster, occurs in any individual GC in M81. This underscores the uniqueness or rarity of the HLX-1 phenomenon.

  6. A Very Large Array Search for Intermediate-mass Black Holes in Globular Clusters in M81

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Middleton, M. J.

    2016-07-01

    Nantais et al. used the Hubble Space Telescope to localize probable globular clusters (GCs) in M81, a spiral galaxy at a distance of 3.63 Mpc. Theory predicts that GCs can host intermediate-mass black holes (IMBHs) with masses {M}{{BH}}˜ 100{--}{100,000} {M}ȯ . Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, bolster gravitational-wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. We used the NRAO Karl G. Jansky Very Large Array to search for the radiative signatures of IMBH accretion from 206 probable GCs in a mosaic of M81. The observing wavelength was 5.5 cm, and the spatial resolution was 1.″5 (26.4 pc). None of the individual GCs are detected, nor are weighted-mean image stacks of the 206 GCs and the 49 massive GCs with stellar masses {M}\\star ≳ {200,000} {M}ȯ . We apply a semiempirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived, hard X-ray state, is consistent with a given radio luminosity. The 3σ radio-luminosity upper limits correspond to IMBH masses of \\overline{{M}{{BH}}({{all}})}\\lt {42,000}\\quad {M}ȯ for the all-cluster stack and \\overline{{M}{{BH}}({{massive}})}\\lt {51,000}\\quad {M}ȯ for the massive-cluster stack. We also apply the empirical fundamental-plane relation to two X-ray-detected clusters, finding that their individual IMBH masses at 95% confidence are M BH < 99,000 M ⊙ and {M}{{BH}}\\lt {15,000} {M}ȯ . Finally, no analog of HLX-1, a strong IMBH candidate in an extragalactic star cluster, occurs in any individual GC in M81. This underscores the uniqueness or rarity of the HLX-1 phenomenon.

  7. Semiconductor active plasmonics

    NASA Astrophysics Data System (ADS)

    Mendach, Stefan; Nötzel, Richard

    2013-12-01

    Plasmonics is a research area in nanophotonics attracting increasing interest due to the potential applications in sensing and detecting, sub-wavelength confinement of light, integrated circuits, and many others. In particular, when plasmonic structures such as metal nanostructures or highly doped semiconductor particles are combined with active semiconductor materials and nanostructures, novel exciting physics and applications arise. This special section on semiconductor active plasmonics covers several of the most important and complementary directions in the field. First is the modification of the optical properties of a semiconductor nanostructure due to the close proximity of a metallic film or nanostructure. These arise from the formation hybrid plasmon/exciton states and may lead to enhanced spontaneous emission rates, directional far field emission patterns, strong coupling phenomena, and many more. Second is the realization of sub-wavelength scale nanolasers by coupling a semiconductor gain medium with a plasmonic metallic cavity. Particular emphasis is given on the major technical challenges in the fabrication of these nanolasers, such as device patterning, surface passivation, and metal deposition. While the above topics address mainly active structures and devices operating in the visible or near-infrared wavelength region, in the third, the enhanced THz extinction by periodic arrays of semiconductor particles is discussed. This is based on the build-up of surface plasmon resonances in the doped semiconductor particles which can be resonantly coupled and widely tuned by the carrier density in the semiconductor. We believe these highly diverse aspects give insight into the wide variety of new physics and applications that semiconductor active plasmonics is offering. Finally, we would like to thank the IOP editorial staff, in particular Alice Malhador, for their support, and we would also like to thank the contributors for their efforts and participation

  8. Study of plasmonic crystal to metamaterial transition in dielectric doped two-dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Gourshetty, Shivkumar; Regan, Charles; Grave de Peralta, Luis; Bernussi, Ayrton

    2012-10-01

    We investigated experimentally the transition from plasmonic crystal to metamaterial in dielectric-loaded plasmonic two-dimensional periodic structures with different lattice periods and lattice symmetries. The transition occurs due to changes in the effective refractive index of the plasmonic crystals when the period and/or the size of the patterned features are varied. The effective refractive index of the plasmonic structure can be further modified when an object (i.e. a virus, a bead, a cell, etc.) is placed on the top of the sample, thus altering the transition. This can be prospectively used for nanosensing applications. The samples investigated here were fabricated using a combination of electron-beam lithography and liftoff techniques and consisted of a glass substrate, a thin film of gold, and periodic arrays of air holes defined on PMMA doped with Rhodamine 6G. The plasmonic crystal to a metamaterial transition region was investigated using the leakage radiation microscopy technique. We determined that the transition occurs for lattice periods 262 nm and 310 nm for samples with square and hexagonal lattice symmetries, respectively.

  9. Multicolor fluorescence microscopic imaging of cancer cells on the plasmonic chip (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Sasakawa, Chisato; Yamamura, Shohei; Shibata, Izumi; Kataoka, Masatoshi

    2015-09-01

    A plasmonic chip which is a metal coated substrate with grating structure can provide the enhanced fluorescence by the grating-coupled surface plasmon field. In our previous studies, bright epi-fluorescence microscopic imaging of neuron cells and sensitive immunosesnsing have been reported. In this study, two kinds of breast cancer cells, MCF-7 and MDA-MB231, were observed with epi-fluorescence microscope on the plasmonic chip with 2D hole-arrays . They were multicolor stained with 4', 6-diamidino-2-phenylindole (DAPI) and allophycocyanin (APC)-labeled anti-epithelial cell adhesion molecule (EpCAM) antibody. Our plasmonic chip provided the brighter fluorescence images of these cells compared with the glass slide. Even in the cells including few EpCAM, the distribution of EpCAM was clearly observed in the cell membrane. It was found that the plasmonic chip can be one of the powerful tools to detect the marker protein existing around the chip surface even at low concentration.

  10. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  11. Plasmonic filters.

    SciTech Connect

    Passmore, Brandon Scott; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature filter solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a filter wheel solution.

  12. Photoluminescence of a Plasmonic Molecule.

    PubMed

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption. PMID:26165983

  13. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  14. Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Vodolazskaya, I. V.

    2016-02-01

    We simulated an experiment in which a thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface when a mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask [Harris D J, Hu H, Conrad J C and Lewis J A 2007 Phys. Rev. Lett. 98 148301]. We considered one particular case when centre-to-centre spacing between the holes is much less than the drop diameter. In our model, advection, diffusion, and sedimentation were taken into account. FlexPDE was utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrated that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

  15. Near-field optical imaging of periodic plasmon sources

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Davis, Christopher C.

    2002-07-01

    Periodic array of surface plasmon sources has been designed and imaged using near-field optical microscopy. Such arrays constitute a novel example of two-dimensional photonic crystal structures. They may find application in multi-channel plasmon chemical and biosensors.

  16. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  17. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  18. Zooming in on a sleeping giant: milliarcsecond High Sensitivity Array imaging of the black hole binary V404 Cyg in quiescence

    NASA Astrophysics Data System (ADS)

    Miller-Jones, J. C. A.; Gallo, E.; Rupen, M. P.; Mioduszewski, A. J.; Brisken, W.; Fender, R. P.; Jonker, P. G.; Maccarone, T. J.

    2008-08-01

    Observations of the black hole X-ray binary V404 Cyg with the very long baseline interferometer the High Sensitivity Array (HSA) have detected the source at a frequency of 8.4GHz, providing a source position accurate to 0.3mas relative to the calibrator source. The observations put an upper limit of 1.3mas on the source size (5.2au at 4kpc) and a lower limit of 7 × 106 K on its brightness temperature during the normal quiescent state, implying that the radio emission must be non-thermal, most probably synchrotron radiation, possibly from a jet. The radio light curves show a short flare, with a rise time of ~30min, confirming that the source remains active in the quiescent state.

  19. SPP-associated dual left-handed bands and field enhancement in metal-dielectric-metal metamaterial perforated by asymmetric cross hole arrays.

    PubMed

    Ding, P; Liang, E J; Hu, W Q; Zhou, Q; Zhang, L; Yuan, Y X; Xue, Q Z

    2009-02-16

    Dual-band left-handed transmissions in the near infrared frequencies through the metal-dielectric-metal metamaterial perforated with an array of asymmetric cross holes are demonstrated. It is shown that the left-handed bands originate from the SPP-associated magnetic response excited by different polarized light and their frequencies can be tuned by the arm's length or width of the cross-gaps. The structures are further optimized at 1.064 microm laser light excitation for elucidating the mechanism and possible application in surface enhanced Raman spectroscopy in sandwiched architectures. This study provides valuable information for the design of compact optical devices with dual left-handed bands in a single structure and may also pave the way toward stable and reproducible substrate design for surface enhanced Raman spectroscopy.

  20. Molecular Plasmonics.

    PubMed

    Lauchner, Adam; Schlather, Andrea E; Manjavacas, Alejandro; Cui, Yao; McClain, Michael J; Stec, Grant J; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2015-09-01

    Graphene supports surface plasmons that have been observed to be both electrically and geometrically tunable in the mid- to far-infrared spectral regions. In particular, it has been demonstrated that graphene plasmons can be tuned across a wide spectral range spanning from the mid-infrared to the terahertz. The identification of a general class of plasmonic excitations in systems containing only a few dozen atoms permits us to extend this versatility into the visible and ultraviolet. As appealing as this extension might be for active nanoscale manipulation of visible light, its realization constitutes a formidable technical challenge. We experimentally demonstrate the existence of molecular plasmon resonances in the visible for ionized polycyclic aromatic hydrocarbons (PAHs), which we reversibly switch by adding, then removing, a single electron from the molecule. The charged PAHs display intense absorption in the visible regime with electrical and geometrical tunability analogous to the plasmonic resonances of much larger nanographene systems. Finally, we also use the switchable molecular plasmon in anthracene to demonstrate a proof-of-concept low-voltage electrochromic device.

  1. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  2. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing.

    PubMed

    Weiss, T; Mesch, M; Schäferling, M; Giessen, H; Langbein, W; Muljarov, E A

    2016-06-10

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume. PMID:27341256

  3. From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Mesch, M.; Schäferling, M.; Giessen, H.; Langbein, W.; Muljarov, E. A.

    2016-06-01

    We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume.

  4. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications

    NASA Astrophysics Data System (ADS)

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Li, Jingqi; Wu, Ying; Chen, Longqing; Ooi, Boon; Wang, Xianbin; Zhang, Xi-Xiang

    2014-06-01

    Extraordinary optical transmission (EOT) through arrays of gold nanoholes was studied with light across the visible to the near-infrared spectrum. The EOT effect was found to be improved by bridging pairs of nanoholes due to the concentration of the electromagnetic field in the slit between the holes. The geometrical shape and separation of the holes in these pairs of nanoholes affected the intensity of the transmission and the wavelength of resonance. Changing the geometrical shapes of these nanohole pairs from triangles to circles to squares leads to increased transmission intensity as well as red-shifting resonance wavelengths. The performance of bridged nanohole pairs as a plasmonic sensor was investigated. The bridged nanohole pairs were able to distinguish methanol, olive oil and microscope immersion oil for the different surface plasmon resonance in transmission spectra. Numerical simulation results were in agreement with experimental observations.

  5. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schörner, K.; Goldammer, M.; Stephan, J.

    2011-02-01

    In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  6. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  7. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  8. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  9. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    SciTech Connect

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  10. A Poincaré's approach for plasmonics: the plasmon localization.

    PubMed

    Barchiesi, D; Kremer, E; Mai, V P; Grosges, T

    2008-03-01

    A Poincaré's approach is employed to characterize the excitation of a plasmon, which in essence corresponds to a zero of a complex S-matrix. Throughout this work we study the plasmonic behaviour of gold, as this metal not only is frequently used in experimental arrays, but also requires an accurate dispersion model to properly excite plasmons. We investigate the plasmonic behaviour of gold nanogratings by means of Born's approximation and the Finite-Elements Method. Also, a method based on the Poincaré's approach is proposed to optimize this kind of structures.

  11. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons.

    PubMed

    Mubeen, Syed; Lee, Joun; Singh, Nirala; Krämer, Stephan; Stucky, Galen D; Moskovits, Martin

    2013-04-01

    Solar conversion to electricity or to fuels based on electron-hole pair production in semiconductors is a highly evolved scientific and commercial enterprise. Recently, it has been posited that charge carriers either directly transferred from the plasmonic structure to a neighbouring semiconductor (such as TiO₂) or to a photocatalyst, or induced by energy transfer in a neighbouring medium, could augment photoconversion processes, potentially leading to an entire new paradigm in harvesting photons for practical use. The strong dependence of the wavelength at which the local surface plasmon can be excited on the nanostructure makes it possible, in principle, to design plasmonic devices that can harvest photons over the entire solar spectrum and beyond. So far, however, most such systems show rather small photocatalytic activity in the visible as compared with the ultraviolet. Here, we report an efficient, autonomous solar water-splitting device based on a gold nanorod array in which essentially all charge carriers involved in the oxidation and reduction steps arise from the hot electrons resulting from the excitation of surface plasmons in the nanostructured gold. Each nanorod functions without external wiring, producing 5 × 10(13) H₂ molecules per cm(2) per s under 1 sun illumination (AM 1.5 and 100 mW cm(-2)), with unprecedented long-term operational stability. PMID:23435280

  12. Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs

    NASA Astrophysics Data System (ADS)

    Pettinger, B.

    1986-12-01

    A quantum-mechanical approach for surface-enhanced optical processes is given, which may solve an old controversy regarding the surface enhancement mechanisms: The present formalism contains three terms: The first is equivalent to the classically derived electromagnetic enhancement; the second represents a loss term due to a competitive dipole-multipole and dipole-electron-hole pair coupling; and the third reveals an additional energy transfer induced gain for excitable molecules. Thus, the total pure surface enhancement can be much greater for ``colored'' species than for transparent ones.

  13. Genetically engineered plasmonic nanoarrays.

    PubMed

    Forestiere, Carlo; Pasquale, Alyssa J; Capretti, Antonio; Miano, Giovanni; Tamburrino, Antonello; Lee, Sylvanus Y; Reinhard, Björn M; Dal Negro, Luca

    2012-04-11

    In the present Letter, we demonstrate how the design of metallic nanoparticle arrays with large electric field enhancement can be performed using the basic paradigm of engineering, namely the optimization of a well-defined objective function. Such optimization is carried out by coupling a genetic algorithm with the analytical multiparticle Mie theory. General design criteria for best enhancement of electric fields are obtained, unveiling the fundamental interplay between the near-field plasmonic and radiative photonic coupling. Our optimization approach is experimentally validated by surface-enhanced Raman scattering measurements, which demonstrate how genetically optimized arrays, fabricated using electron beam lithography, lead to order of ten improvement of Raman enhancement over nanoparticle dimer antennas, and order of one hundred improvement over optimal nanoparticle gratings. A rigorous design of nanoparticle arrays with optimal field enhancement is essential to the engineering of numerous nanoscale optical devices such as plasmon-enhanced biosensors, photodetectors, light sources and more efficient nonlinear optical elements for on chip integration. PMID:22381056

  14. Remote sensing by plasmonic transport.

    PubMed

    Lee, Seung Joon; Moskovits, Martin

    2012-07-18

    Arrays of periodically disposed silver nanowires embedded in alumina were shown to be capable of conducting plasmons excited by laser illuminating one end of the array to its opposite end where surface-enhanced Raman of molecules resident among the tips of the nanowires was excited. The SERS signals, in turn, excited plasmons which propagated back to the originally illuminated ends of the nanowires where they emitted light signals that were collected and spectroscopically dispersed, in essence creating a sensor capable of exciting and collecting SERS remotely. For nanowire arrays with interwire gaps of ~11 nm and lengths of ~3.3 μm (i.e., after a ~6.6 μm round trip) the SERS signals obtained by remote sensing were rather strong, ~5% the intensity of those obtained by exciting the molecules resident among the nanowire tips directly. PMID:22747443

  15. Mid-infrared plasmonic inductors: enhancing inductance with meandering lines.

    PubMed

    Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario

    2014-01-07

    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.

  16. Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    PubMed Central

    Torres, Víctor; Ortuño, Rubén; Rodríguez-Ulibarri, Pablo; Griol, Amadeu; Martínez, Alejandro; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario

    2014-01-01

    We present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17 THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling of infrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications. PMID:24393839

  17. Design and Fabrication of Ultrathin Plasmonic Nanostructures for Photovoltaics, Color Filtering and Biosensing

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei

    Since the first report of the extraordinary optical transmission (EOT) phenomenon through periodic subwavelength hole arrays milled in optically-thick metal film, plasmonics have generated considerable interest because they enable new fundamental science and application technologies. Central to this phenomenon is the role of surface plasmon polaritons (SPPs), which are essentially electromagnetic waves trapped at the interface between a metal and a dielectric medium through their interactions with free electrons at the metal surface. The resonant interaction between the incident light and surface charge oscillations enables the concentration and manipulation of light at deep subwavelength scales, opening up exciting application opportunities ranging from subwavelength optics and optoelectronics to bio/chemical sensing. Furthermore, additional phenomena arise as the thickness of metal film decreases to be comparable to its skin depth (optically-thin), and the single-interface SPPs on the top and bottom metal surfaces combine to form two coupled SPPs, the long-range and short-range SPPs. Until now, much less work has focused on the study of surface plasmon resonances (SPRs) in ultrathin nanostructured metals. This dissertation seeks to elucidate underlying physical mechanisms of SPRs in ultrathin nanostructured metals and tailor them for practical applications. Inspired by state-of-the-art advances on plasmonics in optically-thick nanostructured metals, one- (1D) and two-dimensional (2D) ultrathin plasmonic nanostructures are exploited for particular applications in three essential areas: photovoltaics, color filters and biosensors, achieving superior performances compared with their optically-thick counterparts. More specifically, this thesis is focused on systematic investigations on: (1) plasmonic transparent electrodes for organic photovoltaics and polarization-insensitive optical absorption enhancement in the active layer; (2) plasmonic subtractive color filters

  18. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring

    NASA Astrophysics Data System (ADS)

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V.; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M.; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C.; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-01

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser

  19. Surface plasmon resonance in super-periodic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  20. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Tuo; Lv, Rui; Zhang, Peng; Li, Changjiang; Gong, Jinlong

    2014-11-01

    This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor.This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of ~1.5 mA cm-2 at 1 V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor. Electronic supplementary information (ESI) available: Illustrative schematic of PEC measurements, XPS of ZnO nanorods and nanopencils. See DOI: 10.1039/c4nr03735a

  1. Understanding and controlling plasmon-induced convection.

    PubMed

    Roxworthy, Brian J; Bhuiya, Abdul M; Vanka, Surya P; Toussaint, Kimani C

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale. PMID:24445431

  2. Understanding and controlling plasmon-induced convection

    NASA Astrophysics Data System (ADS)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  3. Entanglement Detection in Coupled Particle Plasmons

    NASA Astrophysics Data System (ADS)

    del Pino, Javier; Feist, Johannes; García-Vidal, F. J.; García-Ripoll, Juan Jose

    2014-05-01

    When in close contact, plasmonic resonances interact and become strongly correlated. In this work we develop a quantum mechanical model for an array of coupled particle plasmons. This model predicts that when the coupling strength between plasmons approaches or surpasses the local dissipation, a sizable amount of entanglement is stored in the collective modes of the array. We also prove that entanglement manifests itself in far-field images of the plasmonic modes, through the statistics of the quadratures of the field, in what constitutes a novel family of entanglement witnesses. Finally, we estimate the amount of entanglement, the coupling strength and the correlation properties for a system that consists of two or more coupled nanospheres of silver, showing evidence that our predictions could be tested using present-day state-of-the-art technology.

  4. Plasmon dromions in a metamaterial via plasmon-induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a giant Kerr nonlinearity and create stable high-dimensional nonlinear plasmon polaritons via plasmon-induced transparency (PIT) in a metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that, due to the PIT effect and the nonlinearity contributed by the varactor, the system may possess very large second-order and third-order nonlinear susceptibilities. We further show that the system supports a resonant interaction between longwave and shortwave and hence effective third-order nonlinear susceptibility can be further enhanced one order of magnitude. Based on these peculiar properties, we derive Davey-Stewartson equations governing the evolution of longwave and shortwave envelope, and demonstrate that it possible to generate plasmon dromions [i.e., (2+1)-dimensional plasmon solitons with coupled longwave and shortwave components] with very low generation power. Our study raises the possibility for obtaining new, giant Kerr effect and stable high-dimensional nonlinear plasmon polaritons at very low radiation intensity by using nonlinear PIT metamaterials.

  5. EVIDENCE FROM THE VERY LONG BASELINE ARRAY THAT J1502SE/SW ARE DOUBLE HOTSPOTS, NOT A SUPERMASSIVE BINARY BLACK HOLE

    SciTech Connect

    Wrobel, J. M.; Walker, R. C.; Fu, H. E-mail: cwalker@nrao.edu

    2014-09-01

    SDSS J150243.09+111557.3 is a merging system at z = 0.39 that hosts two confirmed active galactic nuclei (AGNs), one unobscured and one dust-obscured, offset by several kiloparsecs. Deane et al. recently reported evidence from the European VLBI Network (EVN) that the dust-obscured AGN exhibits two flat-spectrum radio sources, J1502SE/SW, offset by 26 mas (140 pc), with each source being energized by its own supermassive black hole (BH). This intriguing interpretation of a close binary BH was reached after ruling out a double-hotspot scenario, wherein both hotspots are energized by a single, central BH, a configuration occurring in the well-studied compact symmetric objects. When observed with sufficient sensitivity and resolution, an object with double hotspots should have an edge-brightened structure. We report evidence from the Very Long Baseline Array (VLBA) for just such a structure in an image of the obscured AGN with higher sensitivity and resolution than the EVN images. We thus conclude that a double-hotspot scenario should be reconsidered as a viable interpretation for J1502SE/SW, and suggest further VLBA tests of that scenario. A double-hotspot scenario could have broad implications for feedback in obscured AGNs. We also report a VLBA detection of high-brightness-temperature emission from the unobscured AGN that is offset several kiloparsecs from J1502SE/SW.

  6. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - II. Catalogue and μJy source properties

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Kellermann, K. I.; Perley, R. A.

    2016-11-01

    This is the second of two papers describing the observations and source catalogues derived from sensitive 3-GHz images of the Lockman Hole North using the Karl G. Jansky Very Large Array (VLA). We describe the reduction and cataloguing process, which yielded an image with 8 arcsec resolution and instrumental noise of σn = 1.01 μJy beam-1 rms (before primary-beam corrections) and a catalogue of 558 sources detected above 5σn. We include details of how we estimate source spectral indices across the 2-GHz VLA bandwidth, finding a median index of -0.76 ± 0.04. Stacking of source spectra reveals a flattening of spectral index with decreasing flux density. We present a source count derived from the catalogue. We show a traditional count estimate compared with a completely independent estimate made via a P(D) confusion analysis, and find very good agreement. Cross-matches of the catalogue with X-ray, optical, infrared, radio, and redshift catalogues are also presented. The X-ray, optical and infrared data, as well as active galactic nuclei (AGN) selection criteria allow us to classify 10 per cent as radio-loud AGN, 28 per cent as radio-quiet AGN, and 58 per cent as star-forming galaxies, with only 4 per cent unclassified.

  7. Imaging and controlling plasmonic interference fields at buried interfaces

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  8. Plasmonic Resonant Absorption in Mid-Infrared in Graphene Nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Esfahani, Nima N.; Walker, Dennis E., Jr.; Hendrickson, Joshua R.; Cleary, Justin; Mou, Shin; Air Force Research Laboratory, Materials; Manufacturing Directorate, Wright-Patterson AFB, OH, USA Team; Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, USA Team

    2014-03-01

    We experimentally demonstrated polarization-sensitive, tunable plasmonic resonant absorption in the mid-infrared range of 5-14 um by utilizing an array of graphene nanoribbon resonators. By tuning resonator width and charge density, we probed graphene plasmons with λp <= λ /100 and plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra enabled us to map the wavevector-frequency dispersion for graphene plasmons at mid-IR energies and revealed a modified plasmon dispersion as well as plasmon damping due to intrinsic optical phonons of graphene and graphene plasmon interaction with the surface polar phonons in SiO2 substrates. Additionally, we studied spectra further by introducing intrinsic defect phonons and doping by direct electron beam irradiation of graphene nanoresonators

  9. Plasmonic metamaterials with tuneable optical properties

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly

    2008-03-01

    Negative refraction in metamaterials has recently attracted significant attention due to its possible numerous applications in high-resolution imaging and photolithography with the so-called ``perfect lenses,'' for electromagnetic shielding (invisibility cloak), optical signal manipulation, etc. Among various realizations of negative index materials, plasmonic nanostructures play a prominent role as they allow negative refraction properties to be engineered in the visible and near infrared spectral ranges. The coupling of light to plasmonic modes, that are collective electronic excitations in metallic nanostructures, provides the possibility to confine the electromagnetic field on the sub-wavelength scale and manipulate it with high precision to achieve the desired mode dispersion and, thus, reflection, absorption and transmission properties of the nanostructures. In this talk we will discuss various pathways to control dispersion of the electromagnetic waves in plasmonic metamaterials, including plasmon polaritonic crystals and plasmonic nanorod arrays, and the approaches to active tuneability of their optical properties using optical and electric control signals. Both approaches take advantage of the very high sensitivity of surface plasmon mode dispersion on the refractive index of the dielectric adjacent to metallic nanostructure. Hybridization of plasmonic nanostructures with molecular species exhibiting nonlinear optical response allows the development of metamaterials with high effective nonlinear susceptibility due to the electromagnetic field enhancement related to plasmonic excitations. Signal and control light are then coupled to plasmonic modes that strongly interact via nonlinearity introduced by the hybridization. Concurrently, the use of electro-optically active dielectrics incorporated into plasmonic nanostructures provides the route to control optical signals electronically. Plasmonic metamaterials with tuneable optical properties can be used to

  10. A spectroscopic refractometer based on plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Pacifici, Domenico

    2016-02-01

    We describe the design, fabrication, and testing of a spectroscopic refractometer that employs plasmonic interferometry to measure the optical dielectric functions of materials in the visible range. The proposed device, dubbed a plasmonic refractometer, consists of an array of slit-groove plasmonic interferometers etched in a ˜300 nm-thick metal film (silver or gold) with arm lengths varying in steps of 25 nm up to ˜8 μm. The nano-groove in each interferometer is able to generate propagating surface plasmon polaritons efficiently in a broad wavelength range, without requiring prism- or grating-coupling configurations. An integrated microfluidic channel ensures uniform delivery of dielectric materials in liquid phase. Spectrally resolved plasmonic interferograms are generated by measuring light transmission spectra through the slit of each slit-groove plasmonic interferometer and plotting the normalized intensity as a function of arm length (0.26-8.16 μm) and incident wavelength (400-800 nm) for various combinations of metal/dielectric materials. Fits of the plasmonic interferograms with a surface plasmon interference model allow determination of the refractive index dispersion of a broad class of dielectric materials, over a wide range of wavelengths and dielectric constants. As proof of concept, we extract and report the dielectric functions of representative materials, such as silver, gold, water, methanol, and ethanol.

  11. Investigating the optical XNOR gate using plasmonic nano-rods

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Kaboli, Milad

    2016-04-01

    In this paper, a coherent perfect absorption (CPA)-type XNOR gate based on plasmonic nano particle is proposed. It consists of two plasmonic nano rod arrays on top of two parallel arms with quartz substrate. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-particles waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rod and the nano rod location, an efficient binary optimization method based the Particle Swarm Optimization (PSO) algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the 'off' state and the minimum absorption coefficient in the 'on' state. In Binary PSO (BPSO), a group of birds consists a matrix with binary entries, control the presence ('1‧) or the absence ('0‧) of nano rod in the array.

  12. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  13. Plasmonics in nanostructures.

    PubMed

    Fang, Zheyu; Zhu, Xing

    2013-07-26

    Plasmonics has developed into one of the rapidly growing research topics for nanophotonics. With advanced nanofabrication techniques, a broad variety of nanostructures can be designed and fabricated for plasmonic devices at nanoscale. Fundamental properties for both surface plasmon polaritons (SPP) and localized surface plasmons (LSP) arise a new insight and understanding for the electro-optical device investigations, such as plasmonic nanofocusing, low-loss plasmon waveguide and active plasmonic detectors for energy harvesting. Here, we review some typical functional plasmonic nanostructures and nanosmart devices emerging from our individual and collaborative research works.

  14. Ultrasmooth patterned metals for plasmonics and metamaterials.

    PubMed

    Nagpal, Prashant; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2009-07-31

    Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 10(7) for sensing applications and multilayer films for optical metamaterials.

  15. Ultrasmooth patterned metals for plasmonics and metamaterials.

    PubMed

    Nagpal, Prashant; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2009-07-31

    Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 10(7) for sensing applications and multilayer films for optical metamaterials. PMID:19644116

  16. Plasmonic photodetector with terahertz electrical bandwidth

    NASA Astrophysics Data System (ADS)

    Mousavi, Saba Siadat; Stöhr, Andreas; Berini, Pierre

    2014-04-01

    We propose and investigate a surface plasmon photodetector concept, based on the enhancement of electrical near-field in low-defect, low-doped In0.53Ga0.47As detection volumes located in the gaps of an array of metal nanodipole antennas. We report enhancement in responsivity in the presence of nanodipoles and predict a maximum responsivity of ˜100 mA/W at wavelengths near 1550 nm. The 3 dB electrical bandwidth of the device is estimated based on its RC rise time and the hole transit time through the detection volume for the cases of conventional and ballistic transport in InGaAs and is found to range from ˜0.7 to 4 THz. Also, trends are observed relating the responsivity to the gap dimensions, revealing a trade-off between the field-enhancement in the gap and its volume, and leading to an optimum gap length producing the maximum responsivity.

  17. Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials

    NASA Astrophysics Data System (ADS)

    Edwards, Brian; Alù, Andrea; Silveirinha, Mário G.; Engheta, Nader

    2009-10-01

    Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduction of total scattering width.

  18. Protein-Peptide Arrays for Detection of Specific Anti-Hepatitis D Virus (HDV) Genotype 1, 6, and 8 Antibodies among HDV-Infected Patients by Surface Plasmon Resonance Imaging

    PubMed Central

    Villiers, Marie-Bernadette; Cortay, Jean-Claude; Cortès, Sandra; Bloquel, Bénédicte; Brichler, Ségolène; Brakha, Carine; Kay, Alan; Falah, Nisrine; Zoulim, Fabien; Marquette, Christophe

    2015-01-01

    Liver diseases linked to hepatitis B-hepatitis D virus co- or superinfections are more severe than those during hepatitis B virus (HBV) monoinfection. The diagnosis of hepatitis D virus (HDV) infection therefore remains crucial in monitoring patients but is often overlooked. To integrate HDV markers into high-throughput viral hepatitis diagnostics, we studied the binding of anti-HDV antibodies (Abs) using surface plasmon resonance imaging (SPRi). We focused on the ubiquitous HDV genotype 1 (HDV1) and the more uncommon African-HDV6 and HDV8 genotypes to define an array with recombinant proteins or peptides. Full-length and truncated small hepatitis D antigen (S-HDAg) recombinant proteins of HDV genotype 1 (HDV1) and 11 HDV peptides of HDV1, 6, and 8, representing various portions of the delta antigen were grafted onto biochips, allowing SPRi measurements to be made. Sixteen to 17 serum samples from patients infected with different HDV genotypes were injected onto protein and peptide chips. In all, Abs against HDV proteins and/or peptides were detected in 16 out of 17 infected patients (94.12%), although the amplitude of the SPR signal varied. The amino-terminal part of the protein was poorly immunogenic, while epitope 65-80, exposed on the viral ribonucleoprotein, may be immunodominant, as 9 patient samples led to a specific SPR signal on peptide 65 type 1 (65#1), independently of the infecting genotype. In this pilot study, we confirmed that HDV infection screening based on the reactivity of patient Abs against carefully chosen HDV peptides and/or proteins can be included in a syndrome-based viral hepatitis diagnostic assay. The preliminary results indicated that SPRi studying direct physical HDAg–anti-HDV Ab interactions was more convenient using linear peptide epitopes than full-length S-HDAg proteins, due to the regeneration process, and may represent an innovative approach for a hepatitis syndrome–viral etiology-exploring array. PMID:25631795

  19. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  20. Plasmonic nanoparticle scattering for color holograms

    PubMed Central

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-01-01

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field. PMID:25122675

  1. Design and fabrication of structural color by local surface plasmonic meta-molecules

    NASA Astrophysics Data System (ADS)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  2. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    PubMed

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-01

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  3. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A.; Wasserman, Daniel

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  4. Plasmonic solitons and dromions via plasmon-induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Huang, Guoxiang

    2016-09-01

    We propose a method to enhance Kerr nonlinearities and realize low-power gigahertz solitons via plasmon induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor- loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess giant second- and third-order nonlinear optical susceptibilities, which may be used to create plasmon solitons and dromions with extremely low power. Our studies raise the possibility for obtaining strong nonlinear effects of gigahertz radiation at very low intensity based on room temperature metamaterials.

  5. Plasmonic trapping of sub-micro objects with metallic antennae

    NASA Astrophysics Data System (ADS)

    Sugawara, Eishi; Kato, Jun-ichi; Yamagata, Yutaka; Ozaki, Miyu; Furutani, Ryoshu

    2016-07-01

    Since optical trapping was first reported, its methods and targets have been broadened. In this paper, we propose ‘plasmonic clipping’, which traps objects on the plasmonic dot array. Localized surface plasmon polaritons (LSPPs), which localize optical energy in the nanometer-scale size and enhances the optical field, are excited in gaps between the dots. The objects are trapped by electric-field-gradient forces of LSPPs along the dot array. The dot arrays are arranged radially so that LSPPs are selectively excited in dot array corresponding to polarization direction of excitation light. The selective excitation results in directionally-selective ‘plasmonic clipping’. The radial dot arrays made of silver are numerically designed and fabricated by means of a focused ion beam (FIB). The arrays are illuminated with laser beam through the half wavelength plate to rotate polarization direction. As a result, the plasmonic clipping is observed along the array corresponding to polarization of the excitation light. It is expected to be utilized to align functional components for manufacturing, measurement, and material technologies.

  6. Theoretical predictions for hot-carrier generation from surface plasmon decay

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard, William A., III; Atwater, Harry A.

    2014-12-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1-2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant.

  7. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  8. Effect of plasmon-enhancement on photophysics in upconverting nanoparticles.

    PubMed

    Sun, Q-C; Casamada-Ribot, J; Singh, V; Mundoor, H; Smalyukh, I I; Nagpal, P

    2014-05-19

    Surface plasmon polaritons (SPP) waves have been shown to significantly affect the near-field photophysical phenomenon. In particular, strong Coulombic interactions can enhance nearby non-linear optics and energy transfer process, while SPP waves also affect other photophysical processes like quenching observed in fluorescent and excitonic systems. Here, using different plasmonic substrates, we show the effect of plasmon-enhancement on quenching, phonon-assisted non-radiative decay, weak Purcell effect or electromagnetic field enhancement, and energy transfer rates of upconverting doped-lanthanide nanoparticles. While the resonant plasmons enhance the local electromagnetic field and the rate of energy transfer leading to enhanced upconversion photoluminescence of infrared radiation to visible light, it can also increase the quenching and non-radiative decay rates of photoexcited electron-hole pairs leading to losses and lower efficiency. These results can guide the design of optimized substrate geometry for using surface plasmons to modulate the photophysics in other applications too.

  9. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence.

    PubMed

    Poirier-Richard, H-P; Couture, M; Brule, T; Masson, J-F

    2015-07-21

    The influence of experimental parameters on the performance of plasmonic sensors is of great importance in analytical sciences. The plasmon coupling conditions (angle of incidence, metal composition, laser frequency and excitation/emission properties of fluorophores) were thus investigated for surface plasmon-enhanced fluorescence on metallic nanohole arrays. Optimal fluorescence enhancements were achieved when the plasmon resonance, the excitation laser and the fluorophore's excitation wavelengths were matched. The enhancement of the acceptor emission of a rhodamine 6G(Rh6G)-Quasar670™ FRET pair was achieved on the nanohole arrays by tuning the plasmon wavelength with the maximal overlap of the donor's emission and acceptor excitation. Silver nanohole arrays achieved larger fluorescence enhancement than gold nanohole arrays at 532 nm, while gold nanohole arrays led to larger fluorescence enhancement at 635 nm. These results demonstrate the importance of tuning the plasmon coupling conditions for surface plasmon-enhanced fluorescence sensing.

  10. Tunable surface plasmon wave plates.

    PubMed

    Djalalian-Assl, Amir; Cadusch, Jasper J; Balaur, Eugeniu; Aramesh, Morteza

    2016-07-01

    The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light. PMID:27367123

  11. Yttrium hydride nanoantennas for active plasmonics.

    PubMed

    Strohfeldt, Nikolai; Tittl, Andreas; Schäferling, Martin; Neubrech, Frank; Kreibig, Uwe; Griessen, Ronald; Giessen, Harald

    2014-03-12

    A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe, in extinction spectra, the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride. Whereas the yttrium dihydride nanostructures exhibit a pronounced particle plasmon resonance, the transition to yttrium trihydride leads to a complete vanishing of the resonant behavior. The plasmonic resonance in the dihydride state can be tuned over a wide wavelength range by simply varying the size of the nanostructures. Furthermore, we develop an analytical diffusion model to explain the temporal behavior of the hydrogen loading and unloading trajectories observed in our experiments and gain information about the thermodynamics of our device. Thus, our nanorod system serves as a versatile basic building block for active plasmonic devices ranging from switchable perfect absorbers to active local heating control elements.

  12. Basics of quantum plasmonics

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van; Nguyen, Bich Ha

    2015-01-01

    The present work is a topical review of the theoretical research on the quantum theory of plasmons and plasmon-photon interaction. The plasmons are defined as the quanta of the quantized plasmonic field. The corresponding classical plasmonic field was constructed on the basis of the study of collective oscillations of the electron gas in the solid. The electron-electron Coulomb interaction is taken into account. The explicit forms of the plasmon-photon interaction Lagrangian in canonical quantum mechanics and the plasmon-photon interaction action functional in the functional integral approach are derived. They all show that the interaction processes are nonlocal ones. The physical origin of the nonlocality is the complex structure of plasmons as composite quasiparticles: they cannot be considered as point particles, as was assumed in all phenomenological theories.

  13. Plasmon-drag-assisted terahertz generation in a graphene layer incorporating an asymmetric plasmon nanostructure

    NASA Astrophysics Data System (ADS)

    Raeis-Zadeh, S. Mohsen; Semnani, Behrooz; Safavi-Naeini, Safieddin

    2016-09-01

    This Rapid Communication presents a structure and full theoretical analysis to exploit the photon drag effect for THz signal generation in a graphene layer integrated with a plasmonic structure. The plasmonic structure is composed of a periodic array of asymmetric nanoparticles patterned over a graphene layer. The nanoparticles are designed to accomplish two goals: field localization due to the plasmonic resonance and manipulating the phase of the near field to effectively drag the quasiparticles in graphene. Combining the asymmetry with the plasmon resonances of nanoparticles, we show that an enhancement as large as three orders of magnitude is attainable in the power of the generated THz wave. This level of unprecedented enhancement mostly stems from the phase manipulation of the near field caused by asymmetric nanoparticles. Using the achieved enhancement, it is demonstrated that an ultra-wideband THz signal carrying the power of 1 μ W can be generated using a commercially available femtosecond pulsed laser.

  14. Plasmonic solar water splitting.

    SciTech Connect

    Warren, S. C.; Thimsen, E.

    2012-01-01

    The study of the optoelectronic effects of plasmonic metal nanoparticles on semiconductors has led to compelling evidence for plasmon-enhanced water splitting. We review the relevant physics, device geometries, and research progress in this area. We focus on localized surface plasmons and their effects on semiconductors, particularly in terms of energy transfer, scattering, and hot electron transfer.

  15. Ultrafast hybrid plasmonics.

    SciTech Connect

    Wiederrecht, G. P.; Wurtz, G. A.; Bouhelier, A.; Univ. of North Florida; Univ. de Bourgogne

    2008-08-20

    We review our recent studies of electromagnetic coupling and associated temporal dynamics of molecular excitations with plasmonic resonances supported by either localized or extended planar geometries. We focus on coherent interactions between plasmon resonances and molecular excitations, which are experimentally challenging due to the very short ({approx}10-100 fs) coherence times of plasmons. Recent experimental results and theoretical analysis for observing and controlling coherences between molecular excitations and plasmonic polarizations are shown. Advances will explore new directions in ultrafast coherent control of molecular excited states and energy dissipation processes, as well as ultrafast addressing and switching in plasmonics-based circuit architectures.

  16. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  17. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.

  18. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  19. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-01

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices. PMID:27152653

  20. Exploiting plasmon-induced hot electrons in molecular electronic devices.

    PubMed

    Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F; Stecher, Joshua T; Chen, Xi; Therien, Michael J; Bonnell, Dawn A

    2013-05-28

    Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities. PMID:23550717

  1. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-01

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  2. Wavelength-selective plasmonics for enhanced cultivation of microalgae

    SciTech Connect

    Ooms, Matthew D.; Jeyaram, Yogesh; Sinton, David

    2015-02-09

    Optimal photon management is a key challenge for photobioreactor design, since light gradients and varying spectral sensitivities between organisms result in uneven illumination and unused photons. This paper demonstrates wavelength specific scattering from plasmonic nano-patterned surfaces as a means of addressing the challenge of photon management in photobioreactors. Modular photobioreactors were constructed with different reflective substrates including arrays of plasmonic nanodisks, broadband reflectors, and untreated glass. It was found that the growth rate of cyanobacterium S. elongatus in photobioreactors equipped with a plasmonic substrate (R{sub 623 nm} ∼ 35%) was enhanced by 6.5% compared to photobioreactors equipped with untreated glass. Furthermore, plasmonic reflectors showed a normalized power efficiency improvement of 52% over broadband reflectors. Wavelength-specific reflection from plasmonic reflectors increases the flux of useful light to cultures without sacrificing the full spectrum.

  3. Plasmonic enhancement of ultraviolet fluorescence

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50

  4. Surface Plasmon's Dispersion Properties of Porous Gold Films.

    PubMed

    Stetsenko, M O; Maksimenko, L S; Rudenko, S P; Krishchenko, I M; Korchovyi, A A; Kryvyi, S B; Kaganovich, E B; Serdega, B K

    2016-12-01

    Nanostructure porous films with arrays of gold nanoparticles (Au NPs) have been produced by pulsed laser deposition. Dispersion properties of surface plasmons have been studied by the modulation-polarization spectroscopy technique. The dispersion relations for radiative modes and two types of non-radiative modes of localized and propagating surface plasmons were obtained. The branches of propagating modes were characterized by negative group velocity caused by spatial dispersion of dielectric function. The propagating modes are caused by dipole-dipole interactions between adjacent Au NPs. The frequencies and relaxation parameters of surface plasmon resonances and the plasma frequencies for Αu NPs were obtained. The relation between the surface plasmon's properties and formation conditions of films with arrays of Αu NPs is discussed. PMID:26925864

  5. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime.

    PubMed

    Wurtz, G A; Dickson, W; O'Connor, D; Atkinson, R; Hendren, W; Evans, P; Pollard, R; Zayats, A V

    2008-05-12

    We demonstrate that the coupling between plasmonic modes of oriented metallic nanorods results in the formation of an extended (guided) plasmonic mode of the nanorod array. The electromagnetic field distribution associated to this mode is found to be concentrated between the nanorods within the assembly and propagates normally to the nanorod long axes, similar to a photonic mode waveguided by an anisotropic slab. This collective plasmonic mode determines the optical properties of nanorod assemblies and can be tuned in a wide spectral range by changing the nanorod array geometry. This geometry represents a unique opportunity for light guiding applications and manipulation at the nanoscale as well as sensing applications and development of molecular plasmonic devices.

  6. Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

    NASA Technical Reports Server (NTRS)

    Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew

    2013-01-01

    Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single

  7. Tailoring the parameters of nanohole arrays in gold films for sensing applications.

    SciTech Connect

    McMahon, J. M.; Schatz, G. C.; Gray, S. K.; Northwestern Univ.

    2007-01-01

    Subwavelength hole arrays in metal films have the potential to exhibit narrow and high refractive index (RI) sensitive transmission features. We have previously demonstrated that such features can arise from the coupling between Wood anomalies (WAs) and surface Plasmon polaritons (SPPs) on opposite sides of the metal film, the 'WA-SPP' effect. Rigorous coupled-wave analysis (RCWA) calculations on a 2D model, which are shown to give WA-SPP features very similar to that of 3D Finite-Difference Time- Domain (FDTD) calculations, are performed to determine how system parameters influence the strength of the WA-SPP effect. Herein we show that the optimum values for the film thickness and hole diameter are 45 and 175 nm, respectively.

  8. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  9. Pixel-level plasmonic microcavity infrared photodetector

    NASA Astrophysics Data System (ADS)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  10. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  11. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer. PMID:25679856

  12. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  13. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A.; Apostolova, T.

    2015-06-01

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  14. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    SciTech Connect

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I. Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A.; Apostolova, T.

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  15. Decay of dark and bright plasmonic modes in a metallic nanoparticle dimer

    NASA Astrophysics Data System (ADS)

    Brandstetter-Kunc, Adam; Weick, Guillaume; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2015-01-01

    We develop a general quantum theory of the coupled plasmonic modes resulting from the near-field interaction between localized surface plasmons in a heterogeneous metallic nanoparticle dimer. In particular, we provide analytical expressions for the frequencies and decay rates of the bright and dark plasmonic modes. We show that, for sufficiently small nanoparticles, the main decay channel for the dark plasmonic mode, which is weakly coupled to light and, hence, immune to radiation damping, is of nonradiative origin and corresponds to Landau damping, i.e., decay into electron-hole pairs.

  16. Optimizing plasmonic nanoantennas via coordinated multiple coupling

    PubMed Central

    Lin, Linhan; Zheng, Yuebing

    2015-01-01

    Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording. PMID:26423015

  17. Transduction of Entangled Images by Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Dowran, Mohammadjavad; Holtfrerich, Matthew; Lawrie, Benjamin; Davidson, Roderick; Pooser, Raphael; Marino, Alberto

    2016-05-01

    Quantum plasmonics has attracted broad interest in recent years, motivated by nano-imaging and sub-wavelength photonic circuits. The potential for nanoscale quantum information processing and quantum plasmonic sensing has led to the study of the interface between quantum optics and plasmonics. We study the interface between continuous variable entangled images and localized surface plasmons (LSPs). We generate entangled images with four-wave mixing in hot Rb atoms. The entangled images are sent through two spatially separated plasmonic structures, which consist of an array of triangular nanoholes in a silver metal film designed to excite LSPs. After transduction through the plasmonic structure, mediated by extraordinary optical transmission (EOT), the entanglement properties of the light are characterized. We show that both the entanglement and spatial properties of the light are preserved by the LSPs. This results show that the transfer of entanglement and quantum information from multi-spatial mode photons to LSPs and back to photons is a coherent process that preserves the spatial quantum information of the incident light. By addressing two spatially separated plasmonic structures, the entanglement is effectively transferred to the plasmons for a short period of time. Work supported by the W.M. Keck Foundation.

  18. Satellite band structure in silicon caused by electron-plasmon coupling

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Pálsson, G. K.; Vigil-Fowler, Derek; Nemsak, S.; Avila, J.; Asensio, M. C.; Fadley, C. S.; Louie, Steven G.

    2015-05-01

    We report an angle-resolved photoemission measurement of the wave-vector-dependent plasmon satellite structure of a three-dimensional solid, crystalline silicon. In sharp contrast to nanomaterials, which typically exhibit strongly wave-vector-dependent low-energy plasmons, the large plasmon energy of silicon facilitates the search for a plasmaron state consisting of resonantly bound holes and plasmons and its distinction from a weakly interacting plasmon-hole pair. Employing a first-principles theory, which is based on a cumulant expansion of the one-electron Green's function and contains significant electron correlation effects, we obtain good agreement with the measured photoemission spectrum for the wave-vector-dependent dispersion of the satellite feature, but without observing the existence of plasmarons in the calculations.

  19. Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-11-06

    Nonlinear photoemission electron microscopy of isolated nanoholes in gold thin films map propagating surface plasmon polaritons (SPPs) launched from the lithographically patterned plasmonic structures. A damped sinusoidal elongated ring-like photoemission beat pattern is observed from the nanoholes, following low angle of incidence irradiation of these structures with sub-15 fs 780 nm laser pulses. A notable agreement between finite difference time domain simulations and experiment corroborates our assignment of the observed photoemission patterns to SPPs launched from isolated nanoholes and probed through nonlinear photoemission. We also demonstrate how the efficiency of coupling light waves into isolated plasmonic holes can be tuned by varying hole diameter. In this regard, a simple intuitive geometrical model, which accounts for the observed and simulated diameter dependent plasmonic response, is proposed. Overall, this study paves the way for designing nanohole assemblies where optical coupling and subsequent plasmon propagation can be rationally controlled through 2D SPP interferometry

  20. Plasmonics: metallic nanostructures for energy guiding and sensing

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.

    2004-12-01

    We investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 μm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.

  1. Optical invisibility through metasurfaces made of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Monti, A.; Alù, A.; Toscano, A.; Bilotti, F.

    2015-03-01

    In this paper, we investigate the application of the mantle cloaking technique to near-infrared and visible frequencies, analyzing and designing thin covers consisting of 2D arrays of plasmonic nanoparticles. First, we validate and generalize an analytical model recently appeared in the literature to describe a 2D array of plasmonic nanoparticles as a metasurface characterized by its homogenized surface reactance. We prove that the proposed model allows to efficiently design 2D mantle cloaks with an assigned surface reactance, enabling, thus, the extension of the mantle cloaking technique to optical frequencies. Then, we design realistic optical mantle cloaks made of 2D arrays of spheroidal plasmonic nanoparticles with a high eccentricity. We show that the proposed cloaks allow significant, moderately broadband cloaking effects at visible frequencies. In our designs, we consider realistic losses and non-critical nanoparticle dimensions to envision a practical realization of the proposed cloaks.

  2. Plasmonic band gap engineering of plasmon-exciton coupling.

    PubMed

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2014-10-01

    Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.

  3. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures

    NASA Astrophysics Data System (ADS)

    Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.

    2015-05-01

    Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.

  4. Plasmonic nanoantenna hydrophones.

    PubMed

    Maksymov, Ivan S; Greentree, Andrew D

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  5. Plasmonics: Loss and gain

    NASA Astrophysics Data System (ADS)

    Oulton, Rupert F.

    2012-04-01

    Providing sufficient gain to overcome loss remains a fundamental challenge for light amplification in miniaturized plasmonic devices. Ongoing research gives hope for a cautious but optimistic outlook.

  6. Plasmonic nanoantenna hydrophones

    NASA Astrophysics Data System (ADS)

    Maksymov, Ivan S.; Greentree, Andrew D.

    2016-09-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale.

  7. Plasmonic nanoantenna hydrophones

    PubMed Central

    Maksymov, Ivan S.; Greentree, Andrew D.

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  8. Nanomembrane-based plasmonics

    NASA Astrophysics Data System (ADS)

    Jakšić, Zoran; Vuković, Slobodan M.; Buha, Jelena; Matovic, Jovan

    2011-01-01

    This paper reviews the main properties and applications of nanomembrane-based plasmonic structures, including some results presented here for the first time. Artificial nanomembranes are a novel building block in micro- and nanosystems technologies. They represent quasi-two-dimensional (2D) freestanding structures thinner than 100 nm and with giant aspect ratios that often exceed 1,000,000. They may be fabricated as various quasi-2D metal-dielectric nanocomposites with tailorable properties; they are fully symmetric in an electromagnetic sense and support long-range surface plasmon polaritons. This makes nanomembranes a convenient platform for different plasmonic structures such as subwavelength plasmonic crystals and metamaterials and applications such as plasmon waveguides and ultrasensitive bio/chemical sensors. Among other advantages of nanomembrane plasmonics is the feasibility to fabricate flexible, transferable plasmonic guides applicable to different substrates and dynamically tunable through stretching. There are various approaches to multifunctionalization of nanomembranes for plasmonics, including the use of transparent conductive oxide nanoparticles, but also the incorporation of switchable ion channels. Since the natural counterpart of the artificial nanomembranes are cell membranes, the multifunctionalization of synthetic nanomembranes ensures the introduction of bionic principles into plasmonics, at the same time extending the toolbox of the available nanostructures, materials and functions.

  9. Improved near field lithography by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Zhao, Yanhui; Fang, Liang; Wang, Changtao; Luo, Xiangang

    2009-05-01

    Conventionally, the finest pattern obtained in optical lithography is determined by wavelength and numerical aperture of optical system, due to diffraction effect. This principle delivers theoretical obstacles for nano lithography using conventional light source, like Hg lamp. According to theory, this obstacle can be circumvented with near field lithography (NFL) technique, just by confining the mask and photo resist into sub-wavelength dimensions. Sub-wavelength patterns with features down to 100nm can be realized in the NFL, as demonstrated numerically and experimentally in many papers. One obvious problem associated with NFL is that low efficiency in the lithography process, since it is difficult to transmit through sub-wavelength scaled apertures in the mask. This usually results in the deleterious effect to the patterns on photo resist. In this paper, we demonstrate that the extraordinary optical transmission (EOT) effect helps to solve this problem. It is found that noble metal, instead of chromium, usually gives much greater transmission when employed as mask material. The enhancement is contributed to resonant excitation of surface plasmon mode. Further, the transmission can be enhanced by appropriately design of patterns. The polarization of illumination light affects lithography efficiency as well. As illustrative examples, mask patterns like lines group, grating structure and holes array are designed and simulated with greatly improved lithography efficiency. This method is believed to have potential applications in nano lithography.

  10. Environmental Effects on the Terahertz Surface Plasmons in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Fekete, Paula; Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, Ming-Fa

    We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below a limiting value of the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor's surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers (N >7) the hybrid structure has no surface plasmon. The existence of two plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice.

  11. A Novel Method for the Preparation of CdS Quantum Dots Sensitized Solar Cells Based on Free-Standing and Through-Hole TiO2 Nanotube Arrays.

    PubMed

    Wang, Yang; Li, Zhen; Li, Fei; Tian, Yunfeng; Zhao, Wen; Liu, Xueqin; Yang, Jianbo

    2016-06-01

    The crystallized free-standing through-hole TiO2 nanotube arrays (TNAs) membranes were fabricated by a facile method. CdS quantum dots (QDs) are assembled onto free-standing through-hole NTAs films using successive ionic layer adsorption and reaction (SILAR) process. The CdS/TNAs were easily transferred to the fluorine-doped tin oxide glass to form photoanodes after they were sensitized by modifying the traditional procedure. The morphology and crystalline phase of the TiO2 nanotubes were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The cells with 5 SILAR cycles show photovoltaic conversion efficiency as high as 3.34% under simulated sunlight (AM 1.5, 100 mW x cm(-2)). Obviously, the new approach promotes the uniform distribution of CdS on the densely aligned TNAs and prevents the clogging of CdS quantum dots (QDs) at the TiO2 nanotube mouth. Such enhanced properties may be ascribed to the strong combination between CdS and TiO2, favorable for charge separation of TNAs. PMID:27427675

  12. Plasmonic interferometers: From physics to biosensing applications

    NASA Astrophysics Data System (ADS)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  13. Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality.

    PubMed

    Karimullah, Affar S; Jack, Calum; Tullius, Ryan; Rotello, Vincent M; Cooke, Graeme; Gadegaard, Nikolaj; Barron, Laurence D; Kadodwala, Malcolm

    2015-10-01

    Development of low-cost disposable plasmonic substrates is vital for the applicability of plasmonic sensing. Such devices can be made using injection-molded templates to create plasmonic films. The elements of these plasmonic films are hybrid nanostructures composed of inverse and solid structures. Tuning the modal coupling between the two allows optimization of the optical properties for nanophotonic applications.

  14. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study.

    PubMed

    Zheng, Zebo; Wang, Weiliang; Ma, Teng; Deng, Zexiang; Ke, Yanlin; Zhan, Runze; Zou, Qionghui; Ren, Wencai; Chen, Jun; She, Juncong; Zhang, Yu; Liu, Fei; Chen, Huanjun; Deng, Shaozhi; Xu, Ningsheng

    2016-10-01

    One of the most fascinating and important merits of graphene plasmonics is their tunability over a wide range. While chemical doping has proven to be a facile and effective way to create graphene plasmons, most of the previous studies focused on the macroscopic behaviors of the plasmons in chemically-doped graphene and little was known about their nanoscale responses and related mechanisms. Here, to the best of our knowledge, we present the first experimental near-field optical study on chemically-doped graphene with improved surface plasmon characteristics. By using a scattering-type scanning near-field optical microscope (s-SNOM), we managed to show that the graphene plasmons can be tuned and improved using a facile chemical doping method. Specifically, the plasmon interference patterns near the edge of the monolayer graphene were substantially enhanced via nitric acid (HNO3) exposure. The plasmon-related characteristics can be deduced by analyzing such plasmonic fringes, which exhibited a longer plasmon wavelength and reduced plasmon damping rate. In addition, the local carrier density and therefore the Fermi energy level (EF) of graphene can be obtained from the plasmonic nano-imaging, which indicated that the enhanced plasmon oscillation originated from the injection of free holes into graphene by HNO3. These findings were further corroborated by theoretical calculations using density functional theory (DFT). We believe that our findings provide a clear nanoscale picture on improving graphene plasmonics by chemical doping, which will be helpful for optimizing graphene plasmonics and for elucidating the mechanisms of two-dimensional light confinement by atomically thick materials.

  15. Backside-configured plasmonic structure for quantum dot infrared photodetector enhancement

    NASA Astrophysics Data System (ADS)

    Gu, Guiru

    Since infrared light was discovered in 1800, infrared detection has gradually grown into one of cornerstones in the modern science and technology. InAs/GaAs quantum dot infrared photodetectors (QDIPs) have emerged as a promising technology for infrared detection due to the advantages such as normal incident detection, low dark current, high photoconductive (PC) gain, and etc. However, the total number of quantum dots (QD) layers is limited by the accumulation of strain and the strain induced defects and dislocations, therefore, the total percentage of light that can be absorbed in the active region is limited. Accordingly, the QDIP detectivity is still low. Surface plasmon resonance (SPR), predicted by Ritchie in 1957, offers an effective surface light trapping and enhancement technique, which provides a promising solution to overcome the major limitation of the thin active QD region issue in QDIPs. Tremendous of work has been established in our research group to validate the understanding of the SPR enhancement for the QDIPs, and take further steps in investigating the parameters of the plasmonic structure like the periods, hole diameters and metal thickness. In this work, I am going to report a quantum dot infrared photodetector (QDIP) enhanced by a backside-configured surface plasmonic structure with an over 40 times peak photocurrent enhancement. The QDIP enhancement by the backside-configure plasmonic structure is compared with that by the top-configured plasmonic structure. The backside configured plasmonic structure shows much higher photocurrent and photodetectivity D* enhancement. And further analysis of the excitation of the surface plasmonic waves by the backside-configured and top-configured plasmonic structures is made. The higher enhancement is attributed to the more efficient surface plasmonic excitation by the backside-configured plasmonic structure. In addition, further investigation on the relationship of the plasmonic loss and the device

  16. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.

    PubMed

    Balci, Sinan; Kocabas, Coskun

    2015-07-15

    We report a ternary-coupled plasmonic system consisting of excitons of J-aggregated dye, localized surface plasmon polaritons of Ag nanoparticles, and propagating surface plasmon polaritons of continuous Ag film. J-aggregate dyes are uniformly self-assembled on colloidally synthesized Ag nanoprisms forming plexcitonic nanoparticles, which are placed at a distance nanometers away from the Ag thin film. The reflection measurements, corroborated by theoretical predictions, reveal that the strong coupling of plasmon polaritons and plexcitons results in a newly formed plasmon-exciton-plasmon hybridized state that we call here, reportedly for the first time, a plexcimon state. The hybrid plasmonic system shows dispersion characteristics similar to a coupled resonator optical waveguide. The group velocity of the plexcimon state approaches zero at the band edges. The ultrahybrid plasmonic system presented here is promising for a variety of light-matter interaction studies, including polariton lasers, plasmonic devices, plasmonic waveguiding, and spectroscopy.

  17. Plasmonics based micro/nano manufacturing

    NASA Astrophysics Data System (ADS)

    Garner, Quincy

    Since the advent of the Information Age, there has been an ever growing demand to continually shrink and reduce the cost of semiconductor products. To meet this demand, a great amount of research has been done to improve our current micro/nano manufacturing processes and develop the next generation of semiconductor fabrication techniques. High throughput, low cost, smaller features, high repeatability, and the simplification of the manufacturing processes are all targets that researchers continually strive for. To this day, there are no perfect systems capable of simultaneously achieving all of these targets. For this reason, much research time is spent improving and developing new techniques in hopes of developing a system that will incorporate all of these targets. While there are numerous techniques being investigated and developed every year, one of the most promising areas of research that may one day be capable of achieving our desired targets is plasmonics. Plasmonics, or the study of the free electron oscillations in metals, is the driving phenomena in the applications reported in this paper. In chapter 2, the formation of ordered gold nanoparticles on a silicon substrate through the use of energetic surface plasmons is reported. Utilizing a gold/alumina nano-hole antenna and 1064 nm Nd:YAG laser system, semi-periodic gold nanoparticles were deposited onto the surface of a silicon substrate. The novel technique is simpler, faster, and safer than any known gold nanoparticle deposition technique reported in literature. The implementation of this technique has potential wide-ranging applications in photovoltaic cells, medical products, and many others. In chapter 3, a low cost lithography technique utilizing surface plasmons is reported. In this technique, a plasmonic photomask is created by coating a pre-made porous alumina membrane with a thin aluminum layer. A coherent, 337 nm UV laser source is used to expose the photomask and excite surface plasmons along

  18. Improvement of plasmonic enhancement of quantum dot emission via an intermediate silicon-aluminum oxide interface

    SciTech Connect

    Wing, Waylin J.; Sadeghi, Seyed M. Campbell, Quinn

    2015-01-05

    We studied the emission of quantum dots in the presence of plasmon-metal oxide substrates, which consist of arrays of metallic nanorods embedded in amorphous silicon coated with a nanometer-thin layer of aluminum oxide on the top. We showed that the combined effects of plasmons and the silicon-aluminum oxide interface can lead to significant enhancement of the quantum efficiency of quantum dots. Our results show that such an interface can significantly enhance plasmonic effects of the nanorods via quantum dot-induced exciton-plasmon coupling, leading to partial polarization of the quantum dots' emission.

  19. Engineering photonic and plasmonic light emission enhancement

    NASA Astrophysics Data System (ADS)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  20. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    SciTech Connect

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A.; Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  1. Imaging and controlling plasmonic interference fields at buried interfaces

    PubMed Central

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; LaGrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-01-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal–dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films. PMID:27725670

  2. Microdischarge arrays

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui

    Microhollow cathode discharges (MHCDs) are DC or pulsed gas discharges between two electrodes, separated by a dielectric, and containing a concentric hole. The diameter of the hole, in this hollow cathode configuration, is in the hundred-micrometer range. MHCDs satisfy the two conditions necessary for an efficient excimer radiation sources: (1) high energy electrons which are required to provide a high concentration of excited or ionized rare gas atoms; (2) high pressure operation which favors excimer formation (a three-body process). Flat panel excimer sources require parallel operation of MHCDs. Based on the current-voltage characteristics of MHCD discharges, which have positive slopes in the low current (Townsend) mode and in the abnormal glow mode, stable arrays of MHCD discharges in argon and xenon could be generated in these current ranges without ballasting each MHCD separately. In the Townsend range, these arrays could be operated up to pressures of 400 Torr. In the abnormal glow mode, discharge arrays were found to be stable up to atmospheric pressure. By using semi-insulating silicon as the anode material, the stable operation of MHCD arrays could be extended to the current range with constant voltage (normal glow) and also that with negative differential conductance (hollow cathode discharge region). Experiments with a cathode geometry without microholes, i.e. excluding the hollow cathode phase, revealed that stable operation of discharges over an extended area were possible. The discharge structure in this configuration reduces to only the cathode fall and negative glow, with the negative glow plasma serving to conduct the discharge current radially to the circular anode. With decreasing current, a transition from homogenous plasma to self-organized plasma filaments is observed. Array formation was not only studied with discharges in parallel, but also with MHCD discharges in series. By using a sandwich electrode configuration, a tandem discharge was

  3. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  4. Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite

    NASA Astrophysics Data System (ADS)

    Chiang, Yu-Lun; Chen, Chih-Wei; Wang, Chun-Hsiung; Hsieh, Chun-Yi; Chen, Yung-Ting; Shih, Han-Yu; Chen, Yang-Fang

    2010-01-01

    Surface plasmon in nanoscaled materials has recently attracted a great deal of attention due to its possibility in a wide range of application. From a practical standpoint, it is desirable for the devices having a tunability of surface plasmon frequency. To achieve this goal, in this study, a composite consisting of two-dimensional gold nanoparticles array embedded in elastic polydimethylsiloxane (PDMS) membrane has been synthesized. Because the elastic PDMS membrane has a high malleability, with an external stress, it is very easy to regulate the interparticle distance in the gold nanoparticle array. The change in the distance between each nanoparticle will alter the surface plasmon interaction, and hence surface plasmon frequency can be manipulated. It is found that when the interparticle distance increases, the enhanced surface plasma mutual coupling will cause the blueshift of surface plasmon resonance frequency. The observed result satisfies the forecast based on electromagnetic theory.

  5. Active quantum plasmonics

    PubMed Central

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K.; M. Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G.

    2015-01-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066

  6. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  7. Active quantum plasmonics.

    PubMed

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K; M Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G

    2015-12-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.

  8. Active quantum plasmonics.

    PubMed

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K; M Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G

    2015-12-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066

  9. Directing fluorescence with plasmonic and photonic structures.

    PubMed

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Lakowicz, Joseph R

    2015-08-18

    potential in controlling and steering fluorescence beams. Some representative studies by other research groups with various nanoantenna structures are described. While there are complexities to near-field interactions of fluorescence with plasmonic and photonic structures, there are also many exciting possibilities. The routing of each emission wavelength along a specific direction with a given angular width and polarization will allow spatial and spectral multiplexing. Directional emission close to surface normal will be particularly useful for microscopy and array-based studies. Application-specific angular emission patterns can be obtained by varying the design parameters of the plasmonic/photonic substrates in a flexible manner. We anticipate that the ability to control the flow of emitted light in the nanoscale will lead to the development of a new generation of fluorescence-based assays, instrumentation, portable diagnostics, and emissive devices.

  10. Plasmonic band structure controls single-molecule fluorescence.

    PubMed

    Langguth, Lutz; Punj, Deep; Wenger, Jérôme; Koenderink, A Femius

    2013-10-22

    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection.

  11. Universal scaling of the figure of merit of plasmonic sensors.

    PubMed

    Offermans, Peter; Schaafsma, Martijn C; Rodriguez, Said R K; Zhang, Yichen; Crego-Calama, Mercedes; Brongersma, Sywert H; Gómez Rivas, Jaime

    2011-06-28

    We demonstrate an improvement by more than 1 order of magnitude of the figure of merit (FoM) of plasmonic nanoparticle sensors by means of the diffractive coupling of localized surface plasmon resonances. The coupling in arrays of nanoparticles leads to Fano resonances with narrow line widths known as surface lattice resonances, which are very suitable for the sensitive detection of small changes in the refractive index of the surroundings. We focus on the sensitivity to the bulk refractive index and find that the sensor FoM scales solely with the frequency difference between the surface lattice resonance and the diffracted order grazing to the surface of the array. This result, which can be extended to other systems with coupled resonances, enables the design of plasmonic sensors with a high FoM over broad spectral ranges with unprecedented accuracy. PMID:21574624

  12. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  13. Photon upconversion with hot carriers in plasmonic systems

    SciTech Connect

    Naik, Gururaj V.; Dionne, Jennifer A.

    2015-09-28

    We propose a scheme of photon upconversion based on harnessing the energy of plasmonic hot carriers. Low-energy photons excite hot electrons and hot holes in a plasmonic nanoparticle, which are then injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a photon of higher energy. We theoretically study the proposed upconversion scheme using Fermi-liquid theory and determine the internal quantum efficiency of upconversion to be as high as 25% in 5 nm silver nanocubes. This upconversion scheme is linear in its operation, does not require coherent illumination, offers spectral tunability, and is more efficient than conventional upconverters.

  14. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    NASA Astrophysics Data System (ADS)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  15. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh.

    PubMed

    Malone, Marvin A; Prakash, Suraj; Heer, Joseph M; Corwin, Lloyd D; Cilwa, Katherine E; Coe, James V

    2010-11-14

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10(-7) cm(2) at 3178 cm(-1)], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  16. The role of colloidal plasmonic nanostructures in organic solar cells.

    PubMed

    Singh, C R; Honold, T; Gujar, T P; Retsch, M; Fery, A; Karg, M; Thelakkat, M

    2016-08-17

    Plasmonic particles can contribute via multiple processes to the light absorption process in solar cells. These particles are commonly introduced into organic solar cells via deposition techniques such as spin-coating or dip-coating. However, such techniques are inherently challenging to achieve homogenous surface coatings as they lack control of inter-particle spacing and particle density on larger areas. Here we introduce interface assisted colloidal self-assembly as a concept for the fabrication of well-defined macroscopic 2-dimensional monolayers of hydrogel encapsulated plasmonic gold nanoparticles. The monolayers showed a pronounced extinction in the visible wavelength range due to localized surface plasmon resonance with excellent optical homogeneity. Moreover this strategy allowed for the investigation of the potential of plasmonic monolayers at different interfaces of P3HT:PCBM based inverted organic solar cells. In general, for monolayers located anywhere underneath the active layer, the solar cell performance decreased due to parasitic absorption. However with thick active layers, where low hole mobility limited the charge transport to the top electrode, the plasmonic monolayer near that electrode spatially redistributed the light and charge generation close to the electrode led to an improved performance. This work systematically highlights the trade-offs that need to be critically considered for designing an efficient plasmonically enhanced organic solar cell.

  17. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  18. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.

    PubMed

    Gui, Lili; Bagheri, Shahin; Strohfeldt, Nikolai; Hentschel, Mario; Zgrabik, Christine M; Metzger, Bernd; Linnenbank, Heiko; Hu, Evelyn L; Giessen, Harald

    2016-09-14

    Titanium nitride (TiN) is a novel refractory plasmonic material which can sustain high temperatures and exhibits large optical nonlinearities, potentially opening the door for high-power nonlinear plasmonic applications. We fabricate TiN nanoantenna arrays with plasmonic resonances tunable in the range of about 950-1050 nm by changing the antenna length. We present second-harmonic (SH) spectroscopy of TiN nanoantenna arrays, which is analyzed using a nonlinear oscillator model with a wavelength-dependent second-order response from the material itself. Furthermore, characterization of the robustness upon strong laser illumination confirms that the TiN antennas are able to endure laser irradiation with high peak intensity up to 15 GW/cm(2) without changing their optical properties and their physical appearance. They outperform gold antennas by one order of magnitude regarding laser power sustainability. Thus, TiN nanoantennas could serve as promising candidates for high-power/high-temperature applications such as coherent nonlinear converters and local heat sources on the nanoscale. PMID:27494639

  19. Plasmonic and silicon spherical nanoparticle antireflective coatings.

    PubMed

    Baryshnikova, K V; Petrov, M I; Babicheva, V E; Belov, P A

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  20. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.

    PubMed

    Gui, Lili; Bagheri, Shahin; Strohfeldt, Nikolai; Hentschel, Mario; Zgrabik, Christine M; Metzger, Bernd; Linnenbank, Heiko; Hu, Evelyn L; Giessen, Harald

    2016-09-14

    Titanium nitride (TiN) is a novel refractory plasmonic material which can sustain high temperatures and exhibits large optical nonlinearities, potentially opening the door for high-power nonlinear plasmonic applications. We fabricate TiN nanoantenna arrays with plasmonic resonances tunable in the range of about 950-1050 nm by changing the antenna length. We present second-harmonic (SH) spectroscopy of TiN nanoantenna arrays, which is analyzed using a nonlinear oscillator model with a wavelength-dependent second-order response from the material itself. Furthermore, characterization of the robustness upon strong laser illumination confirms that the TiN antennas are able to endure laser irradiation with high peak intensity up to 15 GW/cm(2) without changing their optical properties and their physical appearance. They outperform gold antennas by one order of magnitude regarding laser power sustainability. Thus, TiN nanoantennas could serve as promising candidates for high-power/high-temperature applications such as coherent nonlinear converters and local heat sources on the nanoscale.