Science.gov

Sample records for plasmopara halstedii elicitor

  1. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    PubMed Central

    2010-01-01

    Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i). Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii. PMID:20459704

  2. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower.

    PubMed

    Grasse, Wolfgang; Zipper, Reinhard; Totska, Maria; Spring, Otmar

    2013-08-01

    Plasmopara halstedii virus (PhV) is an isometric virus recently found in the oomycete Plasmopara halstedii. The fully sequenced virus genome consists of two ss(+)RNA strands encoding for the virus polymerase and the coat protein, respectively. Most of previously screened field isolates of P. halstedii were found to harbor PhV, but effects of PhV on the pathogenicity and aggressiveness of the oomycete have not been investigated yet. To assess the influence of PhV on the infectivity of P. halstedii, virus-free isolates of the oomycete were searched for, cultivated on sunflower and used for single zoospore infection. Four genetically homogenous strains belonging to three different pathotypes (710, 730, 750) were established. Subcultures of each strain were successfully infected with PhV. This afforded pairs of isogenic strains with and without virus and allowed assessment of the pathogenicity (susceptibility to specific sunflower genotypes) and aggressiveness (intensity of infection, time scale and density of sporulation) in cultivation of sunflower. While no significant difference was found in the pathogenicity of P. halstedii strains with and without virus towards sunflower seedlings of different resistance (pathotype differentials), the aggressiveness of the oomycete was diminished by PhV. Compared to the virus-free strains, the time required for the first sporulation (latent period) increased by about 1 day post inoculation. Progression of the pathogen from the hypocotyl into the epicotyl of sunflower (systemic infection) was reduced by about one third in the presence of virus. In the virus containing strains, the average density of sporangia produced per cm² cotyledon reached only 75% of the virus-free controls. In summary, the presence of PhV leads to hypovirulence effects by weakening the aggressiveness of P. halstedii. PMID:23747662

  3. Newly emerged populations of Plasmopara halstedii infecting rudbeckia exhibit unique genotypic profiles and are distinct from sunflower-infecting strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oomycete Plasmopara halstedii emerged at the onset of the 21st century as a destructive new pathogen causing downy mildew disease of ornamental Rudbeckia fulgida (rudbeckia) in the U.S.A. The pathogen is also a significant global problem of sunflower (Helianthus annuus), and is widely regarded a...

  4. Effector Polymorphisms of the Sunflower Downy Mildew Pathogen Plasmopara halstedii and Their Use to Identify Pathotypes from Field Isolates

    PubMed Central

    Gascuel, Quentin; Bordat, Amandine; Sallet, Erika; Pouilly, Nicolas; Carrere, Sébastien; Roux, Fabrice

    2016-01-01

    The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles. In oomycetes, two classes of effector proteins, key players of pathogen virulence, are translocated into the host: RXLR and CRN effectors. We identified 54 putative CRN or RXLR effector genes from transcriptomic data and analyzed their genetic diversity in seven Pl. halstedii pathotypes representative of the species variability. Pl. halstedii effector genes were on average more polymorphic at both the nucleic and protein levels than random non-effector genes, suggesting a potential adaptive dynamics of pathogen virulence over the last 25 years. Twenty-two KASP (Competitive Allele Specific PCR) markers designed on polymorphic effector genes were genotyped on 35 isolates belonging to 14 Pl. halstedii pathotypes. Polymorphism analysis based on eight KASP markers aims at proposing a determination key suitable to classify the eight multi-isolate pathotypes into six groups. This is the first report of a molecular marker set able to discriminate Pl. halstedii pathotypes based on the polymorphism of pathogenicity effectors. Compared to phenotypic tests handling living spores used until now to discriminate Pl. halstedii pathotypes, this set of molecular markers constitutes a first step in faster pathotype diagnosis of Pl. halstedii isolates. Hence, emerging sunflower downy mildew isolates could be more rapidly characterized and thus, assessment of plant resistance breakdown under field conditions should be improved. PMID:26845339

  5. Effector Polymorphisms of the Sunflower Downy Mildew Pathogen Plasmopara halstedii and Their Use to Identify Pathotypes from Field Isolates.

    PubMed

    Gascuel, Quentin; Bordat, Amandine; Sallet, Erika; Pouilly, Nicolas; Carrere, Sébastien; Roux, Fabrice; Vincourt, Patrick; Godiard, Laurence

    2016-01-01

    The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles. In oomycetes, two classes of effector proteins, key players of pathogen virulence, are translocated into the host: RXLR and CRN effectors. We identified 54 putative CRN or RXLR effector genes from transcriptomic data and analyzed their genetic diversity in seven Pl. halstedii pathotypes representative of the species variability. Pl. halstedii effector genes were on average more polymorphic at both the nucleic and protein levels than random non-effector genes, suggesting a potential adaptive dynamics of pathogen virulence over the last 25 years. Twenty-two KASP (Competitive Allele Specific PCR) markers designed on polymorphic effector genes were genotyped on 35 isolates belonging to 14 Pl. halstedii pathotypes. Polymorphism analysis based on eight KASP markers aims at proposing a determination key suitable to classify the eight multi-isolate pathotypes into six groups. This is the first report of a molecular marker set able to discriminate Pl. halstedii pathotypes based on the polymorphism of pathogenicity effectors. Compared to phenotypic tests handling living spores used until now to discriminate Pl. halstedii pathotypes, this set of molecular markers constitutes a first step in faster pathotype diagnosis of Pl. halstedii isolates. Hence, emerging sunflower downy mildew isolates could be more rapidly characterized and thus, assessment of plant resistance breakdown under field conditions should be improved. PMID:26845339

  6. Newly Emerged Populations of Plasmopara halstedii Infecting Rudbeckia Exhibit Unique Genotypic Profiles and Are Distinct from Sunflower-Infecting Strains.

    PubMed

    Rivera, Yazmín; Salgado-Salazar, Catalina; Gulya, Thomas J; Crouch, Jo Anne

    2016-07-01

    The oomycete Plasmopara halstedii emerged at the onset of the 21st century as a destructive new pathogen causing downy mildew disease of ornamental Rudbeckia fulgida (rudbeckia) in the United States. The pathogen is also a significant global problem of sunflower (Helianthus annuus) and is widely regarded as the cause of downy mildew affecting 35 Asteraceae genera. To determine whether rudbeckia and sunflower downy mildew are caused by the same genotypes, population genetic and phylogenetic analyses were performed. A draft genome assembly of a P. halstedii isolate from sunflower was generated and used to design 15 polymorphic simple sequence repeat (SSR) markers. SSRs and two sequenced phylogenetic markers measured differentiation between 232 P. halstedii samples collected from 1883 to 2014. Samples clustered into two main groups, corresponding to host origin. Sunflower-derived samples separated into eight admixed subclusters, and rudbeckia-derived samples further separated into three subclusters. Pre-epidemic rudbeckia samples clustered separately from modern strains. Despite the observed genetic distinction based on host origin, P. halstedii from rudbeckia could infect sunflower, and exhibited the virulence phenotype of race 734. These data indicate that the newly emergent pathogen populations infecting commercial rudbeckia are a different species from sunflower-infecting strains, notwithstanding cross-infectivity, and genetically distinct from pre-epidemic populations infecting native rudbeckia hosts. PMID:27003506

  7. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  8. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola

    PubMed Central

    Lachhab, Nihed; Sanzani, Simona M.; Adrian, Marielle; Chiltz, Annick; Balacey, Suzanne; Boselli, Maurizio; Ippolito, Antonio; Poinssot, Benoit

    2014-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defense responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signaling events were followed by transcriptome reprogramming, including the up-regulation of defense genes encoding pathogenesis-related (PR) proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas ones. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack. PMID:25566290

  9. First report of downy mildew caused by Plasmopara halstedii on black-eyed susan (Rudbeckia fulgida cv. ‘Goldsturm’) in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North American perennial black-eyed Susan (Rudbeckia fulgida cv. ‘Goldsturm’) is an important nursery crop, prized by gardeners and landscapers for its persistent bloom and ease of cultivation. In September 2013 disease symptoms characteristic of downy mildew were observed from multiple plants a...

  10. Children's Response to Adult Disgust Elicitors: Development and Acquisition

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Oaten, Megan J.; Case, Trevor I.; Repacholi, Betty M.; Wagland, Paul

    2010-01-01

    Little is known about when or how different disgust elicitors are acquired. In Study 1, parents of children (0-18 years old) rated how their child would react to 22 disgust elicitors. Different developmental patterns were identified for core, animal, and sociomoral elicitors, with core elicitors emerging first. In Study 2, children (2-16 years…

  11. Assessment of QoI resistance in Plasmopara viticola oospores.

    PubMed

    Toffolatti, Silvia L; Serrati, Luca; Sierotzki, Helge; Gisi, Ulrich; Vercesi, Annamaria

    2007-02-01

    QoI fungicides, inhibitors of mitochondrial respiration at the Qo site of cytochrome b in the mitochondrial bc(1) enzyme complex, are commonly applied in vineyards against Plasmopara viticola (Berk. & MA Curtis) Berl. & De Toni. Numerous treatments per year with QoI fungicides can lead to the selection of resistant strains in the pathogen population owing to the very specific and efficient mode of action. In order to evaluate the resistance risk and its development, two different methods, biological and molecular, were applied to measure the sensitivity of oospores differentiated in vineyards, both treated and untreated with azoxystrobin, from 2000 to 2004. Assays using oospores have the advantage of analysing the sensitivity of bulked samples randomly collected in vineyards, describing accurately the status of resistance at the end of the grapevine growing season. Both methods correlated well in describing the resistance situation in vineyards. QoI resistance was not observed in one vineyard never treated with QoI fungicides. In the vineyard where azoxystrobin had been used in mixture with folpet, the selection of QoI-resistant strains was lower, compared with using solely QoI. In vineyards where QoI treatments have been stopped, a decrease in resistance was generally observed.

  12. Endogenous peptide elicitors in higher plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses against invading organisms are initiated through the perception of molecules associated with attacking microbes and herbivores by pattern recognition receptors. In addition to elicitor molecules derived from attacking organisms, plants recognize host-derived molecules. Thes...

  13. Production and release of asexual sporangia in Plasmopara viticola.

    PubMed

    Caffi, Tito; Gilardi, Giovanna; Monchiero, Matteo; Rossi, Vittorio

    2013-01-01

    To study the influence of environmental conditions on sporulation of Plasmopara viticola lesions under vineyard's conditions, unsprayed vines were inspected every second or third day and the numbers of sporulating and nonsporulating lesions were counted in two North Italy vineyards in 2008 to 2010. Infected leaves were removed so that only fresh lesions were assessed at each field assessment. Sporulation was studied at two scales, across field assessments and across the seasonal population of lesions. Frequencies of sporulating lesions were positively correlated with the numbers of moist hours in the preceding dark period (i.e., the number of hours between 8:00 p.m. and 7:00 a.m. with relative humidity ≥80%, rainfall >0 mm, or wetness duration >30 min). In a receiver operating characteristic analysis, predicted sporulation based on the occurrence of ≥3 moist hours at night provided overall accuracy of 0.85. To study the time course of sporulation on lesions which were not washed by rainfall, numbers of sporangia produced per square millimeter of lesion were estimated on individual cohorts of lesions over the whole infectious period. The numbers of sporangia per square millimeter of lesion increased rapidly during the first 4 days after the beginning of sporulation and then tapered off prior to a halt; the time course of cumulative sporangia production by a lesion followed a monomolecular growth model (R(2) = 0.97). The total number of sporangia produced by a square millimeter of lesion increased as the maximum temperature decreased and moist hours in the dark increased. To study the release pattern of the sporangia, spore samplers were placed near grapevines with sporulating lesions. Airborne sporangia were caught in 91.2% of the days over a wide range of weather conditions, including rainless periods. The results of this study provide quantitative information on production of P. viticola sporangia that may help refine epidemiological models used as decision

  14. Draft Genome Sequence of Plasmopara viticola, the Grapevine Downy Mildew Pathogen

    PubMed Central

    Gouzy, Jérôme; Richart-Cervera, Sylvie; Mazet, Isabelle D.; Delière, Laurent; Couture, Carole; Legrand, Ludovic; Piron, Marie-Christine; Mestre, Pere; Delmotte, François

    2016-01-01

    Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance. PMID:27660780

  15. Polymorphic SSR markers for Plasmopara obducens (Peronosporaceae), the newly emergent downy mildew pathogen of Impatiens (Balsaminaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Microsatellite markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 151.2 Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identi...

  16. Draft Genome Sequence of Plasmopara viticola, the Grapevine Downy Mildew Pathogen.

    PubMed

    Dussert, Yann; Gouzy, Jérôme; Richart-Cervera, Sylvie; Mazet, Isabelle D; Delière, Laurent; Couture, Carole; Legrand, Ludovic; Piron, Marie-Christine; Mestre, Pere; Delmotte, François

    2016-01-01

    Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance. PMID:27660780

  17. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    PubMed

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  18. Phylogenetic relationships of Plasmopara, Bremia and other genera of downy mildew pathogens with pyriform haustoria based on Bayesian analysis of partial LSU rDNA sequence data.

    PubMed

    Voglmayr, Hermann; Riethmüller, Alexandra; Göker, Markus; Weiss, Michael; Oberwinkler, Franz

    2004-09-01

    Bayesian and maximum parsimony phylogenetic analyses of 92 collections of the genera Basidiophora, Bremia, Paraperonospora, Phytophthora and Plasmopara were performed using nuclear large subunit ribosomal DNA sequences containing the D1 and D2 regions. In the Bayesian tree, two main clades were apparent: one clade containing Plasmopara pygmaea s. lat., Pl. sphaerosperma, Basidiophora, Bremia and Paraperonospora, and a clade containing all other Plasmopara species. Plasmopara is shown to be polyphyletic, and Pl. sphaerosperma is transferred to a new genus, Protobremia, for which also the oospore characteristics are described. Within the core Plasmopara clade, all collections originating from the same host family except from Asteraceae and Geraniaceae formed monophyletic clades; however, higher-level phylogenetic relationships lack significant branch support. A sister group relationship of Pl. sphaerosperma with Bremia lactucae is highly supported. Within Bremia lactucae s. l., three distinct clades are evident, which only partly conform to the published host specificity groups. All species of the genera Basidiophora, Bremia, Paraperonospora and Plasmopara included in the present study were investigated for haustorial morphology, and all had ellipsoid to pyriform haustoria, which are regarded as a diagnostic synapomorphy of the whole clade. Aspects of coevolution and cospeciation within the downy mildew pathogens with ellipsoid to pyriform haustoria are briefly discussed.

  19. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity.

    PubMed

    Ma, Yanan; Han, Chao; Chen, Jinyin; Li, Haiyun; He, Kun; Liu, Aixin; Li, Duochuan

    2015-01-01

    Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In vivo, expression of EG1 was also related to cell death during infection of maize by R. solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity.

  20. Fungal elicitors of the phytoalexin response in higher plants

    NASA Astrophysics Data System (ADS)

    West, Charles A.

    1981-09-01

    Several types of fungal molecules including cell wall polysaccharides, polypeptides, glycoproteins and lipid molecules have been found to serve as elicitors of phytoalexins in higher plants. Recent work has shown that an extracellular enzyme, endopolygalacturonase, from culture filtrates of the fungus Rhizopus stolonifer elicits the biosynthesis of an antifungal antibiotic, casbene, in extracts of treated castor bean ( Ricinus communis L.) seedlings. A suggested mode of action of this elicitor in the plant in which fragments of the plant cell wall released through the catalytic action of the enzyme serve as secondary elicitors to trigger the plant response is proposed on the basis of preliminary observations. Possible modes of interaction of other types of fungal elicitors with plants are also discussed.

  1. Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts.

    PubMed

    Baenas, Nieves; García-Viguera, Cristina; Moreno, Diego A

    2014-02-26

    Several biotic elicitors have been used in Brassicaceae species to enhance their phytochemical quality. However, there is no comparison between elicitors under controlled growth conditions. In order to draw general conclusions about the use of elicitors to enrich ready-to-eat sprouts in health-promoting glucosinolates, the aim of this study was to unveil the effect of the phytohormones methyl jasmonate (25 μM), jasmonic acid (150 μM), and salicylic acid (100 μM), the oligosaccharides glucose (277 mM) and sucrose (146 mM), and the amino acid dl-methionine (5 mM) as elicitors over 8-day sprouting Brassica oleraceae (broccoli), Brassica napus (rutabaga cabbage), Brassica rapa (turnip), and Raphanus sativus (China rose radish and red radish), representative species high in glucosinolates previously studied. Results indicated that the phytohormones methyl jasmonate and jasmonic acid and the sugars acted as effective elicitors, increasing the total glucosinolate contents of the sprouts, particularly, glucoraphanin (from 183 to 294 mg·100 g(-1) in MeJA-treated broccoli sprouts), glucoraphenin (from 33 to 124 mg·100 g(-1) and from 167 to 227 mg·100 g(-1) in MeJA-treated China rose radish and red radish, respectively), and glucobrassicin (from 23.4 to 91.0 mg·100 g(-1) and from 29.6 to 186 mg·100 g(-1) in MeJA-treated turnip and rutabaga sprouts, respectively).

  2. Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity

    PubMed Central

    Xiang, Jiang; Li, Xinlong; Wu, Jiao; Yin, Ling; Zhang, Yali; Lu, Jiang

    2016-01-01

    The RxLR effector family, produced by oomycete pathogens, may manipulate host physiological and biochemical events inside host cells. A group of putative RxLR effectors from Plasmopara viticola have been recently identified by RNA-Seq analysis in our lab. However, their roles in pathogenesis are poorly understood. In this study, we attempted to characterize 23 PvRxLR effector candidates identified from a P. viticola isolate “ZJ-1-1.” During host infection stages, expression patterns of the effector genes were varied and could be categorized into four different groups. By using transient expression assays in Nicotiana benthamiana, we found that 17 of these effector candidates fully suppressed programmed cell death elicited by a range of cell death-inducing proteins, including BAX, INF1, PsCRN63, PsojNIP, PvRxLR16 and R3a/Avr3a. We also discovered that all these PvRxLRs could target the plant cell nucleus, except for PvRxLR55 that localized to the membrane. Furthermore, we identified a single effector, PvRxLR28, that showed the highest expression level at 6 hpi. Functional analysis revealed that PvRxLR28 could significantly enhance susceptibilities of grapevine and tobacco to pathogens. These results suggest that most P. viticola effectors tested in this study may act as broad suppressors of cell death to manipulate immunity in plant. PMID:27242731

  3. Polymorphic SSR Markers for Plasmopara obducens (Peronosporaceae), the Newly Emergent Downy Mildew Pathogen of Impatiens (Balsaminaceae)

    DOE PAGES

    Salgado-Salazar, Catalina; Rivera, Yazmín; Veltri, Daniel; Crouch, Jo Anne

    2015-11-10

    Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2-6 alleles observed. Observed and expected heterozygosity ranged from 0.000-0.892 and 0.023-0.746, respectively. Just 17 markers were sufficientmore » to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease.« less

  4. Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola

    PubMed Central

    Guerreiro, Ana; Figueiredo, Joana; Figueiredo, Andreia

    2016-01-01

    Plant resistance to biotrophic pathogens is classically believed to be mediated through salicylic acid (SA) signaling leading to hypersensitive response followed by the establishment of Systemic Acquired Resistance. Jasmonic acid (JA) signaling has extensively been associated to the defense against necrotrophic pathogens and insects inducing the accumulation of secondary metabolites and PR proteins. Moreover, it is believed that plants infected with biotrophic fungi suppress JA-mediated responses. However, recent evidences have shown that certain biotrophic fungal species also trigger the activation of JA-mediated responses, suggesting a new role for JA in the defense against fungal biotrophs. Plasmopara viticola is a biotrophic oomycete responsible for the grapevine downy mildew, one of the most important diseases in viticulture. In this perspective, we show recent evidences of JA participation in grapevine resistance against P. viticola, outlining the hypothesis of JA involvement in the establishment of an incompatible interaction with this biotroph. We also show that in the first hours after P. viticola inoculation the levels of OPDA, JA, JA-Ile, and SA increase together with an increase of expression of genes associated to JA and SA signaling pathways. Our data suggests that, on the first hours after P. viticola inoculation, JA signaling pathway is activated and the outcomes of JA–SA interactions may be tailored in the defense response against this biotrophic pathogen. PMID:27200038

  5. The role of rain in dispersal of the primary inoculum of Plasmopara viticola.

    PubMed

    Rossi, Vittorio; Caffi, Tito

    2012-02-01

    Although primary infection of grapevines by Plasmopara viticola requires splash dispersal of inoculum from soil to leaves, little is known about the role of rain in primary inoculum dispersal. Distribution of rain splashes from soil to grapevine canopy was evaluated over 20 rain periods (0.2 to 64.2 mm of rain) with splash samplers placed within the canopy. Samplers at 40, 80, and 140 cm above the soil caught 4.4, 0.03, and 0.003 drops/cm(2) of sampler area, respectively. Drops caught at 40 and 80 cm (1.5 cm in diameter) were larger than drops at 140 cm (1.3 cm). Leaf coverage by splashed drops, total drop number, and drop size increased with an increase in the maximum intensity of rain (mm/h) during any rain period. Any rainfall led to infection in potted grapevines placed outside on leaf litter containing oospores, if the litter contained germinated oospores at the time of rain; infection severity was unrelated to rain amount or intensity. Results from vineyards also indicate that any rain can carry P. viticola inoculum from soil to leaves and should be considered a splash event in disease prediction systems. Sampling for early disease detection should focus on the lower canopy, where the probability of splash impact is greatest.

  6. Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties

    PubMed Central

    2012-01-01

    Background Grapevine downy mildew, caused by Plasmopara viticola, is a very serious disease affecting mainly Vitis vinifera cultivated varieties around the world. Breeding for resistance through the crossing with less susceptible species is one of the possible means to reduce the disease incidence and the application of fungicides. The hybrid Bianca and some of its siblings are considered very promising but their resistance level can vary depending on the pathogen strain. Moreover, virulent strains characterized by high fitness can represent a potential threat to the hybrid cultivation. Results The host response and the pathogen virulence were quantitatively assessed by artificially inoculating cv Chardonnay, cv Bianca and their siblings with P. viticola isolates derived from single germinating oospores collected in various Italian viticultural areas. The host phenotypes were classified as susceptible, intermediate and resistant, according to the Area Under the Disease Progress Curve caused by the inoculated strain. Host responses in cv Bianca and its siblings significantly varied depending on the P. viticola isolates, which in turn differed in their virulence levels. The fitness of the most virulent strain did not significantly vary on the different hybrids including Bianca in comparison with the susceptible cv Chardonnay, suggesting that no costs are associated with virulence. Among the individual fitness components, only sporangia production was significantly reduced in cv Bianca and in some hybrids. Comparative histological analysis revealed differences between susceptible and resistant plants in the pathogen diffusion and cytology from 48 h after inoculation onwards. Defence mechanisms included callose depositions in the infected stomata, increase in peroxidase activity, synthesis of phenolic compounds and flavonoids and the necrosis of stomata and cells immediately surrounding the point of invasion and determined alterations in the size of the infected areas

  7. Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola.

    PubMed

    Werner, Stefan; Steiner, Ulrike; Becher, Rayko; Kortekamp, Andreas; Zyprian, Eva; Deising, Holger B

    2002-03-01

    PCR amplification of two CHS gene fragments of the obligate biotroph Plasmopara viticola, the causal agent of downy mildew of grapevine, is described. While one fragment shows homology to fungal class IV chitin synthases, the other fragment groups with other oomycete chitin synthases to form a novel class of chitin synthases most closely related to class I-III. RT-PCR experiments indicate that PvCHS1 is constitutively expressed, whereas PvCHS2 is specifically transcribed in sporangiophores and sporangia. Analyses of wheat germ agglutinin labeling patterns by confocal laser scanning microscopy show that chitin is present on the surface of hyphal cell walls during in planta growth, and of sporangiophores and sporangia.

  8. Host-Pathogen Interactions: XIV. Isolation and Partial Characterization of an Elicitor from Yeast Extract.

    PubMed

    Hahn, M G; Albersheim, P

    1978-07-01

    An elicitor of glyceollin accumulation in soybeans (Glycine max L.) has been isolated from a commercially available extract of brewers' yeast. Yeast is not a known pathogen of plants. The elicitor was isolated by precipitation in 80% (v/v) ethanol followed by column chromatography on DEAE-cellulose, sulfopropyl-Sephadex, and concanavalin A-Sepharose. Compositional and structural analysis showed the elicitor to be a glucan containing terminal, 3-, 6-, and 3,6-linked glucosyl residues. The yeast elicitor stimulates the accumulation of glyceollin in the cotyledons and hypocotyls of soybeans when as little as 15 nanograms or 100 nanograms of the elicitor is applied to the respective tissues. The yeast elicitor is very similar in both structure and absolute elicitor activity to an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, a pathogen of soybeans. These and other results of this laboratory suggest that plants are able to respond to the presence of a wide range of fungi by recognizing, as foreign to the plant, structural polysaccharides of the mycelial walls of the fungi.

  9. Control of foliar pathogens of spring barley using a combination of resistance elicitors

    PubMed Central

    Walters, Dale R.; Havis, Neil D.; Paterson, Linda; Taylor, Jeanette; Walsh, David J.; Sablou, Cecile

    2014-01-01

    The ability of the resistance elicitors acibenzolar-S-methyl (ASM), β-aminobutyric acid (BABA), cis-jasmone (CJ), and a combination of the three products, to control infection of spring barley by Rhynchosporium commune was examined under glasshouse conditions. Significant control of R. commune was provided by ASM and CJ, but the largest reduction in infection was obtained with the combination of the three elicitors. This elicitor combination was found to up-regulate the expression of PR-1b, which is used as a molecular marker for systemic acquired resistance (SAR). However, the elicitor combination also down-regulated the expression of LOX2, a gene involved in the biosynthesis of jasmonic acid (JA). In field experiments over 3 consecutive years, the effects of the elicitor combination were influenced greatly by crop variety and by year. For example, the elicitor combination applied on its own provided significant control of powdery mildew (Blumeria graminis f.sp. hordei) and R. commune in 2009, whereas no control on either variety was observed in 2007. In contrast, treatments involving both the elicitor combination and fungicides provided disease control and yield increases which were equal to, and in some cases better than that provided by the best fungicide-only treatment. The prospects for the use of elicitor plus fungicide treatments to control foliar pathogens of spring barley in practice are discussed. PMID:24904629

  10. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    SciTech Connect

    Schmidt, W.E.; Ebel, J.

    1987-06-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a ..beta..-1,3-(/sup 3/H) glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for ..beta..-glucan elicitor binding is approx. = 0.2 x 10/sup -6/ M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the (/sup 3/H)glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched ..beta..-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay.

  11. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    PubMed Central

    Schmidt, Walter E.; Ebel, Jürgen

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[3H]glucan elicitor fraction from Phytophthora megasperma f. sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent Kd value for β-glucan elicitor binding is ≈0.2 × 10-6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies with the [3H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay. PMID:16593852

  12. Responses of soybean genotypes to pathogen infection after the application of elicitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean diseases and pests can affect soybean production. One emerging pest management method is to treat plants with chemical elicitors at nontoxic levels to induce host resistance. The objective of this research was to determine if elicitors, benzothiadiazole (BTH), chitosan (CHT), phenylalanine (...

  13. Induced Resistance in Solanum lycopersicum by Algal Elicitor Extracted from Sargassum fusiforme

    PubMed Central

    Sbaihat, Layth; Takeyama, Keiko; Koga, Takeharu; Takemoto, Daigo; Kawakita, Kazuhito

    2015-01-01

    Tomato (Solanum lycopersicum) production relies heavily on the use of chemical pesticides, which is undesired by health- and environment-concerned consumers. Environment-friendly methods of controlling tomato diseases include agroecological practices, organic fungicides, and biological control. Plants' resistance against pathogens is induced by applying agents called elicitors to the plants and would lead to disease prevention or reduced severity. We investigated the ability of a novel elicitor extracted from the brown sea algae (Sargassum fusiforme) to elicit induced resistance in tomato. The studied elicitor induced hypersensitive cell death and O2− production in tomato tissues. It significantly reduced severities of late blight, grey mold, and powdery mildew of tomato. Taken together, our novel elicitor has not shown any direct antifungal activity against the studied pathogens, concluding that it is an elicitor of induced resistance. PMID:25802893

  14. Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous.

    PubMed

    Wang, Wenjun; Yu, Longjiang; Zhou, Pengpeng

    2006-01-01

    Six fungal elicitors prepared from Rhodotorula rubra, Rhodotorula glutinis, Panus conchatus, Coriolus versicolor, Mucor mucedo, Mortieralla alpina M-23 were examined to determine their effects on the growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. The results showed that different fungal elicitor could cause diversely stimulating effects. Among the fungal elicitors tested, the M. mucedo elicitor concentration of 30 mg l(-1) promoted the biomass and total carotenoids yield most remarkably, resulting in 69.81+/-6.00% and 78.87+/-4.15% higher than the control, respectively. At the concentration of 30 mg l(-1), R. glutinis elicitor stimulated the highest astaxanthin yield with a 90.60+/-5.98% increase compared to the control. The R. rubra elicitor concentration of 30 mg l(-1) resulted in the optimal total carotenoids and astaxanthin content to be 42.24+/-0.49% and 69.02+/-0.72% higher than the control, respectively. At the concentration of 30 mg l(-1), R. rubra elicitor gave the highest increase in the ratio of astaxanthin in total carotenoids by 18.85+/-0.11% of the control.

  15. Polymorphic SSR markers for Plasmopara obducens (Peronosporaceae), the newly emergent downy mildew pathogen of Impatiens (Balsaminaceae)1

    PubMed Central

    Salgado-Salazar, Catalina; Rivera, Yazmín; Veltri, Daniel; Crouch, Jo Anne

    2015-01-01

    Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2−6 alleles observed. Observed and expected heterozygosity ranged from 0.000−0.892 and 0.023−0.746, respectively. Just 17 markers were sufficient to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease. PMID:26649270

  16. Thigmomorphogenesis: the relationship of mechanical perturbation to elicitor-like activity and ethylene production

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    An extracellular solution obtained from bean (Phaseolus vulgaris L. cv. Resistant Cherokee Wax) stems induced phytoalexin-like substance and ethylene production in a soybean [Glycine max (L.) Merr. cv. Wayne] cotyledon bioassay. The elicitor-like activity for phytoalexin formation and ethylene production was increased by mechanical perturbation of bean stems. Moreover, the application of extracted or known elicitors to bean plants mimicked the effect of mechanical perturbation (i.e., inhibition of stem elongation and enhancement of radial growth). The effects of extract when applied exogenously, on elicitor-like activity in the bioassay as well as stem thickening were decreased by aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis. These results suggest that elicitor-like substances which are formed in response to mechanical perturbation contribute to the thigmomorphogenesis.

  17. Father, Mother, and Stranger as Elicitors of Attachment Behaviors in Infancy

    ERIC Educational Resources Information Center

    Cohen, Leslie Jordan; Campos, Joseph J.

    1974-01-01

    Fathers were compared to mothers and strangers as elicitors of attachment behavior in infants. Infants usually preferred their mothers as measured by length of time taken to approach mother and use of mother as secure base. (ST)

  18. Cloning and characterization of cDNA encoding an elicitor of Phytophthora colocasiae.

    PubMed

    Mishra, Ajay Kumar; Sharma, Kamal; Misra, Raj Shekhar

    2010-02-28

    The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. A cDNA encoding elicitor, the major secreted extracellular glycoprotein of Phytophthora colocasiae, a pathogen of taro (Colocasia esculenta) plants, was isolated, sequenced and characterized. The expression of the corresponding elicitor gene during the disease cycle of P. colocasiae was analyzed. Elicitor was shown to be expressed in mycelium grown in culture media, whereas it was not expressed in sporangiospores and zoospores. In planta, during infection of taro, particularly during the biotrophic stage, expression of elicitor was down-regulated compared to in vitro. The highest levels of expression of elicitor were observed in in vitro grown mycelium and in late stages of infection when profuse sporulation and leaf necrosis occur. The elicitation of the suspension-cultured taro cells was effective in the induction of the enzyme activity of l-phenylalanine-ammonia lyase, peroxidase and lipoxygenase as well as the expression of defense-related endochitinase gene. All these biological activities were exerted within a low concentration range. The glycoprotein represents a powerful tool to investigate further the signals and their transduction pathways involved in induced disease resistance. It may also be useful to engineer broad disease protection in taro plant against Phytophthora leaf blight. PMID:19230634

  19. Primary structures of one elicitor-active and seven elicitor-inactive hexa(. beta. -D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea

    SciTech Connect

    Sharp, J.K.; McNeil, M.; Albersheim, P.

    1984-09-25

    The primary structures of eight hexa(..beta..-D-glucopyranosyl)-D-glucitols purified from partially hydrolyzed Phytophthora megasperma f. sp. glycinea mycelial walls were determined by microscale glycosyl-sequence analysis. The similarity in structure of six of the elicitor-inactive hexa(..beta..-D-glucopyranosyl)-D-glucitols to the elicitor-active hexa(..beta..-D-glucopyranosyl)-D-glucitol established that a highly defined structure is required for elicitor activity. The elicitor-active hexa(..beta..-D-glucopyranosyl)-D-glucitol is the first example of a complex carbohydrate acting as a regulatory molecule in plants. 49 references, 10 figures, 6 tables.

  20. Enhancement of seed vigour following insecticide and phenolic elicitor treatment.

    PubMed

    Horii, A; McCue, P; Shetty, K

    2007-02-01

    Thiamethoxam (CGA 293'343) is a novel broad-spectrum neonicotinoid insecticide. It is commercially used as a seed treatment under the trademark Cruiser (CRZ). Although many reports detail its insecticidal, plant-protecting properties, there are minimal reports concerning the effect on seed germination activities which can be key control points of seedling vigour. In this report, we investigated the effect of CRZ, fish protein hydrolysates (FPH; a known elicitor of pentose-phosphate pathway) and the combination of CRZ and FPH (CF) on seed vigour of pea, soybean and corn. Seed vigour was investigated by estimating germination percentage, shoot height, shoot weight, total soluble phenolic content, antioxidant content, G6PDH (glucose-6-phosphate dehydrogenase) activity, and GPX (guaiacol peroxidase) activity. Addition of FPH to CRZ (CF) seemed to have a slightly positive effect on seed vigour, especially, CF and FPH treatment for corn and FPH treatment for pea, suggesting that pre-sowing treatments may cause positive/negative effects on seed vigour, depending on the concentration of treatments. Further research will be needed to determine their effects and the optimal concentration for seed priming.

  1. Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L.

    PubMed Central

    Ahmed, Syed Abrar; Baig, Mirza Mushtaq Vaseem

    2014-01-01

    Cell cultures of Psoralea corylifolia L. were established from the leaf disk derived callus. The effect of different biotic elicitors prepared from the fungal extract (Aspergillus niger and Penicillium notatum), yeast extract and chitosan with different concentrations was studied. The increased synthesis of psoralen in 16-day old cell cultures under 16 h of light and 8 h of dark period was studied. Elicitation of psoralen in A. niger elicitor treated cells was found 9-fold higher over control cells. Treating the cells with P. notatum, yeast extract and chitosan elicitors lead to four to seven-fold higher psoralen accumulation over control cells. The extract of A. niger at 1.0% v/v increased the significant accumulation of psoralen (9850 μg/g DCW) in the cultured cells. Our study clearly shows that all the elicitors had the potential to increase the accumulation of psoralen but the A. niger elicitor at 1.0% v/v induced maximum accumulation. PMID:25313287

  2. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence

    PubMed Central

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-01-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. PMID:27604805

  3. Purification and characterization of elicitor protein from Phytophthora colocasiae and basic resistance in Colocasia esculenta.

    PubMed

    Mishra, Ajay Kumar; Sharma, Kamal; Misra, Raj Shekhar

    2009-01-01

    An elicitor was identified in the fungus Phytophthora colocasiae. The molecular weight of the purified elicitor was estimated by means of gel filtration chromatography and SDS-PAGE and was estimated as 15kDa. Protease treatment severely reduced its activity, allowing the conclusion that the elicitor is proteinaceous. Infiltration of a few nanograms of this proteinaceous elicitor into taro leaves caused the formation of lesions that closely resemble hypersensitive response lesions. The elicitation of the cells was effective in the induction of the activity of lipoxygenase. Cellular damage, restricted to the infiltrated zone, occurred only several hours later, after the infiltration of the elicitor protein. After few days, systemic acquired resistance was also induced. Thus, taro plant cells that perceived the glycoprotein generated a cascade of signals acting at local, short, and long distances, and causing the coordinate expression of specific defence. The obtained results give important information regarding the plant-pathogen interactions, mainly as subsidy for taro improvement against Phytophthora leaf blight.

  4. Involvement of lipoxygenase in elicitor-stimulated sanguinarine accumulation in Papaver somniferum suspension cultures.

    PubMed

    Holková, Ivana; Bezáková, Lýdia; Bilka, František; Balažová, Andrea; Vanko, Marián; Blanáriková, Vítazoslava

    2010-01-01

    The involvement of lipoxygenase (LOX, EC 1.13.11.12) in elicitor-induced opium poppy defense response was investigated. Papaver somniferum L. suspension cultures were treated with abiotic elicitor methyl jasmonate (MJ), fungal elicitor (Botrytis cinerea homogenate) and phenidone (specific inhibitor of LOX) to determine the involvement of this enzyme in production of sanguinarine, the major secondary metabolite of opium poppy cultures. P. somniferum suspension cultures responded to elicitor treatment with strong and transient increase of LOX activity followed by sanguinarine accumulation. LOX activity increased in elicited cultures, reaching 9.8 times of the initial value at 10 h after MJ application and 2.9 times after B. cinerea application. Sanguinarine accumulated to maximal levels of 169.5 ± 12.5 μg g⁻¹ dry cell weight in MJ-elicited cultures and 288.0 ± 10.0 μg g⁻¹ dry cell weight in B. cinerea-elicited cultures. The treatment of cells with phenidone before elicitor addition, significantly reduced sanguinarine production. The relative molecular weight of P. somniferum LOX (83 kDa) was estimated by using immunobloting and its pH optimum was shown to be pH 6.5.

  5. Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus.

    PubMed

    Namdeo, Ajay; Patil, Shridhar; Fulzele, Devanand P

    2002-01-01

    Suspension cultures of Catharanthus roseus (C. roseus) were elicited with fungal cell wall fragments of Aspergillus niger (A. niger), Fusarium moniliforme (F. moniliforme), and Trichoderma viride (T. viride). The effects of elicitor dosage, exposures time, and age of subculture on ajmalicine accumulation were studied. A higher concentration of elicitor extract responded positively to C. roseus suspension cultures. Ajmalicine accumulation increased by about 3-fold when cells were treated with A. niger, F.moniliforme, and T. viride. The maximum ajmalicine production (75 microg g(-1) dry weight (DW)) was observed in cells treated with T. viride. Cell cultures were elicited with 5% preparation of A. niger, F. moniliforme, and T. viride and exposed for 24, 48, 72, and 96 h. for elicitation. Suspension cultures elicited with T. viride for 48 h showed a 3-fold increase (87 microg g(-1) DW) in ajmalicine contents, whereas A. niger and F. moniliforme synthesized a 2-fold increase in alkaloid and yielded 52 and 56 microg g(-1) DW ajmalicine, respectively. C. roseus cells of different age (5,10, 15, 20, and 25 days old) were treated with a 5% elicitor of A. niger, F. moniliforme, and T. viride and investigated elicitors activity at different age of cell cultures. Maximum yield 166 microg g(-1) DW of ajmalicine was synthesized in 20 day old suspension cultures treated with T. viride. A longer period of incubation of cell cultures with elicitors adversely affected the ajmalicine synthesis.

  6. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    PubMed

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. PMID:27604805

  7. Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors.

    PubMed Central

    Gelli, A.; Higgins, V. J.; Blumwald, E.

    1997-01-01

    The response of plant cells to invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Ca2+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Guanosine 5[prime]-[[beta]-thio]diphosphate, a GDP analog that locks heterotrimeric G-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5[prime][[gamma]-thio]triphosphate, a nonhydrolyzable GTP analog that locks heterotrimeric G-proteins into their activated state, produced an effect similar to that observed with the fungal elicitor. Mastoparan, which stimulates GTPase activity, mimicked the effect of GTP[[gamma

  8. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    PubMed Central

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  9. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    PubMed

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity. PMID:27507984

  10. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    SciTech Connect

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. )

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  11. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    PubMed Central

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  12. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss.

    PubMed

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors.

  13. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum.

    PubMed

    Somjaipeng, Supunnika; Medina, Angel; Magan, Naresh

    2016-08-01

    This study examined the effect of different elicitors (seven, different concentrations) and environmental factors (water activity (aw), pH) on taxol production by strains of two endophytic fungi, Paraconiothyrium variabile and Epicoccum nigrum, isolated from temperate yew trees. A defined liquid broth medium was modified with elicitors, solute aw depressors at different pH values. For P. variabile, the best elicitor was salicylic acid at 50mg/l which gave a taxol yield of 14.7±4.8μg/l. The study of synergistic effects between elicitor, aw and pH on taxol production showed that the highest yield of taxol (68.9±11.9μg/l) was produced under modified ionic stress of 0.98aw (KCl) at pH 5 when supplemented with 20mg/l of salicylic acid. For E. nigrum, serine was the best elicitor which increased yield significantly (29.6 fold) when KCL was used as the aw depressor (0.98aw) at pH 5.0 with 30mg/l of serine. The maximum taxol yield produced by E. nigrum was 57.1±11.8μg/l. Surface response models were used to build contour maps to determine the conditions for maximum and marginal conditions for taxol yield in relation to the best elicitor and aw, and the best pH for the first time. This will be beneficial for identifying key parameters for improvement of taxol yields by endophytic fungi. PMID:27241294

  14. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice.

    PubMed

    Okada, Atsushi; Shimizu, Takafumi; Okada, Kazunori; Kuzuyama, Tomohisa; Koga, Jinichiro; Shibuya, Naoto; Nojiri, Hideaki; Yamane, Hisakazu

    2007-09-01

    Diterpenoid phytoalexins such as momilactones and phytocassanes are produced via geranylgeranyl diphosphate in suspension-cultured rice cells after treatment with a chitin elicitor. We have previously shown that the production of diterpene hydrocarbons leading to phytoalexins and the expression of related biosynthetic genes are activated in suspension-cultured rice cells upon elicitor treatment. To better understand the elicitor-induced activation of phytoalexin biosynthesis, we conducted microarray analysis using suspension-cultured rice cells collected at various times after treatment with chitin elicitor. Hierarchical cluster analysis revealed two types of early-induced expression (EIE-1, EIE-2) nodes and a late-induced expression (LIE) node that includes genes involved in phytoalexins biosynthesis. The LIE node contains genes that may be responsible for the methylerythritol phosphate (MEP) pathway, a plastidic biosynthetic pathway for isopentenyl diphosphate, an early precursor of phytoalexins. The elicitor-induced expression of these putative MEP pathway genes was confirmed by quantitative reverse-transcription PCR. 1-Deoxy-D: -xylulose 5-phosphate synthase (DXS), 1-deoxy-D: -xylulose 5-phosphate reductoisomerase (DXR), and 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol synthase (CMS), which catalyze the first three committed steps in the MEP pathway, were further shown to have enzymatic activities that complement the growth of E. coli mutants disrupted in the corresponding genes. Application of ketoclomazone and fosmidomycin, inhibitors of DXS and DXR, respectively, repressed the accumulation of diterpene-type phytoalexins in suspension cells treated with chitin elicitor. These results suggest that activation of the MEP pathway is required to supply sufficient terpenoid precursors for the production of phytoalexins in infected rice plants.

  15. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss

    PubMed Central

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors. PMID:27047509

  16. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss.

    PubMed

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors. PMID:27047509

  17. [Elicitor activity of chitosan and arachidonic acid: their similarity and distinction].

    PubMed

    Vasiukova, N I; Gerasimova, N G; Chalenko, G I; Ozeretskovskaia, O L

    2012-01-01

    Two elicitors-chitosan and arachidonic acid-induced the same defense responses in potatoes, stimulating the processes of wound reparation and inducing the formation of phytoalexins, inhibitors of proteinase, and active forms of oxygen. However, chitosan induced the defense potential of plant tissues at concentrations higher than those of arachidonic acid. The protective action of chitosan was defined by two parameters, i.e., the ability to induce the immune responses in plant tissues and to exhibit a toxic effect on the pathogen development, causing late blight and seedling blight, whereas the elicitor effect of arachidonic acid depended on its ability to induce the defense potential of plant tissues only.

  18. Polymorphic SSR Markers for Plasmopara obducens (Peronosporaceae), the Newly Emergent Downy Mildew Pathogen of Impatiens (Balsaminaceae)

    SciTech Connect

    Salgado-Salazar, Catalina; Rivera, Yazmín; Veltri, Daniel; Crouch, Jo Anne

    2015-11-10

    Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2-6 alleles observed. Observed and expected heterozygosity ranged from 0.000-0.892 and 0.023-0.746, respectively. Just 17 markers were sufficient to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease.

  19. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice

    PubMed Central

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T.; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata’s OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  20. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice.

    PubMed

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  1. Isolation, characterization, and expression analyses of plant elicitor peptides (pep) genes in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PROPEP1, PROPEP 2, and PROPEP3 genes appear to have roles in a feedback loop that amplifies defense signaling pathways initiated by pathogens. We present evidence to support the role of peptides derived from PROPEP genes as endogenous elicitors that are generated in response to pathogens. The preval...

  2. Regulation of a Chitinase Gene Promoter by Ethylene and Elicitors in Bean Protoplasts 1

    PubMed Central

    Roby, Dominique; Broglie, Karen; Gaynor, John; Broglie, Richard

    1991-01-01

    Chitinase gene expression has been shown to be transcriptionally regulated by a number of inducers, including ethylene, elicitors, and pathogen attack. To investigate the mechanism(s) responsible for induction of chitinase gene expression in response to various stimuli, we have developed a transient gene expression system in bean (Phaseolus vulgaris) protoplasts that is responsive to ethylene and elicitor treatment. This system was used to study the expression of a chimeric gene composed of the 5′ flanking sequences of a bean endochitinase gene fused to the reporter gene β-glucuronidase linked to a 3′ fragment from nopaline synthase. Addition of 1-aminocyclopropane-1-carboxylic acid, the direct precursor of ethylene, or elicitors such as chitin oligosaccharides or cell wall fragments derived from Colletotrichum lagenarium, to transformed protoplasts resulted in a rapid and marked increase in the expression of the chimeric gene. The kinetics and dose response for these treatments were similar to those observed for the native gene in vivo. Analyses of 5′ deletion mutants in the protoplast system indicated that DNA sequences located between −305 and −236 are important for both ethylene and elicitor induction of the reporter gene. ImagesFigure 1 PMID:16668405

  3. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  4. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

  5. Molecular effects of resistance elicitors from biological origin and their potential for crop protection

    PubMed Central

    Wiesel, Lea; Newton, Adrian C.; Elliott, Ian; Booty, David; Gilroy, Eleanor M.; Birch, Paul R. J.; Hein, Ingo

    2014-01-01

    Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as “defense elicitors.” In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context. PMID:25484886

  6. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  7. Elicitor-Induced Defense Responses in Solanum lycopersicum against Ralstonia solanacearum

    PubMed Central

    Kar, Itishree; Mukherjee, Arup K.; Acharya, Priyambada

    2013-01-01

    We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) against Ralstonia solanacearum using the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants against R. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently with R. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes. PMID:24187521

  8. Activation of phenylpropanoid pathway and PR of potato tuber against Fusarium sulphureum by fungal elicitor from Trichothecium roseum.

    PubMed

    Yu, Xiao-Yan; Bi, Yang; Yan, Lu; Liu, Xiao; Wang, Yi; Shen, Ke-Ping; Li, Yong-Cai

    2016-09-01

    The induced resistance of potato tuber (Solanum tuberosum cv. Xindaping) tissue against Fusarium sulphureum by a fungal elicitor from the incompatible pathogen Trichothecium roseum and its possible mechanism were studied. The results showed that the lesion development of the wound-inoculated potato tuber was significantly reduced by treatment with the fungal elicitor from T. roseum (P < 0.05). Inoculation with F. sulphureum on the 16th day after treatment with the fungal elicitor80 at 15.0 μg/ml had the best resistant effect in the potato tuber, with the diameter being only reduced by 47 % that of the control. In addition, the results also showed that the potato tuber treated with the fungal elicitor80 could systemically induce lignin deposition, total phenolic content, flavonoid content and defense enzymes, including three keys phenylpropanoid pathway (PAL, 4CL and C4H) and pathogenesis-related (GLU and CHT) enzymes. The fungal elicitor80 also enhanced the up-regulation of the transcription and expression of PAL, C4H, 4CL, GLU and CHT genes. The treatment with the fungal elicitor80 + F. sulphureum caused the marked and/or prompt enhancement of all indexes when compared to treatment with the fungal elicitor80 or inoculation with the pathogen alone. The results suggested that the fungal elicitor of T. roseum could significantly enhance defense responses in potato tuber against dry rot mainly due to the up-regulation of the transcription and expression of resistance-related genes as well as increasing the activity of resistance-related enzymes and antifungal compounds. PMID:27430509

  9. Activation of phenylpropanoid pathway and PR of potato tuber against Fusarium sulphureum by fungal elicitor from Trichothecium roseum.

    PubMed

    Yu, Xiao-Yan; Bi, Yang; Yan, Lu; Liu, Xiao; Wang, Yi; Shen, Ke-Ping; Li, Yong-Cai

    2016-09-01

    The induced resistance of potato tuber (Solanum tuberosum cv. Xindaping) tissue against Fusarium sulphureum by a fungal elicitor from the incompatible pathogen Trichothecium roseum and its possible mechanism were studied. The results showed that the lesion development of the wound-inoculated potato tuber was significantly reduced by treatment with the fungal elicitor from T. roseum (P < 0.05). Inoculation with F. sulphureum on the 16th day after treatment with the fungal elicitor80 at 15.0 μg/ml had the best resistant effect in the potato tuber, with the diameter being only reduced by 47 % that of the control. In addition, the results also showed that the potato tuber treated with the fungal elicitor80 could systemically induce lignin deposition, total phenolic content, flavonoid content and defense enzymes, including three keys phenylpropanoid pathway (PAL, 4CL and C4H) and pathogenesis-related (GLU and CHT) enzymes. The fungal elicitor80 also enhanced the up-regulation of the transcription and expression of PAL, C4H, 4CL, GLU and CHT genes. The treatment with the fungal elicitor80 + F. sulphureum caused the marked and/or prompt enhancement of all indexes when compared to treatment with the fungal elicitor80 or inoculation with the pathogen alone. The results suggested that the fungal elicitor of T. roseum could significantly enhance defense responses in potato tuber against dry rot mainly due to the up-regulation of the transcription and expression of resistance-related genes as well as increasing the activity of resistance-related enzymes and antifungal compounds.

  10. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    SciTech Connect

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-04-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. (/sup 14/C)-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using (/sup 3/H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results.

  11. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A Review.

    PubMed

    Thakur, Meenakshi; Sohal, Baldev Singh

    2013-01-01

    Disease control is largely based on the use of fungicides, bactericides, and insecticides-chemical compounds toxic to plant invaders, causative agents, or vectors of plant diseases. However, the hazardous effect of these chemicals or their degradation products on the environment and human health strongly necessitates the search for new, harmless means of disease control. There must be some natural phenomenon of induced resistance to protect plants from disease. Elicitors are compounds, which activate chemical defense in plants. Various biosynthetic pathways are activated in treated plants depending on the compound used. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, benzothiadiazole, benzoic acid, chitosan, and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Their introduction into agricultural practice could minimize the scope of chemical control, thus contributing to the development of sustainable agriculture. This paper chiefly highlights the uses of elicitors aiming to draw sufficient attention of researchers to the frontier research needed in this context.

  12. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.

  13. Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants

    PubMed Central

    Egusa, Mayumi; Matsui, Hidenori; Urakami, Takeshi; Okuda, Sanami; Ifuku, Shinsuke; Nakagami, Hirofumi; Kaminaka, Hironori

    2015-01-01

    Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS) production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses. PMID:26697049

  14. The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine

    PubMed Central

    Qiao, Fei; Chang, Xiao-Li; Nick, Peter

    2010-01-01

    The cytoskeleton undergoes dramatic reorganization during plant defence. This response is generally interpreted as part of the cellular repolarization establishing physical barriers against the invading pathogen. To gain insight into the functional significance of cytoskeletal responses for defence, two Vitis cell cultures that differ in their microtubular dynamics were used, and the cytoskeletal response to the elicitor Harpin in parallel to alkalinization of the medium as a fast response, and the activation of defence-related genes were followed. In one cell line derived from the grapevine cultivar ‘Pinot Noir’, microtubules contained mostly tyrosinylated α-tubulin, indicating high microtubular turnover, whereas in another cell line derived from the wild grapevine V. rupestris, the α-tubulin was strongly detyrosinated, indicating low microtubular turnover. The cortical microtubules were disrupted and actin filaments were bundled in both cell lines, but the responses were elevated in V. rupestris as compared with V. vinifera cv. ‘Pinot Noir’. The cytoskeletal responsiveness correlated with elicitor-induced alkalinization and the expression of defence genes. Using resveratrol synthase and stilbene synthase as examples, it could be shown that pharmacological manipulation of microtubules could induce gene expression in the absence of elicitor. These findings are discussed with respect to a role for microtubules as positive regulators of defence-induced gene expression. PMID:20675535

  15. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

    PubMed

    Zhang, Huajian; Wu, Qun; Cao, Shun; Zhao, Tongyao; Chen, Ling; Zhuang, Peitong; Zhou, Xiuhong; Gao, Zhimou

    2014-11-01

    In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.

  16. Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants.

    PubMed

    Egusa, Mayumi; Matsui, Hidenori; Urakami, Takeshi; Okuda, Sanami; Ifuku, Shinsuke; Nakagami, Hirofumi; Kaminaka, Hironori

    2015-01-01

    Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS) production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses. PMID:26697049

  17. Enhancement of rutin production in Fagopyrum tataricum hairy root cultures with its endophytic fungal elicitors.

    PubMed

    Zhao, Jianglin; Xiang, Dabing; Peng, Lianxin; Zou, Liang; Wang, Yuehua; Zhao, Gang

    2014-01-01

    Tartary buckwheat (Fagopyrum tataricum) is a potentially important source of rutin, a natural bioactive flavonoid with antihyperglycemic, antioxidative, antihypertensive, and anti-inflammatory properties. This study examines the effects of endophytic fungi on rutin production in the hairy root cultures of F. tataricum. Without obvious changes in the appearance of the hairy roots, the exogenous fungal mycelia elicitors efficiently stimulated the hairy root growth and rutin biosynthesis, and the stimulation effect was mainly dependent on the mycelia elicitor species, as well as its treatment dose. Two endophytic fungal isolates Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened as promising candidates for promoting F. tataricum hairy root growth and rutin production. With application of polysaccharide (PS) of endophyte Fat9 (200 mg/L), and PS of endophyte Fat15 (100 mg/L) to the hairy root cultures on day 25, the rutin yield was increased to 45.9 mg/L and 47.2 mg/L, respectively. That was about 3.1- to 3.2-fold in comparison with the control level of 14.6 mg/L. Moreover, the present study revealed that the accumulation of rutin resulted from the stimulation of the phenylpropanoid pathway by mycelia PS treatments. This may be an efficient strategy for enhancing rutin production in F. tataricum hairy root culture provided with its endophytic mycelia elicitors.

  18. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    SciTech Connect

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C. )

    1991-05-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H{sub 2}O{sub 2} by the cells. To test the hypothesis that this synthesis involves reduction of O{sub 2} at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 {mu}g solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m{sup 2}) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m{sup 2}) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction.

  19. Response of phytohormones and correlation of SAR signal pathway genes to the different resistance levels of grapevine against Plasmopara viticola infection.

    PubMed

    Liu, Shao-Li; Wu, Jiao; Zhang, Pei; Hasi, Gerile; Huang, Yu; Lu, Jiang; Zhang, Ya-Li

    2016-10-01

    Phytohormones play an important role in the process of disease resistance in plants. Here, we investigated which among salicylic acid, jasmonic acid, and abscisic acid performs a key role in plant defense after Plasmopara viticola infection in grapevine. We used grapevines possessing different resistance levels against P. viticola infection to study the relationship between the expression of key genes in the related resistance signaling pathways and the level of resistance. We performed high-performance liquid chromatography-mass spectrometry to estimate the phytohormone contents in grape leaves at different time points after the infection. Furthermore, we performed quantitative analyses of key genes such as EDS1, PAD4, ICS2, PAL, NPR1, TGA1, and PR1 in the systemic acquired resistance pathway by quantitative reverse transcription-polymerase chain reaction. The results showed an increased variation in the SA content, which was maintained at high levels, after P. viticola infection in plant species exhibiting stronger resistance to the pathogen; this finding highlights the importance of SA in plant defense mechanisms. Moreover, EDS1 and PAD4 expression did not show a positive correlation with disease resistance in grape; however, higher expression of other genes that were analyzed was observed in highly resistant grape varieties. Our results provide insights into the role of phytohormone regulation in the induction and maintenance of plant defense response to pathogens. PMID:27244101

  20. Response of phytohormones and correlation of SAR signal pathway genes to the different resistance levels of grapevine against Plasmopara viticola infection.

    PubMed

    Liu, Shao-Li; Wu, Jiao; Zhang, Pei; Hasi, Gerile; Huang, Yu; Lu, Jiang; Zhang, Ya-Li

    2016-10-01

    Phytohormones play an important role in the process of disease resistance in plants. Here, we investigated which among salicylic acid, jasmonic acid, and abscisic acid performs a key role in plant defense after Plasmopara viticola infection in grapevine. We used grapevines possessing different resistance levels against P. viticola infection to study the relationship between the expression of key genes in the related resistance signaling pathways and the level of resistance. We performed high-performance liquid chromatography-mass spectrometry to estimate the phytohormone contents in grape leaves at different time points after the infection. Furthermore, we performed quantitative analyses of key genes such as EDS1, PAD4, ICS2, PAL, NPR1, TGA1, and PR1 in the systemic acquired resistance pathway by quantitative reverse transcription-polymerase chain reaction. The results showed an increased variation in the SA content, which was maintained at high levels, after P. viticola infection in plant species exhibiting stronger resistance to the pathogen; this finding highlights the importance of SA in plant defense mechanisms. Moreover, EDS1 and PAD4 expression did not show a positive correlation with disease resistance in grape; however, higher expression of other genes that were analyzed was observed in highly resistant grape varieties. Our results provide insights into the role of phytohormone regulation in the induction and maintenance of plant defense response to pathogens.

  1. Draft Genome Sequence of Tombunodavirus UC1

    PubMed Central

    DeRisi, Joseph L.

    2015-01-01

    We report here the draft genome sequence of tombunodavirus UC1 assembled from metagenomic sequencing of organisms in San Francisco wastewater. This virus shares hallmarks of members of the Tombusviridae and the nodavirus-like Plasmopara halstedii and Sclerophthora macrospora viruses. PMID:26139709

  2. Draft Genome Sequence of Tombunodavirus UC1.

    PubMed

    Greninger, Alexander L; DeRisi, Joseph L

    2015-01-01

    We report here the draft genome sequence of tombunodavirus UC1 assembled from metagenomic sequencing of organisms in San Francisco wastewater. This virus shares hallmarks of members of the Tombusviridae and the nodavirus-like Plasmopara halstedii and Sclerophthora macrospora viruses. PMID:26139709

  3. Prevalence and incidence of sunflower downy mildew in North Dakota from 2001 to 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower downy mildew (Plasmopara halstedii) is an economic problem in sunflowers in North Dakota (ND), which historically produces about half the U.S. sunflower crop. From 2001 to 2011, the prevalence and incidence of downy mildew was monitored in ND as part of two large survey efforts, namely a m...

  4. Differential Induction of Lipoxygenase Isoforms in Wheat upon Treatment with Rust Fungus Elicitor, Chitin Oligosaccharides, Chitosan, and Methyl Jasmonate.

    PubMed Central

    Bohland, C.; Balkenhohl, T.; Loers, G.; Feussner, I.; Grambow, H. J.

    1997-01-01

    A glycopeptide elicitor prepared from germ tubes of the rust fungus Puccinia graminis Pers. f. sp. tritici Erikss. & Henn (Pgt), as well as chitin oligosaccharides, chitosan, and methyl jasmonate (MJ) stimulated lipoxygenase (LOX) activity (E.C. 1.13.11.12) in wheat (Triticum aestivum) leaves. Immunoblot analysis using anti-LOX antibodies revealed the induction of 92- and 103-kD LOX species after Pgt elicitor treatment. In contrast, MJ treatment led to a significant increase of a 100-kD LOX species, which was also detected at lower levels in control plants. The effects of chitin oligomers and chitosan resembled those caused by MJ. In conjunction with other observations the results suggest that separate reaction cascades exist, and that jasmonates may not be involved in Pgt elicitor action. LOX-92 appears to be mainly responsible for the increase in LOX activity after Pgt elicitor treatment because its appearance on western blots coincided with high LOX activity in distinct anion-exchange chromatography fractions. It is most active at pH 5.5 to 6.0, and product formation from linoleic and [alpha]-linolenic acid is clearly in favor of the 9-LOOHs. It is interesting that a 92-kD LOX species, which seems to correspond to the Pgt elicitor-induced LOX species, was also detected in rust-inoculated leaves. PMID:12223735

  5. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance.

    PubMed

    van Loon, Leendert C; Bakker, Peter A H M; van der Heijdt, Walter H W; Wendehenne, David; Pugin, Alain

    2008-12-01

    Colonization of roots by selected strains of fluorescent Pseudomonas spp. can trigger induced systemic resistance (ISR) against foliar pathogens in a plant species-specific manner. It has been suggested that early responses in cell suspension cultures in response to rhizobacterial elicitors, such as generation of active oxygen species (AOS) and extracellular medium alkalinization (MA), are linked to the development of ISR in whole plants. Perception of flagellin was demonstrated to elicit ISR in Arabidopsis, and bacterial lipopolysaccharides (LPS) have been shown to elicit several defense responses and to act as bacterial determinants of ISR in various plant species. In the present study, the LPS-containing cell walls, the pyoverdine siderophores, and the flagella of Pseudomonas putida WCS358, P. fluorescens WCS374, and P. fluorescens WCS417, which are all known to act as elicitors of ISR in selected plant species, were tested for their effects on the production of AOS, MA, elevation of cytoplasmic Ca(2+) ([Ca(2+)](cyt)), and defense-related gene expression in tobacco suspension cells. The LPS of all three strains, the siderophore of WCS374, and the flagella of WCS358 induced a single, transient, early burst of AOS, whereas the siderophores of WCS358 and WCS417 and the flagella of WCS374 and WCS417 did not. None of the compounds caused cell death. Once stimulated by the active compounds, the cells became refractory to further stimulation by any of the active elicitors, but not to the elicitor cryptogein from the oomycete Phytophthora cryptogea, indicating that signaling upon perception of the different rhizobacterial compounds rapidly converges into a common response pathway. Of all compounds tested, only the siderophores of WCS358 and WCS417 did not induce MA; the flagella of WCS374 and WCS417, although not active as elicitors of AOS, did induce MA. These results were corroborated by using preparations from relevant bacterial mutants. The active rhizobacterial

  6. Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors.

    PubMed

    Szymanowska, Urszula; Złotek, Urszula; Karaś, Monika; Baraniak, Barbara

    2015-04-01

    This paper investigates changes in the anti-inflammatory and antioxidative activity of anthocyanins from purple basil (Ocimum basilicum L.) leaves induced by arachidonic acid (AA), jasmonic acid (JA) and β-aminobutyric acid (BABA). The anthocyanins content was significantly increased by all elicitors used in this study; however, no increase was observed in the antioxidant activity of the analyzed extracts. Additionally, a significant decrease by about 50% in the ability to chelate Fe(II) was noted. Further, an increase in the potential anti-inflammatory activity of basil anthocyanins was observed after treatment with each the abiotic elicitor. The IC50 value for lipoxygenase inhibition was almost twice as low after elicitation as that of the control. Also, cyclooxygenase inhibition by anthocyanins was stimulated by abiotic elicitors, except for JA-sample. Additionally, HPLC-analysis indicated that elicitation with AA, JA and BABA caused increases in content most of all anthocyanin compounds.

  7. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard.

    PubMed

    Delaunois, Bertrand; Farace, Giovanni; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-04-01

    Development and optimisation of alternative strategies to reduce the use of classic chemical inputs for protection against diseases in vineyard is becoming a necessity. Among these strategies, one of the most promising consists in the stimulation and/or potentiation of the grapevine defence responses by the means of elicitors. Elicitors are highly diverse molecules both in nature and origins. This review aims at providing an overview of the current knowledge on these molecules and will highlight their potential efficacy from the laboratory in controlled conditions to vineyards. Recent findings and concepts (especially on plant innate immunity) and the new terminology (microbe-associated molecular patterns, effectors, etc.) are also discussed in this context. Other objectives of this review are to highlight the difficulty of transferring elicitors use and results from the controlled conditions to the vineyard, to determine their practical and effective use in viticulture and to propose ideas for improving their efficacy in non-controlled conditions. PMID:23719689

  8. Pyrazinecarboxamides as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro.

    PubMed

    Tumova, Lenka; Tuma, Jiri; Dolezal, Martin

    2011-11-01

    The effect of new synthetic pyrazinecarboxamide derivatives as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro was investigated. Both tested elicitors increased the production of flavonolignans in S. marianum callus and suspension cultures and flavonoids in O. arvensis callus and suspension cultures. Compound I, 5-(2-hydroxybenzoyl)-pyrazine-2-carboxamide, has shown to be an effective elicitor of flavonolignans and taxifoline production in Silybum marianum culture in vitro. The maximum content of silydianin (0.11%) in S. marianum suspension culture was induced by 24 h elicitor application in concentration of 1.159 × 10⁻³ mol/L. The maximum content of silymarin complex (0.08%) in callus culture of S. marianum was induced by 168 h elicitor application of a concentration 1.159 × 10⁻⁴ mol/L, which represents contents of silydianin (0.03%), silychristin (0.01%) and isosilybin A (0.04%) compared with control. All three tested concentrations of compound II, N-(2-bromo-3-methylphenyl)-5-tert-butylpyrazin-2-carboxamide increased the flavonoid production in callus culture of O. arvensis in a statistically significant way. The best elicitation effect of all elicitor concentrations had the weakest c₃ concentration (8.36 × 10⁻⁶ mol/L) after 168 h time of duration. The maximum content of flavonoids (about 5,900%) in suspension culture of O. arvensis was induced by 48 h application of c₃ concentration (8.36 × 10⁻⁶ mol/L).

  9. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species.

    PubMed

    Anca, Iulia-Andra; Fromentin, Jérôme; Bui, Quynh Trang; Mhiri, Corinne; Grandbastien, Marie-Angèle; Simon-Plas, Françoise

    2014-10-15

    Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation. PMID:25128785

  10. Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of Plasmopara viticola infection.

    PubMed

    Bugliosi, R; Spera, G; La Torre, A; Campoli, L; Scaglione, M

    2006-01-01

    Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.

  11. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola.

    PubMed

    Merz, Patrick R; Moser, Tina; Höll, Janine; Kortekamp, Andreas; Buchholz, Günther; Zyprian, Eva; Bogs, Jochen

    2015-03-01

    Grapevine (Vitis vinifera ssp. vinifera) is one of the most important fruit species; however, it is highly susceptible to various pathogens, which can cause severe crop losses in viticulture. It has been shown that several WRKY class transcription factors (TFs) are part of the signal transduction cascade, which leads to the activation of plant defense reactions against various pathogens. In the present investigation, a full-length cDNA was isolated from V. vinifera leaf tissue encoding a predicted protein, designated VvWRKY33, which shows the characteristics of group I WRKY protein family. VvWRKY33 induction correlates with the expression of VvPR10.1 (pathogenesis-related 10.1) gene in the leaves of the resistant cultivar 'Regent' after infection with Plasmopara viticola, whereas in the susceptible cultivar 'Lemberger' VvWRKY33 and VvPR10.1 are not induced. Corresponding expression of the TF and VvPR10.1 was even obtained in uninfected ripening berries. In planta, analysis of VvWRKY33 has been performed by ectopic expression of VvWRKY33 in grapevine leaves of greenhouse plants mediated via Agrobacterium tumefaciens transformation. In consequence, VvWRKY33 strongly increases resistance to P. viticola in the susceptible cultivar 'Shiraz' and reduces pathogen sporulation of about 50-70%, indicating a functional role for resistance in grapevine. Complementation of the resistance-deficient Arabidopsis thaliana Columbia-0 (Col-0) mutant line wrky33-1 by constitutive expression of VvWRKY33 restores resistance against Botrytis cinerea to wild-type level and in some complemented mutant lines even exceeds the resistance level of the parental line Col-0. Our results support the involvement of VvWRKY33 in the defense reaction of grapevine against different pathogens.

  12. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew.

    PubMed

    Delmotte, François; Mestre, Pere; Schneider, Christophe; Kassemeyer, Hanns-Heinz; Kozma, Pál; Richart-Cervera, Sylvie; Rouxel, Mélanie; Delière, Laurent

    2014-10-01

    Crop pathogens evolve rapidly to adapt to their hosts. The use of crops with quantitative disease resistance is expected to alter selection of pathogen life-history traits. This may result in differential adaptation of the pathogen to host cultivars and, sometimes, to the erosion of quantitative resistance. Here, we assessed the level of host adaptation in an oomycete plant pathogenic species. We analysed the phenotypic and genetic variability of 17 Plasmopara viticola isolates collected on Vitis vinifera and 35 isolates from partially resistant varieties (Regent and genotypes carrying the Rpv1 gene). Cross-inoculation experiments assessed two components of aggressiveness and a life-history trait of the pathogen: disease severity, sporangial production and sporangia size. The results contribute evidence to the emergence of P. viticola aggressive isolates presenting a high level of sporulation on the partially resistant Regent. By contrast, no adaptation to the Rpv1 gene was found in this study. The erosion of Regent resistance may have occurred in less than 5years and at least three times independently in three distant wine-producing areas. Populations from resistant varieties showed a significant increase in sporangia production capacity, indicating an absence of fitness costs for this adaptation. The increase in the number of sporangia was correlated with a reduction in sporangia size, a result which illustrates how partial plant disease resistance can impact selection of the pathogen's life-history traits. This case study on grapevine downy mildew shows how new plant pathogen populations emerge in agro-ecosystems by adapting to partial host resistance. This adaptive pattern highlights the need for wise management of plant partial disease resistance to ensure its sustainability over time.

  13. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium. PMID:24357500

  14. Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy.

    PubMed

    Sánchez-Sampedro, Angeles; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert; Corchete, Purificación

    2007-06-15

    A comprehensive metabolomic profiling of Silybum marianum (L.) Gaernt cell cultures elicited with yeast extract or methyl jasmonate for the production of silymarin was carried out using one- and two-dimensional nuclear magnetic resonance spectroscopy. With these techniques we were able to detect both temporal quantitative variations in the metabolite pool in yeast extract-elicited cultures and qualitative differences in cultures treated with the two types of elicitors. Yeast extract and methyl jasmonate caused a metabolic reprogramming that affected amino acid and carbohydrate metabolism; upon elicitation sucrose decreased and glucose levels increased, these changes being dependent on "de novo" protein synthesis. Also dependent on protein synthesis were the increase seen in alanine and glutamine in elicited cultures. Yeast extract differentially acted on threonine and valine metabolism and promoted accumulation of choline and alpha-linolenic acid in cells thus suggesting its action on membranes and the involvement of the octadecanoid pathway in the induction of silymarin in S. marianum cultures. Phenylpropanoid metabolism was altered by elicitation but, depending on elicitor, different phenylpropanoid profile was produced. The results obtained in this study will permit in the future to identify candidate components of the signalling pathway involved in the stimulation of the constitutive pathway of silymarin.

  15. Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) gaertn cultures in vitro.

    PubMed

    Tůmová, Lenka; Tůma, Jirí; Megusar, Klara; Dolezal, Martin

    2010-01-14

    Substituted pyrazinecarboxamides markedly influenced production of flavonolignans in Silybum marianum callus and suspension cultures. In this study the effect of two compounds, N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide (1) and N-(3-iodo-4-methylphenyl)-5-tert-butyl-pyrazine-2-carboxamide (2), as abiotic elicitors on flavono-lignan production in callus culture of S. marianum was investigated. Silymarin complex compounds have hepatoprotective, anticancer and also hypocholesterolemic activity. In vitro flavonolignan concentration in cells is very low and the elicitation is one of the methods to increase production. Elicitors were tested at three concentrations and at different culture times. In the case of elicitation with 1, the greatest increase of flavonolignan and taxifoline production was observed at concentration c(1a) after 6-hours of elicitation and after 24 and 72-hours at concentration c(1b). However, increased production of silychristin, one of the compounds in the silymarin complex, was achieved after only 6-hours elicitation with c(1a) (2.95 x 10(-4) mol/L). The content of silychristin was 2-times higher compared to the control sample. An increased production of silychristin was reached with compound 2 at the concentration c(2) (2.53 x 10(-3) mol/L) after 72 h of elicitation. The production of silychristin in this case was increased 12-times compared to control.

  16. Photocontrol of Elicitor Activity of PIP-1 to Investigate Temporal Factors Involved in Phytoalexin Biosynthesis.

    PubMed

    Kim, Yonghyun; Miyashita, Masahiro; Miyagawa, Hisashi

    2015-07-01

    The peptide elicitor PIP-1 can induce various immune responses in tobacco cells. Previously, we showed that types of responses induced by PIP-1 are different depending on its stimulation periods; short-term stimulation induces weak responses, whereas long-term stimulation leads to strong responses including production of the phytoalexin capsidiol. However, key components that directly regulate the initiation of capsidiol biosynthesis in response to continuous stimulation with PIP-1 remain unclear. In this study, we designed a photocleavable PIP-1 analog containing 3-amino-3-(2-nitrophenyl)propionic acid as a photocleavable residue. The activity of the analog can be "switched off" using ultraviolet (UV) irradiation without undesired side effects. This analog induced a significant level of capsidiol production unless UV-irradiated, whereas no capsidiol production was observed when tobacco cells were UV-irradiated 1 h after treatment. Using this analog, we found that the elicitor-inducible 3-hydroxy-3-methylglutaryl-CoA reductase activity is regulated based on the duration of the stimulation with PIP-1, which could be associated with the initiation of capsidiol biosynthesis. PMID:26047371

  17. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis.

    PubMed

    Ming, Qianliang; Su, Chunyan; Zheng, Chengjian; Jia, Min; Zhang, Qiaoyan; Zhang, Hong; Rahman, Khalid; Han, Ting; Qin, Luping

    2013-12-01

    Biotic elicitors can be used to stimulate the production of secondary metabolites in plants. However, limited information is available on the effects of biotic elicitors from endophytic fungi on their host plant. Trichoderma atroviride D16 is an endophytic fungus isolated from the root of Salvia miltiorrhiza and previously reported to produce tanshinone I (T-I) and tanshinone IIA (T-IIA). Here, the effects of extract of mycelium (EM) and the polysaccharide fraction (PSF), produced by T. atroviride D16, on the growth and secondary metabolism of S. miltiorrhiza hairy roots are reported. The results indicated that both EM and PSF promoted hairy root growth and stimulated the biosynthesis of tanshinones in hairy roots. EM slightly suppressed the accumulation of phenolic acids, while PSF had no significant influence on the accumulation of these compounds. When comparing the effects of EM versus PSF, it was concluded that PSF is one of the main active constituents responsible for promoting hairy root growth, as well as stimulating biosynthesis of tanshinones in the hairy root cultures. Moreover, the transcriptional activity of genes involved in the tanshinone biosynthetic pathway increased significantly with PSF treatment. Thus, PSF from endophytic T. atroviride D16 affected the chemical composition of the host plant by influencing the expression of genes related to the secondary metabolite biosynthetic pathway. Furthermore, treatment with PSF can be effectively utilized for large-scale production of tanshinones in the S. miltiorrhiza hairy root culture system.

  18. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters.

    PubMed

    Seyedsayamdost, Mohammad R

    2014-05-20

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as "cryptic" or "silent" to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria.

  19. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.

    PubMed

    Hael-Conrad, V; Abou-Mansour, E; Díaz-Ricci, J-C; Métraux, J-P; Serrano, M

    2015-12-01

    AsES (Acremonium strictum Elicitor and Subtilisin) is a novel extracellular elicitor protein produced by the avirulent isolate SS71 of the opportunist strawberry fungal pathogen A. strictum. Here we describe the activity of AsES in the plant-pathogen system Arabidopsis thaliana-Botrytis cinerea. We show that AsES renders A. thaliana plants resistant to the necrotrophic pathogen B. cinerea, both locally and systemically and the defense response observed is dose-dependent. Systemic, but not local resistance is dependent on the length of exposure to AsES. The germination of the spores in vitro was not inhibited by AsES, implying that protection to B. cinerea is due to the induction of the plant defenses. These results were further supported by the findings that AsES differentially affects mutants impaired in the response to salicylic acid, jasmonic acid and ethylene, suggesting that AsES triggers the defense response through these three signaling pathways.

  20. A Novel Role for the TIR Domain in Association with Pathogen-Derived Elicitors

    PubMed Central

    Burch-Smith, Tessa M; Schiff, Michael; Caplan, Jeffrey L; Tsao, Jeffrey; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2007-01-01

    Plant innate immunity is mediated by Resistance (R) proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr) elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes. PMID:17298188

  1. The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings.

    PubMed

    Cao, Shifeng; Liu, Ting; Jiang, Yueming; He, Shenggen; Harrison, Dion K; Joyce, Daryl C

    2012-10-15

    The effect of elicitors associated with host defence on betacyanin accumulation in Amaranthus mangostanus seedlings was investigated. Under the conditions of the experiments, betacyanin accumulation was generally enhanced by light. Methyl jasmonate (MeJA) treatment increased betacyanin synthesis in a concentration-dependent response. Seedlings treated with ethylene as 5mM Ethephon also had elevated levels of betacyanin. In contrast, salicylic acid (SA) and H(2)O(2) treatments had no influence on betacyanin contents in light or dark. Combined MeJA with Ethephon or H(2)O(2) had an additive effect on betacyanin accumulation in dark-grown seedlings. However, a decline was recorded in light-grown seedlings. Moreover, an antagonistic effect on betacyanin synthesis was found when MeJA and SA were added simultaneously. Our results indicate that betacyanin content in A. mangostanus seedlings can be upregulated by MeJA and ethylene. Both additive and antagonistic effects in regulating betacyanin synthesis in A. mangostanus seedlings were observed between MeJA and other elicitors.

  2. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    PubMed Central

    Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina

    2007-01-01

    Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce this

  3. Phytoalexin synthesis in soybean cells: elicitor induction of reductase involved in biosynthesis of 6'-deoxychalcone.

    PubMed

    Welle, R; Grisebach, H

    1989-07-01

    Chromatofocusing on Mono P proved to be an efficient purification procedure for the NADPH-dependent reductase from soybean (Glycine max L.) cell cultures which acts together with chalcone synthase in the biosynthesis of 2',4',4-trihydroxychalcone (6'-deoxychalcone). By isoelectric focusing the pI of reductase was determined to be 6.3. Addition of pure soybean reductase to cell-free extracts from stimulated cell cultures of parsley and bean (Phaseolus vulgaris) and from young flowers of Dahlia variabilis caused in each case synthesis of 6'-deoxychalcone. When 4-coumaroyl-CoA was replaced by caffeoyl-CoA in the reductase assay, formation of 2',4',3,4-tetrahydrochalcone (butein) was observed. A polyclonal antireductase antiserum was raised in rabbits and proved to be specific in Ouchterlony diffusion experiments, Western blots and immunotitration. The reductase antiserum showed no cross-reactivity with soybean chalcone synthase (CHS). A biotin/[125I]streptavidin system provided a quantitative Western blot for the reductase. Changes in the activities, amounts of protein, and mRNA activities of reductase and CHS were determined after challenge of soybean cell cultures by elicitor (from Phytophthora megasperma f.sp. glycinea or yeast). For both enzymes a pronounced and parallel increase in activity and amounts of protein was observed after elicitor addition with a maximum at about 16 h after challenge. Parallel increases in mRNA activities occurred earlier. The results indicate a parallel induction of de novo synthesis of reductase and CHS which coact in synthesis of 6'-deoxychalcone. PMID:2500065

  4. A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco.

    PubMed

    Wang, Ningbo; Liu, Mengjie; Guo, Lihua; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    Here we reported a novel protein elicitor from Bacillus amyloliquefaciens NC6 induced systemic resistance (ISR) in tobacco. The purification was executed by ion-exchange chromatography, native-page extraction and HPLC, and the amino acid sequence was identified by mass spectrometry. This recombinant elicitor protein, expressed in Escherichia coli by an E1 expression vector, had good thermal stability, and the elicitor caused a clearly defined hypersensitive response (HR) necrosis in tobacco leaves. It could also trigger early defence events, including generation of reactive oxygen species (H2O2 and O2 (-)) and phenolic-compound accumulation. Quantitative real-time PCR (Q-RT-PCR) results indicated that several plant defence genes, including the salicylic acid (SA)-responsive PR1a, PR1b, PR5, and phenylalanine ammonia lyase (PAL), as well as the jasmonic acid (JA)-responsive PDF1.2 and CORONATINE INSENSITIVE 1 (COI1), were all up-regulated. Moreover, infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus (TMV) and the fungal pathogen Botrytis cinerea. PMID:27194952

  5. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus.

    PubMed

    Nováková, Miroslava; Kim, Phuong Dinh; Šašek, Vladimír; Burketová, Lenka; Jindřichová, Barbora; Šantrůček, Jiří; Valentová, Olga

    2016-07-01

    The Dothideomycete Leptosphaeria maculans, a worldwide fungal pathogen of oilseed rape (Brassica napus), secretes a broad spectrum of molecules into the cultivation medium during growth in vitro. Here, candidate elicitor molecules, which induce resistance in B. napus to L. maculans, were identified in the cultivation medium. The elicitation activity was indicated by increased transcription of pathogenesis-related gene 1 (PR1) and enhanced resistance of B. napus plants to the invasion of L. maculans. The elicitation activity was significantly lowered when the cultivation medium was heated to 80°C. Active components were further characterized by specific cleavage with the proteolytic enzymes trypsin and proteinase K and with glycosidases α-amylase and β-glucanase. The elicitor activity was eliminated by proteolytic digestion while glycosidases had no effect. The filtered medium was fractionated by either ion-exchange chromatography or isoelectric focusing. Mass spectrometry analysis of the most active fractions obtained by both separation procedures revealed predominantly enzymes that can be involved in the degradation of plant cell wall polysaccharides. This is the first study searching for L. maculans-specific secreted elicitors with a potential to be used as defense-activating agents in the protection of B. napus against L. maculans in agriculture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:918-928, 2016. PMID:27009514

  6. Induction of two prenyltransferases for the accumulation of coumarin phytoalexins in elicitor-treated Ammi majus cell suspension cultures.

    PubMed

    Hamerski, D; Schmitt, D; Matern, U

    1990-01-01

    Two dimethylallyl diphosphate:umbelliferone dimethylallyltransferase (prenyltransferase) activities, catalysing the 6-prenylation and the 7-O-prenylation, respectively, of umbelliferone in the course of phytoalexin synthesis, increased in Ammi majus cell suspension cultures in response to elicitor treatment. Both enzyme activities were dependent on Mg2+ or Mn2+ with significant preference for Mg2+ in the 6-prenylation reaction. Whereas dark-grown cells did not contain these activities, both prenyltransferase activities were induced rapidly by the addition of elicitor reaching a first maximum after 10-14 hr and a second maximum beyond 30 hr. Other coumarin specific, elicitor-induced enzyme activities of A. majus cells, in contrast, showed only one maximum of activity within the 50 hr experimental period, while the pattern of induction of phenylalanine ammonia-lyase activity resembled that of the prenyltransferases with maxima at ca 8 hr and 20-30 hr. Preliminary data suggest that the apparent biphasic induction of these enzyme activities is due to post-translational enzyme modifications.

  7. A pharmacological approach to test the diffusible signal activity of reactive oxygen intermediates in elicitor-treated tobacco leaves.

    PubMed

    Costet, Laurent; Dorey, Stephan; Fritig, Bernard; Kauffmann, Serge

    2002-01-01

    The capacity of H(2)O(2), the most stable of the reactive oxygen species (ROI), to diffuse freely across biological membranes and to signal gene expression suggests that H(2)O(2) could function as a short-lived second messenger diffusing from cell to cell. We tested this hypothesis in tobacco plants treated with a glycoprotein elicitor. Applied at 50 nM, it induces H(2)O(2) accumulation and the hypersensitive response restricted to the infiltrated zone 1 tissue. Stimulation of a set of defense responses also occurs in the surrounding zone 2 tissue without diffusion of the elicitor. ROI levels in zone 1 were modulated using N-acetyl-L-cysteine (NAC) as a ROI scavenger and Rose Bengal (RB) as a ROI generator. We found that ROI appeared to act as signalling intermediates in pathways leading to salicylic acid accumulation, to PR1, PR5 and 3-hydroxy-3-methylglutarylCoA reductase expression in glycoprotein-treated zone 1 tissues. Compared to the treatment with the elicitor alone, co-infiltration of the glycoprotein and NAC increased the surface of zone 2 showing PR1 and O-methyltransferase expression. Application of RB had the opposite effect. The data suggest that, in our system, ROI did not act as a cell-to-cell diffusible signal to activate PR protein and O-methyltransferase expression in zone 2.

  8. A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco

    PubMed Central

    Wang, Ningbo; Liu, Mengjie; Guo, Lihua; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    Here we reported a novel protein elicitor from Bacillus amyloliquefaciens NC6 induced systemic resistance (ISR) in tobacco. The purification was executed by ion-exchange chromatography, native-page extraction and HPLC, and the amino acid sequence was identified by mass spectrometry. This recombinant elicitor protein, expressed in Escherichia coli by an E1 expression vector, had good thermal stability, and the elicitor caused a clearly defined hypersensitive response (HR) necrosis in tobacco leaves. It could also trigger early defence events, including generation of reactive oxygen species (H2O2 and O2-) and phenolic-compound accumulation. Quantitative real-time PCR (Q-RT-PCR) results indicated that several plant defence genes, including the salicylic acid (SA)-responsive PR1a, PR1b, PR5, and phenylalanine ammonia lyase (PAL), as well as the jasmonic acid (JA)-responsive PDF1.2 and CORONATINE INSENSITIVE 1 (COI1), were all up-regulated. Moreover, infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus (TMV) and the fungal pathogen Botrytis cinerea. PMID:27194952

  9. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp.

    PubMed

    Zhang, S; Du, H; Klessig, D F

    1998-03-01

    Two purified proteinaceous fungal elicitors, parasiticein (an alpha elicitin) and cryptogein (a beta elicitin), as well as a fungal cell wall-derived carbohydrate elicitor all rapidly activated a 48-kD kinase in tobacco suspension cells. The maximum activation of this kinase paralleled or preceded medium alkalization and activation of the defense gene phenylalanine ammonia-lyase (PAL). In addition, the two elicitins, which also induced hypersensitive cell death, activated a 44- and a 40-kD kinase with delayed kinetics. By contrast, the cell wall-derived elicitor only weakly activated the 44-kD kinase and failed to activate the 40-kD kinase. The size and substrate preference of the 48-kD kinase are reminiscent of the recently purified and cloned salicylic acid-induced protein (SIP) kinase, which is a member of the mitogen-activated protein kinase family. Antibodies raised against a peptide corresponding to the unique N terminus of SIP kinase immunoreacted with the 48-kD kinase activated by all three elicitors from Phytophthora spp. In addition, the cell wall elicitor and the salicylic acid-activated 48-kD kinase copurified through several chromatography steps and comigrated on two-dimensional gels. Based on these results, all three fungal elicitors appear to activate the SIP kinase. In addition, inhibition of SIP kinase activation by kinase inhibitors correlated with the suppression of cell wall elicitor-induced medium alkalization and PAL gene activation, suggesting a regulatory function for the SIP kinase in these defense responses.

  10. New Synthetic Pyrazine Carboxamide Derivatives as Potential Elicitors in Production of Secondary Metabolite in In vitro Cultures

    PubMed Central

    Tůmová, Lenka; Tůma, Jiří; Doležal, Martin; Dučaiová, Zuzana; Kubeš, Jan

    2016-01-01

    Background: Silymarin, an active polyphenolic fraction of Silybum marianum, and high flavonoid content of Fagopyrum possess various interesting biological activities. The substituted pyrazine-2-carboxamides were previously used as effective elicitors of studied secondary metabolites. Objective: To study the effect of new synthetic pyrazine carboxamide derivatives, N-(4-chlorobenzyl)-5-tert-butylpyrazine-2-carboxamide (1) and 3-(3-((trifluoromethyl) benzyl) amino) pyrazine-2-carboxamide (2), on flavonolignan and flavonoid production in S. marianum and Fagopyrumes culentum in vitro cultures. Materials and Methods: Callus and suspension cultures were cultured on MS medium containing α-naphtaleneacetic acid or 2,4-D. Three elicitor concentrations for different exposure times were tested. Dried and powdered samples of callus and suspension cultures were extracted with methanol and analyzed by DAD-HPLC. Results: Compound 1 showed as a good elicitor of taxifolin production. The effect on silymarin complex was less visible with a maximum between 24 and 48 h after 3.292 ×10−4 mol/L concentration. The detailed analysis showed that silychristin was the most abundant. Compound 2 was effective in rutin production only in callus culture with maximum 24 h and 168 h after application of 3.3756 ×10−3 mol/L concentration and 48 and 72 h after 3.3756 ×10−4 mol/L concentration. Conclusion: From the results of the performed experiments, it can be concluded that compound 1 shows to be suitable elicitor for enhanced production of taxifolin and silychristin in S. marianum, mainly when 3.292 ×10−4 mol/L concentration was used, and compound 2 is suitable for increase rutin production in callus cultures and less appropriate for suspension cultures of F. esculentum. SUMMARY The influence of two new synthetic pyrazine-2-carboxamidesderivatives on secondary metabolite content of Silybum marianum and Fagopyrum esculentum in vitro cultures was tested.In S. marianum, the derivate N-(4

  11. Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum.

    PubMed

    Ashtiani, S Rahimi; Hasanloo, T; Bihamta, M R

    2010-06-01

    Cell suspension cultures of Silybum marianum L. Gaertn (Compositae) produce silymarin, a mixture of flavonolignans. In an attempt to increase cell growth and silymarin production, we exposed cell cultures to various levels of Ag+ (0.2, 0.4, 0.8, 1, and 2 mM) for different exposure times (12, 24, 48, 72, 144, and 216 h). A dramatic increase in cell growth was observed after 12 h in media supplemented with 0.2, 0.4, 0.8, and 1 mM Ag+, and the value in medium treated by 1 mM Ag+ after 72 h was 7.21 g, which was about two-fold that of the control (3.32 g). The highest silymarin production reached about 56 microg g(-1) DW, 24 h after treatment with Ag+ (0.8 mM), which was 30-fold that of the control. Silybin, isosilybin, silychristin, silydianin, and taxifolin were abundant flavonolignans. Ag+ in low concentrations is a positive elicitor for cell growth and silymarin production in cell suspension cultures of Silybum marianum.

  12. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings

    PubMed Central

    Denoux, Carine; Galletti, Roberta; Mammarella, Nicole; Gopalan, Suresh; Werck, Danièle; De Lorenzo, Giulia; Ferrari, Simone; Ausubel, Frederick M.; Dewdney, Julia

    2010-01-01

    We carried out transcriptional profiling analysis in 10 day-old Arabidopsis thaliana seedlings treated with oligogalacturonides (OGs), oligosaccharides derived from the plant cell wall, or the bacterial flagellin peptide Flg22, general elicitors of the basal defense response in plants. Although detected by different receptors, both OGs and Flg22 trigger a fast and transient response that is both similar and comprehensive, and characterized by activation of early stages of multiple defense signaling pathways, particularly JA-associated processes. However, the response to Flg22 is stronger in both the number of genes differentially expressed and the amplitude of change. The magnitude of induction of individual genes is in both cases dose dependent, but even at very high concentrations, OGs do not induce a response that is as comprehensive as that seen with Flg22. While high doses of either microbe-associated molecular pattern (MAMP) elicit a late response that includes activation of senescence processes, SA-dependent secretory pathway genes and PR1 expression are substantially induced only by Flg22. These results suggest a lower threshold for activation of early responses than for sustained or SA-mediated late defenses. Expression patterns of aminocyclopropane-carboxylate synthase genes also implicate ethylene biosynthesis in regulation of the late innate immune response. PMID:19825551

  13. Open Stomata 1 Kinase is Essential for Yeast Elicitor-Induced Stomatal Closure in Arabidopsis.

    PubMed

    Ye, Wenxiu; Adachi, Yuji; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2015-06-01

    We recently demonstrated that yeast elicitor (YEL)-induced stomatal closure requires a Ca(2+)-dependent kinase, CPK6. A Ca(2+)-independent kinase, Open Stomata 1 (OST1), is involved in stomatal closure induced by various stimuli including ABA. In the present study, we investigated the role of OST1 in YEL-induced stomatal closure in Arabidopsis using a knock-out mutant, ost1-3, and a kinase-deficient mutant, ost1-2. YEL did not induce stomatal closure or activation of guard cell S-type anion channels in the ost1 mutants unlike in wild-type plants. However, YEL did not increase OST1 kinase activity in wild-type guard cells. The YEL-induced stomatal closure and activation of S-type anion channels were also impaired in a gain-of-function mutant of a clade A type 2C protein phosphatase (ABA INSENSITIVE 1), abi1-1C. In the ost1 mutants like in the wild type, YEL induced H2O2 accumulation, activation of non-selective Ca(2+)-permeable cation (ICa) channels and transient elevations in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in guard cells. These results suggest that OST1 kinase is essential for stomatal closure and activation of S-type anion channels induced by YEL and that OST1 is not involved in H2O2 accumulation, ICa channel activation or [Ca(2+)]cyt elevations in guard cells induced by YEL.

  14. Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors.

    PubMed

    Sharma, Munish; Ahuja, Ashok; Gupta, Rajinder; Mallubhotla, Sharada

    2015-01-01

    The effect of different abiotic elicitors [jasmonic acid, copper sulphate (CuSO4) and salicyclic acid] at varying concentrations on the stimulation of biomass and bacoside production in in vitro Bacopa monnieri shoot culture was studied. A systematic study conducted over a period of 35 days indicated that the maximum bacoside production (6.74 mg g(-1) dry weight (DW)) was obtained after a lag of 7 days and thereafter, the content decreased gradually to again increase at 28 days (5.91 mg g(-1) DW). Therefore, elicitation experiments were carried out over a period of 3, 6 and 9 days. The shoot cultures treated with 45 mg L(-1) of CuSO4 exhibited the highest bacoside content of 8.73 mg g(-1) DW (∼1.42-fold higher) than in control cultures (6.14 mg g(-1) DW). This study indicates the effectiveness of abiotic elicitation on bacoside production in in vitro shoot cultures of this medicinally important herb known for its memory-enhancing properties.

  15. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis

    PubMed Central

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca2+-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis. PMID:27489497

  16. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis.

    PubMed

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca(2+)-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis. PMID:27489497

  17. Influence of Salicylic Acid on the Induction of Competence for H2O2 Elicitation (Comparison of Ergosterol with Other Elicitors).

    PubMed

    Kauss, H.; Jeblick, W.

    1996-07-01

    Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface, and cut segments were used to study the rapid and transient elicitation of H2O2 by ergosterol, chitosan, mastoparan, and a polymeric fungal elicitor. Freshly abraded segments were only barely competent for any H2O2 production, but they developed this competence subsequent to abrasion. This process was enhanced by 2,6-dichloroisonicotinic acid and salicylic acid, which induced acquired resistance to fungal penetration in the epidermal cells. Enhancement of competence induction by salicylic acid was also evident for spontaneous H2O2 production and differed in degree for the various elicitors, indicating that mainly the enzyme complex producing H2O2, but also other components of the elicitation system, improved. Ergosterol, chitosan, and fungal elicitor also rendered the segments refractory to a second stimulation by the same compound, whereas mastoparan was inactive in this respect. The four elicitors also differed markedly in their ability to diminish or enhance H2O2 production by a second treatment with a different elicitor, indicating that several sites of the H2O2 elicitation system are subject to short-term regulation.

  18. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    PubMed

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content.

  19. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato

    PubMed Central

    Bektas, Yasemin; Rodriguez-Salus, Melinda; Schroeder, Mercedes; Gomez, Adilene; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22−333::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses. PMID:27412821

  20. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato.

    PubMed

    Bektas, Yasemin; Rodriguez-Salus, Melinda; Schroeder, Mercedes; Gomez, Adilene; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22(-333)::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses. PMID:27412821

  1. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants.

    PubMed Central

    Oommen, A; Dixon, R A; Paiva, N L

    1994-01-01

    In legumes, the synthesis of infection- and elicitor-inducible antimicrobial phytoalexins occurs via the isoflavonoid branch of the phenylpropanoid pathway. To study transcriptional regulation of isoflavonoid pathway-specific genes, we have isolated the gene encoding isoflavone reductase (IFR), which is the enzyme that catalyzes the penultimate step in the synthesis of the phytoalexin medicarpin in alfalfa. Chimeric gene fusions were constructed between 765- and 436-bp promoter fragments of the IFR gene and the beta-glucuronidase reporter gene and transferred to alfalfa and tobacco by Agrobacterium-mediated transformation. Both promoter fragments conferred elicitor-mediated expression in cell suspension cultures derived from transgenic plants of both species and fungal infection-mediated expression in leaves of transgenic alfalfa. Developmental expression directed by both promoter fragments in transgenic alfalfa was observed only in the root meristem, cortex, and nodules, which is consistent with the accumulation of endogenous IFR transcripts. However, in transgenic tobacco, expression from the 765-bp promoter was observed in vegetative tissues (root meristem and cortex, inner vascular tissue of stems and petioles, leaf tips, and stem peripheries adjacent to petioles) and in reproductive tissues (stigma, placenta, base of the ovary, receptacle, seed, tapetal layer, and pollen grains), whereas the 436-bp promoter was expressed only in fruits, seed, and pollen. These data indicate that infection/elicitor inducibility of the IFR promoter in both species and developmental expression in alfalfa are determined by sequences downstream of position -436, whereas sequences between -436 and -765 confer a complex pattern of strong ectopic developmental expression in the heterologous species that lacks the isoflavonoid pathway. PMID:7866024

  2. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants.

    PubMed

    Gordy, John W; Leonard, B Rogers; Blouin, David; Davis, Jeffrey A; Stout, Michael J

    2015-01-01

    Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved. PMID:26332833

  3. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.

    PubMed

    Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Vu, Trang; Roberts, Philip; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.

  4. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants

    PubMed Central

    Gordy, John W.; Leonard, B. Rogers; Blouin, David; Davis, Jeffrey A.; Stout, Michael J.

    2015-01-01

    Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved. PMID:26332833

  5. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.).

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2012-06-01

    Folate (vitamin B₉) content was evaluated in 10 varieties of coriander with the aim of enhancing its concentration and stability, because of three reasons: 1) coriander is among a few widely used greens in the world and suits many cuisines, 2) folate deficiency is prevalent in developing countries causing anaemia, infant mortality and neural tube closure defects, and 3) natural folate is preferred due to doubts about health risks associated with the synthetic form. In C. sativum, the highest folate content of 1,577 μg/100 g DW was found in var. GS4 Multicut foliage of mature plants (marketable stage) with an insignificantly higher content (1,599.74 μg/100 g DW) at flowering, which is a stage not preferred in markets. In callus cultures treated with plant growth regulators (GRs) (6-benzylaminopurine, kinetin and abscisic acid) substantial increase in folate occurred after 6 h, whereas elicitors (methyl jasmonate and salicylic acid) caused rapid 2-fold increase of folate, particularly in response to salicylic acid. Based on these observations, foliar applications were done for in vivo plants, where salicylic acid (250 μM, 24 h) also enhanced folate level by 2-folds (3,112.33 μg/100 g DW), although the content varied with diurnal rhythms. Stability of folates in treated coriander foliage was 10 % higher than in untreated foliage when stored at 25 °C and 4 °C. This study has established for the first time that coriander foliage is rich in folates, which can be doubled by elicitation and impart 10 % more stability than control during processing and storage.

  6. Quantifying key parameters as elicitors for alternate fruit bearing in cv. 'Elstar' apple trees.

    PubMed

    Krasniqi, Anne-Lena; Damerow, Lutz; Kunz, Achim; Blanke, Michael M

    2013-11-01

    The commonly known alternate bearing, i.e. year-to-year change of large and small yields of fruit tree crops worldwide, is often induced by abiotic stress such as late frost, which will eliminate flowers or fruitlets. This study presents an alternative form, biotic biennial bearing, i.e. change of large and small yields of the same trees within the same tree row in the same year. Three methods were developed or modified for the analysis of the number of flower clusters and yield of 2086 apple (Malus domestica Borkh.) cv. 'Elstar' trees. The first method, i.e., based on intersect between yield in year x and year x+1 and flower clusters in year x, yielded 91-106 flower clusters, whereas the second method, i.e., mean yield in year x and year x+1, resulted in a range of 72-133 flower clusters, or 9.6kg/tree necessary for sustainable cultivation of apple cv. 'Elstar'. The third 'biennial bearing index' (BBI), was calculated in three ways as the ratio of differences in tree yields to cumulative tree yield, for individual trees (rather than orchard average) to demonstrate the tree-to-tree alternation. A scheme for the possible underlying regulatory mechanisms was developed, which includes potential elicitors such as light deprivation and subsequent lack of flower initiation, are discussed as a possible result of polar basipetal GA7 transport, cytokinin level in the xylem and phloem and down-regulation of the gene expression of the flowering gene. Suggested countermeasures included early chemical or mechanical thinning.

  7. Fungal Elicitor MoHrip2 Induces Disease Resistance in Rice Leaves, Triggering Stress-Related Pathways

    PubMed Central

    Khan, Najeeb Ullah; Liu, Mengjie; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    MoHrip2 Magnaporthe oryzae hypersensitive protein 2 is an elicitor protein of rice blast fungus M. oryzae. Rice seedlings treated with MoHrip2 have shown an induced resistance to rice blast. To elucidate the mechanism underlying this MoHrip2 elicitation in rice, we used differential-display 2-D gel electrophoresis and qRT-PCR to assess the differential expression among the total proteins extracted from rice leaves at 24 h after treatment with MoHrip2 and buffer as a control. Among ~1000 protein spots detected on each gel, 10 proteins were newly induced, 4 were up-regulated, and 3 were down-regulated in MoHrip2-treated samples compared with the buffer control. Seventeen differentially expressed proteins were detected using MS/MS analysis and categorized into six groups according to their putative function: defense-related transcriptional factors, signal transduction-related proteins, reactive oxygen species (ROS) production, programmed cell death (PCD), defense-related proteins, and photosynthesis and energy-related proteins. The qPCR results (relative expression level of genes) further supported the differential expression of proteins in MoHrip2-treated rice leaves identified with 2D-gel, suggesting that MoHrip2 triggers an early defense response in rice leaves via stress-related pathways, and the results provide evidence for elicitor-induced resistance at the protein level. PMID:27348754

  8. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.

    PubMed

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  9. Effects of Polysaccharide Elicitors on Secondary Metabolite Production and Antioxidant Response in Hypericum perforatum L. Shoot Cultures

    PubMed Central

    Gadzovska Simic, Sonja; Maury, Stéphane; Delaunay, Alain; Joseph, Claude; Hagège, Daniel

    2014-01-01

    The effects of polysaccharide elicitors such as chitin, pectin, and dextran on the production of phenylpropanoids (phenolics and flavonoids) and naphtodianthrones (hypericin and pseudohypericin) in Hypericum perforatum shoot cultures were studied. Nonenzymatic antioxidant properties (NEAOP) and peroxidase (POD) activity were also observed in shoot extracts. The activities of phenylalanine ammonia lyase (PAL) and chalcone-flavanone isomerase (CHFI) were monitored to estimate channeling in phenylpropanoid/flavonoid pathways of elicited shoot cultures. A significant suppression of the production of total phenolics and flavonoids was observed in elicited shoots from day 14 to day 21 of postelicitation. This inhibition of phenylpropanoid production was probably due to the decrease in CHFI activity in elicited shoots. Pectin and dextran promoted accumulation of naphtodianthrones, particularly pseudohypericin, within 21 days of postelicitation. The enhanced accumulation of naphtodianthrones was positively correlated with an increase of PAL activity in elicited shoots. All tested elicitors induced NEAOP at day 7, while chitin and pectin showed increase in POD activity within the entire period of postelicitation. The POD activity was in significantly positive correlation with flavonoid and hypericin contents, suggesting a strong perturbation of the cell redox system and activation of defense responses in polysaccharide-elicited H. perforatum shoot cultures. PMID:25574489

  10. Reprint of: Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani.

    PubMed

    Venugopalan, Aarthi; Potunuru, Uma Rani; Dixit, Madhulika; Srivastava, Smita

    2016-08-01

    Volumetric productivity of camptothecin from the suspension culture of the endophyte Fusarium solani was enhanced up to ∼152 fold (from 0.19μgl(-1)d(-1) to 28.9μgl(-1)d(-1)) under optimized fermentation conditions including initial pH (6.0), temperature (32°C) and agitation speed (80rpm) with (5% (v/v)) ethanol as medium component. Among various elicitors and precursors studied, tryptamine (0.5mM) as precursor and bovine serum albumin (BSA) (0.075mM) as an elicitor added on day 6 of the cultivation period resulted in maximum enhancement of camptothecin concentration (up to 4.5 and 3.4-fold, respectively). These leads provide immense scope for further enhancement in camptothecin productivity at bioreactor level. The cytotoxicity analysis of the crude camptothecin extract from the fungal biomass revealed its high effectiveness against colon and mammary gland cancer cell lines. PMID:27189536

  11. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors

    PubMed Central

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; Segundo, Blanca San

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  12. Fungal Elicitor MoHrip2 Induces Disease Resistance in Rice Leaves, Triggering Stress-Related Pathways.

    PubMed

    Khan, Najeeb Ullah; Liu, Mengjie; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    MoHrip2 Magnaporthe oryzae hypersensitive protein 2 is an elicitor protein of rice blast fungus M. oryzae. Rice seedlings treated with MoHrip2 have shown an induced resistance to rice blast. To elucidate the mechanism underlying this MoHrip2 elicitation in rice, we used differential-display 2-D gel electrophoresis and qRT-PCR to assess the differential expression among the total proteins extracted from rice leaves at 24 h after treatment with MoHrip2 and buffer as a control. Among ~1000 protein spots detected on each gel, 10 proteins were newly induced, 4 were up-regulated, and 3 were down-regulated in MoHrip2-treated samples compared with the buffer control. Seventeen differentially expressed proteins were detected using MS/MS analysis and categorized into six groups according to their putative function: defense-related transcriptional factors, signal transduction-related proteins, reactive oxygen species (ROS) production, programmed cell death (PCD), defense-related proteins, and photosynthesis and energy-related proteins. The qPCR results (relative expression level of genes) further supported the differential expression of proteins in MoHrip2-treated rice leaves identified with 2D-gel, suggesting that MoHrip2 triggers an early defense response in rice leaves via stress-related pathways, and the results provide evidence for elicitor-induced resistance at the protein level. PMID:27348754

  13. Some common signal transduction events are not necessary for the elicitor-induced accumulation of silymarin in cell cultures of Silybum marianum.

    PubMed

    Sánchez-Sampedro, María Angeles; Fernández-Tárrago, Jorge; Corchete, Purificación

    2008-09-29

    A variety of pharmacological effectors of signal transduction pathways were used to investigate the elicitor-activated sequence of cellular responses by which yeast extract (YE) or methyljasmonate (MeJA) enhanced production of silymarin in cell cultures of Silybum marianum. As we recently showed that inhibition of external and internal calcium fluxes significantly increased flavonolignan production in S. marianum cultures, we examined whether calcium mediates signaling events leading to enhancement of silymarin production upon YE or MeJA elicitation. Pre-treatment of cultures with calcium chelators, calcium blockers or intracellular antagonists enhanced the elicitor effect of YE or MeJA. The increase of intracellular-free Ca(2+) level also promoted the elicitor effect, suggesting that an external source of calcium or alterations in internal calcium fluxes were not required for the elicitation to occur. Activation of phosphorylation/dephosphorylation cascades did not appear to mediate the elicitation mechanism; the increase in silymarin induced by elicitation was not suppressed by inhibitors of protein phosphatases or by protein kinase inhibitors. No H(2)O(2) generation was detected at any time after elicitation. Also, diphenyleneiodonium, a potent inhibitor of NAD(P)H-oxidase, did not block silymarin production in elicited cultures. From these results, we conclude that S. marianum cell cultures do not appear to employ conserved signaling components in the transduction of the elicitor signal to downstream responses such as silymarin production.

  14. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L.

    PubMed

    Chavan, Smita P; Lokhande, Vinayak H; Nitnaware, Kirti M; Nikam, Tukaram D

    2011-03-01

    The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO(4), FeSO(4), ZnSO(4), and FeCl(3)) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l(-1)) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l(-1) T. versicolor (7.54-fold) and 70 mg l(-1) Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50-70 mg l(-1)) and MgSO(4) (10-30 mg l(-1)) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.

  15. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.

    PubMed Central

    Xing, T; Higgins, V J; Blumwald, E

    1997-01-01

    The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants. PMID:9061955

  16. Induction of mRNA accumulation corresponding to a gene encoding a cell wall hydroxyproline-rich glycoprotein by fungal elicitors.

    PubMed

    García-Muniz, N; Martínez-Izquierdo, J A; Puigdomènech, P

    1998-11-01

    The Hrgp (hydroxyproline-rich glycoprotein) gene codes in maize for one of the most abundant proteins of the cell wall. HRGPs may contribute to the structural support of the wall and they have also been involved in plant defense mechanisms. This second aspect has been tested for the Hrgp gene in maize where, in contrast with the situation in dicot species, the gene is encoded by a single-copy sequence. Hrgp mRNA accumulation is induced in maize suspension-cultured cells by elicitors, isolated either from maize pathogenic or non-pathogenic fungi. The induction of Hrgp mRNA accumulation by elicitor extracted from Fusarium moniliforme has been studied in detail. The level of induction depends on elicitor concentration and remains high until at least 24 h. Ethylene and protein phosphorylation appear to be involved in the transduction pathway of Hrgp gene activation by the F. moniliforme elicitor but not by 5 microM methyl jasmonate or 1 mM salycilic acid. Different compounds known to participate in plant stress responses such as ascorbic acid or reduced glutathione have also a positive effect on Hrgp mRNA accumulation.

  17. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens.

    PubMed

    Crutcher, Frankie K; Moran-Diez, Maria E; Ding, Shengli; Liu, Jinggao; Horwitz, Benjamin A; Mukherjee, Prasun K; Kenerley, Charles M

    2015-06-01

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs within the T. virens genome. The paralog sm2 is highly expressed in the presence of plant roots. Gene deletion mutants of sm2 were generated and the mutants were found to overproduce SM1. The ability to elicit ISR in maize against Colletotrichum graminicola was not compromised for the mutants compared to that of wild type isolate. However, the deletion strains had a significantly lowered ability to colonize maize roots. This appears to be the first report on the involvement of an effector-like protein in colonization of roots by Trichoderma.

  18. Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors.

    PubMed

    Randhir, Reena; Kwon, Young-In; Shetty, Kalidas

    2009-10-01

    The health-relevant functionality of Mucuna pruriens was improved by priming the seeds with elicitors of the pentose phosphate pathway (PPP) such as fish protein hydrolysates (FPHs), lactoferrin (LF) and oregano extract (OE) followed by dark germination. FPH elicited the highest phenolic content of 19 mg/g FW on day 1, which was 38% higher than control sprouts. OE enhanced Parkinson's disease-relevant L-DOPA content by 33% on day 1 compared to control sprouts. Anti-diabetes-relevant alpha-amylase inhibition percent (AIP) and alpha-glucosidase inhibition percent (GIP) were high in the cotyledons and decreased following elicitation and sprouting. For potential anti-diabetic applications, low AIP and high GIP with moderate L-DOPA content on day 4 of dark germination could be optimal. Improved L-DOPA concentrations in a soluble phenolic and antioxidant-rich M. pruriens background on day 1 sprouts have potential for Parkinson's disease management.

  19. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    PubMed Central

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine. PMID:26442029

  20. "Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension".

    PubMed

    Kümmritz, Sibylle; Louis, Marilena; Haas, Christiane; Oehmichen, Franz; Gantz, Stephanie; Delenk, Hubertus; Steudler, Susanne; Bley, Thomas; Steingroewer, Juliane

    2016-08-01

    Oleanolic (OA) and ursolic acid (UA) are plant secondary metabolites with diverse pharmacological properties. To reach reasonable productivities with plant cell suspension cultures, elicitation is a widely used strategy. Within the presented work, the effects of different elicitors on growth and production of OA and UA in a Salvia fruticosa cell suspension culture were examined. Beside commonly used elicitors like jasmonic acid (JA) and yeast extract, the influence of medium filtrates of the endophytic fungi Aspergillus niger and Trichoderma virens was investigated. The best eliciting effects were achieved with JA and fungal medium filtrates. Both increased the triterpene content by approximately 70 %. Since JA showed significant growth inhibition, the volumetric triterpene yield did not increase. But, adding fungal filtrates increased the volumetric triterpene yield by approximately 70 % to 32.6 mgOA l(-1) and 65.9 mgUA l(-1) for T. virens compared to the control with 19.4 mgOA l(-1) and 33.3 mgUA l(-1). An elicitation strategy combining fungal medium filtrate of T. virens with sucrose feeding significantly enhanced cell dry weight concentration to 22.2 g l(-1) as well as triterpene content by approximately 140 %. In total, this led to an approximately 500 % increase of volumetric triterpene yield referring to the control with final values of 112.9 mgOA l(-1) and 210.4 mgUA l(-1). Despite the doubled cultivation duration, productivities of 6.7 mgOA l(-1) day(-1) and 12.4 mgUA l(-1) day(-1) were reached. These results demonstrate methods by which increased productivities of triterpenes can be achieved to attain yields competing with intact plants. PMID:26971493

  1. Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue).

    PubMed

    Orlita, Aleksandra; Sidwa-Gorycka, Matylda; Paszkiewicz, Monika; Malinski, Edmund; Kumirska, Jolanta; Siedlecka, Ewa M; Łojkowska, Ewa; Stepnowski, Piotr

    2008-10-01

    Common rue (Ruta graveolens L.) accumulates various types of secondary metabolites, such as coumarins furanocoumarins, acridone and quinolone alkaloids and flavonoids. Elicitation is a tool extensively used for enhancing secondary-metabolite yields. Chitin and chitosan are examples of elicitors inducing phytoalexin accumulation in plant tissue. The present paper describes the application of chitin and chitosan as potential elicitors of secondary-metabolite accumulation in R. graveolens shoots cultivated in vitro. The simple coumarins, linear furanocoumarins, dihydrofuranocoumarins and fluoroquinolone alkaloids biosynthesized in the presence of chitin and chitosan were isolated, separated and identified. There was a significant increase in the growth rate of R. graveolens shoots in the presence of either chitin or chitosan. Moreover, the results of the elicitation of coumarins and alkaloids accumulated by R. graveolens shoots in the presence of chitin and chitosan show that both compounds induced a significant increase in the concentrations of nearly all the metabolites. Adding 0.01% chitin caused the increase in the quantity (microg/g dry weight) of coumarins (pinnarin up to 116.7, rutacultin up to 287.0, bergapten up to 904.3, isopimpinelin up to 490.0, psoralen up to 522.2, xanhotoxin up to 1531.5 and rutamarin up to 133.7). The higher concentration of chitosan (0.1%) induced production of simple coumarins (pinnarin up to 116.7 and rutacultin up to 287.0), furanocoumarins (bergapten up to 904.3, isopimpinelin up to 490.0, psoralen up to 522.2, xanhotoxin up to 1531.5) and dihydrofuranocoumarins (chalepin up to 18 and rutamarin up to 133.7). Such a dramatic increase in the production of nearly all metabolites suggests that these compounds may be participating in the natural resistance mechanisms of R. graveolens. The application of chitin- and chitosan-containing media may be considered a promising prospect in the biotechnological production of xanthotoxin

  2. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    PubMed

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine. PMID:26442029

  3. "Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension".

    PubMed

    Kümmritz, Sibylle; Louis, Marilena; Haas, Christiane; Oehmichen, Franz; Gantz, Stephanie; Delenk, Hubertus; Steudler, Susanne; Bley, Thomas; Steingroewer, Juliane

    2016-08-01

    Oleanolic (OA) and ursolic acid (UA) are plant secondary metabolites with diverse pharmacological properties. To reach reasonable productivities with plant cell suspension cultures, elicitation is a widely used strategy. Within the presented work, the effects of different elicitors on growth and production of OA and UA in a Salvia fruticosa cell suspension culture were examined. Beside commonly used elicitors like jasmonic acid (JA) and yeast extract, the influence of medium filtrates of the endophytic fungi Aspergillus niger and Trichoderma virens was investigated. The best eliciting effects were achieved with JA and fungal medium filtrates. Both increased the triterpene content by approximately 70 %. Since JA showed significant growth inhibition, the volumetric triterpene yield did not increase. But, adding fungal filtrates increased the volumetric triterpene yield by approximately 70 % to 32.6 mgOA l(-1) and 65.9 mgUA l(-1) for T. virens compared to the control with 19.4 mgOA l(-1) and 33.3 mgUA l(-1). An elicitation strategy combining fungal medium filtrate of T. virens with sucrose feeding significantly enhanced cell dry weight concentration to 22.2 g l(-1) as well as triterpene content by approximately 140 %. In total, this led to an approximately 500 % increase of volumetric triterpene yield referring to the control with final values of 112.9 mgOA l(-1) and 210.4 mgUA l(-1). Despite the doubled cultivation duration, productivities of 6.7 mgOA l(-1) day(-1) and 12.4 mgUA l(-1) day(-1) were reached. These results demonstrate methods by which increased productivities of triterpenes can be achieved to attain yields competing with intact plants.

  4. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    PubMed

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  5. Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis.

    PubMed

    Koschmann, Jeannette; Machens, Fabian; Becker, Marlies; Niemeyer, Julia; Schulze, Jutta; Bülow, Lorenz; Stahl, Dietmar J; Hehl, Reinhard

    2012-09-01

    A combination of bioinformatic tools, high-throughput gene expression profiles, and the use of synthetic promoters is a powerful approach to discover and evaluate novel cis-sequences in response to specific stimuli. With Arabidopsis (Arabidopsis thaliana) microarray data annotated to the PathoPlant database, 732 different queries with a focus on fungal and oomycete pathogens were performed, leading to 510 up-regulated gene groups. Using the binding site estimation suite of tools, BEST, 407 conserved sequence motifs were identified in promoter regions of these coregulated gene sets. Motif similarities were determined with STAMP, classifying the 407 sequence motifs into 37 families. A comparative analysis of these 37 families with the AthaMap, PLACE, and AGRIS databases revealed similarities to known cis-elements but also led to the discovery of cis-sequences not yet implicated in pathogen response. Using a parsley (Petroselinum crispum) protoplast system and a modified reporter gene vector with an internal transformation control, 25 elicitor-responsive cis-sequences from 10 different motif families were identified. Many of the elicitor-responsive cis-sequences also drive reporter gene expression in an Agrobacterium tumefaciens infection assay in Nicotiana benthamiana. This work significantly increases the number of known elicitor-responsive cis-sequences and demonstrates the successful integration of a diverse set of bioinformatic resources combined with synthetic promoter analysis for data mining and functional screening in plant-pathogen interaction. PMID:22744985

  6. Integration of Bioinformatics and Synthetic Promoters Leads to the Discovery of Novel Elicitor-Responsive cis-Regulatory Sequences in Arabidopsis1[C][W][OA

    PubMed Central

    Koschmann, Jeannette; Machens, Fabian; Becker, Marlies; Niemeyer, Julia; Schulze, Jutta; Bülow, Lorenz; Stahl, Dietmar J.; Hehl, Reinhard

    2012-01-01

    A combination of bioinformatic tools, high-throughput gene expression profiles, and the use of synthetic promoters is a powerful approach to discover and evaluate novel cis-sequences in response to specific stimuli. With Arabidopsis (Arabidopsis thaliana) microarray data annotated to the PathoPlant database, 732 different queries with a focus on fungal and oomycete pathogens were performed, leading to 510 up-regulated gene groups. Using the binding site estimation suite of tools, BEST, 407 conserved sequence motifs were identified in promoter regions of these coregulated gene sets. Motif similarities were determined with STAMP, classifying the 407 sequence motifs into 37 families. A comparative analysis of these 37 families with the AthaMap, PLACE, and AGRIS databases revealed similarities to known cis-elements but also led to the discovery of cis-sequences not yet implicated in pathogen response. Using a parsley (Petroselinum crispum) protoplast system and a modified reporter gene vector with an internal transformation control, 25 elicitor-responsive cis-sequences from 10 different motif families were identified. Many of the elicitor-responsive cis-sequences also drive reporter gene expression in an Agrobacterium tumefaciens infection assay in Nicotiana benthamiana. This work significantly increases the number of known elicitor-responsive cis-sequences and demonstrates the successful integration of a diverse set of bioinformatic resources combined with synthetic promoter analysis for data mining and functional screening in plant-pathogen interaction. PMID:22744985

  7. Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco.

    PubMed

    Liu, Wenxian; Zeng, Hongmei; Liu, Zhipeng; Yang, Xiufen; Guo, Lihua; Qiu, Dewen

    2014-01-01

    In our previous study, PevD1 was characterized as a novel protein elicitor produced by Verticillium dahliae inducing hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco plants; however, the detailed mechanisms of PevD1's elicitor activity remain unclear. In this study, five mutant fragments of PevD1 were generated by polymerase chain reaction-based mutagenesis and the truncated proteins expressed in Escherichia coli were used to test their elicitor activities. Biological activity analysis showed that the N-terminal and C-terminal of PevD1 had distinct influence on HR and SAR elicitation. Fragment PevD1ΔN98, which spans the C-terminal 57 amino acids of PevD1, was critical for the induction of HR in tobacco plants. In contrast, fragment PevD1ΔC57, the N-terminal of 98 amino acids of PevD1, retained the ability to induce SAR against tobacco mosaic virus (TMV) but not induction of HR, suggesting that the induction of HR is not essential for SAR mediated by PevD1. Our results indicated that fragment PevD1ΔC57 could be a candidate peptide for plant protection against pathogens without causing negative effects.

  8. Structure and elicitor or u.v.-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley

    PubMed Central

    Douglas, Carl; Hoffmann, Heidi; Schulz, Wolfgang; Hahlbrock, Klaus

    1987-01-01

    We have isolated genomic clones encoding 4-coumarate:CoA ligase (4CL), a key enzyme of general phenylpropanoid metabolism, and have analysed the structure and regulation of the genes contained on these clones. Restriction enzyme and sequence analysis indicated that two distinct 4CL genes, Pc4CL-1 and Pc4CL-2, are represented on the clones and that additional 4CL genes are not present in parsley. Two lines of evidence suggest that each gene is transcriptionally activated by both elicitor and u.v. irradiation: cDNA clones corresponding to each gene were found in cDNA libraries made with RNA from both elicitor-treated and u.v-irradiated cells, and run-off transcripts homologous to a Pc4CL-2-specific intron probe were induced by both treatments. This induction was about half of the induction measured using probes homologous to both genes. The transcription initiation sites of both genes were determined. Comparison of the nucleotide sequences of the two genes 5' to these sites showed that they are highly homologous for several hundred base pairs and that they contain features potentially involved in regulation by elicitor and u.v. irradiation. ImagesFig. 2;Fig. 5.Fig. 6. PMID:16453765

  9. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    PubMed

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content. PMID:26868568

  10. Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction.

    PubMed

    Mukherjee, A; Cui, Y; Liu, Y; Chatterjee, A K

    1997-05-01

    The nucleotide sequence of hrpNEcc DNA, cloned from Erwinia carotovora subsp. carotovora strain Ecc71, reveals a coding region of 1,068 bp which matches the size of hrpNEcc transcripts. hrpNEcc is predicted to encode a glycine-rich protein of approximately 36 kDa. Like the elicitors of the hypersensitive reaction (HR) produced by E. chrysanthemi (HarpinEch) and E. amylovora (HarpinEa), the deduced 36-kDa protein does not possess a typical signal sequence, but it contains a putative membrane-spanning domain. In Escherichia coli strains overexpressing hrpNEcc, the 36-kDa protein has been identified as the hrpNEcc product by Western blot analysis using anti-HarpinEch antibodies. The 36-kDa protein fractionated from E. coli elicits the HR in tobacco leaves. Moreover, a HrpN- and RsmA- double mutant (RsmA = regulator of secondary metabolites) does not produce this 36-kDa protein or elicit the HR, although this strain, like the RsmA- and HrpN+ bacteria, overproduces extracellular enzymes and macerates celery petioles. These observations demonstrate that hrpNEcc encodes the elicitor of the HR, designated HarpinEcc. The levels of hrpNEcc transcripts are affected in both RsmA+ and RsmA- strains by media composition and carbon sources, although the mRNA levels are substantially higher in the RsmA- strains. The expression of hrpNEcc in Ecc71 is cell density dependent and is activated by the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (OHL). By contrast, hrpNEcc expression in an RsmA- strain is independent of cell density, and substantial expression occurs in the absence of OHL. The effects of cultural conditions and the occurrence of putative cis-acting sequences, such as consensus sigma 54 promoters and an hrp promoter upstream of the transcriptional start site, indicate that the production of HarpinEcc in wild-type RsmA+ E. carotovora subsp. carotovora is tightly regulated. These observations, taken along with the finding that the HR is caused by Rsm

  11. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling.

    PubMed

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-08

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  12. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea

    PubMed Central

    Chen, Fei; Ren, Cheng-Gang; Zhou, Tong; Wei, Yu-Jia; Dai, Chuan-Chao

    2016-01-01

    Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26–42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants. PMID:27703209

  13. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling.

    PubMed

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  14. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests

    PubMed Central

    Sobhy, Islam S.; Erb, Matthias; Lou, Yonggen; Turlings, Ted C. J.

    2014-01-01

    An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach. PMID:24535390

  15. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    PubMed Central

    Lori, Martina; van Verk, Marcel C.; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A.; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. PMID:26002971

  16. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling.

    PubMed

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-08-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologues in maize were also identified and characterized in more detail.Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility. PMID:26002971

  17. Changes in External pH Rapidly Alter Plant Gene Expression and Modulate Auxin and Elicitor Responses

    PubMed Central

    Lager, Ida; Andréasson, Ola; Dunbar, Tiffany; Andreasson, Erik; Escobar, Matthew A.; Rasmusson, Allan G.

    2010-01-01

    pH is a highly variable environmental factor for the root, and plant cells can modify apoplastic pH for nutrient acquisition and in response to extracellular signals. Nevertheless, surprisingly few effects of external pH on plant gene expression have been reported. We have used microarrays to investigate whether external pH affects global gene expression. In Arabidopsis thaliana roots, 881 genes displayed at least 2-fold changes in transcript abundance 8 h after shifting medium pH from 6.0 to 4.5, identifying pH as a major affector of global gene expression. Several genes responded within 20 min, and gene responses were also observed in leaves of seedling cultures. The pH 4.5 treatment was not associated with abiotic stress, as evaluated from growth and transcriptional response. However, the observed patterns of global gene expression indicated redundancies and interactions between the responses to pH, auxin and pathogen elicitors. In addition, major shifts in gene expression were associated with cell wall modifications and Ca2+ signaling. Correspondingly, a marked overrepresentation of Ca2+/calmodulin-associated motifs was observed in the promoters of pH-responsive genes. This strongly suggests that plant pH recognition involves intracellular Ca2+. Overall, the results emphasize the previously underappreciated role of pH in plant responses to the environment. PMID:20444216

  18. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    PubMed Central

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  19. Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression.

    PubMed

    Major, Ian T; Constabel, C Peter

    2006-01-01

    In order to characterize defense responses of hybrid poplar (Populus trichocarpax P. deltoides), we profiled leaf transcript patterns elicited by wounding and by regurgitant from forest tent caterpillar (FTC; Malacosoma disstria), a Lepidopteran defoliator of poplars. Macroarrays were used to compare transcript profiles. Both FTC-regurgitant (FTC-R) and mechanical wounding with pliers elicited expression of a variety of genes, and for these genes our analysis indicated that these treatments induced qualitatively similar responses. Similarly, a comparison of responses of directly treated and systemically induced leaves indicated extensive overlap in the sets of induced genes. FTC-R was found to contain the insect-derived elicitor volicitin. The simulated herbivory treatments resulted in the induction of genes involved in poplar defense and secondary metabolism. We also identified wound-responsive genes with roles in primary metabolism, including a putative invertase, lipase, and acyl-activating enzyme; some of these genes may have roles in defense signaling. In addition, we found three unknown genes containing a ZIM motif which may represent novel transcription factors.

  20. Changes in the initial phase of lipid peroxidation induced by elicitor from Phytophthora infestans in Solanum species.

    PubMed

    Polkowska-Kowalczyk, Lidia; Montillet, Jean-Luc; Agnel, Jean-Pierre; Triantaphylidès, Christian; Wielgat, Bernard; Maciejewska, Urszula

    2008-12-01

    The initial phase of the lipid peroxidation process in leaves of Solanum nigrum var. gigantea, Solanum tuberosum cv Bzura and clone H-8105, which represent non-host resistance, field resistance and susceptibility, respectively, against Phytophthora infestans, was investigated. Based on quantitative and qualitative high-performance liquid chromatography (HPLC) analyses of free and esterified fatty acid hydroperoxides (FAHs), we characterized the lipid peroxidation process induced by the pathogen-derived elicitor, culture filtrate (CF), in leaves of the studied genotypes. In all plants, FAHs generated due to 13-lipoxygenase (LOX) action dominated over those from the non-enzymatic pathway. The FAHs derived from 9-LOX activity were found only in CF-treated leaves of the non-host resistant S. nigrum. However, experiments in vitro and in planta with exogenous linoleic acid (LA) as a substrate for LOX revealed high constitutive activity of 9-LOX in all genotypes, which increased in response to CF treatment. The time course changes in polyunsaturated fatty acid (PUFA) pools in the total lipid fractions as well as the degree of their oxidation suggested that CF-induced PUFA peroxidation was enhanced mostly in S. nigrum, less so in Bzura and least in the susceptible clone H-8105. The obtained results are discussed in light of the overall biochemical cell status of plants in the studied interactions.

  1. Carminic acid dye from the homopteran Dactylopius coccus hemolymph is consumed during treatment with different microbial elicitors.

    PubMed

    Hernández-Hernández, Fidel de la Cruz; de Muñoz, Fernando García-Gil; Rojas-Martínez, Alberto; Hernández-Martínez, Salvador; Lanz-Mendoza, Humberto

    2003-09-01

    The activation of Dactylopius coccus (Costa) hemolymph with microbial polysaccharide molecules was studied. Hemolymph incubated in the presence of laminarin, zymosan, and N-acetyl glucosamine produced a dark fibrillar precipitated, and the red pigment (carminic acid) was consumed (measured spectrophotometrically at 495 nm). Lipopolysaccharide (LPS) did not induce any response. The reaction was inhibited with millimolar concentrations of serine and cysteine protease inhibitors, EGTA and phenyl thiourea. It was also diminished by prostaglandin synthesis inhibitors: dexamethasone, acetylsalicylic acid, and indomethacin. However, Mg2+ chelator EDTA did not inhibit hemolymph activation. Hemolymph proteins were depleted from soluble phase during treatment with laminarin, but a group of around 34 kDa remained unmodified. These results showed that D. coccus hemolymph is activated by microbial elicitors, its activation depends on eicosanoids, and suggest participation of a prophenoloxidase (PPO)-like activation system that could consume carminic acid. We are currently dissecting the molecular factors involved in D. coccus hemolymph activation to determine homologies and differences with other arthropods immune response pathways. PMID:12942514

  2. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor.

    PubMed Central

    Zhao, J; Williams, C C; Last, R L

    1998-01-01

    The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated. PMID:9501110

  3. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves

    PubMed Central

    Narvaez-Vasquez, J; Florin-Christensen, J; Ryan, CA

    1999-01-01

    Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position. PMID:10559447

  4. New Synthetic Pyridine Derivate as Potential Elicitor in Production of Isoflavonoids and Flavonoids in Trifolium pratense L. Suspension Culture

    PubMed Central

    Kašparová, Marie; Siatka, Tomáš; Klimešová, Věra; Dušek, Jaroslav

    2012-01-01

    The production of secondary metabolites in Trifolium pratense L. suspension culture of the family of legume plants (Fabaceae) is low, and therefore there was an attempt to increase it by elicitation. New synthetic substance, 2-(2-fluoro-6-nitrobenzylsulfanyl)pyridine-4-carbothioamide, was tested as elicitor—a substance that showed the best elicitation effect after 48-hour application of 1 μmol L−1 concentration. Maximum contents of genistin (11.60 mg g−1 DW), daidzein (8.31 mg g−1 DW), and genistein (1.50 mg g−1 DW) were recorded, and the production of these isoflavonoids thus significantly increased, when compared with the control, by 152%, 151%, and 400%. The maximum content of flavonoids (5.78 mg g−1 DW) and the increase in the production by 142%, when compared with the control, were induced by 6-hour application of 100 μmol L−1 concentration. The tested substance showed to be an effective elicitor of phenylpropane metabolism. PMID:22489201

  5. The influence of secretion elicitors and external pH on the kinetics of D-alanine uptake by the trap lobes of Dionaea muscipula Ellis (Venus's Flytrap).

    PubMed

    Rea, P A; Whatley, F R

    1983-08-01

    Simple kinetic techniques were used to examine the mechanism of D-alanine uptake by the adaxial surfaces of the trap lobes of Dionaea muscipula Ellis (Venus's Flytrap.) On the basis of these analyses, the uptake of D-alanine was found to depend on the time during which the trap lobes were inoculated with elicitors of secretion before excision and measurement of uptake. Disks taken from traps that had not been subjected to a preceding period of inoculation with secretion elicitors showed a low basal rate of uptake which was neither pH-dependent nor exhibited saturation with respect to external D-alanine concentration. Disks from preinoculated traps, on the other hand, displayed an enhanced rate of uptake which showed both pH-dependence and saturation with respect to external D-alanine concentration. The capacity for enhanced uptake was lost upon prolonged inoculation or when inoculation was stopped. Of the compounds tested, only elicitors of secretion caused an enhancement of uptake. The enhanced rate of D-alanine uptake is temperature-sensitive with a Q10 characteristic of a mediated process. Uncouplers cause an instantaneous abolition of uptake whereas the effects of terminal-oxidase inhibitors are time-dependent. The pH-dependence of uptake is inferred to result from an increased affinity of the carrier system for D-alanine at low pH values. Although the ionic state of D-alanine is relatively unaffected over the pH range examined, a decrease in the external pH from 6.0 to 3.8 decreases the apparent K m for uptake by four-fold but increases V max by only 30%. It is concluded that the acid secreted by the digestive glands of Dionaea plays a direct role in facilitating the uptake of amino acids from the trap cavity.

  6. Cloning and characterization of an elicitor-responsive gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase involved in 20-hydroxyecdysone production in cell cultures of Cyanotis arachnoidea.

    PubMed

    Wang, Qiu Jun; Zheng, Li Ping; Zhao, Pei Fei; Zhao, Yi Lu; Wang, Jian Wen

    2014-11-01

    Cyanotis arachnoidea contains a rich source of bioactive phytoecdysteroids (i.e. analogues of insect steroid hormones). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) supplies mevalonate for the synthesis of many secondary metabolites including 20-hydroxyecdysone (20E), one of metabolism-enhancing phytoecdysteroids. In this study, in order to develop a sustainable source of 20E, cell suspension cultures were established from shoot cultures of C. arachnoidea, and a full length cDNA encoding HMGR (designated as CaHMGR) was cloned and characterized. The cDNA contained 2037 nucleotides with a complete open reading frame (ORF) of 1800 nucleotides, which was predicted to encode a peptide of 599 amino acids. Expression analysis by real-time PCR revealed that CaHMGR mRNA was abundant in C. arachnoidea stems, roots and leaves. When cultivated in Murashige & Skoog medium supplemented with 0.2 mg L(-1) 1-naphthlcetic acid (NAA) and 3.0 mg L(-1) 6-benzyladenine (6-BA), C. arachnoidea cells in suspension culture grew rapidly, yielding 20E (124.14 μg L(-1)) after 12 days. The content of 20E in cell cultures elicited by 0.2 mM methyl jasmonate (MeJA), 100 mg L(-1) yeast elicitor (YE) or 25 μM AgNO3 was increased 8-, 2-, and 6-fold over the control, respectively. Quantitative real-time PCR analysis showed that CaHMGR was expressed at a higher level under the treatment of MeJA or Ag(+) elicitor. Our results suggested that 20E accumulation may be the result of the expression up-regulation of CaHMGR involved in the biosynthesis under the treatment of various elicitors.

  7. An Elicitor from Botrytis cinerea Induces the Hypersensitive Response in Arabidopsis thaliana and Other Plants and Promotes the Gray Mold Disease.

    PubMed

    Govrin, Eri M; Rachmilevitch, Shimon; Tiwari, Budhi Sagar; Solomon, Mazal; Levine, Alex

    2006-03-01

    ABSTRACT Botrytis cinerea is a necrotrophic fungus that infects over 200 plant species. Previous studies showed that host cells collapse in advance of the hyphae, suggesting secretion of toxins or elicitors. We have partially characterized elicitor activity from intercellular fluid extracted from Arabidopsis thaliana leaves infected with B. cinerea. Treatment of intact leaves or cell cultures with either intercellular fluid from infected leaves or medium from inoculated A. thaliana cell culture induced generation of reactive oxygen species, resulting in reduced photosynthesis, electrolyte leakage, and necrotic lesions that resembled the hypersensitive response (HR). The necrosis was inhibited by diphenyleneiodonium, a specific inhibitor of NADPH oxidase, and by chelating free iron, suggesting the involvement of hydroxyl radicals. The necrosis was also suppressed in dnd1 mutants that are compromised in HR. In contrast, increased cell death was observed in acd2 mutants, indicating the involvement of the host defense signaling pathways. Treatment with the intercellular fluid from infected leaves also induced transcription of pathogenesis-related (PR) genes, such as PR-1, PR-5, HSR203J, and of senescence-associated gene SAG-13. Moreover, rapid transcription of the ethylene-dependent AtEBP gene was detected, indicating induction of ethylene production. The inter-cellular fluid from infected A. thaliana induced cell death in other plants, in line with the lack of B. cinerea specificity. In summary, the intercellular fluid mimicked a range of molecular and physiological host responses that are observed during infection with a live fungus. Moreover, it accelerated the B. cinerea infection, suggesting that the elicitor may act as a pathogenicity factor in the progression of gray mold disease.

  8. A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.).

    PubMed

    Kakar, K U; Ren, X-L; Nawaz, Z; Cui, Z-Q; Li, B; Xie, G-L; Hassan, M A; Ali, E; Sun, G-C

    2016-05-01

    In the present study, a consortium of two rhizobacteria Bacillus amyloliquefaciens Bk7 and Brevibacillus laterosporus B4, termed 'BB', biochemical elicitors salicylic acid and β-aminobutyric acid (SB) and their mixture (BBSB) were investigated for cold and drought stress tolerance in rice plants. After withholding water for 16 days, rice plants treated with BBSB showed 100% survival, improved seedling height (35.4 cm), shoot number (6.12), and showed minimum symptoms of chlorosis (19%), wilting (4%), necrosis (6%) and rolling of leaves. Similarly, BB inoculation enhanced plant growth and reduced overall symptoms in rice seedlings subjected to 0 ± 5 °C for 24 h. Our results imply several mechanisms underlying BB- and BBSB-elicited stress tolerance. In contrast to the control, both treatments significantly decreased leaf monodehydroascorbate (MDA) content and electrolyte leakage, and increased leaf proline and cholorophyll content. Moreover, activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) increased 3.0- and 3.6-fold, respectively. Moreover, expression of OsMYB3R-2, OsDIL, OsDREB1A and OsCDPK13 genes was significantly up-regulated, suggesting that these genes play important roles in abiotic stress tolerance of rice. In addition, bacterial strains Bk7 and B4 were able to produce high amounts of IAA and siderophores, and colonise the plant roots, while only strain Bk7 exhibited the capability to form biofilms and solubilise inorganic phosphate. This study indicates that the BB and BBSB bio-formulations can be used to confer induced systematic tolerance and improve the health of rice plants subject to chilling and drought stress. PMID:26681628

  9. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors

    PubMed Central

    Agurla, Srinivas; Raghavendra, Agepati S.

    2016-01-01

    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca2+, and ion channels. Once formed, the ROS and free Ca2+ of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca2+ in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca2+ and modulate ion channels, through a network of events, in such a way that the guard cells lose K+/Cl−/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca2+ act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research. PMID:27605934

  10. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors

    PubMed Central

    Agurla, Srinivas; Raghavendra, Agepati S.

    2016-01-01

    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca2+, and ion channels. Once formed, the ROS and free Ca2+ of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca2+ in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca2+ and modulate ion channels, through a network of events, in such a way that the guard cells lose K+/Cl−/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca2+ act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research.

  11. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor.

    PubMed

    Chalfoun, Nadia R; Grellet-Bournonville, Carlos F; Martínez-Zamora, Martín G; Díaz-Perales, Araceli; Castagnaro, Atilio P; Díaz-Ricci, Juan C

    2013-05-17

    In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity. PMID:23530047

  12. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors.

    PubMed

    Agurla, Srinivas; Raghavendra, Agepati S

    2016-01-01

    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca(2+), and ion channels. Once formed, the ROS and free Ca(2+) of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca(2+) in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca(2+) and modulate ion channels, through a network of events, in such a way that the guard cells lose K(+)/Cl(-)/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca(2+) act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca(2+) are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research.

  13. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors.

    PubMed

    Agurla, Srinivas; Raghavendra, Agepati S

    2016-01-01

    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca(2+), and ion channels. Once formed, the ROS and free Ca(2+) of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca(2+) in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca(2+) and modulate ion channels, through a network of events, in such a way that the guard cells lose K(+)/Cl(-)/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca(2+) act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca(2+) are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research. PMID:27605934

  14. Ascorbic Acid, Ultraviolet C Rays, and Glucose but not Hyperthermia Are Elicitors of Human β-Defensin 1 mRNA in Normal Keratinocytes

    PubMed Central

    Cruz Díaz, Luis Antonio; Flores Miramontes, María Guadalupe; Allen, Kirk; Gonzalez Ávila, Marisela; Prado Montes de Oca, Ernesto

    2015-01-01

    Hosts' innate defense systems are upregulated by antimicrobial peptide elicitors (APEs). Our aim was to investigate the effects of hyperthermia, ultraviolet A rays (UVA), and ultraviolet C rays (UVC) as well as glucose and ascorbic acid (AA) on the regulation of human β-defensin 1 (DEFB1), cathelicidin (CAMP), and interferon-γ (IFNG) genes in normal human keratinocytes (NHK). The indirect in vitro antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes of these potential APEs was tested. We found that AA is a more potent APE for DEFB1 than glucose in NHK. Glucose but not AA is an APE for CAMP. Mild hypo- (35°C) and hyperthermia (39°C) are not APEs in NHK. AA-dependent DEFB1 upregulation below 20 mM predicts in vitro antimicrobial activity as well as glucose- and AA-dependent CAMP and IFNG upregulation. UVC upregulates CAMP and DEFB1 genes but UVA only upregulates the DEFB1 gene. UVC is a previously unrecognized APE in human cells. Our results suggest that glucose upregulates CAMP in an IFN-γ-independent manner. AA is an elicitor of innate immunity that will challenge the current concept of late activation of adaptive immunity of this vitamin. These results could be useful in designing new potential drugs and devices to combat skin infections. PMID:25815330

  15. Elicitors' influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions.

    PubMed

    Biswas, Tanya; Kalra, Alok; Mathur, A K; Lal, R K; Singh, Manju; Mathur, Archana

    2016-06-01

    Cobalt nitrate, nickel sulphate, hydrogen peroxide, sodium nitroprusside, and culture filtrates of Pseudomonas monteili, Bacillus circularans, Trichoderma atroviridae, and Trichoderma harzianum were tested to elicit ginsenoside production in a cell suspension line of Panax quinquefolius. Abiotic elicitors preferentially increased panaxadiols whereas biotic elicitors upregulated the panaxatriol synthesis. Cobalt nitrate (50 μM) increased total ginsenosides content by twofold (54.3 mg/L) within 5 days. It also induced the Rc synthesis that was absent in the control cultures. Elicitation with P. monteili (2.5 % v/v, 5 days) also supported 2.4-fold enhancement in saponin yield. Elicitation by T. atroviridae or hydrogen peroxide induced the synthesis of Rg3 and Rh2 that are absent in ginseng roots. The highest ginsenosides productivity (3.2-fold of control) was noticed in cells exposed to 1.25 % v/v dose of T. atroviridae for 5 days. Treating cells with T. harzianum for 15 days afforded maximum synthesis and leaching (8.1 mg/L) of ginsenoside Rh1. PMID:26795963

  16. The Arabidopsis Cytosolic Thioredoxin h5 Gene Induction by Oxidative Stress and Its W-Box-Mediated Response to Pathogen Elicitor1

    PubMed Central

    Laloi, Christophe; Mestres-Ortega, Dominique; Marco, Yves; Meyer, Yves; Reichheld, Jean-Philippe

    2004-01-01

    The AtTRXh5 protein belongs to the cytosolic thioredoxins h family that, in Arabidopsis, contains eight members showing very distinct patterns and levels of expression. Here, we show that the AtTRXh5 gene is up-regulated during wounding, abscission, and senescence, as well as during incompatible interactions with the bacterial pathogen Pseudomonas syringae. By electrophoretic mobility shift assays, a binding activity on a W-box in the AtTRXh5 promoter region was found induced by treatments with the P. syringae-derived elicitor peptide flg22, suggesting that a WRKY transcription factor controls AtTRXh5 induction upon elicitor treatment. Remarkably, AtTRXh5 was up-regulated in plants overexpressing WRKY6. More generally, AtTRXh5 is induced in response to oxidative stress conditions. Collectively, our data indicate a possible implication of the cytosolic thioredoxin AtTRXh5 in response to pathogens and to oxidative stresses. In addition, this regulation is unique to AtTRXh5 among the thioredoxin h family, arguing in favor of a speciation rather than to a redundancy of the members of this multigenic family. PMID:14976236

  17. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana.

    PubMed

    Machens, Fabian; Becker, Marlies; Umrath, Felix; Hehl, Reinhard

    2014-03-01

    Using a combination of bioinformatics and synthetic promoters, novel elicitor-responsive cis-sequences were discovered in promoters of pathogen-upregulated genes from Arabidopsis thaliana. One group of functional sequences contains the conserved core sequence GACTTTT. This core sequence and adjacent nucleotides are essential for elicitor-responsive gene expression in a parsley protoplast system. By yeast one-hybrid screening, WRKY70 was selected with a cis-sequence harbouring the core sequence GACTTTT but no known WRKY binding site (W-box). Transactivation experiments, mutation analyses, and electrophoretic mobility shift assays demonstrate that the sequence CGACTTTT is the binding site for WRKY70 in the investigated cis-sequence and is required for WRKY70-activated gene expression. Using several cis-sequences in transactivation experiments and binding studies, the CGACTTTT sequence can be extended to propose YGACTTTT as WRKY70 binding site. This binding site, designated WT-box, is enriched in promoters of genes upregulated in a WRKY70 overexpressing line. Interestingly, functional WRKY70 binding sites are present in the promoter of WRKY30, supporting recent evidence that both factors play a role in the same regulatory network. PMID:24104863

  18. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-01-01

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L−1 6-benzyladenine (BA) in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures. PMID:26999126

  19. Characterization of two fungal-elicitor-induced rice cDNAs encoding functional homologues of the rab-specific GDP-dissociation inhibitor.

    PubMed

    Kim, W Y; Kim, C Y; Cheong, N E; Choi, Y O; Lee, K O; Lee, S H; Park, J B; Nakano, A; Bahk, J D; Cho, M J; Lee, S Y

    1999-11-01

    By using the mRNA differential display approach to isolate defense signaling genes active at the early stage of fungal infection two cDNA fragments with high sequence homology to rab-specific GDP-dissociation inhibitors (GDIs) were identified in rice (Oryza sativa L.) suspension cells. Using polymerase-chain-reaction products as probes, two full-length cDNA clones were isolated from a cDNA library of fungal-elicitor-treated rice, and designated as OsGDI1 and OsGDI2. The deduced amino acid sequences of the isolated cDNAs exhibited substantial homology to Arabidopsis rab-GDIs. Northern analysis revealed that transcripts detected with the 3'-gene-specific DNA probes accumulated to high levels within 30 min after treatment with a fungal elicitor derived from Magnaporthe grisea. The functionality of the OsGDIs was demonstrated by their ability to rescue the Sec19 mutant of Saccharomyces cerevisiae which is defective in vesicle transport. The proteins, expressed in Escherchia coli, cross-reacted with a polyclonal antibody prepared against bovine rab-GDI. Like bovine rab-GDI, the OsGDI proteins efficiently dissociated rab3A from bovine synaptic membranes. Using the two-hybrid system, it was shown that the OsGDIs specifically interact with the small GTP-binding proteins belonging to the rab subfamily. The specific interaction was also demonstrated in vitro by glutathione S-transferase resin pull-down assay.

  20. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors.

    PubMed

    Liu, C J; Heinstein, P; Chen, X Y

    1999-12-01

    Cotton plants accumulate sesquiterpene aldehydes in pigment glands. The two enzymes farnesyl diphosphate synthase (FPS) and (+)-delta-cadinene synthase (CAD), a sesquiterpene cyclase, are involved in the biosynthesis of these secondary metabolites. A full-length cDNA (garfps) encoding FPS was isolated from Gossypium arboreum and identified by in vitro enzymatic assay of the garfps protein heterologously expressed in Escherichia coli. Treatment of G. arboreum suspension-cultured cells with an elicitor preparation obtained from the phytopathogenic fungus Verticillium dahliae dramatically induced transcription of both FPS and CAD, paralleling the accumulation of the sesquiterpene aldehydes in these cells. For G. australe, a wild species from Australia, the V. dahliae elicitor preparation also caused an induction of FPS but only a low rate of induction of CAD, apparently because of a constitutive expression of the sesquiterpene cyclase gene in suspension-cultured cells. Two transcripts and proteins of FPS were detected in the elicited G. australe cells; the smaller FPS seemed to be de novo synthesized after elicitation. Furthermore, G. australe-cultured cells accumulated the cadinene, instead of sesquiterpene aldehydes, indicating that the biosynthetic pathway leading to sesquiterpene aldehydes was absent or blocked after FPP cyclization. PMID:10624017

  1. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    SciTech Connect

    Lim, Hyoun-Sub; Nam, Jiryun; Seo, Eun-Young; Nam, Moon; Vaira, Anna Maria; Bae, Hanhong; Jang, Chan-Yong; Lee, Cheol Ho; Kim, Hong Gi; Roh, Mark; Hammond, John

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  2. Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death.

    PubMed

    Katou, Shinpei; Yoshioka, Hirofumi; Kawakita, Kazuhito; Rowland, Owen; Jones, Jonathan D G; Mori, Hitoshi; Doke, Noriyuki

    2005-12-01

    Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade. PMID:16306147

  3. The HERBIVORE ELICITOR-REGULATED1 Gene Enhances Abscisic Acid Levels and Defenses against Herbivores in Nicotiana attenuata Plants1[C][W][OPEN

    PubMed Central

    Dinh, Son Truong; Baldwin, Ian T.; Galis, Ivan

    2013-01-01

    Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores. PMID:23784463

  4. Waterborne Signaling Primes the Expression of Elicitor-Induced Genes and Buffers the Oxidative Responses in the Brown Alga Laminaria digitata

    PubMed Central

    Thomas, François; Cosse, Audrey; Goulitquer, Sophie; Raimund, Stefan; Morin, Pascal; Valero, Myriam; Leblanc, Catherine; Potin, Philippe

    2011-01-01

    As marine sessile organisms, seaweeds must respond efficiently to biotic and abiotic challenges in their natural environment to reduce the fitness consequences of wounds and oxidative stress. This study explores the early steps of the defense responses of a large marine brown alga (the tangle kelp Laminaria digitata) and investigates its ability to transmit a warning message to neighboring conspecifics. We compared the early responses to elicitation with oligoguluronates in laboratory-grown and harvested wild individuals of L. digitata. We followed the release of H2O2 and the concomitant production of volatile organic compounds. We also monitored the kinetics of expression of defense-related genes following the oxidative burst. Laboratory-grown algae were transplanted in kelp habitats to further evaluate their responses to elicitation after a transient immersion in natural seawater. In addition, a novel conditioning procedure was established to mimic field conditions in the laboratory. Our experiments showed that L. digitata integrates waterborne cues present in the kelp bed and/or released from elicited neighboring plants. Indeed, the exposure to elicited conspecifics changes the patterns of oxidative burst and volatile emissions and potentiates this kelp for faster induction of genes specifically regulated in response to oligoguluronates. Thus, waterborne signals shape the elicitor-induced responses of kelps through a yet unknown mechanism reminiscent of priming in land plants. PMID:21731761

  5. Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions.

    PubMed

    Figueroa Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Mercado-Silva, Edmundo; Loarca-Piña, Guadalupe; Reynoso-Camacho, Rosalía

    2014-08-01

    Infusions are widely consumed all over the world and are a source of dietary antioxidants, which can be improved in plants using elicitors. The aim of this study was to evaluate the foliar application of salicylic acid (SA) (0.5, 1 and 2mM) or hydrogen peroxide (H2O2) (0.05, 0.1 and 0.5mM) on peppermint (Mentha piperita) plants and its effect on the metabolite profile and antioxidant capacity of resulting infusions. Whereas 2mM SA treatment improved plant growth parameters and metabolite profile (carbohydrates and amino acids), 0.5 and 1mM SA treatments increased phenolic compound concentration. Sinapic acid, rutin and naringin were detected only in SA treatments; antioxidant capacity was also improved. Regarding H2O2 treatments, no differences in plant growth parameters, metabolite profile or antioxidant capacity were found. Therefore, the application of SA to peppermint is recommended in order to improve bioactive compounds and the antioxidant capacity of infusions.

  6. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress.

    PubMed

    Singh, S

    2014-11-01

    Cyanobacteria are prominent inhabitants of many agricultural soils, where they potentially contribute towards biological nitrogen fixation, help in phosphate solubilization and mineral release to improve soil fertility and crop productivity. However, beside naturally fertilizing and balancing mineral nutrition in the soil, many cyanobacteria are known to release various kinds of biologically active substances like proteins, vitamins, carbohydrates, amino acids, polysaccharides and phytohormones that function as elicitor molecules to promote plant growth and help them to fight against biotic and abiotic stress. These metabolites produced by the cyanobacteria affect the gene expression of the host plants and thereby bring about qualitative and quantitative changes in the phytochemical composition of the plants. Experiments carried out with live inoculum or with the extracts of cyanobacterial strains on several plant species, such as rice, wheat, maize, cotton etc., have demonstrated the synthesis of signalling metabolites. Thus, in view of its beneficial effect, this paper reviews the role of cyanobacteria in triggering the growth and development of plants and hence its utilization in agriculture.

  7. Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor.

    PubMed

    Lehtonen, Mikko T; Akita, Motomu; Frank, Wolfgang; Reski, Ralf; Valkonen, Jari P T

    2012-03-01

    Production of apoplastic reactive oxygen species (ROS), or oxidative burst, is among the first responses of plants upon recognition of microorganisms. It requires peroxidase or NADPH oxidase (NOX) activity and factors maintaining cellular redox homeostasis. Here, PpTSPO1 involved in mitochondrial tetrapyrrole transport and abiotic (salt) stress tolerance was tested for its role in biotic stress in Physcomitrella patens, a nonvascular plant (moss). The fungal elicitor chitin caused an immediate oxidative burst in wild-type P. patens but not in the previously described ΔPrx34 mutants lacking the chitin-responsive secreted class III peroxidase (Prx34). Oxidative burst in P. patens was associated with induction of the oxidative stress-related genes AOX, LOX7, and NOX, and also PpTSPO1. The available ΔPpTSPO1 knockout mutants overexpressed AOX and LOX7 constitutively, produced 2.6-fold more ROS than wild-type P. patens, and exhibited increased sensitivity to a fungal necrotrophic pathogen and a saprophyte. These results indicate that Prx34, which is pivotal for antifungal resistance, catalyzes ROS production in P. patens, while PpTSPO1 controls redox homeostasis. The capacity of TSPO to bind harmful free heme and porphyrins and scavenge them through autophagy, as shown in Arabidopsis under abiotic stress, seems important to maintenance of the homeostasis required for efficient pathogen defense. PMID:22112216

  8. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge.

    PubMed Central

    Truernit, E; Schmid, J; Epple, P; Illig, J; Sauer, N

    1996-01-01

    A cDNA for the Arabidopsis STP4 gene (for sugar transport protein 4) was isolated, and the properties of the encoded protein were studied in Schizosaccharomyces pombe. The STP4 monosaccharide H+ symporter is composed of 514 amino acids and has a calculated molecular mass of 57.1 kD. RNA gel blot analyses revealed that STP4 is expressed primarily in roots and flowers of Arabidopsis. This was shown in more detail with STP4 promoter-beta-glucuronidase (GUS) plants yielding strong STP4-driven GUS activity in root tips and anthers. Wounding of plants transformed with STP4-GUS constructs resulted in a rapid increase in GUS activity in cells directly adjacent to the lesion. This was confirmed by RNase protection analyses in Arabidopsis wild-type plants showing a strong, wound-induced increase in STP4 mRNA levels. STP4 expression was induced rapidly in suspension-cultured Arabidopsis cells that were treated with the Pseudomonas syringae elicitor or with chitin or in Arabidopsis plants that were exposed to fungal attacks. Our data suggest that the role of STP4 is to catalyze monosaccharide import into classic sinks, such as root tips and anthers, and, most importantly, to meet the increased carbohydrate demand of cells responding to environmental stress. PMID:8989877

  9. Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid.

    PubMed

    Dhondt, Sandrine; Gouzerh, Guillaume; Müller, Axel; Legrand, Michel; Heitz, Thierry

    2002-12-01

    We have previously isolated three tobacco genes (NtPat) encoding patatin-like proteins, getting rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. NtPAT enzymes are lipid acyl hydrolases that display high phospholipase A2 (PLA2) activity and may mobilize fatty acid precursors of oxylipins. Here, we performed a detailed study of NtPat gene regulation under various biotic and abiotic stresses. PLA2 activity was poorly induced in response to drought, wounding, reactive oxygen intermediates, salicylic acid (SA) or methyl-jasmonate (MJ) whereas the ethylene (ET) precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), provoked a moderate induction. In contrast, PLA2 activity was strongly induced when ACC was combined with MJ, and in response to the bacterium Erwinia carotovora or to the fungus Botrytis cinerea, as well as to treatment with beta-megaspermin, a cell death-inducing protein elicitor. A simplified system based on the infiltration of beta-megaspermin into leaves was used to dissect the spatio-temporal activation of PLA2 activity with regards to the accumulation of jasmonates and to the influence of endogenous SA. NtPat-encoded PLA2 activity was rapidly induced in the infiltrated zone before the appearance of cell death and with some delay in the surrounding living cells. A massive accumulation of 12-oxo-phytodienoic and jasmonic acids occurred in the elicitor-infiltrated zone, but only low levels were detectable outside this area. A similar picture was found in SA-deficient plants, showing that in tobacco, accumulation of jasmonates is not affected by the concomitant HR-induced build-up of endogenous SA. Finally, ET-insensitive plants showed a weakened induction of PLA2 activity outside the elicitor-infiltrated tissue.

  10. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum.

    PubMed

    Gilardi, P; García-Luque, I; Serra, M T

    2004-07-01

    In Capsicum, the resistance conferred by the L(2) gene is effective against all of the pepper-infecting tobamoviruses except Pepper mild mottle virus (PMMoV), whereas that conferred by the L(4) gene is effective against them all. These resistances are expressed by a hypersensitive response, manifested through the formation of necrotic local lesions (NLLs) at the primary site of infection. The Capsicum L(2) gene confers resistance to Paprika mild mottle virus (PaMMV), while the L(4) gene is effective against both PaMMV and PMMoV. The PaMMV and PMMoV coat proteins (CPs) were expressed in Capsicum frutescens (L(2)L(2)) and Capsicum chacoense (L(4)L(4)) plants using the heterologous Potato virus X (PVX)-based expression system. In C. frutescens (L(2)L(2)) plants, the chimeric PVX virus containing the PaMMV CP was localized in the inoculated leaves and produced NLLs, whereas the chimeric PVX containing the PMMoV CP infected the plants systemically. Thus, the data indicated that the PaMMV CP is the only tobamovirus factor required for the induction of the host response mediated by the Capsicum L(2) resistance gene. In C. chacoense (L(4)L(4)) plants, both chimeric viruses were localized to the inoculated leaves and produced NLLs, indicating that either PaMMV or PMMoV CPs are required to elicit the L(4) gene-mediated host response. In addition, transient expression of PaMMV CP into C. frutescens (L(2)L(2)) leaves and PMMoV CP into C. chacoense (L(4)L(4)) leaves by biolistic co-bombardment with a beta-glucuronidase reporter gene led to the induction of cell death and the expression of host defence genes in both hosts. Thus, the tobamovirus CP is the elicitor of the Capsicum L(2) and L(4) gene-mediated hypersensitive response.

  11. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors.

    PubMed

    Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine

    2010-03-01

    Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H(2)O(2) treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses.

  12. PeBL1, a Novel Protein Elicitor from Brevibacillus laterosporus Strain A60, Activates Defense Responses and Systemic Resistance in Nicotiana benthamiana

    PubMed Central

    Wang, Haoqian; Yang, Xiufen; Guo, Lihua; Zeng, Hongmei

    2015-01-01

    We report the identification, characterization, and gene cloning of a novel protein elicitor (PeBL1) secreted from Brevibacillus laterosporus strain A60. Through a purification process consisting of ion-exchange chromatography and high-performance liquid chromatography (HPLC), we isolated a protein that was identified by electrospray ionization quadrupole time of flight tandem mass spectrometry (ESI–Q-TOF–MS-MS). The 351-bp PeBL1 gene produces a 12,833-Da protein with 116 amino acids that contains a 30-residue signal peptide. The PeBL1 protein was expressed in Escherichia coli. The recombinant protein can induce a typical hypersensitive response (HR) and systemic resistance in Nicotiana benthamiana, like the endogenous protein. PeBL1-treated N. benthamiana exhibited strong resistance to the infection of tobacco mosaic virus-green fluorescent protein (TMV-GFP) and Pseudomonas syringae pv. tabaci compared to control N. benthamiana. In addition, PeBL1 triggered a cascade of events that resulted in defense responses in plants, including reactive oxygen species (ROS) production, extracellular-medium alkalization, phenolic-compound deposition, and expression of several defense-related genes. Real-time quantitative-PCR analysis indicated that the known defense-related genes PR-1, PR-5, PDF1.2, NPR1, and PAL were upregulated to varying degrees by PeBL1. This research not only provides insights into the mechanism by which beneficial bacteria activate plant systemic resistance, but also sheds new light on a novel strategy for biocontrol using strain A60. PMID:25662975

  13. Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response.

    PubMed

    Lippert, Dustin N; Ralph, Steven G; Phillips, Michael; White, Rick; Smith, Derek; Hardie, Darryl; Gershenzon, Jonathan; Ritland, Kermit; Borchers, Christoph H; Bohlmann, Jörg

    2009-01-01

    Long-lived conifer trees depend on both constitutive and induced defenses for resistance against a myriad of potential pathogens and herbivores. In species of spruce (Picea spp.), several of the late events of pathogen-, insect-, or elicitor-induced defense responses have previously been characterized at the anatomical, biochemical, transcriptome, and proteome levels in stems and needles. However, accurately measuring the early events of induced cellular responses in a conifer is technically challenging due to limitations in the precise timing of induction and tissue sampling from intact trees following insect or fungal treatment. In the present study, we used the advantages of Norway spruce (Picea abies) cell suspensions combined with chitosan elicitation to investigate the early proteome response in a conifer. A combination of iTRAQ labeling and a new design of iterative sample analysis employing data-dependent exclusion lists were used for proteome analysis. This approach improved the coverage of the spruce proteome beyond that achieved in any prior study in a conifer system. Comparison of elicitor-induced proteome and transcriptome responses in Norway spruce cells consistently identified features associated with calcium-mediated signaling and response to oxidative stress that have not previously been observed in the response of intact trees to fungal attack.

  14. Stress responses in alfalfa (Medicago sativa L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants.

    PubMed

    Gowri, G; Paiva, N L; Dixon, R A

    1991-09-01

    An expression library containing cDNAs derived from transcripts from fungal elicitor-treated alfalfa cell suspension cultures was screened with an antiserum raised against phenylalanine ammonia-lyase (PAL) from alfalfa. A single immunoreactive clone was isolated which encoded a full-length PAL cDNA (APAL1) consisting of a 2175 bp open reading frame, 96 bp 5'-untranslated leader and 128 bp 3'-non-coding region. The deduced amino acid sequence was 86.5% similar to that of the PAL2 gene of bean, and encoded a polypeptide of Mr 78,865. A second PAL cDNA species was isolated, whose 3'-untranslated region was 86% identical to that of APAL1. Southern blot analysis indicated that PAL is encoded by a small multigene family in alfalfa. PAL transcript levels were rapidly and massively induced, and preceded increased PAL extractable activity, on exposure of alfalfa suspension cells to elicitor from baker's yeast. PAL transcripts were most abundant in roots, stems and petioles during growth and development of alfalfa seedlings. These studies provide the basis for an examination of the developmental and environmental control of a key enzyme of phenylpropanoid synthesis in a plant species which is readily amenable to stable genetic transformation.

  15. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23.

    PubMed

    Tanabe, Shigeru; Onodera, Haruko; Hara, Naho; Ishii-Minami, Naoko; Day, Brad; Fujisawa, Yukiko; Hagio, Takashi; Toki, Seiichi; Shibuya, Naoto; Nishizawa, Yoko; Minami, Eiichi

    2015-01-01

    We show that a rice GRAS family protein, CIGR2, is a bonafide transcriptional activator, and through this function, targets the B-type heat shock protein-encoding gene OsHsf23 (Os09g0456800). CIGR2 (Os07g0583600) is an N-acetylchitooligosaccharide elicitor-responsive gene whose activity, through the direct transcriptional control of OsHsf23, is required for mediating hypersensitive cell death activation during pathogen infection. RNAi lines of CIGR2 and OsHsf23 similarly exhibited the higher level of granulation in the epidermal cells of leaf sheath inoculated with an avirulent isolate of rice blast fungus. Interestingly, we did not observe altered levels of resistance, suggesting that CIGR2 suppresses excessive cell death in the incompatible interaction with blast fungus via activation of OsHsf23. PMID:26287768

  16. Characterizing plasma membrane H+-ATPase in two varieties of coffee leaf (Coffea arabica L.) and its interaction with an elicitor fraction from the orange rust fungus (H. vastatrix Berk and Br.) race II.

    PubMed

    Osses, Luis R; Godoy, César A

    2006-04-01

    Early intercellular signaling in Coffea arabica L.-Hemileia vastatrix host-pathogen interaction was studied, using inside-out plasma membrane from two varieties of coffee leaf and a fungal fraction to determine the plant's biochemical responses. Microsomal pellets (100,000 x g) from the susceptible (Caturra) and resistant (Colombia) coffee leaf varieties were purified by partitioning in two-polymer DEX (6.3% w/w) and PEG (6.3% w/w) system aqueous phase. Fungal material was obtained from orange rust Hemileia vastatrix Berk and Br. race II urediospore germ tubes. Plasma membrane vesicles were preferentially localized to PEG phase, as indicated by its enzyme marker distribution. Both H(+)-ATPase activities displayed similar kinetic and biochemical characteristics, comparable to those described for P-type ATPases. Several enzymes may play pivotal roles in plants regarding early interaction with fungal elicitors. Studies of fungal fractions' effects on H(+)-ATPase and both varieties' proton pumping activities were thus carried out. Concentration as low as 0.1 Gluc eq. ml(-1) fungal fraction induced specific inhibition of H(+)-ATPase and the resistant variety's proton pumping activities. The present work describes characterizing the H(+)-ATPase plasma membrane from two Coffea arabica L. varieties (Caturra and Colombia) for the first time and the race specific inhibitory effect of a crude fungal fraction on both H(+)-ATPase and the resistant variety's proton pumping activities.

  17. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal.

    PubMed

    Ma, Yi; Zhao, Yichen; Walker, Robin K; Berkowitz, Gerald A

    2013-11-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca(2+) elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca(2+) signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca(2+)-dependent protein kinases (CPKs) decode the Ca(2+) signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca(2+) signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca(2+)-conducting channel in the Pep immune signaling pathway.

  18. Stress Responses in Alfalfa (Medicago sativa L.) (XIV. Changes in the Levels of Phenylpropanoid Pathway Intermediates in Relation to Regulation of L-Phenylalanine Ammonia-Lyase in Elicitor-Treated Cell-Suspension Cultures).

    PubMed Central

    Orr, J. D.; Edwards, R.; Dixon, R. A.

    1993-01-01

    We have used high-resolution gas chromatography to determine the levels of trans-cinnamic acid (CA) and trans-4-coumaric acid (4CA) in alfalfa (Medicago sativa L.) cell-suspension cultures to address the role of these phenylpropanoid pathway intermediates as potential negative regulators of phenylalanine ammonia-lyase (PAL) in vivo. Exogenous addition of CA to elicitor-treated cultures resulted in rapid increases in endogenous CA, 4CA, and CA-conjugate levels associated with inhibition of the appearance of PAL transcripts. Treatment of elicited cultures with [alpha]-aminooxy-[beta]-phenylpropionic acid (AOPP), a potent and specific inhibitor of PAL activity in vivo, resulted in reductions of CA and 4CA, with concomitant increases in PAL transcripts and extractable enzyme activity. In contrast, treatment with tetcyclacis, an inhibitor of CA 4-hydroxylase, resulted in increased CA and CA-conjugate levels, decreased 4CA levels, and decreased PAL transcript levels and enzyme activity. In tetcyclasis-treated cells, the inhibition of PAL transcript appearance preceded the increase in the levels of free CA and its conjugates. In elicited cells in which the phenylpropanoid pathway was not perturbed by metabolic inhibitors, PAL transcripts accumulated rapidly and transiently, beginning to decline by 2 h postelicitation. Changes in levels of total free or conjugated CA or 4CA did not consistently correlate with these changes in transcript levels. We propose that regulation of PAL transcript levels by endogenous phenylpropanoid pathway intermediates could involve compartmentalized pools that may exist because of the microsomal localization of cinnamic acid 4-hydroxylase. PMID:12231735

  19. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. PMID:23988562

  20. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species.

  1. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola

    PubMed Central

    Kong, Xiangjiu; Qin, Wentao; Huang, Xiaoqing; Kong, Fanfang; Schoen, Cor D.; Feng, Jie; Wang, Zhongyue; Zhang, Hao

    2016-01-01

    A rapid LAMP (loop-mediated isothermal amplification) detection method was developed on the basis of the ITS sequence of P. viticola, the major causal agent of grape downy mildew. Among the 38 fungal and oomycete species tested, DNA isolated exclusively from P. viticola resulted in a specific product after LAMP amplification. This assay had high sensitivity and was able to detect the presence of less than 33 fg of genomic DNA per 25-μL reaction within 30 min. The infected leaves may produce sporangia that serve as a secondary inoculum. The developed LAMP assay is efficient for estimating the latent infection of grape leaves by P. viticola. When combined with the rapid and simple DNA extraction method, this assay’s total detection time is shortened to approximately one hour; therefore it is suitable for on-site detection of latent infection in the field. The sporangia levels in the air are strongly associated with disease severity. The LAMP method was also demonstrated to be able to estimate the level of sporangia released in the air in a certain period. This assay should make disease forecasting more accurate and rapid and should be helpful in decision-making regarding the control of grape downy mildew. PMID:27363943

  2. Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD.

    PubMed

    Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V; Carreras, Alfonso; Valderrama, Raquel; Begara-Morales, Juan C; Hernández, Luis E; Corpas, Francisco J; Barroso, Juan B

    2011-07-15

    Superoxide dismutases (SODs) are a family of metalloenzymes that catalyse the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. In sunflower (Helianthus annuus L.) seedlings, two new Mn-SOD isozymes, designated as I and II, were identified. However, no evidence for a Fe-SOD was found. Both Mn-SOD I and Mn-SOD II have a cleaved sequence of 14 residues that target the mitochondrion with a probability of 81% and 95%, respectively. The gene expression of these new mitochondrial Mn-SODs as well as the previously reported cytosolic and chloroplastic CuZnSODs was analyzed by real-time quantitative reverse transcription-PCR. This was done in the main organs (roots, hypocotyls, and cotyledons) of sunflower seedlings and also under biotic (infection by the pathogen Plasmopara halstedii) and abiotic stress conditions, including high and low temperature and mechanical wounding. Both CuZn-SODs had a gene expression of 1000-fold higher than that of mitochondrial Mn-SODs. And the expression of the Mn-SOD I was approximately 12-fold higher than that of Mn-SOD II. The Mn-SOD I showed a significant modulation in response to the assayed biotic and abiotic stresses even when it had no apparent oxidative stress, such as low temperature. Thus, it is proposed that the mitochondrial Mn-SOD I gene could act as an early sensor of adverse conditions to prevent potential oxidative damage.

  3. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    PubMed

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. PMID:26562553

  4. Elicitors aboveground: an alternative for control of a belowground pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation ...

  5. Elicitors of tansy volatiles from cotton leafworm larval oral secretion.

    PubMed

    Mack, Lienhard; Gros, Petra; Burkhardt, Jens; Seifert, Karlheinz

    2013-12-01

    The feeding of Spodoptera littoralis and Autographa gamma caterpillars on tansy leaves led to a complete different release of volatile monoterpenes, sesquiterpenes, and hexenyl alkanoates. Volatiles were collected from S. littoralis and A. gamma larvae damaged, mechanically wounded, and excised tansy leaves by closed loop stripping analysis. The qualitative and quantitative determination of the volatiles were done by GC-MS- and GC-measurements. The oligosaccharides sucrose, raffinose, stachyose, and verbascose have been detected in oral secretion of the caterpillars of the cotton leafworm S. littoralis. When applied to damaged leaves of tansy plants, these oligosaccharides induce the tansy leaves to emit a similar volatile blend as the feeding of S. littoralis larvae. PMID:24011527

  6. Oligomycins and pamamycin homologs impair motility and induce lysis of zoospores of the grapevine downy mildew pathogen, Plasmopara viticola.

    PubMed

    Dame, Zerihun T; Islam, M Tofazzal; Helmke, Elisabeth; von Tiedemann, Andreas; Laatsch, Hartmut

    2016-08-01

    Four antibiotics (pamamycin, oligomycin A, oligomycin B and echinosporin) were isolated and characterized from the fermentation broth of the marine Streptomyces strains B8496 and B8739. Bioassays revealed that each of these compounds impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manner. Pamamycin displayed the strongest motility inhibitory and lytic activities (IC50 0.1 μg mL(-1)) followed by oligomycin B (IC50 0.15 and 0.2 μg mL(-1)) and oligomycin F (IC50 0.3 and 0.5 μg mL(-1)). Oligomycin A and echinosporin also showed motility inhibitory activities against the zoospores with IC50 values of 3.0 and 10.0 μg mL(-1), respectively. This is the first report of motility inhibitory and lytic activities of these antibiotics against zoospores of a phytopathogenic peronosporomycete. Structures of all the isolated compounds were determined based on detailed spectroscopic analysis.

  7. Synthesis of the Caeliferins, elicitors of plant immune responses: accessing Lipophilic natural products via cross metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a cross metathesis- (CM-) based syn-thesis of the caeliferins, a family of sulfooxy fatty acids that elicit plant immune responses. Unexpectedly, detailed NMR-spectroscopic and mass spectrometric analyses of CM reaction mixtures revealed extensive isomerization and homologation of starting...

  8. New Procedure to Obtain Polyphenol-Enriched Grapes Based on the Use of Chemical Elicitors.

    PubMed

    Flores, Gema; Del Castillo, Maria Luisa Ruiz

    2016-09-01

    The effect of the postharvest treatment of methyl jasmonate enantiomers in conjunction with ethanol on bioformation of resveratrol and quercetin glycosides in grapes was evaluated. The antioxidant activity of treated grape extracts as compared with untreated extracts was also assayed. Exogenous (-)-methyl jasmonate in combination with ethanol induced a significant increase in the levels of resveratrol (from 27 to 39 μg g(-1)), quercetin-3-O-glucoside (from 59 to 136 μg g(-1)), quercetin-3-O-galactoside (from 398 to 807 μg g(-1)) and quercetin-3-O-rutinoside (from 23 to 43 μg g(-1)). (+)-Methyl jasmonate with ethanol also resulted in increase of quercetin-3-O-glucoside and quercetin-3-O-rutinoside. However, no (+)-methyl jasmonate effect was observed for resveratrol and quercetin-3-O-galactoside. Both (-)- and (+)-methyl jasmonate treatments provided with extracts with higher antioxidant activity. From the results found in the present work postharvest treatment with (-)-methyl jasmonate in conjunction with ethanol is proposed as a mean to obtain polyphenol-enriched grape extracts with improved antioxidant properties. The procedure here developed is proposed as a mean to obtain functional grapes. Extracts obtained from grapes treated with (-)-methyl jasmonate with ethanol can be particularly useful for industry due to their high antioxidant capacity.

  9. New Procedure to Obtain Polyphenol-Enriched Grapes Based on the Use of Chemical Elicitors.

    PubMed

    Flores, Gema; Del Castillo, Maria Luisa Ruiz

    2016-09-01

    The effect of the postharvest treatment of methyl jasmonate enantiomers in conjunction with ethanol on bioformation of resveratrol and quercetin glycosides in grapes was evaluated. The antioxidant activity of treated grape extracts as compared with untreated extracts was also assayed. Exogenous (-)-methyl jasmonate in combination with ethanol induced a significant increase in the levels of resveratrol (from 27 to 39 μg g(-1)), quercetin-3-O-glucoside (from 59 to 136 μg g(-1)), quercetin-3-O-galactoside (from 398 to 807 μg g(-1)) and quercetin-3-O-rutinoside (from 23 to 43 μg g(-1)). (+)-Methyl jasmonate with ethanol also resulted in increase of quercetin-3-O-glucoside and quercetin-3-O-rutinoside. However, no (+)-methyl jasmonate effect was observed for resveratrol and quercetin-3-O-galactoside. Both (-)- and (+)-methyl jasmonate treatments provided with extracts with higher antioxidant activity. From the results found in the present work postharvest treatment with (-)-methyl jasmonate in conjunction with ethanol is proposed as a mean to obtain polyphenol-enriched grape extracts with improved antioxidant properties. The procedure here developed is proposed as a mean to obtain functional grapes. Extracts obtained from grapes treated with (-)-methyl jasmonate with ethanol can be particularly useful for industry due to their high antioxidant capacity. PMID:27193018

  10. Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine.

    PubMed

    Bavaresco, Luigi; Mattivi, Fulvio; De Rosso, Mirko; Flamini, Riccardo

    2012-11-01

    The ability of grapevine to activate defense mechanisms against some pathogens has been shown to be linked to the synthesis of stilbenes by the plant (inducible viniferins). Metabolized viniferins may also be produced or modified by extracellular enzymes released by the pathogen in an attempt to eliminate undesirable toxic compounds. Due to the important properties of resveratrol, there is increasing interest in producing foods with higher contents of this compound and higher nutritional value. The production of high resveratrol-containing grapes and wines relies on quality-oriented viticulture (suitable terroirs, sustainable cultural practices) and wine-making technologies which avoid degradation of the compound. The technique of skin extraction and enzymatic hydrolysis of glucoside forms in wine-making plays an important role in resveratrol wine concentration. Other factors affecting its final concentration and balance in wine are conditions for promoting trans-cis isomerization of aglycones, the type of yeast used, and the presence of lactic bacteria with β-glucosidase activity. In general, the enological practices commonly used to stabilize wine after fermentation do not significantly affect resveratrol concentrations, which show considerable stability. PMID:22303949

  11. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  12. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  13. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    PubMed

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses.

  14. Identification of Ruta graveolens L. metabolites accumulated in the presence of abiotic elicitors.

    PubMed

    Orlita, Aleksandra; Sidwa-Gorycka, Matylda; Kumirska, Jolanta; Maliński, Edmund; Siedlecka, Ewa M; Gajdus, Jerzy; Lojkowska, Ewa; Stepnowski, Piotr

    2008-01-01

    The study aimed to elucidate the effects of benzothiadiazole (BTH) and saccharin on the biosynthesis of simple coumarins, linear furanocoumarins, dihydrofuranocoumarins, and furoquinolone alkaloids in shoots of R. graveolens cultivated in vitro. The biosynthesized metabolites were analyzed and identified by GC-MS and by comparison of Kovats indices. Eight coumarin metabolites were identified: bergapten, chalepin, isopimpinelin, pinnarin, psoralen, rutacultin, rutamarin, and xanthotoxin, and also four alkaloids: dictamnine, gamma-fagarine, skimmianine, and kokusaginine. Each of the tested BTH concentrations induced a significant production of furanocoumarins and furoquinolone alkaloids. The use of saccharin also increased the production of bergapten, isopimpinelin, pinnarin, psoralen, and xanthotoxin several times.

  15. "Difficult" children as elicitors and targets of adult communication patterns: an attributional-behavioral transactional analysis.

    PubMed

    Bugental, D B; Shennum, W A

    1984-01-01

    A transactional model of adult-child interaction was proposed and tested. In determining the effects that caregivers and children have on each other, it was maintained that adult attributions act as important moderators in the interaction process. Specifically, it was predicted that adult beliefs about the causes of caregiving outcomes act as selective filters or sensitizers to child behavior--determining the nature and amount of adult reaction to different child behaviors. It was further predicted that adult attributions act in a self-fulfilling fashion, that is, the communication patterns that follow from caregiver beliefs act to elicit child behavior patterns that maintain those beliefs. In a synthetic family strategy, elementary-school-aged boys were paired with unrelated mothers (N = 96) for videotaped interactions. Children were either trained or preselected on two orthogonal dimensions: responsiveness and assertiveness. Mothers were premeasured on their self-perceived power as caregivers (S+) and the social power they attributed to children (C+). Videotapes were analyzed separately for adult facial expression and posture, voice intonation, and verbal communication. Each of these behavioral dimensions was measured on the dimensions of affect, assertion, and "maternal quality" (e.g., baby-talk). We expected low self-perceived power to sensitize the adult to variations in child responsiveness and high child-attributed power to sensitize the adult to variations in child assertiveness. Two transactional sequences were obtained (the same patterns were obtained for acted and dispositional enactments of child behavior): 1. Low S+ mothers (in comparison with high S+ mothers) were selectively reactive to child unresponsiveness. These adults reacted to unresponsive children with a communication pattern characterized by a "maternal" quality, negative affect, and positive affect that was unassertively inflected. Unresponsive children, in turn, reacted to low S+ mothers with continued unresponsiveness. 2. High C+ mothers (in contrast to low C+ mothers) were selectively reactive to child unassertiveness. These adults reacted to shy children with a "maternal," strong, and affectively positive communication style. Unassertive children, in turn, reacted to high C+ mothers with increased assertiveness. High S+ and low C+ mothers demonstrated no significant alterations in their behavior as a function of child behavior. This nonreactivity had positive consequences for child unresponsiveness (reduced) and negative consequences for child unassertiveness (maintained).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6749157

  16. Isolation, characterization, and expression analyses of plant elicitor peptides (Pep) genes in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. In plant families, peptides with analogous activity have remained elusive. Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing...

  17. Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application.

    PubMed

    Flores, Gema; Ruiz del Castillo, María Luisa

    2016-03-01

    Black currant seeds are obtained as a residue during juice production. Black currant seed oil contains high amounts of nutritionally desirable constituents such as γ-linolenic acid (GLA), α-linolenic acid (ALA) and stearidonic acid (SA), as well as certain phenolic acids, which act as natural antioxidants. Fatty acids and phenolic acids of seeds from black currant cultivars after elicitation with methyl jasmonate (MJ) were examined. GLA contents around 25% with respect to total fatty acid content were measured in seeds after pre-harvest treatment of black currants with 0.02mM MJ in 0.05% Tween-20. High GLA samples also exhibited high SA content (higher than 10% with respect to total fatty acid content); however, ALA dropped (from 16% to 10%). High GLA content seeds also showed increased contents of gallic, caffeic, p-coumaric and ferulic acids. In particular, seeds from 0.02mM MJ treated Ben Hope black currants exerted contents of gallic, caffeic, p-coumaric and ferulic acids of 201.4, 125.9, 201.3 and 112.5μgg(-1)vs 124.3, 58.6, 165.4 and 95.8μgg(-1) measured in seeds from untreated Ben Hope black currants. Comparable results were obtained for Ben Alder and Ben Gairn berries. Chemical elicitation with 0.02 MJ is proposed as an industrial practice in such a way that, after consideration of quality issues, it would be obtained high added value black currant seeds.

  18. Protein secretome of moss plants (Physcomitrella patens) with emphasis on changes induced by a fungal elicitor.

    PubMed

    Lehtonen, Mikko T; Takikawa, Yoshihiro; Rönnholm, Gunilla; Akita, Motomu; Kalkkinen, Nisse; Ahola-Iivarinen, Elina; Somervuo, Panu; Varjosalo, Markku; Valkonen, Jari P T

    2014-02-01

    Studies on extracellular proteins (ECPs) contribute to understanding of the multifunctional nature of apoplast. Unlike vascular plants (tracheophytes), little information about ECPs is available from nonvascular plants, such as mosses (bryophytes). In this study, moss plants (Physcomitrella patens) were grown in liquid culture and treated with chitosan, a water-soluble form of chitin that occurs in cell walls of fungi and insects and elicits pathogen defense in plants. ECPs released to the culture medium were compared between chitosan-treated and nontreated control cultures using quantitative mass spectrometry (Orbitrap) and 2-DE-LC-MS/MS. Over 400 secreted proteins were detected, of which 70% were homologous to ECPs reported in tracheophyte secretomes. Bioinformatics analyses using SignalP and SecretomeP predicted classical signal peptides for secretion (37%) or leaderless secretion (27%) for most ECPs of P. patens, but secretion of the remaining proteins (36%) could not be predicted using bioinformatics. Cultures treated with chitosan contained 72 proteins not found in untreated controls, whereas 27 proteins found in controls were not detected in chitosan-treated cultures. Pathogen defense-related proteins dominated in the secretome of P. patens, as reported in tracheophytes. These results advance knowledge on protein secretomes of plants by providing a comprehensive account of ECPs of a bryophyte.

  19. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa).

    PubMed

    Wise, Mitchell L

    2011-07-13

    Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown, in experimental systems, certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and reducing inflammation. Avenanthramides occur in both the leaves and grain of oat. In the leaves they are expressed as phytoalexins in response to crown rust (Puccina coronata) infection. The experiments reported here demonstrate that avenanthramide levels in vegetative tissue can be enhanced by treatment with benzothiadiazole (BTH), an agrochemical formulated to elicit systemic acquired resistance (SAR). The response to BTH was dramatically stronger than those produced with salicylic acid treatment. The roots of BTH treated plants also showed a smaller but distinct increase in avenanthramides. The dynamics of the root avenanthramide increase was substantially slower than that observed in the leaves, suggesting that avenanthramides might be transported from the leaves.

  20. Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application.

    PubMed

    Flores, Gema; Ruiz del Castillo, María Luisa

    2016-03-01

    Black currant seeds are obtained as a residue during juice production. Black currant seed oil contains high amounts of nutritionally desirable constituents such as γ-linolenic acid (GLA), α-linolenic acid (ALA) and stearidonic acid (SA), as well as certain phenolic acids, which act as natural antioxidants. Fatty acids and phenolic acids of seeds from black currant cultivars after elicitation with methyl jasmonate (MJ) were examined. GLA contents around 25% with respect to total fatty acid content were measured in seeds after pre-harvest treatment of black currants with 0.02mM MJ in 0.05% Tween-20. High GLA samples also exhibited high SA content (higher than 10% with respect to total fatty acid content); however, ALA dropped (from 16% to 10%). High GLA content seeds also showed increased contents of gallic, caffeic, p-coumaric and ferulic acids. In particular, seeds from 0.02mM MJ treated Ben Hope black currants exerted contents of gallic, caffeic, p-coumaric and ferulic acids of 201.4, 125.9, 201.3 and 112.5μgg(-1)vs 124.3, 58.6, 165.4 and 95.8μgg(-1) measured in seeds from untreated Ben Hope black currants. Comparable results were obtained for Ben Alder and Ben Gairn berries. Chemical elicitation with 0.02 MJ is proposed as an industrial practice in such a way that, after consideration of quality issues, it would be obtained high added value black currant seeds. PMID:26471680

  1. "What Makes You Shy?": Understanding Situational Elicitors of Shyness in Chinese Children

    ERIC Educational Resources Information Center

    Xu, Yiyuan; Farver, Jo Ann M.

    2009-01-01

    This paper reports on two exploratory studies of situations that elicit shyness in Mainland Chinese children. In Study 1 (N = 100; M[subscript age] = 10.42) interviews with Chinese children identified three kinds of shyness-eliciting situations: social novelty; negative social evaluation; and public attention. In Study 2 (N = 162, M[subscript age]…

  2. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    PubMed

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. PMID:24080397

  3. Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter.

    PubMed

    Underwood, William; Somerville, Shauna C

    2013-07-23

    The Arabidopsis penetration resistance 3 (PEN3) ATP binding cassette transporter participates in nonhost resistance to fungal and oomycete pathogens and is required for full penetration resistance to the barley powdery mildew Blumeria graminis f. sp. hordei. PEN3 resides in the plasma membrane and is recruited to sites of attempted penetration by invading fungal appressoria, where the transporter shows strong focal accumulation. We report that recruitment of PEN3 to sites of pathogen detection is triggered by perception of pathogen-associated molecular patterns, such as flagellin and chitin. PEN3 recruitment requires the corresponding pattern recognition receptors but does not require the BAK1 coreceptor. Pathogen- and pathogen-associated molecular pattern-induced focal accumulation of PEN3 and the penetration resistance 1 (PEN1) syntaxin show differential sensitivity to specific pharmacological inhibitors, indicating distinct mechanisms for recruitment of these defense-associated proteins to the host-pathogen interface. Focal accumulation of PEN3 requires actin but is not affected by inhibitors of microtubule polymerization, secretory trafficking, or protein synthesis, and plasmolysis experiments indicate that accumulation of PEN3 occurs outside of the plasma membrane within papillae. Our results implicate pattern recognition receptors in the recruitment of defense-related proteins to sites of pathogen detection. Additionally, the process through which PEN3 is recruited to the host-pathogen interface is independent of new protein synthesis and BFA-sensitive secretory trafficking events, suggesting that existing PEN3 is redirected through an unknown trafficking pathway to sites of pathogen detection for export into papillae. PMID:23836668

  4. Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves.

    PubMed

    Wang, Yun; Song, Jinzhu; Wu, Yingjie; Odeph, Margaret; Liu, Zhihua; Howlett, Barbara J; Wang, Shuang; Yang, Ping; Yao, Lin; Zhao, Lei; Yang, Qian

    2013-02-01

    A complementary DNA library was constructed from the mycelium of Trichoderma asperellum T4, and a highly expressed gene fragment named EplT4 was found. In order to find a more efficient and cost-effective way of obtaining EplT4, this study attempted to produce EplT4 using a Pichia pastoris expression system. The gene encoding EplT4, with an additional 6-His tag at the C-terminus, was cloned into the yeast vector pPIC9K and expressed in the P. pastoris strain GS115 to obtaining more protein for the further research. Transformants of P. pastoris were selected by PCR analysis, and the ability to secrete high levels of the EplT4 protein was determined. The optimal conditions for induction were assayed using the shake flask method and an enzyme-linked immunosorbent assay. The yield of purified EplT4 was approximately 20 mg/L by nickel affinity chromatography and gel-filtration chromatography. Western blot and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis revealed that the recombinant EplT4 was expressed in both its monomers and dimers. Soybean leaves treated with the EplT4 monomer demonstrated the induction of glucanase, chitinase III-A, cysteine proteinase inhibitor, and peroxidase genes. Early cellular events in plant defense response were also observed after incubation with EplT4. Soybean leaves protected by EplT4 against the pathogen Cercosporidium sofinum (Hara) indicated that EplT4 produced in P. pastoris was biologically active and would be potentially useful for improving food security.

  5. Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves.

    PubMed

    Wang, Yun; Song, Jinzhu; Wu, Yingjie; Odeph, Margaret; Liu, Zhihua; Howlett, Barbara J; Wang, Shuang; Yang, Ping; Yao, Lin; Zhao, Lei; Yang, Qian

    2013-02-01

    A complementary DNA library was constructed from the mycelium of Trichoderma asperellum T4, and a highly expressed gene fragment named EplT4 was found. In order to find a more efficient and cost-effective way of obtaining EplT4, this study attempted to produce EplT4 using a Pichia pastoris expression system. The gene encoding EplT4, with an additional 6-His tag at the C-terminus, was cloned into the yeast vector pPIC9K and expressed in the P. pastoris strain GS115 to obtaining more protein for the further research. Transformants of P. pastoris were selected by PCR analysis, and the ability to secrete high levels of the EplT4 protein was determined. The optimal conditions for induction were assayed using the shake flask method and an enzyme-linked immunosorbent assay. The yield of purified EplT4 was approximately 20 mg/L by nickel affinity chromatography and gel-filtration chromatography. Western blot and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis revealed that the recombinant EplT4 was expressed in both its monomers and dimers. Soybean leaves treated with the EplT4 monomer demonstrated the induction of glucanase, chitinase III-A, cysteine proteinase inhibitor, and peroxidase genes. Early cellular events in plant defense response were also observed after incubation with EplT4. Soybean leaves protected by EplT4 against the pathogen Cercosporidium sofinum (Hara) indicated that EplT4 produced in P. pastoris was biologically active and would be potentially useful for improving food security. PMID:23271623

  6. Real-time PCR assay to distinguish the four Phytophthora ramorum lineages using cellulose binding elicitor lectin (CBEL) locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum is a pathogenic oomycete responsible for causing sudden oak death in the Western United States and sudden larch death in the United Kingdom. This pathogen has so far caused extensive mortality of oak and tanoak in California and of Japanese larch in the United Kingdom. Until rec...

  7. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors.

    PubMed

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-12-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.

  8. Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis.

    PubMed

    Peng, Xue-Cong; Qiu, De-Wen; Zeng, Hong-Mei; Guo, Li-Hua; Yang, Xiu-Fen; Liu, Zheng

    2015-02-01

    Hrip1 is a novel hypersensitive response-inducing protein secreted by Alternaria tenuissima that activates defense responses and systemic acquired resistance in tobacco. This study investigates the role that Hrip1 plays in responses to abiotic and biotic stress using transgenic Arabidopsis thaliana expressing the Hrip1 gene under the control of the stress-inducible rd29A promoter or constitutive cauliflower mosaic virus 35S promoter. Bioassays showed that inducible Hrip1 expression in rd29A∷Hrip1 transgenic lines had a significantly higher effect on plant height, silique length, plant dry weight, seed germination and root length under salt and drought stress compared to expression in 35S∷Hrip1 lines and wild type plants. The level of enhancement of resistance to Botrytis cinerea by the 35S∷Hrip1 lines was higher than in the rd29A∷Hrip1 lines. Moreover, stress-related gene expression in the transgenic Arabidopsis lines was significantly increased by 200 mM NaCl and 200 mM mannitol treatments, and defense genes in the jasmonic acid and ethylene signaling pathway were significantly up-regulated after Botrytis inoculation in the Hrip1 transgenic plants. Furthermore, the activity of some antioxidant enzymes, such as peroxidase and catalase increased after salt and drought stress and Botrytis infection. These results suggested that the Hrip1 protein contributes to abiotic and biotic resistance in transgenic Arabidopsis and may be used as a useful gene for resistance breeding in crops. Although the constitutive expression of Hrip1 is suitable for biotic resistance, inducible Hrip1 expression is more responsive for abiotic resistance.

  9. Isolation, characterization and structure-elicitor activity relationships of hibernalin and its two oxidized forms from Phytophthora hibernalis Carne 1925.

    PubMed

    Capasso, Renato; Di Maro, Antimo; Cristinzio, Gennaro; De Martino, Antonio; Chambery, Angela; Daniele, Addolorata; Sannino, Filomena; Testa, Antonino; Parente, Augusto

    2008-01-01

    Three alpha-elicitins, named hibernalin1, hibernalin2 and hibernalin3 (hib1, hib2 and hib3, respectively), were isolated by reverse phase-low-pressure liquid chromatography from culture filtrates of Phytophthora hibernalis Carne 1925, the causal agent of citrus lemon brown rot. Hib1 proved to be identical to syringicin previously isolated from culture filtrates of Phytophthora syringae. Hib2 and hib3 shared the same primary structure with hib1, but contained, at position 50, Met sulphoxide or sulphone, respectively. By SDS-PAGE, the three proteins showed the same electrophoretic mobility, corresponding to about 10 kDa. Exact M(r) values were obtained by MALDI-TOF-MS (10,194.82 for hib1, 10,209.33 for hib2 and 10,223.80 for hib3), while by ESI-MS an M(r) value of 10,194.90 was found for hib1 and no results for hib2 and hib3. The hibernalin forms showed a high propensity to self-association, after exposure to acetonitrile. Hib1 showed to be active in both the hypersensitivity response and electrolytes leakage assays; the sample containing hib1 and hib2 was only weakly active in the first assay and inactive in the second assay, while the sample containing all three hibernalin forms proved to be inactive in both tests. It is proposed that the different activities of the three hibernalin samples could be very likely attributed to both Met50 oxidation and aggregation.

  10. [Effect of a fungal elicitor on levels of sanguinarine and polyphenoloxidase activity in a suspension culture of Papaver somniferum L].

    PubMed

    Balazová, A; Bilka, F; Blanáriková, V; Psenák, M

    2002-07-01

    The opium poppy (Papaver somniferum L.) is still a source for isolation of codeine and morphine. Cell cultures from this plant lose their ability to produce morphinans. Their major alkaloid is sanguinarine. The elicitation of the opium poppy cell cultures by fungal preparation lead to a nine-fold increase in the content of sanguinarine. The specific activity of polyphenoloxidase (PPO) was three-times higher in the elicited compared to the nonelicited cells. Two isoforms of PPO (Mr 63 kDa, 41 kDa) were identified in opium poppy cell cultures by PAGE. The number of PPO isoforms was not affected by elicitation. Phenyl-Sepharose CL-4B was used for affinity purification of PPO. In a single purification step the specific activity of PPO was enriched 14-fold.

  11. Synthesis and biological activity evaluation of novel amino acid derivatives as potential elicitors against Tomato yellow leaf curl virus.

    PubMed

    Deng, Yufang; He, Shun; Geng, Qianqian; Duan, Yongheng; Guo, Mingcheng; Li, Jianqiang; Cao, Yongsong

    2015-12-01

    Disease caused by Tomato yellow leaf curl virus (TYLCV) brings serious production losses of cultivated tomato worldwide. In our previous study, two novel amino acid derivatives exerted satisfactory antiviral activities against TYLCV. In this study, the variation of TYLCV, the transcriptional expression level of Ty-1 and the enzyme activities of POD and PPO in tomato were monitored after treatment with two amino acid derivatives to illustrate the antiviral mechanism. The results showed the symptom severity caused by TYLCV was reduced significantly by two compounds and was associated with the inhibition of viral DNA level at the early stage. Among three levels of concentration, the highest inhibition rate of CNBF-His was 40.66% at 1000 mg/L, for CNBF-Asn, the highest inhibition rate was 36.26% at 2000 mg/L 30 days post-inoculation. Two compounds could also enhance the activities of PPO and POD and the transcriptional expression level of Ty-1 which correlates with plant resistance in tomato. In the field test, two compounds increased the yields of tomato and the maximum increase of yield was 37.66%. This is the first report of novel amino acid derivatives inducing resistance in tomato plant against TYLCV. It is suggested that amino acid derivatives have the potential to be an effective approach against TYLCV in tomato plant.

  12. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties

    PubMed Central

    Kalaivani, Kandaswamy; Kalaiselvi, Marimuthu Maruthi; Senthil-Nathan, Sengottayan

    2016-01-01

    Methyl salicylate (MeSA) is a volatile organic compound synthesized from salicylic acid (SA) a plant hormone that helps to fight against plant disease. Seed treatment with MeSA, is an encouraging method to the seed industry to produce more growth and yield. The aim of our study is to find out the growth, development and disease tolerance of rice seed treated with different concentrations of MeSA. Also the seed treatments were studied to determine whether they directly influenced seedling emergence and growth in rice (Oryza sativa L) cultivars ‘IR 20, IR 50, IR 64, ASD 16, ASD 19 and ADT 46’ under greenhouse condition. MeSA seed treatments at 25, 50, 75 and 100 mg/L significantly increased seedling emergence. Effects were stronger in IR 50, and IR 64 and the effects were dose dependent, although the relationship between dose and effect was not always linear. MeSA seed treated rice plant against bacterial blight were analyzed. Bacterial blight was more effectively controlled by the seed treated with 100 mg/L than others. These results suggest that seed treatment with MeSA alters plant physiology in ways that may be useful for crop production as well as protection. PMID:27725719

  13. Synthesis and biological activity evaluation of novel amino acid derivatives as potential elicitors against Tomato yellow leaf curl virus.

    PubMed

    Deng, Yufang; He, Shun; Geng, Qianqian; Duan, Yongheng; Guo, Mingcheng; Li, Jianqiang; Cao, Yongsong

    2015-12-01

    Disease caused by Tomato yellow leaf curl virus (TYLCV) brings serious production losses of cultivated tomato worldwide. In our previous study, two novel amino acid derivatives exerted satisfactory antiviral activities against TYLCV. In this study, the variation of TYLCV, the transcriptional expression level of Ty-1 and the enzyme activities of POD and PPO in tomato were monitored after treatment with two amino acid derivatives to illustrate the antiviral mechanism. The results showed the symptom severity caused by TYLCV was reduced significantly by two compounds and was associated with the inhibition of viral DNA level at the early stage. Among three levels of concentration, the highest inhibition rate of CNBF-His was 40.66% at 1000 mg/L, for CNBF-Asn, the highest inhibition rate was 36.26% at 2000 mg/L 30 days post-inoculation. Two compounds could also enhance the activities of PPO and POD and the transcriptional expression level of Ty-1 which correlates with plant resistance in tomato. In the field test, two compounds increased the yields of tomato and the maximum increase of yield was 37.66%. This is the first report of novel amino acid derivatives inducing resistance in tomato plant against TYLCV. It is suggested that amino acid derivatives have the potential to be an effective approach against TYLCV in tomato plant. PMID:26162434

  14. Ralstonia solanacearum Extracellular Polysaccharide Is a Specific Elicitor of Defense Responses in Wilt-Resistant Tomato Plants

    PubMed Central

    Milling, Annett; Babujee, Lavanya; Allen, Caitilyn

    2011-01-01

    Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps− mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps− mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps− mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum. PMID:21253019

  15. Foreword: Special issue on fungal grapevine diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An impressively large proportion of fungicides applied in European, North American and Australian agriculture has been used to manage grapevine powdery mildew (Erysiphe necator), grapevine downy mildew (Plasmopara viticola), and botrytis bunch rot (Botrytis cinerea). These fungal and oomycetous plan...

  16. Involvement of reactive oxygen species in the induction of (S)-N-p-coumaroyloctopamine accumulation by beta-1,3-glucooligosaccharide elicitors in potato tuber tissues.

    PubMed

    Matsuda, F; Miyagawa, H; Ueno, T

    2001-01-01

    Treatment of potato tuber tissues with beta-1,3-glucooligosaccharide induces accumulation of (S)-N-p-coumaroyloctopamine (p-CO). We examined the role of reactive oxygen species (ROS) and nitric oxide (NO) in the signal transduction leading to p-CO accumulation. Induction was suppressed by an NADPH-oxidase inhibitor, diphenyleneiodonium chloride, and oxygen radical scavengers. H2O2 was generated in the tuber tissue within a few minutes of treatment with beta-1,3-glucooligosaccharide. On the other hand, treatment with NO specific scavenger, nitric oxide synthase inhibitor, and serine protease inhibitor did not inhibit p-CO induction. Our findings suggest that ROS generated by the action of NADPH-oxidase play an important role in this system, while NO and serine protease are unlikely to be involved in this process. PMID:11371013

  17. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates.

    PubMed

    Sempere, Raquel N; Gómez-Aix, Cristina; Ruíz-Ramón, Fabiola; Gómez, Pedro; Hasiów-Jaroszewska, Beata; Sánchez-Pina, María Amelia; Aranda, Miguel A

    2016-04-01

    Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions. PMID:26667188

  18. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates.

    PubMed

    Sempere, Raquel N; Gómez-Aix, Cristina; Ruíz-Ramón, Fabiola; Gómez, Pedro; Hasiów-Jaroszewska, Beata; Sánchez-Pina, María Amelia; Aranda, Miguel A

    2016-04-01

    Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.

  19. Deciphering the Responses of Root Border-Like Cells of Arabidopsis and Flax to Pathogen-Derived Elicitors1[C][W

    PubMed Central

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-01-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as “border-like cells.” Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells. PMID:24130195

  20. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor

    PubMed Central

    Petre, Benjamin; Hacquard, Stéphane; Duplessis, Sébastien; Rouhier, Nicolas

    2014-01-01

    In plants, cell-surface receptors control immunity and development through the recognition of extracellular ligands. Leucine-rich repeat receptor-like proteins (LRR-RLPs) constitute a large multigene family of cell-surface receptors. Although this family has been intensively studied, a limited number of ligands has been identified so far, mostly because methods used for their identification and characterization are complex and fastidious. In this study, we combined genome and transcriptome analyses to describe the LRR-RLP gene family in the model tree poplar (Populus trichocarpa). In total, 82 LRR-RLP genes have been identified in P. trichocarpa genome, among which 66 are organized in clusters of up to seven members. In these clusters, LRR-RLP genes are interspersed by orphan, poplar-specific genes encoding small proteins of unknown function (SPUFs). In particular, the nine largest clusters of LRR-RLP genes (47 LRR-RLPs) include 71 SPUF genes that account for 59% of the non-LRR-RLP gene content within these clusters. Forty-four LRR-RLP and 55 SPUF genes are expressed in poplar leaves, mostly at low levels, except for members of some clusters that show higher and sometimes coordinated expression levels. Notably, wounding of poplar leaves strongly induced the expression of a defense SPUF gene named Rust-Induced Secreted protein (RISP) that has been previously reported as a marker of poplar defense responses. Interestingly, we show that the RISP-associated LRR-RLP gene is highly expressed in poplar leaves and slightly induced by wounding. Both gene promoters share a highly conserved region of ~300 nucleotides. This led us to hypothesize that the corresponding pair of proteins could be involved in poplar immunity, possibly as a ligand/receptor couple. In conclusion, we speculate that some poplar SPUFs, such as RISP, represent candidate endogenous peptide ligands of the associated LRR-RLPs and we discuss how to investigate further this hypothesis. PMID:24734035

  1. Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis.

    PubMed

    Li, Peiqin; Mou, Yan; Shan, Tijiang; Xu, Jianmei; Li, Yan; Lu, Shiqiong; Zhou, Ligang

    2011-10-26

    Three polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharide (SPS), were prepared from the endophytic fungus Fusarium oxysporium Dzf17 isolated from the rhizomes of Dioscorea zingiberensis. The effects of the time of addition and polysaccharide concentration on the growth and diosgenin accumulation in cell suspension culture of D. zingiberensis were studied. Among them, WPS was found to be the most effective polysaccharide. When WPS was added to the medium at 20 mg/L on the 25th day of culture, the cell dry weight was increased 1.34-fold, diosgenin content 2.85-fold, and diosgenin yield 3.83-fold in comparison to those of control. EPS and SPS showed moderate and relatively weak enhancement effects on cell growth and diosgenin accumulation, respectively. The dynamics of cell growth and diosgenin accumulation when WPS was added to the medium at 20 mg/L on the 25th day of culture were investigated, and results showed that dry weight of cells reached a maximum value on day 30 but the maximum diosgenin content was achieved on day 31.

  2. Field application of safe chemical elicitors induced the expression of some resistance genes against grey mold and cottony rot diseases during snap bean pods storage.

    PubMed

    El-Garhy, Hoda A S; Rashid, Ismail A S; Abou-Ali, Rania M; Moustafa, Mahmoud M A

    2016-01-15

    Phaseolus vulgaris is subjected to serious post-harvest diseases such as grey mold and cottony rot diseases caused by Botrytis cinerea and Pythium aphanidermatum, respectively. In current study, potassium silicate (KSi), potassium thiosulfate (KTS) and potassium sulfate (KS) suppressed moderately the growth of B. cinerea and P. aphanidermatum in vitro. The applied treatments significantly suppressed grey mold and cottony rot of Xera and Valentino snap beans varieties' pods stored at 7 ± 1°C and 90-95% RH for 20 days. Ethylene responsive factor (ERF), polygalacturonase inhibitor protein (PGIP), phosphatase associated to defense (PA) and pathogenesis-related protein (PR1) defense genes were over-expressed in leaves tissue of both bean varieties responding positively to potassium salts field application. The expression of these genes was influenced by plant genotype and environment as it varied by snap bean varieties. Accumulation of ERF, GIP, PA and PR1 genes transcript under KTS at 4000 ppm treatment were the highest in Xera tissues (3.5-, 4.8-, 4- and 4.8-fold, respectively). In conclusion, pre-harvest potassium salt in vivo application could be used as effective safe alternatives to fungicides against grey mold and cottony rot diseases of snap beans during storage for up to 20 days at 7 ± 1°C.

  3. A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors.

    PubMed

    Bhat, Wajid Waheed; Razdan, Sumeer; Rana, Satiander; Dhar, Niha; Wani, Tariq Ahmad; Qazi, Parvaiz; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-09-01

    Picrorhiza kurrooa Royle ex Benth. is a highly reputed medicinal herb utilised in the preparation of a number of herbal drug formulations, principally due to the presence of novel monoterpene iridoid glycosides kenned as picrosides. Phenylalanine ammonia-lyase catalyses an important rate-limiting step in phenylpropanoid pathway and supplies precursors like cinnamic acid, vanillic acid, ferulic acid, etc., to a variety of secondary metabolites including picrosides. The imperilled status of P. kurrooa coupled with lack of information regarding biogenesis of picrosides necessitates deciphering the biosynthetic pathway for picrosides. In the present study, a PAL gene, designated PkPAL1 was isolated from P. kurrooa. The cDNA is 2312 bp in length, consisting of an ORF of 2142 bp encoding for a 713 amino acid protein having a predicted molecular weight of 77.66 kDa and an isoelectric point of pH 6.82. qRT-PCR analysis of various tissues of P. kurrooa showed that PkPAL1 transcript levels were highest in the leaves, consistent with picroside accumulation pattern. Using Genome walking, a 718 bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including TGA-element, TGACG-motif, CGTCA-motif, etc. qRT-PCR indicated up-regulation of PkPAL1 by methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations that corroborated positively with the identified cis-elements within the promoter region. Moreover, altitude was found to have a positive effect on the PkPAL1 transcript levels, driving the expression of PkPAL1 abundantly. Based on docking analysis, we identified eight residues as potentially essential for substrate binding in PkPAL1.

  4. 21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations....

  5. 21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations....

  6. 21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations....

  7. 21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations....

  8. 21 CFR 520.1660a - Oxytetracycline and carbomycin in combination.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... antibiotic substance produced by growth of Streptomyces rimosus or the same antibiotic substance produced by any other means. (2) Carbomycin: The antibiotic substance produced by growth of Streptomyces halstedii... bacterial organisms associated with chronic respiratory disease such as E. coli. (3) Limitations....

  9. Purification and partial characterization of a. beta. -glucan fragment that elicits phytoalexin accumulation in soybean

    SciTech Connect

    Sharp, J.K.; Valent, B.; Albersheim, P.

    1984-09-25

    The synthesis of phytoalexins (antibiotics) in plant cells is induced by molecules called elicitors. Partial acid hydrolysis of mycelial walls of Phytophthora megasperma f. sp. glycinea solubilized a multicomponent mixture of elicitor-active and elicitor-inactive oligoglucosides. One elicitor-active and seven elicitor-inactive hexa(..beta..-D-glucopyranosyl)-D-glucitols were purified by gel-filtration, normal-phase partition, and reversed-phase liquid chromatography after reduction with NaBH/sub 4/. The elicitor-active and all but one of the elicitor-inactive hexa(..beta..-D-glucopyranosyl)-D-glucitols consisted of 3-, 6-, and 3,6-linked glucopyranosyl residues. The eighth hexa(..beta..-D-glucopyranosyl)-D-glucitol consisted of ..beta..-4-linked glucopyranosyl residues. The similarity of the structural characteristics of six of the elicitor-inactive hexa(..beta..-D-glucopyranosyl)-D-glucitols to the elicitor-active hexa(..beta..-D-glucopyranosyl)-D-glucitols suggested that a highly specific carbohydrate structure was required for elicitor activity. 47 references, 7 figures, 4 tables.

  10. Effect of detergent on the quantification of grapevine downy mildew Sporangia from leaf discs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berlese & de Toni, is a major disease, especially in humid viticultural areas. Development of resistant cultivars is an important objective for grapevine breeding. In order to establish a reliable and inexpensive...

  11. Genetic modification of European winegrapes with genes from an American wild relative confers resistance to the major diseases powdery and downy mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete, downy mildew (Plasmopara viticola). These pathogens, endemic to North America, were introduced into Europe in t...

  12. Genetics of downy mildew resistance in two interspecific hybrid grapevine families

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to lack of co-evolution with Plasmopara viticola, the causal pathogen of grapevine downy mildew, nearly all cultivated grapevines are susceptible to downy mildew, whereas their wild relatives are frequently resistant. In order to find QTL for downy mildew resistance and susceptibility, we perfor...

  13. Host-pathogen interactions. XVII. Hydrolysis of biologically active fungal glucans by enzymes isolated from soybean cells

    SciTech Connect

    Cline, K.; Albersheim, P.

    1981-07-01

    The ability of ..beta..-glucosylase I, a soybean cell wall ..beta..-glucosyl hydrolase, to degrade elicitors of phytoalexin accumulation was studied. Extensive ..beta..-glucosylase I treatment of the glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae results in hydrolysis of 77% of the glucosidic bonds of the elicitor and destruction of 94% of its activity. Soybean cell walls contain some additional factor, probably one or more additional enzymes, which can assist ..beta..-glucosylase I in hydrolyzing the glucan elicitor. In a single treatment, the mixture of cell wall enzymes hydrolyzed 91% of the glucosidic bonds and destroyed 85% of the activity of the elicitor. The enzymes from soybean cell walls will also hydrolyze elicitor-active oligoglucosides prepared from the mycelial walls of Phytophthora megasperma var. sojae. The active oligoglucosides are more susceptible than the glucan elicitor to hydrolysis by these enzymes. The mixture of cell wall enzymes or ..beta..-glucosylase I, by itself, hydrolyzes more than 96% of the glucosidic bonds and destroys more than 99% of the activity of the oligoglucoside elicitor. Two possible advantages for the existence of these enzymes in the walls of soybean cells are discussed.

  14. The Identification of Resources and Constraints Influencing Plan Design in Consultation.

    ERIC Educational Resources Information Center

    Bergan, John R.; Neumann, Albert J., II

    1980-01-01

    Interviews of consultants participating in a field experience with teachers showed plan-tactic-elicitors verbalized by consultants had a positive effect on the incidence of resources. Other types of consultant elicitors had a negative impact on resource incidence when compared to the incidence of other types of consultee responses. (Author)

  15. A novel pentacyclic triterpene from Leontodon filii.

    PubMed

    Tostão, Zélia; Noronha, João P; Cabrita, Eurico J; Medeiros, Jorge; Justino, Jorge; Bermejo, Jaime; Rauter, Amélia P

    2005-03-01

    A novel oleanene triterpenetetrol was isolated from the chloroform extract of the aerial parts of Leontodon filii. Its structure was shown to be 2beta,3beta,15alpha,21beta-olean-12-ene-2,3,15,21-tetrol by chemical and spectroscopic methods. The fungicidal efficacy of the chloroform and methanol extracts of the plant was also evaluated, a protective effect being found against Plasmopara viticola, Botrytis cinerea, particularly powerful against Pyricularia oryzae. PMID:15752627

  16. Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato.

    PubMed

    Monjil, Mohammad Shahjahan; Nozawa, Takeshi; Shibata, Yusuke; Takemoto, Daigo; Ojika, Makoto; Kawakita, Kazuhito

    2015-03-01

    Plants recognize certain microbial compounds as elicitors in their active defence mechanisms. It has been shown that a series of defence reactions are induced in potato plant cells after treatment with water-soluble hyphal wall components prepared from Phytophthora infestans. In this study, a methanol extract from mycelia of P. infestans (MEM), which contains lipophilic compounds, was used as another elicitor for the induction of the defence reactions in potato. MEM elicitor induced reactive oxygen species (ROS), especially O2(-) and H2O2 production, and nitric oxide (NO) generation in potato leaves and suspension-cultured cells. Hypersensitive cell death was detected in potato leaves within 6-8 h after MEM elicitor treatment. The accumulation of phytoalexins was detected by MEM elicitor treatment in potato tubers. In potato suspension-cultured cells, several defence-related genes were induced by MEM elicitors, namely Strboh, Sthsr203J, StPVS3, StPR1, and StNR5, which regulate various defence-related functions. Enhanced resistance against P. infestans was found in MEM-treated potato plants. These results suggested that MEM elicitor is recognized by host and enhances defence activities to produce substances inhibitory to pathogens.

  17. [Food-induced anaphylaxis - data from the anaphylaxis registry].

    PubMed

    Worm, Margitta; Grünhagen, Josefine; Dölle, Sabine

    2016-07-01

    Anaphylactic reactions due to food occur in the context of food allergy and, together with venom and drugs, are the most frequent elicitors of severe allergic reactions. In small children the most frequent elicitors of severe allergic reactions according to data from the anaphylaxis registry are hen's egg and milk, whereas in school children peanut and hazelnut are frequent elicitors of allergic reactions. Other frequent elicitors of anaphylactic reactions in childhood are wheat and soy. In adults the most frequent elicitors of severe allergic reactions due to food, based on data from the anaphylaxis registry, are wheat, soy, celery, shellfish and hazelnut. Rare elicitors of food-induced anaphylaxis in German-speaking countries are mustard and cabbage. However, the panel of rare elicitors of food-induced anaphylaxis show regional differences. As of March 2015, 17 cases of fatal anaphylaxis were registered and among these seven were food-induced. Co-factors can either trigger the elicitation of a severe allergic reaction or affect its severity. Among such co-factors are physical activity, the intake of certain drugs, and psychological stress. The data on the role of cofactors is sparse. The management of food-induced anaphylaxis includes acute management according to current guidelines, but also long-term management, which should include educational measures regarding treatment but also information about the food allergen in daily life.

  18. [Food-induced anaphylaxis - data from the anaphylaxis registry].

    PubMed

    Worm, Margitta; Grünhagen, Josefine; Dölle, Sabine

    2016-07-01

    Anaphylactic reactions due to food occur in the context of food allergy and, together with venom and drugs, are the most frequent elicitors of severe allergic reactions. In small children the most frequent elicitors of severe allergic reactions according to data from the anaphylaxis registry are hen's egg and milk, whereas in school children peanut and hazelnut are frequent elicitors of allergic reactions. Other frequent elicitors of anaphylactic reactions in childhood are wheat and soy. In adults the most frequent elicitors of severe allergic reactions due to food, based on data from the anaphylaxis registry, are wheat, soy, celery, shellfish and hazelnut. Rare elicitors of food-induced anaphylaxis in German-speaking countries are mustard and cabbage. However, the panel of rare elicitors of food-induced anaphylaxis show regional differences. As of March 2015, 17 cases of fatal anaphylaxis were registered and among these seven were food-induced. Co-factors can either trigger the elicitation of a severe allergic reaction or affect its severity. Among such co-factors are physical activity, the intake of certain drugs, and psychological stress. The data on the role of cofactors is sparse. The management of food-induced anaphylaxis includes acute management according to current guidelines, but also long-term management, which should include educational measures regarding treatment but also information about the food allergen in daily life. PMID:27255298

  19. Host-Pathogen Interactions

    PubMed Central

    Ayers, Arthur R.; Ebel, Jürgen; Finelli, Frederick; Berger, Nathan; Albersheim, Peter

    1976-01-01

    Resistance of soybean (Glycine max L.) seedlings to Phytophthora megasperma var. sojae (Pms) is in part due to the accumulation in infected tissue of a compound which is toxic to Pms. The accumulation of this compound, a phytoalexin called glyceollin, is triggered by infection, but it can also be triggered by molecules, “elicitors,” present in cultures of Pms. The ability of the Pms elicitor to stimulate phytoalexin accumulation in soybean tissues has been used as the basis for biological assays of elicitor activity. Two bioassays were developed and characterized in this study of the Pms elicitor. These bioassays use the cotyledons and the hypocotyls of soybean seedlings. The cotyledon assay was used to characterize the extracellular Pms elicitor. This elicitor was isolated from Pms cultures and purified by ion exchange and molecular sieving chromatography. The extracellular Pms elicitor was determined to be a predominantly 3-linked glucan, which is similar in composition and structure to a polysaccharide component of Pms mycelial walls. PMID:16659565

  20. Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and Mucuna prurita H.

    PubMed

    Raghavendra, S; Kumar, V; Ramesh, C K; Khan, M H Moinuddin

    2012-01-01

    A comparative study on the production of 3,4-dihydroxyphenylalanine (L-DOPA) was carried out in cell cultures of two Mucuna species by elicitor treatment and precursor feeding. The influence of elicitors and the precursor molecule on L-DOPA production, polyphenol oxidase (PPO) and tyrosinase activities was also studied. Callus cultures were initiated in Mucuna pruriens L. and Mucuna prurita H. on MS medium supplemented with BAP and IAA at different concentrations. Suspension cultures were established in MS liquid medium supplemented with BAP, IAA, the elicitors methyl jasmonate, chitin and pectin or the precursor L-tyrosine at different concentrations for L-DOPA production. Compared to the controls, several-fold increases in L-DOPA concentration were observed in elicitor-treated and precursor-fed suspension cultures of both plant species. L-DOPA concentrations were comparatively higher in precursor-fed cultures than those receiving elicitor treatments. A parallel increase in tyrosinase and PPO levels was also observed. Loss of cell viability was observed at high concentrations of elicitor-treated cultures, whereas L-tyrosine did not cause any cell death. Compared to elicitor treatments, precursor feeding resulted in higher concentrations of L-DOPA production and tyrosinase activity. The efficacy of L-DOPA production was found to be higher for suspension cultures of M. pruriens compared to M. prurita in all treatments. PMID:21995853

  1. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato 1

    PubMed Central

    Bostock, Richard M.; Laine, Roger A.; Kuć, Joseph A.

    1982-01-01

    Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium. PMID:16662691

  2. Elicitation of silymarin in cell cultures of Silybum marianum: effect of subculture and repeated addition of methyl jasmonate.

    PubMed

    Sánchez-Sampedro, Maria Angeles; Fernández-Tárrago, Jorge; Corchete, Purificación

    2009-10-01

    Production of silymarin and the effect of the elicitor, methyl jasmonate (MeJA), was monitored in cell cultures of Silybum marianum over 4 years. Silymarin concentrations gradually declined after prolonged subculture, making the success of elicitor strategy limited in long-term cultures. The continuous presence of MeJA in cultures for an extended period was necessary for induction of silymarin accumulation. A repeated elicitor strategy was not a good option for improving silymarin productivity in batch cultures. Removal of medium from elicited cultures and addition of fresh medium avoided the toxic effects of elicitor accumulation, allowing the system to respond to a repeated MeJA treatment without loss of productivity.

  3. Lipoxygenase activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.).

    PubMed

    Kollárová, R; Oblozinský, M; Kováciková, V; Holková, I; Balazová, A; Pekárová, M; Hoffman, P; Bezáková, L

    2014-08-01

    In this study we investigated the influence of biotic elicitor (phytopathogenic fungus Botrytis cinerea) and abiotic elicitors (methyljasmonate [MJ] and salicylic acid [SA]) on lipoxygenase (LOX) activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.). We have observed different time effects of elicitors (10, 24, 48 and 72 h) on LOX activity and production of sanguinarine in in vitro cultures. All elicitors used in the experiments evidently increased the LOX activity and sanguinarine production in contrast to control samples. The highest LOX activities were determined in samples elicitated by MJ after 48 h and 72 h and the lowest LOX activities (in contrast to control samples) were detected after biotic elicitation by Botrytis cinerea. These activities showed about 50% lower level against the activities after MJ elicitation. The maximal amount of sanguinarine was observed after 48 h in MJ treated cultures (429.91 mg/g DCW) in comparision with control samples. Although all elicitors affect the sanguinarine production, effect of SA and biotic elicitor on sanguinarine accumulation in in vitrocultures was not so significant than after MJ elicitation.

  4. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan 1

    PubMed Central

    Graham, Madge Y.; Graham, Terrence L.

    1991-01-01

    Phytophthora megasperma Drechs. f. sp. glycinea Kuan & Erwin (PMG) cell wall glucan has been extensively characterized as an elicitor of the pterocarpan phytoalexins, the glyceollins in soybean (Glycine max L.). Just recently, this glucan was shown to be a potent elicitor of conjugates of the isoflavones, daidzein and genistein as well. Here we report that PMG wall glucan also induces a rapid and massive accumulation of phenolic polymers in soybean cotyledon cells proximal to the point of elicitor application. Deposition of phenolic polymers is over then times that in wounded controls within just 4 hours of elicitor treatment and reaches a maximum by 24 hours. In the same tissues, isoflavone conjugates begin to accumulate at 8 hours and glyceollin at 12 hours. By 24 hours, the total deposition of wall bound phenolics in elicitor-treated tissues is several times greater than the peak glyceollin and isoflavone responses combined. Histochemical stains and quantitation of phenolic residues released after saponification and nitrobenzene or copper oxide oxidation suggest that the covalently linked phenolics include both lignin- and suberin-like polymers as well as simple esterified coumaric and ferulic acid monomers. Accumulations of phenolic polymers are accompanied by equally rapid and massive increases in activity of a specific group of anionic peroxidases. Although increases in peroxidase activity are not strictly limited to cells immediately adjacent to the area of elicitor treatment, the deposition of phenolic polymers is significantly less extensive in distal cells. ImagesFigure 3Figure 4Figure 6 PMID:16668570

  5. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  6. Synthesis and fungicidal activity of N-thiazol-4-yl-salicylamides, a new family of anti-oomycete compounds.

    PubMed

    Sulzer-Mosse, Sarah; Cederbaum, Fredrik; Lamberth, Clemens; Berthon, Guillaume; Umarye, Jayant; Grasso, Valeria; Schlereth, Alexandra; Blum, Mathias; Waldmeier, Rita

    2015-05-01

    A novel class of experimental fungicides has been discovered, which consists of special N-thiazol-4-yl-salicylamides. They originated from amide reversion of lead structures from the patent literature and are highly active against important phytopathogens, such as Phytophthora infestans (potato and tomato late blight), Plasmopara viticola (grapevine downy mildew) and Pythium ultimum (damping-off disease). Structure-activity relationship studies revealed the importance of a phenolic or enolic hydroxy function in the β-position of a carboxamide. An efficient synthesis route has been worked out, which for the first time employs the carbonyldiimidazole-mediated Lossen rearrangement in the field of thiazole carboxylic acids. PMID:25801153

  7. Involvement of glutamate mutase in the biosynthesis of the unique starter unit of the macrolactam polyketide antibiotic vicenistatin.

    PubMed

    Ogasawara, Yasushi; Kakinuma, Katsumi; Eguchi, Tadashi

    2005-07-01

    The macrolactam antibiotic vicenistatin, produced in Streptomyces halstedii HC34, is biosynthesized by the polyketide pathway, using a unique 3-methylaspartate-derived molecule as starter unit. The vinI gene in the vicenistatin biosynthetic gene cluster encoding glutamate mutase, which rearranges glutamate to 3-methylaspartate, was disrupted. The vinI disruption completely abolished the production of vicenistatin, while the disruptant recovered the production of vicenistatin when 3-methylaspartate was added to the culture. These results indicate that vinI is essential for the 3-methylaspartate formation in the vicenistatin biosynthesis. Furthermore, the mutant accumulated new vicenistatin derivatives (desmethylvicenistatins), which lacked a methyl group in the starter unit. The desmethylvicenistatins were shown by feeding experiments to be derived from aspartate instead of 3-methylaspartate as the starter unit. These results indicate that the vicenistatin polyketide synthase can accept alternative starter units toward the production of novel polyketides. PMID:16161486

  8. Crystallization and preliminary X-ray analysis of vicenisaminyltransferase VinC

    PubMed Central

    Nango, Eriko; Minami, Atsushi; Kumasaka, Takashi; Eguchi, Tadashi

    2008-01-01

    A recombinant glycosyltransferase, VinC, from Streptomyces halstedii HC34 has been crystallized at 293 K using PEG 3350 as precipitant. The diffraction pattern of the crystal extends to 2.0 Å resolution at 100 K using synchrotron radiation at SPring-8. The crystals are orthorhombic and belong to space group I222, with unit-cell parameters a = 98.21, b = 130.39, c = 140.11 Å. The presence of two molecules per asymmetric unit gives a crystal volume per protein weight (V M) of 2.43 Å3 Da−1 and a solvent content of 49.5% by volume. PMID:18540075

  9. Improvement of the nutraceutical quality of broccoli sprouts by elicitation.

    PubMed

    Natella, Fausta; Maldini, Mariateresa; Nardini, Mirella; Azzini, Elena; Foddai, Maria Stella; Giusti, Anna Maria; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina

    2016-06-15

    Epidemiological studies show an inverse association between Brassica consumption and chronic diseases. Phytochemicals are thought to be beneficial for human health and therefore responsible for this protective effect. Increasing their levels into Brassica food is considered an expedient nutritional strategy that can be achieved through the manipulation of growth conditions by elicitors. In this work we systematically evaluated the influence of treatment with different elicitors (sucrose, mannitol, NaCl, 1-aminocyclopropane-L-carboxylic acid, salicylic acid and methyl jasmonate) on the phytochemical composition of broccoli sprouts. The content of total and single glucosinolates, total phenolic compounds, total flavonoids, total anthocyanins, vitamin C and E and β-carotene was assessed. The exposure to different elicitors produced concentration- and elicitor-dependent specific changes in the content of all the phytochemicals considered. Sucrose, identified as the most effective elicitor by principal component analysis, induced a significant increase of total and specific glucosinolates, vitamin C, total anthocyanins and polyphenols. Sucrose is likely to represent an effective tool to increase the nutritional value of broccoli sprouts. PMID:26868554

  10. Basic emotions elicited by odors and pictures.

    PubMed

    Croy, Ilona; Olgun, Selda; Joraschky, Peter

    2011-12-01

    The sense of olfaction is often reported to have a special relationship with emotional processing. Memories triggered by olfactory cues often have a very emotional load. On the other hand, basic negative or positive emotional states should be sufficient to cover the most significant functions of the olfactory system including ingestion, hazard avoidance, and social communication. Thus, we investigated whether different basic emotions can be evoked in healthy people through the sense of olfaction. We asked 119 participants which odor evokes one of the six basic emotions (happiness, disgust, anger, anxiety, sadness, and surprise); another 97 participants were asked about pictures evoking those emotions. The results showed that almost every participant could name an olfactory elicitor for happiness or disgust. Olfactory elicitors of anxiety were reported less frequently, but they were still reported by three-quarters of the participants. However, for sadness and anger only about half of the participants reported an olfactory elicitor, whereas significantly more named a visual cue. Olfactory emotion elicitors were mainly related to the classes of culture, plants, and food, and visual emotion elicitors were largely related to humans. This data supports the hypothesis that in the vast majority of people, few differentiated emotions can be elicited through the olfactory channel. These emotions are happiness, disgust, and anxiety.

  11. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway

    PubMed Central

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  12. Elicitation: a tool for enriching the bioactive composition of foods.

    PubMed

    Baenas, Nieves; García-Viguera, Cristina; Moreno, Diego A

    2014-01-01

    Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic (chemical or physical origin) elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods. PMID:25255755

  13. Methyl Jasmonate Induces Enhanced Podophyllotoxin Production in Cell Cultures of Thracian Flax (Linum thracicum ssp. thracicum).

    PubMed

    Sasheva, Pavlina; Ionkova, Iliana; Stoilova, Nadezhda

    2015-07-01

    The Linum thracicum ssp. thracicum cell lines developed in this study are a feasible source for the sustainable production of podophyllotoxin, a lignan with an aryltetralin skeleton that is used for the manufacture of the chemotherapeutic drugs etopophos and teniposide. We used mass spectrometry to confirm the presence of the aryltetralin lignan in the thracian flax cell cultures. Next, we explored how changes in the culture medium influenced the podophyllotoxin content. Out of six developed cell lines, four were selected for further experiments and challenged with elicitors. The selected cell lines clustered into two groups: developed in full strength medium (Li) vs developed in half strength medium (HS). While podophyllotoxin production in the Li cell lines was boosted by 80% upon administration of the elicitor methyl jasmonate, the HS lines produced high amounts of the target metabolite triggered by reduced concentration of nutrients and were only slightly influenced by the elicitor.

  14. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity. PMID:26490378

  15. Improved cardenolide production in Calotropis gigantea hairy roots using mechanical wounding and elicitation.

    PubMed

    Sun, Jian; Xiao, Jie; Wang, Xiaodong; Yuan, Xiaofan; Zhao, Bing

    2012-03-01

    A hairy root culture system of Calotropis gigantea was established and effects of mechanical wounding (MW) and elicitors [methyl jasmonate (MJ), yeast extract (YE) and chitosan (CS)] on cardenolide production were investigated. All treatments stimulated the production of cardenolide in hairy root cultures of C. gigantea. CS was the most effective elicitor, followed by MJ. YE and MW also improved cardenolide yield in individual treatments. The highest cardenolide yield (1,050 ± 55 mg/l) was obtained after adding 50 mg CS/l for 20 days, which was 2.7-fold higher than the control.

  16. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories.

    PubMed

    Ramirez-Estrada, Karla; Vidal-Limon, Heriberto; Hidalgo, Diego; Moyano, Elisabeth; Golenioswki, Marta; Cusidó, Rosa M; Palazon, Javier

    2016-02-03

    Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the "Plant Cell Factory" concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.

  17. Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst.

    PubMed Central

    Taylor, A T; Kim, J; Low, P S

    2001-01-01

    The oxidative burst constitutes one of the most rapid defence responses characterized in the Plant Kingdom. We have observed that four distinct elicitors of the soya bean oxidative burst activate kinases of masses approximately 44 kDa and approximately 47 kDa. Evidence that these kinases regulate production of reactive oxygen species include: (i) their rapid activation by oxidative burst elicitors, (ii) their tight temporal correlation between activation/deactivation of the kinases and activation/deactivation of the oxidative burst, (iii) the identical pharmacological profile of kinase activation and oxidant production for 13 commonly used inhibitors, and (iv) the autologous activation of both kinases and oxidant production by calyculin A and cantharidin, two phosphatase inhibitors. Immunological and biochemical studies reveal that the activated 44 kDa and 47 kDa kinases are mitogen-activated protein (MAP) kinase family members. The kinases prefer myelin basic protein as a substrate, and they phosphorylate primarily on threonine residues. The kinases are themselves phosphorylated on tyrosine residues, and this phosphorylation is required for activity. Finally, both kinases are recognized by an antibody against activated MAP kinase immediately after (but not before) cell stimulation by elicitors. Based on these and other observations, a preliminary sequence of signalling steps linking elicitor stimulation, kinase activation and Ca(2+) entry, to initiation of oxidant production, is proposed. PMID:11311144

  18. Alternativen beim Pflanzenschutz?

    NASA Astrophysics Data System (ADS)

    Mendgen, Kurt

    1983-05-01

    The control of plant diseases may be improved by influencing the development of a parasite in its host. The role of elicitors and inducers for the induction of the plant's defense reactions and the use of hyperparasites is discussed as a part of an integrated pest management system of rust fungi.

  19. The structures and functions of oligosaccharins

    SciTech Connect

    Albersheim, P.

    1990-08-01

    Abstracts of papers published or in press reporting work supported by this grant proposal during the past year are given here to describe the progress we have made in this research project. Topics include morphogenesis regulation by cell wall oligosaccharins; regulation of pectic enzymes, pathogen interactions with cell wall constituents; oligosaccharins as regulatory molecules; and characterization of oligosaccharide elicitors.

  20. Elucidating induced plant defenses: the use of targeted metabolomics as a bridge from elicitation to response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic plant defense responses to biotic attack involve the perception of specific biochemical elicitors associated with the offending agent, activation of signaling cascades, and the production of small molecules with complex protective roles. Chemical analyses are essential empirical tools for el...

  1. Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions II: Chemistry.

    PubMed

    LeClair, Gaëtan; Williams, Martin; Silk, Peter; Eveleigh, Eldon; Mayo, Peter; Brophy, Matt; Francis, Brittany

    2015-12-01

    As sessile organisms, plants have evolved different methods to defend against attacks and have adapted their defense measures to discriminate between mechanical damage and herbivory by insects. One of the ways that plant defenses are triggered is via elicitors from insect oral secretions (OS). In this study, we investigated the ability of second-instar (L2) spruce budworm [SBW; Choristoneura fumiferana (Clemens)] to alter the volatile organic compounds (VOCs) of four conifer species [Abies balsamea (L.) Mill., Picea mariana (Miller) B.S.P., Picea glauca (Moench) Voss, Picea rubens (Sargent)] and found that the emission profiles from all host trees were drastically changed after herbivory. We then investigated whether some of the main elicitors (fatty acid conjugates [FACs], β-glucosidase, and glucose oxidase) studied were present in SBW OS. FACs (glutamine and glutamic acid) based on linolenic, linoleic, oleic, and stearic acids were all observed in varying relative quantities. Hydroxylated FACs, such as volicitin, were not observed. Enzyme activity for β-glucosidase was also measured and found present in SBW OS, whereas glucose oxidase activity was not found in the SBW labial glands. These results demonstrate that SBW L2 larvae have the ability to induce VOC emissions upon herbivory and that SBW OS contain potential elicitors to induce these defensive responses. These data will be useful to further evaluate whether these elicitors can separately induce the production of specific VOCs and to investigate whether and how these emissions benefit the plant.

  2. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 23-amino acid peptide, AtPep1, and its homologues are endogenous elicitors in Arabidopsis, inducing defense related genes. AtPep1 enhances resistance to a root pathogen, Pythium irregulare, through the salicylic acid, jasmonic acid, ethylene, and reactive oxygen species signaling pathways. AtPep...

  3. Harpin Mediates Cell Aggregation in Erwinia chrysanthemi 3937

    PubMed Central

    Yap, Mee-Ngan; Rojas, Clemencia M.; Yang, Ching-Hong; Charkowski, Amy O.

    2006-01-01

    The hypersensitive response elicitor harpin (HrpN) of soft rot pathogen Erwinia chrysanthemi strains 3937 and EC16 is secreted via the type III secretion system and remains cell surface bound. Strain 3937 HrpN is essential for cell aggregation, but the C-terminal one-third of the protein is not required for aggregative activity. PMID:16513758

  4. Characterization of Novel Sesquiterpenoid Biosynthesis in Tobacco Expressing a Fungal Sesquiterpene Synthase.

    PubMed

    Zook, M.; Hohn, T.; Bonnen, A.; Tsuji, J.; Hammerschmidt, R.

    1996-09-01

    The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids. PMID:12226394

  5. Silicon induced systemic defense responses in perennial ryegrass against Magnaporthe oryzae infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) is a potential inducer or modulator of plant defenses against different pathogen...

  6. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea.

    PubMed

    Galletti, Roberta; Ferrari, Simone; De Lorenzo, Giulia

    2011-10-01

    Mitogen-activated protein kinases (MAPKs) are fundamental components of the plant innate immune system. MPK3 and MPK6 are Arabidopsis (Arabidopsis thaliana) MAPKs activated by pathogens and elicitors such as oligogalacturonides (OGs), which function as damage-associated molecular patterns, and flg22, a well-known microbe-associated molecular pattern. However, the specific contribution of MPK3 and MPK6 to the regulation of elicitor-induced defense responses is not completely defined. In this work we have investigated the roles played by these MAPKs in elicitor-induced resistance against the fungal pathogen Botrytis cinerea. Analysis of single mapk mutants revealed that lack of MPK3 increases basal susceptibility to the fungus, as previously reported, but does not significantly affect elicitor-induced resistance. Instead, lack of MPK6 has no effect on basal resistance but suppresses OG- and flg22-induced resistance to B. cinerea. Overexpression of the AP2C1 phosphatase leads to impaired OG- and flg22-induced phosphorylation of both MPK3 and MPK6, and to phenotypes that recapitulate those of the single mapk mutants. These data indicate that OG- and flg22-induced defense responses effective against B. cinerea are mainly dependent on MAPKs, with a greater contribution of MPK6.

  7. Induction of linalool as a pharmaceutical and medicinal metabolite via cell suspension culture of cumin (Cuminum cyminum L.).

    PubMed

    Kazemi, N; Kahrizi, D; Mansouri, M; Karim, H; Vaziri, S; Zargooshi, J; Khanahmadi, M; Shokrinia, M; Mohammadi, N

    2016-05-30

    Cumin is an important medicinal plant in Iran. Plant cell suspension culture is a method for the production of medicinal and secondary metabolites. The linalool is a plant secondary metabolite that has been recognized as a neuroprotective agent. The purpose of this study was to evaluate the effects of salicylic acid elicitor on induction of linalool in cell suspension culture of cumin. For this purpose, the cumin seeds were prepared, to obtain sterile seedling, were disinfected with sodium hypochlorite and alcohol, and were cultured on MS basal medium. This research was conducted in two separate experiments including callus induction and suspension cultures. Leaf explants were prepared from sterile seedlings and used to produce callus on MS medium supplemented with 1 mg/l NAA and 0.5 mg/l BAP. In order to establish suspension culture, the appropriate calli were transferred to liquid medium. Then cell cultures were treated with elicitors. The effects of elicitor on the production of linalool secondary metabolite and cell viability were assessed by GC-Mass and tetrazolium test respectively. For this purpose, the salicylic acid (at concentrations of 0, 1, 2, 4 and 8 mg/l) was used. The experimental design was a completely randomized design with five treatments and three replications. The results of cell culture and GC-Mass analysis showed that salicylic acid had significant effects on the linalool production (<0.01). At all concentrations of salicylic acid, viability of the cells in suspension culture experiments was lower than control. Increasing the elicitor concentrations lead to reduction in cell survival. In conclusion it is possible to produce linalool as a secondary metabolite and pharmaceutical agent in cell culture of cumin. It is necessary to determine the best combination of medium and elicitor.

  8. Induction of linalool as a pharmaceutical and medicinal metabolite via cell suspension culture of cumin (Cuminum cyminum L.).

    PubMed

    Kazemi, N; Kahrizi, D; Mansouri, M; Karim, H; Vaziri, S; Zargooshi, J; Khanahmadi, M; Shokrinia, M; Mohammadi, N

    2016-01-01

    Cumin is an important medicinal plant in Iran. Plant cell suspension culture is a method for the production of medicinal and secondary metabolites. The linalool is a plant secondary metabolite that has been recognized as a neuroprotective agent. The purpose of this study was to evaluate the effects of salicylic acid elicitor on induction of linalool in cell suspension culture of cumin. For this purpose, the cumin seeds were prepared, to obtain sterile seedling, were disinfected with sodium hypochlorite and alcohol, and were cultured on MS basal medium. This research was conducted in two separate experiments including callus induction and suspension cultures. Leaf explants were prepared from sterile seedlings and used to produce callus on MS medium supplemented with 1 mg/l NAA and 0.5 mg/l BAP. In order to establish suspension culture, the appropriate calli were transferred to liquid medium. Then cell cultures were treated with elicitors. The effects of elicitor on the production of linalool secondary metabolite and cell viability were assessed by GC-Mass and tetrazolium test respectively. For this purpose, the salicylic acid (at concentrations of 0, 1, 2, 4 and 8 mg/l) was used. The experimental design was a completely randomized design with five treatments and three replications. The results of cell culture and GC-Mass analysis showed that salicylic acid had significant effects on the linalool production (<0.01). At all concentrations of salicylic acid, viability of the cells in suspension culture experiments was lower than control. Increasing the elicitor concentrations lead to reduction in cell survival. In conclusion it is possible to produce linalool as a secondary metabolite and pharmaceutical agent in cell culture of cumin. It is necessary to determine the best combination of medium and elicitor. PMID:27262805

  9. First detection of the presence of naturally occurring grapevine downy mildew in the field by a fluorescence-based method.

    PubMed

    Latouche, Gwendal; Debord, Christian; Raynal, Marc; Milhade, Charlotte; Cerovic, Zoran G

    2015-10-01

    Early detection of fungal pathogen presence in the field would help to better time or avoid some of the fungicide treatments used to prevent crop production losses. We recently introduced a new phytoalexin-based method for a non-invasive detection of crop diseases using their fluorescence. The causal agent of grapevine downy mildew, Plasmopara viticola, induces the synthesis of stilbenoid phytoalexins by the host, Vitis vinifera, early upon infection. These stilbenoids emit violet-blue fluorescence under UV light. A hand-held solid-state UV-LED-based field fluorimeter, named Multiplex 330, was used to measure stilbenoid phytoalexins in a vineyard. It allowed us to non-destructively detect and monitor the naturally occurring downy mildew infections on leaves in the field. PMID:26293623

  10. MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves.

    PubMed

    Becker, Loïc; Carré, Vincent; Poutaraud, Anne; Merdinoglu, Didier; Chaimbault, Patrick

    2014-01-01

    To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.

  11. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance.

    PubMed

    van Leeuwen, Cornelis; Roby, Jean-Philippe; Alonso-Villaverde, Virginia; Gindro, Katia

    2013-01-01

    In this study, 10 clones of Vitis vinifera Cabernet franc (not yet commercial) have been phenotyped on precocity, grape composition, and assessment of wine quality made by microvinification in 2008-2010. Additionally, two original criteria have been considered: concentration of 3-isobutyl-2-methoxypyrazine (IBMP) in grapes and wines (the green bell pepper flavor) and resistance of grapevines to downy mildew ( Plasmopara viticola ) by stilbene quantification upon infection. Precocity of veraison varied up to four days at veraison. Berry size and yield were highly variable among clones. However, these variables were not correlated. Tanins and anthocyanins varied among clones in grapes and wines. Variations in grape and wine IBMP were not significant. Some clones showed lower susceptibility for downy mildew on leaves. Lower susceptibility was linked to a higher production of stilbenic phytoalexins involved in downy mildew resistance mechanisms. PMID:23205623

  12. Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification.

    PubMed

    Ramírez Tapias, Yuly A; Rivero, Cintia W; Gallego, Fernando López; Guisán, José M; Trelles, Jorge A

    2016-10-01

    Derivatized-agarose supports are suitable for enzyme immobilization by different methods, taking advantage of different physical, chemical and biological conditions of the protein and the support. In this study, agarose particles were modified with MANAE, PEI and glyoxyl groups and evaluated to stabilize polygalacturonase from Streptomyces halstedii ATCC 10897. A new immobilized biocatalyst was developed using glyoxyl-agarose as support; it exhibited high performance in degrading polygalacturonic acid and releasing oligogalacturonides. Maximal enzyme activity was detected at 5h of reaction using 0.05g/mL of immobilized biocatalyst, which released 3mg/mL of reducing sugars and allowed the highest product yield conversion and increased stability. These results are very favorable for pectin degradation with reusability up to 18 successive reactions (90h) and application in juice clarification. Plum (4.7°Bx) and grape (10.6°Bx) juices were successfully clarified, increasing reducing sugars content and markedly decreasing turbidity and viscosity. PMID:27132847

  13. Structures and functions of oligosaccharins. Progress report, June 15, 1993--March 14, 1995

    SciTech Connect

    Albersheim, P.

    1995-03-01

    This research focuses on the following: Purification, characterization, and cell wall localization of an {alpha}-fucosidase that inactivates a xyloglucan oligosaccharin; Oligogalacturonides inhibit the formation of roots on tobacco explants; Activation of a tobacco glycine-rich protein gene by a fungal glucan preparation; Fusarium moniliforme secretes four endopolygalacturonases derived from a single gene product; Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection; Generation of {beta}-glucan elicitors by plant enzymes and inhibition of the enzymes by a fungal protein; Polygalacturonase inhibitor proteins from bean (Phaseolus vulgaris L.), pear (Pyrus communis L.) and tomato (Lycopersicon esculentum): Immunological relatedness and specificity of polygalacturonase inhibition; Fungi protect themselves against plant pathogenesis-related glycanases; Purification, cloning, and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus; and Molecular cloning and expression pattern of an {alpha}-fucosidase gene from pea seedlings.

  14. Biophoton Emission from Kidney Bean Leaf Infested with Tetranychus Kanzawai Kishida

    NASA Astrophysics Data System (ADS)

    Kawabata, Ryuzou; Uefune, Masayoshi; Miike, Tohru; Okabe, Hirotaka; Takabayashi, Junji; Takagi, Masami; Kai, Shoichi

    2004-08-01

    We studied spontaneous photon emission from kidney bean leaves infested with spider mites. Strong photon radiation was observed from the leaf veins where spider mites were crowding. Photon emission intensity increased with the decreases in chlorophyll content and photosynthesis yield; these decreases represented the degree of damage caused by the pest. When both infested and un-infested leaves were put on the same wet cotton, photon emission from the un-infested leaf increased, too. Photon emission from the un-infested leaf might be induced by an aqueous elicitor released from the infested leaf. Such an elicitor activates the plant defense response. Therefore, it is suggested that photon emission from an infested leaf conveys information on the direct injury (physical stresses) and physiological (biochemical) actions associated with the defensive response.

  15. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Knorr, Dietrich; Smetanska, Iryna

    2011-02-23

    Elicitation studies with salicylic acid (SA) and methyl jasmonate (MJ) inducing a targeted rhizosecretion of high levels of anticarcinogenic glucosinolates in Brassica rapa ssp. rapa plants were conducted. Elicitor applications not only led to an accumulation of individual indole glucosinolates and the aromatic 2-phenylethyl glucosinolate in the turnip organs but also in turnip root exudates. This indicates an extended systemic response, which comprises the phyllosphere with all aboveground plant organs and the rhizosphere including the belowground root system and also root exudates. Both elicitor applications induced a doubling in 2-phenylethyl glucosinolate in root exudates, whereas application of MJ enhanced rhizosecreted indole glucosinolates up to 4-fold. In addition, the time course study revealed that maximal elicitation was observed on the 10th day of SA and MJ treatment. This study may provide an essential contribution using these glucosinolates as bioactive additives in functional foods and nutraceuticals.

  16. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics.

  17. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.

    PubMed

    Sun, Fei; Zhang, Pengying; Guo, Moran; Yu, Wenqian; Chen, Kaoshan

    2013-05-01

    Burdock fructooligosaccharide (BFO) is a natural elicitor from Arcitum lappa. The effects of BFO in controlling postharvest disease in grape, apple, banana, kiwi, citrus, strawberry, and pear were investigated. The disease index, decay percentage, and area under the disease progress curve indicated that BFO has general control effects on postharvest disease of fruits. Kyoho grapes were studied to elucidate the mechanism of BFO in boosting the resistance of grapes to Botrytis cinerea infection. BFO treatment induced upregulation of the npr1, pr1, pal, and sts genes, and inhibited the total phenol content decrease, which activated chitinase and β-1,3-glucanase. These results indicated that the salicylic acid-dependent signalling pathway was induced. The delayed colour change and peroxidase and polyphenoloxidase activity suggested that BFO delayed grape browning. The reduced respiration rate, weight loss, and titratable acidity prolonged the shelf life of postharvest grapes. BFO is a promising elicitor in postharvest disease control. PMID:23265522

  18. Insect regurgitant and wounding elicit similar defense responses in poplar leaves: not something to spit at?

    PubMed

    Major, Ian T; Constabel, C Peter

    2007-01-01

    How plants perceive insect attacks is an area of active research. Numerous studies have shown that regurgitant from feeding insects elicits a defense response in plants, which is often assumed to be distinct from a wound response. We have characterized the inducible defense response in hybrid poplar and found it to be qualitatively similar between wounding and application of regurgitant from forest tent caterpillar. We suggest that this is likely attributable to our wounding treatment which is much more intense compared to most other studies. These overlapping responses appear to be activated via jasmonic acid signaling, and we speculate that they are both triggered by elicitors of plant origin. Wounding would release such elicitor molecules when leaf cells are disrupted, and regurgitant may contain them in a modified or processed form. This hypothesis could explain why some other necrosis-inducing stresses also induce herbivore defense genes.

  19. Oomycete interactions with plants: infection strategies and resistance principles.

    PubMed

    Fawke, Stuart; Doumane, Mehdi; Schornack, Sebastian

    2015-09-01

    The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.

  20. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    PubMed

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. PMID:26948648

  1. Increased mesquite gum formation in nodal explants cultures after treatment with a microbial biomass preparation.

    PubMed

    Orozco-Villafuerte, Juan; Buendía-González, Leticia; Cruz-Sosa, Francisco; Vernon-Carter, Eduardo J

    2005-08-01

    Prosopis laevigata nodal explants cultures were established in Murashige and Skoog medium. Simultaneously these cultures were subjected to stress with biotic elicitors and an environmental factor (temperature increase to promote heat stress) in order to promote and increase exuded mesquite gum production. The biotic elicitors were: Aspergillus nidulans and Pseudomonas pseudoalcaligenes both used in concentrations of 10, 20 and 30 mg, whereas the environmental condition was different incubation temperatures (25, 35 and 40 degrees C). The greatest gum production (approximately 13 mg of pooled gum from 100 explants after 14 days incubation) took place when the culture medium was added 10, 20 and 30 mg of autoclaved fungal mycelium of A. nidulans or 30 mg of autoclaved bacterial biomass of P. pseudoalcaligenes in combination with an incubation temperature of 35 degrees C. These treatments were non-significantly different among themselves (P < 0.05), but were significantly different to the rest of the treatments (P > 0.05).

  2. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.

    PubMed

    Sun, Fei; Zhang, Pengying; Guo, Moran; Yu, Wenqian; Chen, Kaoshan

    2013-05-01

    Burdock fructooligosaccharide (BFO) is a natural elicitor from Arcitum lappa. The effects of BFO in controlling postharvest disease in grape, apple, banana, kiwi, citrus, strawberry, and pear were investigated. The disease index, decay percentage, and area under the disease progress curve indicated that BFO has general control effects on postharvest disease of fruits. Kyoho grapes were studied to elucidate the mechanism of BFO in boosting the resistance of grapes to Botrytis cinerea infection. BFO treatment induced upregulation of the npr1, pr1, pal, and sts genes, and inhibited the total phenol content decrease, which activated chitinase and β-1,3-glucanase. These results indicated that the salicylic acid-dependent signalling pathway was induced. The delayed colour change and peroxidase and polyphenoloxidase activity suggested that BFO delayed grape browning. The reduced respiration rate, weight loss, and titratable acidity prolonged the shelf life of postharvest grapes. BFO is a promising elicitor in postharvest disease control.

  3. Arabidopsis defense response against Fusarium oxysporum.

    PubMed

    Berrocal-Lobo, Marta; Molina, Antonio

    2008-03-01

    The plant fungal pathogen Fusarium oxysporum (Fox) is the causal agent of root rot or wilt diseases in several plant species, including crops such as tomato (Solanum lycopersicum), banana (Musa sapientum) and asparagus (Asparagus officinalis). Colonization of plants by Fox leads to the necrosis of the infected tissues, a subsequent collapse of vascular vessels and decay of the plant. Plant resistance to Fox appears to be monogenic or oligogenic depending on the host. Perception of Fox by plants follows the concept of elicitor-induced immune response, which in turn activates several plant defense signaling pathways. Here, we review the Fox-derived elicitors identified so far and the interaction among the different signaling pathways mediating plant resistance to Fox. PMID:18289920

  4. Methyl jasmonate and yeast extract stimulate mitragynine production in Mitragyna speciosa (Roxb.) Korth. shoot culture.

    PubMed

    Wungsintaweekul, Juraithip; Choo-Malee, Jutarat; Charoonratana, Tossaton; Keawpradub, Niwat

    2012-10-01

    Mitragynine is a pharmacologically-active terpenoid indole alkaloid found in Mitragyna speciosa leaves. Treatment with methyl jasmonate (10 μM) for 24 h and yeast extract (0.1 mg/ml) for 12 h were the optimum conditions of elicitation of mitragynine accumulation in a M. speciosa shoot culture. The former elicitor gave 0.11 mg mitragynine/g dry wt. Tryptophan decarboxylase and strictosidine synthase mRNA levels were enhanced in accordance with mitragynine accumulation. PMID:22714271

  5. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag⁺, methyl jasmonate, and yeast extract elicitation.

    PubMed

    Li, Bo; Wang, Bangqing; Li, Hongyan; Peng, Liang; Ru, Mei; Liang, Zongsuo; Yan, Xijun; Zhu, Yonghong

    2016-01-01

    Salvia castanea Diels f. tomentosa Stib. is an endemic medicinal plant distributed in China, and the notably high content of tanshinone IIA in the root is proven effective for the therapy of heart diseases. Hairy root induction of this Salvia species was inoculated with Agrobacterium rhizogenes strain ATCC 15834. Transformed hairy root was cultured in 6,7-V liquid medium for growth kinetics assessment and elicitation. An S curve was present in the hairy root cultures based on the fresh and dry weights with an interval of 3 days. An optimum concentration of the applied elicitors (15 μM Ag(+), 200 μM methyl jasmonate, and 200 mg l(-1) yeast extract elicitor) benefitted both the growth status and tanshinone accumulation in the hairy root cultures. Tanshinone IIA contents were mostly stimulated 1.8-fold and 1.99-fold compared with the control by Ag(+) and methyl jasmonate elicitation, respectively. Yeast extract dramatically enhanced dry mass accumulation, while it promoted cryptotanshinone content of 2.84 ± 0.33 mg g(-1) dry weight at most in the hairy root cultures. Selected elicitors diversely influenced tanshinone accumulation in the time courses of hairy root cultures within 7 days. Furthermore, transcripts of selected genes in the tanshinone biosynthetic pathway were remarkably upregulated with elicitation. Yeast extract elicitor heightened 13.9-fold of isopentenyl diphosphate isomerase expression level at 12 h, while it increased 16.7-fold of geranylgeranyl diphosphate synthase transcript at 24 h compared with that of the control, which was more effective than Ag(+) and methyl jasmonate. This study provided a convenient hairy root culture system of S. castanea Diels f. tomentosa Stib. for tanshinone production for the first time.

  6. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis.

    PubMed

    Fellbrich, Guido; Romanski, Annette; Varet, Anne; Blume, Beatrix; Brunner, Frédéric; Engelhardt, Stefan; Felix, Georg; Kemmerling, Birgit; Krzymowska, Magdalena; Nürnberger, Thorsten

    2002-11-01

    Activation of non-cultivar-specific plant defense against attempted microbial infection is mediated through the recognition of pathogen-derived elicitors. Previously, we have identified a peptide fragment (Pep-13) within a 42-kDa cell wall transglutaminase from various Phytophthora species that triggers a multifacetted defense response in parsley cells. Many of these oomycete species have now been shown to possess another cell wall protein (24 kDa), that evoked the same pattern of responses in parsley as Pep-13. Unlike Pep-13, necrosis-inducing Phytophthora protein 1 (NPP1) purified from P. parasitica also induced hypersensitive cell death-like lesions in parsley. NPP1 structural homologs were found in oomycetes, fungi, and bacteria, but not in plants. Structure-activity relationship studies revealed the intact protein as well as two cysteine residues to be essential for elicitor activity. NPP1-mediated activation of pathogen defense in parsley does not employ the Pep-13 receptor. However, early induced cellular responses implicated in elicitor signal transmission (increased levels of cytoplasmic calcium, production of reactive oxygen species, MAP kinase activation) were stimulated by either elicitor, suggesting the existence of converging signaling pathways in parsley. Infiltration of NPP1 into leaves of Arabidopsis thaliana Col-0 plants resulted in transcript accumulation of pathogenesis-related (PR) genes, production of ROS and ethylene, callose apposition, and HR-like cell death. NPP1-mediated induction of the PR1 gene is salicylic acid-dependent, and, unlike the P. syringae pv. tomato DC3000(avrRpm1)-induced PR1 gene expression, requires both functional NDR1 and PAD4. In summary, Arabidopsis plants infiltrated with NPP1 constitute an experimental system that is amenable to forward genetic approaches aiming at the dissection of signaling pathways implicated in the activation of non-cultivar-specific plant defense.

  7. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation*

    PubMed Central

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-01-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  8. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  9. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells.

    PubMed

    Legendre, L; Yueh, Y G; Crain, R; Haddock, N; Heinstein, P F; Low, P S

    1993-11-25

    Although phospholipase C hydrolysis of polyphosphoinositides constitutes one of the major second messenger pathways in animal cells, its participation in signal transduction in higher plants has not been established. To determine whether activation of phosphatidylinositol-directed phospholipase C might be involved in signaling the elicitor-induced oxidative burst in plants, suspension-cultured soybean cells were treated with two stimulants of the H2O2 burst and examined for polyphosphoinositide turnover. Both polygalacturonic acid elicitor and the G protein activator, mastoparan, promoted a transient increase in inositol 1,4,5-trisphosphate (IP3) content that exceeded basal IP3 levels (0.9 +/- 0.4 pmol of IP3/10(6) cells, n = 28) by 2.6- and 7-fold, respectively. In each case, intracellular IP3 content reached a maximum at 1 min post-stimulation and declined to near basal levels during the subsequent 5-10 min. Neomycin sulfate, an inhibitor of polyphosphoinositide hydrolysis, blocked the IP3 transient, and Mas-17, an inactive analogue of mastoparan, induced no change in IP3. Thin layer chromatography of lipid extracts of the soybean cells corroborated the above results by revealing a rapid decrease in phosphatidyl-inositol monophosphate and phosphatidylinositol 4,5-bisphosphate following polygalacturonic acid elicitor and mastoparan (but not Mas-17) stimulation. Since the rise in IP3 preceded H2O2 production and since neomycin sulfate inhibited the appearance of both, we hypothesize that phospholipase C activation might constitute one pathway by which elicitors trigger the soybean oxidative burst.

  10. The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity.

    PubMed

    Reinhard, K; Matern, U

    1989-11-15

    It has been shown that cell cultures of Dianthus caryophyllus L. c.v. Eleganz accumulate N-benzoyl-4-methoxyanthranilic acid, previously identified as the phytoalexin methoxydianthramide B, in response to treatment either with a crude elicitor isolated from the cell walls of Phytophthora megasperma f.sp. glycinea or with a commercial yeast extract. Cell-free extracts from the induced cells efficiently catalyzed the N-benzoylation of anthranilate in the presence of benzoyl-CoA. The partially purified transferase was shown to be specific for anthranilate with almost no activity toward 4-hydroxyanthranilate, whereas acyl donors other than benzoyl-CoA such as salicyloyl-, cinnamoyl-, or 4-coumaroyl-CoA were also accepted. Elicitor treatment of the cells additionally induced an S-adenosyl-L-methionine:N-benzoyl-4-hydroxyanthranilate 4-O-methyltransferase activity. We propose, therefore, that methoxydianthramide B is derived from N-benzoylanthranilic acid via N-benzoyl-4-hydroxyanthranilic acid. Dark-grown cells contained little N-benzoyltransferase activity (approx 8 mu kat/kg), which increased roughly ninefold within 6 h following the addition of the elicitor. In addition, phenylalanine ammonia-lyase activity of the cells increased about twofold under these conditions to a maximum (approx 40 mu kat/kg) at 5 h. The rapid induction of both enzyme activities suggests that the shikimate pathway is of crucial importance in the disease resistance response of carnation cells.

  11. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates.

    PubMed

    Baenas, Nieves; Villaño, Debora; García-Viguera, Cristina; Moreno, Diego A

    2016-08-01

    Elicitation is a cheaper and socially acceptable tool for improving plant food functionality. Our objective was to optimize the treatment doses of the elicitors: methyl jasmonate (MeJA), jasmonic acid (JA) and DL-methionine (MET), in order to find a successful and feasible treatment to produce broccoli and radish sprouts with enhanced levels of health-promoting glucosinolates. Also a priming of seeds as a novel strategy to trigger the glucosinolates content was carried out with water (control), MeJA (250μM), JA (250μM) and MET (10mM) before the elicitor exogenous treatment. The results showed that almost all treatments could enhance effectively the total glucosinolates content in the sprouts, achieving the most significant increases from 34% to 100% of increase in broccoli and from 45% to 118% of increase in radish sprouts after MeJA priming and treatments. Consequently, our work demonstrates the feasibility of using elicitors, such as plant stress hormones, by priming and exogenously, as a way of increase the phytochemical profile of these sprouts to enhance their consumption in the diet. PMID:26988507

  12. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts.

    PubMed

    Peñas, Elena; Limón, Rocío I; Martínez-Villaluenga, Cristina; Restani, Patrizia; Pihlanto, Anne; Frias, Juana

    2015-12-01

    The aim of this study was to investigate the application of elicitors (500 μM ascorbic acid, 50 μM folic acid, 5 mM glutamic acid and 50 ppm chitosan in 5 mM glutamic acid) during lentil germination up to 8 days as a strategy to increase germination rate and to enhance the accumulation of γ-aminobutyric acid (GABA) and phenolic compounds. The effect of elicitation on the protein profile and antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of sprouted lentils was also evaluated. The application of elicitors did not negatively affect the germination yield of lentils and no significant changes on the protein pattern of lentils germinated in the presence of elicitors were observed. Chitosan/glutamic acid increased by 1.6-fold the GABA content in lentil sprouts, whilst ascorbic and folic acids as well as chitosan/glutamic acid were highly effective to enhance the total content of phenolic compounds and the antioxidant activity of sprouted lentils. All elicited lentil sprouts showed ability to inhibit ACE activity (IC50: 9.5-11.9 μg peptides/mL). Therefore, elicitation can be considered a promising approach to improve the content of compounds with antioxidant and potential antihypertensive activities in lentil sprouts.

  13. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis.

    PubMed

    Manzoor, Hamid; Kelloniemi, Jani; Chiltz, Annick; Wendehenne, David; Pugin, Alain; Poinssot, Benoit; Garcia-Brugger, Angela

    2013-11-01

    Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense-related genes by OGs. In addition, wild-type Col-0 plants treated with the glutamate-receptor antagonist 6,7-dinitriquinoxaline-2,3-dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against H. arabidopsidis. In addition, some OGs-triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen-mediated plant defense signaling pathways in Arabidopsis thaliana. PMID:23952652

  14. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  15. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures.

    PubMed

    Sabater-Jara, Ana-Belén; Onrubia, Miriam; Moyano, Elisabeth; Bonfill, Mercedes; Palazón, Javier; Pedreño, María A; Cusidó, Rosa M

    2014-10-01

    Methyl jasmonate and cyclodextrins are proven effective inducers of secondary metabolism in plant cell cultures. Cyclodextrins, which are cyclic oligosaccharides, can form inclusion complexes with nonhydrophilic secondary products, thus increasing their excretion from the producer cells to the culture medium. In the present work, using a selected Taxus x media cell line cultured in a two-stage system, the relationship between taxane production and the transcript profiles of several genes involved in taxol metabolism was studied to gain more insight into the mechanism by which these two elicitors regulate the biosynthesis and excretion of taxol and related taxanes. Gene expression was not clearly enhanced by the presence of cyclodextrins in the culture medium and variably induced by methyl jasmonate, but when the culture was supplemented with both elicitors, a synergistic effect on transcript accumulation was observed. The BAPT and DBTNBT genes, which encode the last two transferases involved in the taxol pathway, appeared to control limiting biosynthetic steps. In the cell cultures treated with both elicitors, the produced taxanes were found mainly in the culture medium, which limited retroinhibition processes and taxane toxicity for the producer cells. The expression level of a putative ABC gene was found to have increased, suggesting it played a role in the taxane excretion. Taxol biosynthesis was clearly increased by the joint action of methyl jasmonate and cyclodextrins, reaching production levels 55 times higher than in nonelicited cultures.

  16. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity.

    PubMed

    Gouhier-Darimont, Caroline; Schmiesing, André; Bonnet, Christelle; Lassueur, Steve; Reymond, Philippe

    2013-01-01

    Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis.

  17. Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation.

    PubMed

    Perassolo, María; Quevedo, Carla Verónica; Busto, Víctor Daniel; Giulietti, Ana María; Talou, Julián Rodríguez

    2011-07-01

    Elicitors are compounds or factors capable of triggering a defense response in plants. This kind of response involves signal transduction pathways, second messengers and events such as Reactive Oxygen Species (ROS) generation, proline accumulation and secondary metabolite production. Anthraquinone (AQs) biosynthesis in Rubia tinctorum L. involves different metabolic routes, including shikimate and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. It has been proposed that the proline cycle could be coupled with the pentose phosphate pathway (PPP), since the NADP+ generated by this cycle could act as a cofactor of the first enzymes of the PPP. The end-product of this pathway is erithrose-4-phosphate, which becomes the substrate of the shikimate pathway. The aim of this work was to study the effect of methyl jasmonate (MeJ), a well-known endogenous elicitor, on the PPP, the proline cycle and AQs production in R. tinctorum cell suspension cultures, and to elucidate the role of ROS in MeJ elicitation. Treatment with MeJ resulted in AQs as well as proline accumulation, which was mimicked by the treatment with a H₂O₂-generating system. Both MeJ-induced effects were abolished in the presence of diphenyliodonium (DPI), a NADPH oxidase inhibitor (main source of ROS). Treatment with the elicitor failed to induce PPP; therefore, this route did not turn out to be limiting the carbon flux to the shikimate pathway.

  18. Application of ultra-weak photon emission measurements in agriculture.

    PubMed

    Kato, Kimihiko; Iyozumi, Hiroyuki; Kageyama, Chizuko; Inagaki, Hidehiro; Yamaguchi, Akira; Nukui, Hideki

    2014-10-01

    Here we report our two applications of ultra-weak photon emission (UPE) measurements in agriculture. One is to find new types of agrochemicals that potentiate plants' defense, so-called "plant activator". We first analyzed the relation between plant defense and Elicitor-Responsive Photon Emission (ERPE) using a combination of rice cells and a chitin elicitor. Pharmacological analyses clarified that ERPE was generated as a part of the chitin elicitor-responsive defense in close relation with the generation of reactive oxygen species (ROS). Then we successfully detected the activity of plant activators as the potentiation of ERPE, and developed a new screening system for plant activators based on this principle. Another UPE application is to distinguish herbicide-resistant weeds from susceptible ones by measuring UPE in weeds. In our study, it was revealed that the weed biotypes resistant to sulfonylurea (SU) herbicides, one of the major herbicide groups, showed stronger UPE than susceptible ones after an SU herbicide treatment. By further analysis with a pharmacological and RNAi study, we found that the detoxifying enzyme P450s contributed to the UPE increase in SU herbicide resistant weeds. It is considered that weeds resistant to herbicides other than SU might also be able to be distinguished from susceptible ones by UPE measurement, as long as the herbicides are subject to detoxification by P450s.

  19. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana

    PubMed Central

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  20. Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine.

    PubMed

    Chalal, Malik; Winkler, Jana B; Gourrat, Karine; Trouvelot, Sophie; Adrian, Marielle; Schnitzler, Jörg-Peter; Jamois, Frank; Daire, Xavier

    2015-01-01

    Inducing resistance in plants by the application of elicitors of defense reactions is an attractive plant protection strategy, particularly for grapevine (Vitis vinifera), which is susceptible to severe fungal diseases. Although induced resistance (IR) can be successful under controlled conditions, in most cases, IR is not sufficiently effective for practical disease control under outdoor conditions. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers to identify factors, such as physiological and environmental factors, that can impact IR in the vineyard. Volatile organic compounds (VOCs) are well-known plant defense compounds that have received little or no attention to date in the case of grape-pathogen interactions. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3), actually induces the production of VOCs in grapevine. An online analysis (proton-transfer-reaction quadrupole mass spectrometry) of VOC emissions in dynamic cuvettes and passive sampling in gas-tight bags with solid-phase microextraction-GC-MS under greenhouse conditions showed that PS3 elicited the emission of VOCs. Some of them, such as (E,E)-α-farnesene, may be good candidates as biomarkers of elicitor-IR, whereas methyl salicylate appears to be a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases. PMID:26042139

  1. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva.

    PubMed

    Cai, Zhenzhen; Knorr, Dietrich; Smetanska, Iryna

    2012-01-01

    The effects of two synthetic elicitor indanoyl-isoleucine (In-Ile), N-linolenoyl-L-glutamine (Lin-Gln) and one biotic elicitor insect saliva (from Manduca sexta larvae) on plant cell cultures with respect to the induction of secondary metabolite production were investigated. Stimulated production of secondary metabolites, particularly anthocyanins in plant cells and phenolic acids in culture medium, was studied by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. In the treatments with In-Ile, the production of anthocyanins was enhanced 2.6-fold. In-Ile, Lin-Gln and saliva significantly elevated the accumulation of phenolic acids, particularly 3-O-glucosyl-resveratrol. The used elicitors did not suppress cell growth. Secondary metabolites were differently responsive to elicitation. 3-O-glucosyl-resveratrol was the predominant phenolic acid in V. vinifera cell culture, and its production was significantly stimulated by saliva, with 7.0-fold of the control level 24 h after treatment. The production of 4-(3,5-dihydroxy-phenyl)-phenol was significantly stimulated by In-Ile with 6.4-fold of the control level 24 h after treatment. PMID:22133437

  2. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  3. MAMP (microbe-associated molecular pattern) triggered immunity in plants

    PubMed Central

    Newman, Mari-Anne; Sundelin, Thomas; Nielsen, Jon T.; Erbs, Gitte

    2013-01-01

    Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are recognized by the plant innate immune systems pattern recognition receptors (PRRs). General elicitors like flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator of XA21-mediated immunity in rice), fungal chitin, and β-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi, and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI) in plants. PMID:23720666

  4. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.

    PubMed

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  5. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts.

    PubMed

    Peñas, Elena; Limón, Rocío I; Martínez-Villaluenga, Cristina; Restani, Patrizia; Pihlanto, Anne; Frias, Juana

    2015-12-01

    The aim of this study was to investigate the application of elicitors (500 μM ascorbic acid, 50 μM folic acid, 5 mM glutamic acid and 50 ppm chitosan in 5 mM glutamic acid) during lentil germination up to 8 days as a strategy to increase germination rate and to enhance the accumulation of γ-aminobutyric acid (GABA) and phenolic compounds. The effect of elicitation on the protein profile and antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of sprouted lentils was also evaluated. The application of elicitors did not negatively affect the germination yield of lentils and no significant changes on the protein pattern of lentils germinated in the presence of elicitors were observed. Chitosan/glutamic acid increased by 1.6-fold the GABA content in lentil sprouts, whilst ascorbic and folic acids as well as chitosan/glutamic acid were highly effective to enhance the total content of phenolic compounds and the antioxidant activity of sprouted lentils. All elicited lentil sprouts showed ability to inhibit ACE activity (IC50: 9.5-11.9 μg peptides/mL). Therefore, elicitation can be considered a promising approach to improve the content of compounds with antioxidant and potential antihypertensive activities in lentil sprouts. PMID:26433888

  6. Induction of Defense Reactions in Sugar Beet and Wheat by Treatment with Cell Wall Protein Fractions from the Mycoparasite Pythium oligandrum.

    PubMed

    Takenaka, Shigehito; Nishio, Zenta; Nakamura, Yumi

    2003-10-01

    ABSTRACT To detect molecules with elicitor properties from Pythium oligandrum, cell wall protein fractions (CWPs) were extracted from 10 P. oligandrum isolates and examined for elicitor activity in sugar beet and wheat. P. oligandrum isolates were divided into two groups based on the number of major proteins in CWP: isolates with two major proteins (D-type) and isolates with one major protein (S-type). Sugar beet seedlings treated with both types of CWP through their roots showed enhanced activities of phenylalanine ammonia lyase and chitinase, and D-type-treated seedlings also showed significantly higher cell wall-bound phenolic compounds, mainly ferulic acid, compared with the distilled-water-treatment control. Damping-off severity was significantly reduced on seedlings treated with both types of CWP compared with the control, following challenge with Rhizoctonia solani AG2-2. Both types of CWP significantly reduced the number of infected spikelets developed from the injected spikelet compared with the control, following challenge with Fusarium graminearum. Neither type of CWP resulted in any reduction in pathogen growth rate in plate tests. These results demonstrate that CWPs of P. oligandrum have elicitor properties in sugar beet and wheat.

  7. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.

    PubMed

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.

  8. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates.

    PubMed

    Baenas, Nieves; Villaño, Debora; García-Viguera, Cristina; Moreno, Diego A

    2016-08-01

    Elicitation is a cheaper and socially acceptable tool for improving plant food functionality. Our objective was to optimize the treatment doses of the elicitors: methyl jasmonate (MeJA), jasmonic acid (JA) and DL-methionine (MET), in order to find a successful and feasible treatment to produce broccoli and radish sprouts with enhanced levels of health-promoting glucosinolates. Also a priming of seeds as a novel strategy to trigger the glucosinolates content was carried out with water (control), MeJA (250μM), JA (250μM) and MET (10mM) before the elicitor exogenous treatment. The results showed that almost all treatments could enhance effectively the total glucosinolates content in the sprouts, achieving the most significant increases from 34% to 100% of increase in broccoli and from 45% to 118% of increase in radish sprouts after MeJA priming and treatments. Consequently, our work demonstrates the feasibility of using elicitors, such as plant stress hormones, by priming and exogenously, as a way of increase the phytochemical profile of these sprouts to enhance their consumption in the diet.

  9. Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine

    PubMed Central

    Chalal, Malik; Winkler, Jana B.; Gourrat, Karine; Trouvelot, Sophie; Adrian, Marielle; Schnitzler, Jörg-Peter; Jamois, Frank; Daire, Xavier

    2015-01-01

    Inducing resistance in plants by the application of elicitors of defense reactions is an attractive plant protection strategy, particularly for grapevine (Vitis vinifera), which is susceptible to severe fungal diseases. Although induced resistance (IR) can be successful under controlled conditions, in most cases, IR is not sufficiently effective for practical disease control under outdoor conditions. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers to identify factors, such as physiological and environmental factors, that can impact IR in the vineyard. Volatile organic compounds (VOCs) are well-known plant defense compounds that have received little or no attention to date in the case of grape-pathogen interactions. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3), actually induces the production of VOCs in grapevine. An online analysis (proton-transfer-reaction quadrupole mass spectrometry) of VOC emissions in dynamic cuvettes and passive sampling in gas-tight bags with solid-phase microextraction-GC-MS under greenhouse conditions showed that PS3 elicited the emission of VOCs. Some of them, such as (E,E)-α-farnesene, may be good candidates as biomarkers of elicitor-IR, whereas methyl salicylate appears to be a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases. PMID:26042139

  10. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.).

    PubMed

    Złotek, Urszula; Świeca, Michał; Jakubczyk, Anna

    2014-04-01

    The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality.

  11. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures

    PubMed Central

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-01-01

    Background: Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Objective: Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. Materials and Methods: In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. Results: First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. Conclusion: This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. SUMMARY Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of Na

  12. A single module type I polyketide synthase directs de novo macrolactone biogenesis during galbonolide biosynthesis in Streptomyces galbus.

    PubMed

    Kim, Hyun-Ju; Karki, Suman; Kwon, So-Yeon; Park, Si-Hyung; Nahm, Baek-Hie; Kim, Yeon-Ki; Kwon, Hyung-Jin

    2014-12-12

    Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-(13)C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications. PMID:25336658

  13. A Single Module Type I Polyketide Synthase Directs de Novo Macrolactone Biogenesis during Galbonolide Biosynthesis in Streptomyces galbus*

    PubMed Central

    Kim, Hyun-Ju; Karki, Suman; Kwon, So-Yeon; Park, Si-Hyung; Nahm, Baek-Hie; Kim, Yeon-Ki; Kwon, Hyung-Jin

    2014-01-01

    Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-13C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications. PMID:25336658

  14. Pesticides' influence on wine fermentation.

    PubMed

    Caboni, Pierluigi; Cabras, Paolo

    2010-01-01

    Wine quality strongly depends on the grape quality. To obtain high-quality wines, it is necessary to process healthy grapes at the correct ripeness stage and for this reason the farmer has to be especially careful in the prevention of parasite attacks on the grapevine. The most common fungal diseases affecting grape quality are downy and powdery mildew (Plasmopara viticola and Uncinula necator), and gray mold (Botrytis cinerea). On the other hand, the most dangerous insects are the grape moth (Lobesia botrana), vine mealybug (Planococcus ficus), and the citrus mealybug (Planococcus citri). Farmers fight grape diseases and insects applying pesticides that can be found at harvest time on grapes. The persistence of pesticides depends on the chemical characteristic of the active ingredients as well as on photodegradation, thermodegradation, codistillation, and enzymatic degradation. The pesticide residues on grapes can be transferred to the must and this can influence the selection and development of yeast strains. Moreover, yeasts can also influence the levels of the pesticides in the wine by reducing or adsorbing them on lees. During the fermentative process, yeasts can cause the disappearance of pesticide residues by degradation or absorption at the end of the fermentation when yeasts are deposited as lees. In this chapter, we reviewed the effect of commonly used herbicides, insecticides, and fungicides on yeasts. We also studied the effect of alcoholic and malolactic fermentation on pesticide residues. PMID:20610173

  15. An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

    PubMed Central

    Duan, Dong; Fischer, Sabine; Merz, Patrick; Bogs, Jochen; Riemann, Michael; Nick, Peter

    2016-01-01

    Stilbene synthase is a key enzyme for the production of the phytoalexin resveratrol. Some clones of Vitis sylvestris, a wild European grapevine species which is almost extinct, have been shown to accumulate more resveratrol in response to different forms of stress. In the current study, we asked whether the induction of stilbene synthase transcripts in Hoe29, one of the V. sylvestris clones with elevated stilbene inducibility, might result from the elevated induction of the transcription factor MYB14. The MYB14 promoter of Hoe29 and of Ke83 (a second stilbene-inducible genotype) harboured distinct regions and were applied to a promoter–reporter system. We show that stilbene synthase inducibility correlates with differences in the induction of MYB14 transcripts for these two genotypes. Both alleles were induced by UV in a promoter–reporter assay, but only the MYB14 promoter from Hoe29 was induced by flg22, consistent with the stilbene synthase expression of the donor genotypes, where both respond to UV but only Hoe29 is responsive to Plasmopara viticola during defence. We mapped upstream signals and found that a RboH-dependent oxidative burst, calcium influx, a MAPK cascade, and jasmonate activated the MYB14 promoter, whereas salicylic acid was ineffective. Our data suggest that the Hoe29 allele of the MYB14 promoter has potential as a candidate target for resistance breeding. PMID:26842984

  16. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  17. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    PubMed

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  18. Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew.

    PubMed

    Batovska, Daniela Ilieva; Todorova, Iva Todorova; Parushev, Stoyan Parushev; Nedelcheva, Daniela Valentinova; Bankova, Vassya Stefanova; Popov, Simeon Simeonov; Ivanova, Iliana Ivanova; Batovski, Stancho Atanassov

    2009-05-01

    We examined metabolic profiles of acetone and butanol extracts obtained from the leaves of 18 seedlings of the Bulgarian wine-making cultivar Storgozia. The acetone extracts contained the components from the leaf surface, while the butanol extracts were enriched with polar components from inside the leaf tissue. The leaves displayed different degrees of resistance and susceptibility to the etiological agent downy mildew, Plasmopara viticola. Based on the statistically significant correlations (P<0.05) between the GC-MS data of the identified metabolites and the estimated leaf resistances, 10 individual components were proposed as possible biomarkers for the downy mildew resistance and susceptibility in grapevine. All were found in the butanol extracts, and can be considered to form two groups: compounds with high correlations (r=+/-0.50 to +/-1.00) - 3-hydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid (isomer), hexadecanoic acid, 3-hydroxyhexanoic acid and myo-inositol, and compounds with moderate correlations (r=+/-0.30 to +/-0.49) hydroxybutanedioic acid, alanine, glutamine, arabinoic acid and aldohexoses. Among them, the more polar compounds were related to sensitivity, and only hexadecanoic and the monohydroxycarboxylic acids were related to resistance in grapevine. PMID:19013664

  19. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine1

    PubMed Central

    Schmidlin, Laure; Poutaraud, Anne; Claudel, Patricia; Mestre, Pere; Prado, Emilce; Santos-Rosa, Maria; Wiedemann-Merdinoglu, Sabine; Karst, Francis; Merdinoglu, Didier; Hugueney, Philippe

    2008-01-01

    Stilbenes are considered the most important phytoalexin group in grapevine (Vitis vinifera) and they are known to contribute to the protection against various pathogens. The main stilbenes in grapevine are resveratrol and its derivatives and, among these, pterostilbene has recently attracted much attention due both to its antifungal and pharmacological properties. Indeed, pterostilbene is 5 to 10 times more fungitoxic than resveratrol in vitro and recent studies have shown that pterostilbene exhibits anticancer, hypolipidemic, and antidiabetic properties. A candidate gene approach was used to identify a grapevine resveratrol O-methyltransferase (ROMT) cDNA and the activity of the corresponding protein was characterized after expression in Escherichia coli. Transient coexpression of ROMT and grapevine stilbene synthase in tobacco (Nicotiana benthamiana) using the agroinfiltration technique resulted in the accumulation of pterostilbene in tobacco tissues. Taken together, these results showed that ROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol both in vitro and in planta. ROMT gene expression in grapevine leaves was induced by different stresses, including downy mildew (Plasmopara viticola) infection, ultraviolet light, and AlCl3 treatment. PMID:18799660

  20. Pea Broth Enhances the Biocontrol Efficacy of Lysobacter capsici AZ78 by Triggering Cell Motility Associated with Biogenesis of Type IV Pilus.

    PubMed

    Tomada, Selena; Puopolo, Gerardo; Perazzolli, Michele; Musetti, Rita; Loi, Nazia; Pertot, Ilaria

    2016-01-01

    Bacterial cells can display different types of motility, due to the presence of external appendages such as flagella and type IV pili. To date, little information on the mechanisms involved in the motility of the Lysobacter species has been available. Recently, L. capsici AZ78, a biocontrol agent of phytopathogenic oomycetes, showed the ability to move on jellified pea broth. Pea broth medium improved also the biocontrol activity of L. capsici AZ78 against Plasmopara viticola under greenhouse conditions. Noteworthy, the quantity of pea residues remaining on grapevine leaves fostered cell motility in L. capsici AZ78. Based on these results, this unusual motility related to the composition of the growth medium was investigated in bacterial strains belonging to several Lysobacter species. The six L. capsici strains tested developed dendrite-like colonies when grown on jellified pea broth, while the development of dendrite-like colonies was not recorded in the media commonly used in motility assays. To determine the presence of genes responsible for biogenesis of the flagellum and type IV pili, the genome of L. capsici AZ78 was mined. Genes encoding structural components and regulatory factors of type IV pili were upregulated in L. capsici AZ78 cells grown on the above-mentioned medium, as compared with the other tested media. These results provide new insight into the motility mechanism of L. capsici members and the role of type IV pili and pea compounds on the epiphytic fitness and biocontrol features of L. capsici AZ78. PMID:27507963

  1. Pea Broth Enhances the Biocontrol Efficacy of Lysobacter capsici AZ78 by Triggering Cell Motility Associated with Biogenesis of Type IV Pilus

    PubMed Central

    Tomada, Selena; Puopolo, Gerardo; Perazzolli, Michele; Musetti, Rita; Loi, Nazia; Pertot, Ilaria

    2016-01-01

    Bacterial cells can display different types of motility, due to the presence of external appendages such as flagella and type IV pili. To date, little information on the mechanisms involved in the motility of the Lysobacter species has been available. Recently, L. capsici AZ78, a biocontrol agent of phytopathogenic oomycetes, showed the ability to move on jellified pea broth. Pea broth medium improved also the biocontrol activity of L. capsici AZ78 against Plasmopara viticola under greenhouse conditions. Noteworthy, the quantity of pea residues remaining on grapevine leaves fostered cell motility in L. capsici AZ78. Based on these results, this unusual motility related to the composition of the growth medium was investigated in bacterial strains belonging to several Lysobacter species. The six L. capsici strains tested developed dendrite-like colonies when grown on jellified pea broth, while the development of dendrite-like colonies was not recorded in the media commonly used in motility assays. To determine the presence of genes responsible for biogenesis of the flagellum and type IV pili, the genome of L. capsici AZ78 was mined. Genes encoding structural components and regulatory factors of type IV pili were upregulated in L. capsici AZ78 cells grown on the above-mentioned medium, as compared with the other tested media. These results provide new insight into the motility mechanism of L. capsici members and the role of type IV pili and pea compounds on the epiphytic fitness and biocontrol features of L. capsici AZ78. PMID:27507963

  2. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    PubMed

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-01-01

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  3. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-06-10

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.

  4. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells. PMID:24973589

  5. Monitoring Lysobacter capsici AZ78 using strain specific qPCR reveals the importance of the formulation for its survival in vineyards.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Porcel-Rodríguez, Elena; Giovannini, Oscar; Pertot, Ilaria

    2016-02-01

    Survival in the phyllosphere is a critical feature for biofungicides based on non-spore forming bacteria. Moreover, knowledge of their persistence on plants is important to design effective formulations and application techniques. With this scope, the aim of this work was to develop a specific method to monitor the fate in the environment of Lysobacter capsici AZ78, a biocontrol agent of Plasmopara viticola, and to evaluate the contribution of formulation in its persistence on grapevine leaves. A strain-specific primer pair derived from REP-PCR fingerprinting was used in quantitative PCR experiments to track the evolution of L. capsici AZ78 population in vineyards. The population reached between 5 and 6 log10 cells gram of leaf(-1) after application and decreased by more than 100 times in one week. Multiple regression analysis showed that unfavourable temperature was the main environmental factor correlating with the decrease of L. capsici AZ78 persistence on grapevine leaves. Importantly, the use of formulation additives protected L. capsici AZ78 against environmental factors and improved its persistence on the leaves by more than 10 times compared to nude cells. Formulation and the knowledge about the persistence of L. capsici AZ78 in vineyards will be useful to develop commercial biofungicides for foliar application. PMID:26691736

  6. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew

    PubMed Central

    Perazzolli, Michele

    2012-01-01

    Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome. PMID:23105132

  7. Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew.

    PubMed

    Batovska, Daniela Ilieva; Todorova, Iva Todorova; Parushev, Stoyan Parushev; Nedelcheva, Daniela Valentinova; Bankova, Vassya Stefanova; Popov, Simeon Simeonov; Ivanova, Iliana Ivanova; Batovski, Stancho Atanassov

    2009-05-01

    We examined metabolic profiles of acetone and butanol extracts obtained from the leaves of 18 seedlings of the Bulgarian wine-making cultivar Storgozia. The acetone extracts contained the components from the leaf surface, while the butanol extracts were enriched with polar components from inside the leaf tissue. The leaves displayed different degrees of resistance and susceptibility to the etiological agent downy mildew, Plasmopara viticola. Based on the statistically significant correlations (P<0.05) between the GC-MS data of the identified metabolites and the estimated leaf resistances, 10 individual components were proposed as possible biomarkers for the downy mildew resistance and susceptibility in grapevine. All were found in the butanol extracts, and can be considered to form two groups: compounds with high correlations (r=+/-0.50 to +/-1.00) - 3-hydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid, 2,3,4-trihydroxybutanoic acid (isomer), hexadecanoic acid, 3-hydroxyhexanoic acid and myo-inositol, and compounds with moderate correlations (r=+/-0.30 to +/-0.49) hydroxybutanedioic acid, alanine, glutamine, arabinoic acid and aldohexoses. Among them, the more polar compounds were related to sensitivity, and only hexadecanoic and the monohydroxycarboxylic acids were related to resistance in grapevine.

  8. Pesticides' influence on wine fermentation.

    PubMed

    Caboni, Pierluigi; Cabras, Paolo

    2010-01-01

    Wine quality strongly depends on the grape quality. To obtain high-quality wines, it is necessary to process healthy grapes at the correct ripeness stage and for this reason the farmer has to be especially careful in the prevention of parasite attacks on the grapevine. The most common fungal diseases affecting grape quality are downy and powdery mildew (Plasmopara viticola and Uncinula necator), and gray mold (Botrytis cinerea). On the other hand, the most dangerous insects are the grape moth (Lobesia botrana), vine mealybug (Planococcus ficus), and the citrus mealybug (Planococcus citri). Farmers fight grape diseases and insects applying pesticides that can be found at harvest time on grapes. The persistence of pesticides depends on the chemical characteristic of the active ingredients as well as on photodegradation, thermodegradation, codistillation, and enzymatic degradation. The pesticide residues on grapes can be transferred to the must and this can influence the selection and development of yeast strains. Moreover, yeasts can also influence the levels of the pesticides in the wine by reducing or adsorbing them on lees. During the fermentative process, yeasts can cause the disappearance of pesticide residues by degradation or absorption at the end of the fermentation when yeasts are deposited as lees. In this chapter, we reviewed the effect of commonly used herbicides, insecticides, and fungicides on yeasts. We also studied the effect of alcoholic and malolactic fermentation on pesticide residues.

  9. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells.

  10. Monitoring Lysobacter capsici AZ78 using strain specific qPCR reveals the importance of the formulation for its survival in vineyards.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Porcel-Rodríguez, Elena; Giovannini, Oscar; Pertot, Ilaria

    2016-02-01

    Survival in the phyllosphere is a critical feature for biofungicides based on non-spore forming bacteria. Moreover, knowledge of their persistence on plants is important to design effective formulations and application techniques. With this scope, the aim of this work was to develop a specific method to monitor the fate in the environment of Lysobacter capsici AZ78, a biocontrol agent of Plasmopara viticola, and to evaluate the contribution of formulation in its persistence on grapevine leaves. A strain-specific primer pair derived from REP-PCR fingerprinting was used in quantitative PCR experiments to track the evolution of L. capsici AZ78 population in vineyards. The population reached between 5 and 6 log10 cells gram of leaf(-1) after application and decreased by more than 100 times in one week. Multiple regression analysis showed that unfavourable temperature was the main environmental factor correlating with the decrease of L. capsici AZ78 persistence on grapevine leaves. Importantly, the use of formulation additives protected L. capsici AZ78 against environmental factors and improved its persistence on the leaves by more than 10 times compared to nude cells. Formulation and the knowledge about the persistence of L. capsici AZ78 in vineyards will be useful to develop commercial biofungicides for foliar application.

  11. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L3-mediated resistance in Capsicum plants.

    PubMed

    Hamada, Hiroyuki; Tomita, Reiko; Iwadate, Yasuya; Kobayashi, Kappei; Munemura, Ikuko; Takeuchi, Shigeharu; Hikichi, Yasufumi; Suzuki, Kazumi

    2007-04-01

    We found that an L3 resistance-breaking field isolate of Pepper mild mottle virus (PMMoV), designated PMMoV-Is, had two amino acid changes in its coat protein (CP), namely leucine to phenylalanine at position 13 (L13F) and glycine to valine at position 66 (G66V), as compared with PMMoV-J, which induces a resistance response in L3-harboring Capsicum plants. The mutations were located to a CP domain corresponding to the outer surface of PMMoV particles in computational molecular modeling. Analyses of PMMoV CP mutants containing either or both of these amino acid changes revealed that both changes were required to efficiently overcome L3-mediated resistance with systemic necrosis induction. Although CP mutants containing either L13F or G66V could not efficiently overcome L3-mediated resistance, these amino acid changes had different effects on the elicitor activity of PMMoV CP. L13F caused a slight reduction in the elicitor activity, resulting in virus restriction to necrotic local lesions that were apparently larger than those induced by wild-type PMMoV, while G66V rendered wild-type PMMoV the ability to overcome L3-mediated resistance, albeit with a lower efficiency than PMMoV with both changes. These results suggest that a cooperative effect of the L13F and G66V mutations on the elicitor activity of CP is responsible for overcoming the L3-mediated resistance.

  12. The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7

    PubMed Central

    Hou, Shuguo; Wang, Xin; Chen, Donghua; Yang, Xue; Wang, Mei; Turrà, David; Di Pietro, Antonio; Zhang, Wei

    2014-01-01

    In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides. PMID:25188390

  13. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis.

    PubMed

    Prince, David C; Drurey, Claire; Zipfel, Cyril; Hogenhout, Saskia A

    2014-04-01

    The importance of pathogen-associated molecular pattern-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here, we show that PTI is an important component of plant innate immunity to insects. Extract of the green peach aphid (GPA; Myzus persicae) triggers responses characteristic of PTI in Arabidopsis (Arabidopsis thaliana). Two separate eliciting GPA-derived fractions trigger induced resistance to GPA that is dependent on the leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)/SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3, which is a key regulator of several leucine-rich repeat-containing PRRs. BAK1 is required for GPA elicitor-mediated induction of reactive oxygen species and callose deposition. Arabidopsis bak1 mutant plants are also compromised in immunity to the pea aphid (Acyrthosiphon pisum), for which Arabidopsis is normally a nonhost. Aphid-derived elicitors induce expression of PHYTOALEXIN DEFICIENT3 (PAD3), a key cytochrome P450 involved in the biosynthesis of camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA. PAD3 is also required for induced resistance to GPA, independently of BAK1 and reactive oxygen species production. Our results reveal that plant innate immunity to insects may involve early perception of elicitors by cell surface-localized PRRs, leading to subsequent downstream immune signaling.

  14. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots.

    PubMed

    Wang, Jian Wen; Zheng, Li Ping; Zhang, Ben; Zou, Ting

    2009-11-01

    This work examined the accumulation of artemisinin and related secondary metabolism pathways in hairy root cultures of Artemisia annua L. induced by a fungal-derived cerebroside (2S,2'R,3R,3'E,4E,8E)-1-O-beta-D-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. The presence of the cerebroside induced nitric oxide (NO) burst and artemisinin biosynthesis in the hairy roots. The endogenous NO generation was examined to be involved in the cerebroside-induced biosynthesis of artemisinin by using NO inhibitors, N (omega)-nitro-L-arginine methyl ester and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The gene expression and activity of 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate synthase were stimulated by the cerebroside, but more strongly by the potentiation of NO. While the mevalonate pathway inhibitor, mevinolin, only partially inhibited the induced artemisinin accumulation, the plastidic 2-C-methyl-D-erythritol 4-phosphate pathway inhibitor, fosmidomycin, nearly arrested artemisinin accumulation induced by cerebroside and the combination elicitation with an NO donor, sodium nitroprusside (SNP). With the potentiation by SNP at 10 microM, the cerebroside elicitor stimulated artemisinin production in 20-day-old hairy root cultures up to 22.4 mg/l, a 2.3-fold increase over the control. These results suggest that cerebroside plays as a novel elicitor and the involvement of NO in the signaling pathway of the elicitor activity for artemisinin biosynthesis.

  15. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    PubMed

    ter Braak, Bas; Laughton, Alice M; Altincicek, Boran; Parker, Benjamin J; Gerardo, Nicole M

    2013-01-01

    Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  16. O-Methyltransferases involved in biphenyl and dibenzofuran biosynthesis.

    PubMed

    Khalil, Mohammed N A; Brandt, Wolfgang; Beuerle, Till; Reckwell, Dennis; Groeneveld, Josephine; Hänsch, Robert; Gaid, Mariam M; Liu, Benye; Beerhues, Ludger

    2015-07-01

    Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.

  17. O-Methyltransferases involved in biphenyl and dibenzofuran biosynthesis.

    PubMed

    Khalil, Mohammed N A; Brandt, Wolfgang; Beuerle, Till; Reckwell, Dennis; Groeneveld, Josephine; Hänsch, Robert; Gaid, Mariam M; Liu, Benye; Beerhues, Ludger

    2015-07-01

    Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented. PMID:26017378

  18. Exposure to Bacterial Signals Does Not Alter Pea Aphids’ Survival upon a Second Challenge or Investment in Production of Winged Offspring

    PubMed Central

    ter Braak, Bas; Laughton, Alice M.; Altincicek, Boran; Parker, Benjamin J.; Gerardo, Nicole M.

    2013-01-01

    Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections. PMID:24009760

  19. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics.

    PubMed

    Zulak, Katherine G; Khan, Morgan F; Alcantara, Joenel; Schriemer, David C; Facchini, Peter J

    2009-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.

  20. The Leucine-Rich Repeat Receptor-Like Kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the Cytochrome P450 PHYTOALEXIN DEFICIENT3 Contribute to Innate Immunity to Aphids in Arabidopsis1[C][W][OPEN

    PubMed Central

    Prince, David C.; Drurey, Claire; Zipfel, Cyril; Hogenhout, Saskia A.

    2014-01-01

    The importance of pathogen-associated molecular pattern-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here, we show that PTI is an important component of plant innate immunity to insects. Extract of the green peach aphid (GPA; Myzus persicae) triggers responses characteristic of PTI in Arabidopsis (Arabidopsis thaliana). Two separate eliciting GPA-derived fractions trigger induced resistance to GPA that is dependent on the leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)/SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3, which is a key regulator of several leucine-rich repeat-containing PRRs. BAK1 is required for GPA elicitor-mediated induction of reactive oxygen species and callose deposition. Arabidopsis bak1 mutant plants are also compromised in immunity to the pea aphid (Acyrthosiphon pisum), for which Arabidopsis is normally a nonhost. Aphid-derived elicitors induce expression of PHYTOALEXIN DEFICIENT3 (PAD3), a key cytochrome P450 involved in the biosynthesis of camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA. PAD3 is also required for induced resistance to GPA, independently of BAK1 and reactive oxygen species production. Our results reveal that plant innate immunity to insects may involve early perception of elicitors by cell surface-localized PRRs, leading to subsequent downstream immune signaling. PMID:24586042

  1. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves.

    PubMed

    Lawrence, Susan D; Novak, Nicole G; Ju, Chelsea J-T; Cooke, Janice E K

    2008-08-01

    Colorado potato beetle (CPB) is a leading pest of solanaceous plants. Despite the economic importance of this pest, surprisingly few studies have been carried out to characterize its molecular interaction with the potato plant. In particular, little is known about the effect of CPB elicitors on gene expression associated with the plant's defense response. In order to discover putative CPB elicitor-responsive genes, the TIGR 11,421 EST Solanaceae microarray was used to identify genes that are differentially expressed in response to the addition of CPB regurgitant to wounded potato leaves. By applying a cutoff corresponding to an adjusted P-value of <0.01 and a fold change of >1.5 or <0.67, we found that 73 of these genes are induced by regurgitant treatment of wounded leaves when compared to wounding alone, whereas 54 genes are repressed by this treatment. This gene set likely includes regurgitant-responsive genes as well as wounding-responsive genes whose expression patterns are further enhanced by the presence of regurgitant. Real-time polymerase chain reaction was used to validate differential expression by regurgitant treatment for five of these genes. In general, genes that encoded proteins involved in secondary metabolism and stress were induced by regurgitant; genes associated with photosynthesis were repressed. One induced gene that encodes aromatic amino acid decarboxylase is responsible for synthesis of the precursor of 2-phenylethanol. This is significant because 2-phenylethanol is recognized by the CPB predator Perillus bioculatis. In addition, three of the 16 type 1 and type 2 proteinase inhibitor clones present on the potato microarray were repressed by application of CPB regurgitant to wounded leaves. Given that proteinase inhibitors are known to interfere with digestion of proteins in the insect midgut, repression of these proteinase inhibitors by CPB may inhibit this component of the plant's defense arsenal. These data suggest that beyond the wound

  2. Differential mRNA Degradation of Two β-Tubulin Isoforms Correlates with Cytosolic Ca2+ Changes in Glucan-Elicited Soybean Cells1

    PubMed Central

    Ebel, Chantal; Gómez, Lourdes Gómez; Schmit, Anne-Catherine; Neuhaus-Url, Gabriele; Boller, Thomas

    2001-01-01

    Transgenic soybean (Glycine max) culture cells expressing apoaequorin, a Ca2+ indicator, were exposed to glucan fragments derived from Phytophthora sojae or to chitin oligomers. The effects of these elicitors on cytosolic Ca2+ concentrations and on mRNA levels of two β-tubulin isoforms, tubB1 and tubB2, were investigated. The glucan elicitors, to which the cells are known to react with a biphasic cytosolic Ca2+ increase, induced a down-regulation of the tubB1 mRNA levels while the tubB2 mRNA level remained constant. The decrease of tubB1 mRNA level was observed after 1 hour of glucan treatment. In contrast, chitin oligomers, known to provoke a monophasic Ca2+ increase of short duration, did not affect the tubB1 mRNA level. Pre-incubation with 10 mm 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, an extracellular Ca2+ chelator, blocked the cytosolic Ca2+ increase as well as the decrease of tubB1 mRNA levels induced by glucan elicitors. Likewise, pre-incubation with 1 mm neomycin, which reduced only the second glucan-induced Ca2+ peak, blocked the decrease of tubB1 mRNA level. Experiments with cordycepin, a transcription inhibitor, indicated that glucan fragments induced the degradation of tubB1 mRNA. In conclusion, the glucan-induced cytosolic Ca2+ changes are correlated with a strong increase in tubB1 mRNA degradation. PMID:11351073

  3. The Vacuolar Proton-Cation Exchanger EcNHX1 Generates pH Signals for the Expression of Secondary Metabolism in Eschscholzia californica.

    PubMed

    Weigl, Sophie; Brandt, Wolfgang; Langhammer, Renate; Roos, Werner

    2016-02-01

    Cell cultures of Eschscholzia californica react to a fungal elicitor by the overproduction of antimicrobial benzophenanthridine alkaloids. The signal cascade toward the expression of biosynthetic enzymes includes (1) the activation of phospholipase A2 at the plasma membrane, resulting in a peak of lysophosphatidylcholine, and (2) a subsequent, transient efflux of vacuolar protons, resulting in a peak of cytosolic H(+). This study demonstrates that one of the Na(+)/H(+) antiporters acting at the tonoplast of E. californica cells mediates this proton flux. Four antiporter-encoding genes were isolated and cloned from complementary DNA (EcNHX1-EcNHX4). RNA interference-based, simultaneous silencing of EcNHX1, EcNHX3, and EcNHX4 resulted in stable cell lines with largely diminished capacities of (1) sodium-dependent efflux of vacuolar protons and (2) elicitor-triggered overproduction of alkaloids. Each of the four EcNHX genes of E. californica reconstituted the lack of Na(+)-dependent H(+) efflux in a Δnhx null mutant of Saccharomyces cerevisiae. Only the yeast strain transformed with and expressing the EcNHX1 gene displayed Na(+)-dependent proton fluxes that were stimulated by lysophosphatidylcholine, thus giving rise to a net efflux of vacuolar H(+). This finding was supported by three-dimensional protein homology models that predict a plausible recognition site for lysophosphatidylcholine only in EcNHX1. We conclude that the EcNHX1 antiporter functions in the elicitor-initiated expression of alkaloid biosynthetic genes by recruiting the vacuolar proton pool for the signaling process. PMID:26578709

  4. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells.

    PubMed

    Miyamoto, Koji; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2015-01-15

    Phytoalexins are antimicrobial specialised metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are major diterpenoid phytoalexins in rice that are synthesised from geranylgeranyl diphosphate that is derived from the methylerythritol phosphate (MEP) pathway. We have previously reported that rice cells overexpressing the basic leucine zipper (bZIP) transcription factor OsTGAP1 exhibit a hyperaccumulation of momilactones and phytocassanes, with hyperinductive expression of momilactone and phytocassane biosynthetic genes and MEP pathway genes, upon response to a chitin oligosaccharide elicitor. For a better understanding of OsTGAP1-mediated regulation of diterpenoid phytoalexin production, we identified OsTGAP1-interacting proteins using yeast two-hybrid screening. Among the OsTGAP1-interacting protein candidates, a TGA factor OsbZIP79 was investigated to verify its physical interaction with OsTGAP1 and involvement in the regulation of phytoalexin production. An in vitro pull-down assay demonstrated that OsTGAP1 and OsbZIP79 exhibited a heterodimeric as well as a homodimeric interaction. A bimolecular fluorescence complementation analysis also showed the interaction between OsTGAP1 and OsbZIP79 in vivo. Intriguingly, whereas OsbZIP79 transactivation activity was observed in a transient reporter assay, the overexpression of OsbZIP79 resulted in suppression of the elicitor-inducible expression of diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of phytoalexin in rice cells. These results suggest that OsbZIP79 functions as a negative regulator of phytoalexin production triggered by a chitin oligosaccharide elicitor in rice cells, although it remains open under which conditions OsbZIP79 can work with OsTGAP1.

  5. HYPERSENSITIVITY TO PENICILLENIC ACID DERIVATIVES IN HUMAN BEINGS WITH PENICILLIN ALLERGY

    PubMed Central

    Parker, Charles W.; Shapiro, Jack; Kern, Milton; Eisen, Herman N.

    1962-01-01

    Multifunctional derivatives of penicillenic acid are effective elicitors of wheal-and-erythema skin responses in humans allergic to penicillin. Of the effective derivatives, penicilloyl-polylysines are particularly attractive as skin test reagents because they appear to be incapable of inducing antibody formation. The skin responses are specifically inhibitable in most instances by homologous unifunctional haptens. The penicillenic acid derivatives which appear to be determinants of human allergic reactions to penicillin are: penicilloyl, penicillenate, and groups of the penamaldate-penilloaldehyde type. Of these, the most significant appears to be the penicilloyl-lysyl determinant. PMID:14483916

  6. Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum

    PubMed Central

    2014-01-01

    Background Plant induced defense against herbivory are generally associated with metabolic costs that result in the allocation of photosynthates from growth and reproduction to the synthesis of defense compounds. Therefore, it is essential that plants are capable of sensing and differentiating mechanical injury from herbivore injury. Studies have shown that oral secretions (OS) from caterpillars contain elicitors of induced plant responses. However, studies that shows whether these elicitors originated from salivary glands or from other organs associated with feeding, such as the ventral eversible gland (VEG) are limited. Here, we tested the hypothesis that the secretions from the VEG gland of Spodoptera exigua caterpillars contain elicitors that induce plant defenses by regulating the expression of genes involved in the biosynthesis of volatile organic compounds (VOCs) and other defense-related genes. To test this hypothesis, we quantified and compared the activity of defense-related enzymes, transcript levels of defense-related genes and VOC emission in tomato plants damaged by S. exigua caterpillars with the VEG intact (VEGI) versus plants damaged by caterpillars with the VEG ablated (VEGA). Results The quantified defense-related enzymes (i.e. peroxidase, polyphenol oxidase, and lipoxigenase) were expressed in significantly higher amounts in plants damaged by VEGI caterpillars than in plants damaged by VEGA caterpillars. Similarly, the genes that encode for the key enzymes involved in the biosynthesis of jasmonic acid and terpene synthase genes that regulate production of terpene VOCs, were up-regulated in plants damaged by VEGI caterpillars. Moreover, the OS of VEGA caterpillars were less active in inducing the expression of defense genes in tomato plants. Increased emissions of VOCs were detected in the headspace of plants damaged by VEGI caterpillars compared to plants damaged by VEGA caterpillars. Conclusion These results suggest that the VEG of S. exigua

  7. Environmental and genotypic influences on isoquinoline alkaloid content in Sanguinaria canadensis.

    PubMed

    Salmore, A K; Hunter, M D

    2001-09-01

    In a common garden, we investigated genetic and environmental influences on alkaloid production using Sanguinaria canadensis as a model. Nutrient and shade regimes were applied to replicated clones over one growing season, and induction of alkaloid production in bloodroot was tested on a whole-plant basis using jasmonic acid as an elicitor. Alkaloid concentrations increased with decreasing light intensity and fertilizer levels. Induction was not achieved by foliar application of jasmonic acid. Genetic influences represented by clone effects may be indicated by variation in alkaloid concentration by clone, but this experimental design did not allow us to distinguish genetic from pre-experiment environmental influences on the rhizomes.

  8. Potential Role of Elicitins in the Interaction between Phytophthora Species and Tobacco

    PubMed Central

    Kamoun, Sophien; Young, Mary; Förster, Helga; Coffey, Michael D.; Tyler, Brett M.

    1994-01-01

    The potential role of extracellular elicitor proteins (elicitins) from Phytophthora species as avirulence factors in the interaction between Phytophthora and tobacco was examined. A survey of 85 Phytophthora isolates representing 14 species indicated that production of elicitin is almost ubiquitous except for isolates of Phytophthora parasitica from tobacco. The production of elicitins by isolates of P. parasitica correlated without exception with low or no virulence on tobacco. Genetic analysis was conducted by using a cross between two isolates of P. parasitica, segregating for production of elicitin and virulence on tobacco. Virulence assays of the progeny on tobacco confirmed the correlation between production of elicitin and low virulence. Images PMID:16349258

  9. Phosphatidic acid: an emerging plant lipid second messenger.

    PubMed

    Munnik, T

    2001-05-01

    Evidence is accumulating that phosphatidic acid is a second messenger. Its level increases within minutes of a wide variety of stress treatments including ethylene, wounding, pathogen elicitors, osmotic and oxidative stress, and abscisic acid. Enhanced signal levels are rapidly attenuated by phosphorylating phosphatidic acid to diacylglycerol pyrophosphate. Phosphatidic acid is the product of two signalling pathways, those of phospholipases C and D, the former in combination with diacylglycerol kinase. Families of these genes are now being cloned from plants. Several downstream targets of phosphatidic acid have been identified, including protein kinases and ion channels.

  10. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22

    PubMed Central

    Mhlongo, Msizi I.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Steenkamp, Paul A.; Dubery, Ian A.

    2016-01-01

    Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role. PMID:26978774

  11. The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection.

    PubMed

    Lovato, Fernanda Antinolfi; Inoue-Nagata, Alice Kazuko; Nagata, Tatsuya; de Avila, Antônio Carlos; Pereira, Luiz Alfredo Rodrigues; Resende, Renato Oliveira

    2008-11-01

    In sweet pepper, the Tsw gene, originally described in Capsicum chinense, has been widely used as an efficient gene for inducing a hypersensitivity response (HR) derived Tomato spotted wilt virus (TSWV) resistance. Since previously reported studies suggested that the TSWV-S RNA mutation(s) are associated with the breakdown of Tsw mediated TSWV resistance in peppers, the TSWV genes N (structural nucleocapsid protein) and NS(S) (non-structural silencing suppressor protein) were cloned into a Potato virus X (PVX)-based expression vector, and inoculated into the TSWV-resistant C. chinense genotype, PI 159236, to identify the Tsw-HR viral elicitor. Typical HR-like chlorotic and necrotic lesions followed by leaf abscission were observed only in C. chinense plants inoculated with the PVX-N construct. Cytopathological analyses of these plants identified fragmented genomic DNA, indicative of programmed cell death (PCD), in mesophyll cell nuclei surrounding PVX-N-induced necrotic lesions. The other constructs induced only PVX-like symptoms without HR-like lesions and there were no microscopic signs of PCD. The mechanism of TSWV N-gene HR induction is apparently species specific as the N gene of a related tospovirus, Tomato chlorotic spot virus, was not a HR elicitor and did not cause PCD in infected cells.

  12. Anthranilate synthase from Ruta graveolens. Duplicated AS alpha genes encode tryptophan-sensitive and tryptophan-insensitive isoenzymes specific to amino acid and alkaloid biosynthesis.

    PubMed Central

    Bohlmann, J; Lins, T; Martin, W; Eilert, U

    1996-01-01

    Anthranilate synthase (AS, EC 4.1.3.27) catalyzes the conversion of chorismate into anthranilate, the biosynthetic precursor of both tryptophan and numerous secondary metabolites, including inducible plant defense compounds. The higher plant Ruta graveolens produces tryptophan and elicitor-inducible, anthranilate-derived alkaloids by means of two differentially expressed nuclear genes for chloroplast-localized AS alpha subunits, AS alpha 1 and AS alpha 2. Mechanisms that partition chorismate between tryptophan and inducible alkaloids thus do not entail chloroplast/cytosol separation of AS isoenzymes and yet might involve differential feedback regulation of pathway-specific AS alpha subunits. The two AS alpha isoenzymes of R. graveolens were expressed as glutathione S-transferase fusion proteins in Escherichia coli deletion mutants defective in AS activity and were purified to homogeneity. Differential sensitivity of the transformed E. coli strains toward 5-methyltryptophan, a false-feedback inhibitor of AS, was demonstrated. Characterization of affinity-purified AS alpha isoenzymes revealed that the noninducible AS alpha 2 of R. graveolens is strongly feedback inhibited by 10 microns tryptophan. In contrast, the elicitor-inducible AS alpha 1 isoenzyme is only slightly affected even by tryptophan concentrations 10-fold higher than those observed in planta. These results are consistent with the hypothesis that chorismate flux into biosynthesis of tryptophan and defense-related alkaloid biosynthesis in R. graveolens is regulated at the site of AS alpha isoenzymes at both genetic and enzymatic levels. PMID:8787026

  13. Elicitation of Diosgenin Production in Trigonella foenum-graecum (Fenugreek) Seedlings by Methyl Jasmonate.

    PubMed

    Chaudhary, Spandan; Chikara, Surendra K; Sharma, Mahesh C; Chaudhary, Abhinav; Alam Syed, Bakhtiyar; Chaudhary, Pooja S; Mehta, Aditya; Patel, Maulik; Ghosh, Arpita; Iriti, Marcello

    2015-01-01

    The effects of methyl jasmonate (MeJA), an elicitor of plant defense mechanisms, on the biosynthesis of diosgenin, a steroidal saponin, were investigated in six fenugreek (Trigonella foenum-graecum) varieties (Gujarat Methi-2, Kasuri-1, Kasuri-2, Pusa Early Branching, Rajasthan Methi and Maharashtra Methi-5). Treatment with 0.01% MeJA increased diosgenin levels, in 12 days old seedlings, from 0.5%-0.9% to 1.1%-1.8%. In addition, MeJA upregulated the expression of two pivotal genes of the mevalonate pathway, the metabolic route leading to diosgenin: 3-hydroxy-3-methylglutaryl-CoA reductase (HMG) and sterol-3-β-glucosyl transferase (STRL). In particular, MeJA increased the expression of HMG and STRL genes by 3.2- and 22.2-fold, respectively, in the Gujarat Methi-2 variety, and by 25.4- and 28.4-fold, respectively, in the Kasuri-2 variety. Therefore, MeJA may be considered a promising elicitor for diosgenin production by fenugreek plants. PMID:26694357

  14. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses1[W][OPEN

    PubMed Central

    Paparella, Chiara; Savatin, Daniel Valentin; Marti, Lucia; De Lorenzo, Giulia; Ferrari, Simone

    2014-01-01

    Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens. PMID:24639336

  15. The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum.

    PubMed

    Shentu, Xu-Ping; Liu, Wei-Ping; Zhan, Xiao-Huan; Yu, Xiao-Ping; Zhang, Chuan-Xi

    2013-01-01

    The effects of six species of phytopathogenic fungi mycelia as elicitors on trichodermin yield by Trichoderma brevicompactum were investigated. Neither nonviable nor viable mycelia of Botrytis cinerea, Alternaria solani, Colletotrichum lindemuthianum, and Thanatephorus cucumeris demonstrated any elicitation on the accumulation of trichodermin. However, the production of trichodermin was increased by the presence of viable/nonviable Rhizoctonia solani and Fusarium oxysporum mycelia. The strongest elicitation effect was found at the presence of nonviable R. solani. At the presence of nonviable R. solani, the maximum yield of trichodermin (144.55 mg/L) was significantly higher than the Control (67.8 mg/L), and the cultivation time to obtain the maximum yield of trichodermin decreased from 72 h to 60 h. No difference of trichodermin accumulation was observed by changing the concentration of nonviable R. solani from 0.1 to 1.6 g/L. It was observed that the optimum time for adding nonviable R. solani is immediately after inoculation. The diameter of T. brevicompactum mycelial globule after 72 h cultivation with nonviable R. solani elicitor was smaller than that of the Control. PMID:24385883

  16. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain.

    PubMed

    Chen, Xiaojiao; Zhu, Min; Jiang, Lei; Zhao, Wenyang; Li, Jia; Wu, Jianyan; Li, Chun; Bai, Baohui; Lu, Gang; Chen, Hongyu; Moffett, Peter; Tao, Xiaorong

    2016-10-01

    The tomato resistance protein Sw-5b differs from the classical coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) resistance proteins by having an extra N-terminal domain (NTD). To understand how NTD, CC and NB-LRR regulate autoinhibition and activation of Sw-5b, we dissected the function(s) of each domain. When viral elicitor was absent, Sw-5b LRR suppressed the central NB-ARC to maintain autoinhibition of the NB-LRR segment. The CC and NTD domains independently and additively enhanced the autoinhibition of NB-LRR. When viral elicitor was present, the NB-LRR segment of Sw-5b was specifically activated to trigger a hypersensitive response. Surprisingly, Sw-5b CC suppressed the activation of NB-LRR, whereas the extra NTD of Sw-5b became a positive regulator and fully activated the resistance protein, probably by relieving the inhibitory effects of the CC. In infection assays of transgenic plants, the NB-LRR segment alone was insufficient to confer resistance against Tomato spotted wilt tospovirus; the layers of NTD and CC regulation on NB-LRR were required for Sw-5b to confer resistance. Based on these findings, we propose that, to counter the negative regulation of the CC on NB-LRR, Sw-5b evolved an extra NTD to coordinate with the CC, thus developing a multilayered regulatory mechanism to control autoinhibition and activation.

  17. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  18. Oomycete Interactions with Plants: Infection Strategies and Resistance Principles

    PubMed Central

    Fawke, Stuart; Doumane, Mehdi

    2015-01-01

    SUMMARY The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap. PMID:26041933

  19. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.

    PubMed

    da Silva, Leonardo F; Dias, Cristiano V; Cidade, Luciana C; Mendes, Juliano S; Pirovani, Carlos P; Alvim, Fátima C; Pereira, Gonçalo A G; Aragão, Francisco J L; Cascardo, Júlio C M; Costa, Marcio G C

    2011-07-01

    Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

  20. In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium).

    PubMed

    Darvishi, E; Kahrizi, D; Bahraminejad, S; Mansouri, M

    2016-01-01

    Medicinal plants are known as important sources of secondary metabolites. Because of the economic value of pennyroyal [Mentha pulegium L. (Lamiaceae)] in food industries, propagation of this valuable plant has special importance. Plant cell suspension culture can increase some produced components. The aim of this research was performing cell culture for induction of some secondary metabolites of M. pulegium and compares it with native one. The MS medium was used for suspension culture. To investigate quantitative materials, 4 levels of yeast extract elicitor (20, 40, 60 and 80 mg/L) and salicylic acid in 4 levels (2, 4, 6 and 8 mg/L) were used. Obtained extracts were analyzed by GC-MS. Statistical analysis showed that the amount of limonene, menthone, menthol and α-pinene were more than mentioned compounds in natural plant as control. The maximum amount of this metabolites were obtained as limonene (in 60 mg/l yeast extract), menthone (in 40 mg/l yeast extract and 2 mg/l salicylic acid), menthol (in 6 mg/l salicylic acid) and α-pinene (in 4 mg/l salicylic acid) in the M. pulegium cell culture. The Pulegone was fond more in natural plants than cell culture mass. The most important secondary metabolites were increased by cell culture containing of salicylic acid and yeast extract elicitors in M. pulegume. PMID:27064866

  1. Race-specific molecules that protect soybeans from Phytophthora megasperma var. sojae*

    PubMed Central

    Wade, Mark; Albersheim, Peter

    1979-01-01

    Phytophthora megasperma var. sojae (A. A. Hildebrand) is a fungal stem and root rot-causing pathogen of soybeans. Glycoproteins secreted into the medium of the aseptically cultured fungus have been partially purified by (NH4)2SO4 precipitation and by column chromatography on norleucine-substituted Sepharose 4B and on DEAE-cellulose. Glycoprotein preparations from P. megasperma var. sojae races 1, 2, and 3 have been tested on four cultivars of soybeans. The partially purified glycoproteins from incompatible races of the pathogen (races that cannot successfully infect the plant), but not those from compatible races (races that can kill the plant), protect soybean seedlings from attack by compatible races. The seedlings are protected by introducing the glycoproteins into hypocotyl wounds of seedlings either 90 min prior to or at the time of inoculation of the wounds with mycelia of one of the pathogens. The glycoprotein preparations are poor nonspecific elicitors of phytoalexin accumulation; the glycoproteins have less than 1.0% of the elicitor activity of the glucans present in the mycelial walls of the pathogen. Images PMID:16592713

  2. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    PubMed

    Mhlongo, Msizi I; Piater, Lizelle A; Madala, Ntakadzeni E; Steenkamp, Paul A; Dubery, Ian A

    2016-01-01

    Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role. PMID:26978774

  3. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts.

    PubMed

    Athukorala, Sarangi N P; Piercey-Normore, Michele D

    2015-01-01

    Recognition and defense responses are early events in plant-pathogen interactions and between lichen symbionts. The effect of elicitors on responses between lichen symbionts is not well understood. The objective of this study was to compare the difference in recognition- and defense-related gene expression as a result of culture extracts (containing secreted water-soluble elicitors) from compatible and incompatible interactions at each of 3 resynthesis stages in the symbionts of Cladonia rangiferina. This study investigated gene expression by quantitative PCR in cultures of C. rangiferina and its algal partner, Asterochloris glomerata/irregularis, after incubation with liquid extracts from cultures of compatible and incompatible interactions at 3 early resynthesis stages. Recognition-related genes were significantly upregulated only after physical contact, demonstrating symbiont recognition in later resynthesis stages than expected. One of 3 defense-related genes, chit, showed significant downregulation in early resynthesis stages and upregulation in the third resynthesis stage, demonstrating a need for the absence of chitinase early in thallus formation and a need for its presence in later stages as an algal defense reaction. This study revealed that recognition- and defense-related genes are triggered by components in culture extracts at 3 stages of resynthesis, and some defense-related genes may be induced throughout thallus growth. The parasitic nature of the interaction shows parallels between lichen symbionts and plant pathogenic systems. PMID:25485526

  4. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. PMID:22313362

  5. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts.

    PubMed

    Mendoza-Sánchez, Magdalena; Guevara-González, Ramón G; Castaño-Tostado, Eduardo; Mercado-Silva, Edmundo M; Acosta-Gallegos, Jorge A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2016-12-01

    The aim of this study was to determine the effect of chitosan (CH), salicylic acid (SA) and hydrogen peroxide (H2O2) at different concentrations on the antinutritional and nutraceutical content, as well as the antioxidant capacity of bean sprouts (cv Dalia). All elicitors at medium and high concentrations reduced the antinutritional content of lectins (48%), trypsin inhibitor (57%), amylase inhibitor (49%) and phytic acid (56%). Sprouts treated with CH, SA and H2O2 (7μM; 1 and 2mM, and 30mM respectively) increased the content of phenolic compounds (1.8-fold), total flavonoids (3-fold), saponins (1.8-fold) and antioxidant capacity (37%). Furthermore, the UPLC-ESI-MS/MS analysis showed an increase of several nutraceutical compounds in bean sprouts treated with SA such as coumaric (8.5-fold), salicylic (115-fold), gallic (25-fold) and caffeic (1.7-fold) acids, as well as epigallocatechin (63-fold), rutin (41-fold) and quercetin (16.6-fold) flavonoids. The application of elicitors in bean seed during sprouting enhances their nutraceutical properties.

  6. Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate.

    PubMed

    Kirakosyan, Ara; Kaufman, Peter B; Chang, Soo Chul; Warber, Sara; Bolling, Steven; Vardapetyan, Hrachik

    2006-12-01

    A mini-hydroponic growing system was employed for seedlings of kudzu vine (Pueraria montana) and contents of isoflavones (daidzein, genistein, daidzin, genistin, and puerarin) from shoot and root parts of seedlings were analyzed quantitatively. In addition, exogenous cork pieces, polymeric adsorbent, XAD-4, and universal elicitor, methyl jasmonate (MeJA), were used to regulate the production of these isoflavones. It was shown that cork pieces up-regulate the production of daidzein and genistein up to seven- and eight-fold greater than the levels obtained for control roots. In contrast, levels of glucosyl conjugates, daidzin and genistin, decrease up to five- and eight-fold, respectively. Cork treatment also induces the excretion of the root isoflavone constituents into the growth medium. Minimal levels of isoflavones are absorbed by the cork pieces. XAD-4 stimulates the production of glucosyl conjugates, daidzin and genistin, in root parts about 1.5-fold greater than that obtained in control roots. These are the highest amounts of daidzin and genistin that are observed (5.101 and 6.759 mg g(-1) dry weight, respectively). In contrast to these two adsorbents, MeJA increases the accumulation of isoflavones in shoot rather than in root parts of seedlings, about three- to four-fold over control levels, with the exception of genistein. These studies reveal new observations on the regulation of isoflavone production in hydroponically grown Pueraria montana plants by two adsorbents (cork pieces and XAD-4) and MeJA elicitor. PMID:16841218

  7. Cell-specific production and antimicrobial activity of naphthoquinones in roots of lithospermum erythrorhizon

    PubMed

    Brigham; Michaels; Flores

    1999-02-01

    Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on "noninducing" medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and beta-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed "hairy-root" cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere.

  8. PIOX, a new pathogen-induced oxygenase with homology to animal cyclooxygenase.

    PubMed

    Sanz, A; Moreno, J I; Castresana, C

    1998-09-01

    Changes in gene expression induced in tobacco leaves by the harpin HrpN protein elicitor were examined, and a new cDNA, piox (for pathogen-induced oxygenase), with homology to genes encoding cyclooxygenase or prostaglandin endoperoxide synthase (PGHS), was identified. In addition to the amino acid identity determined, the protein encoded by piox is predicted to have a structural core similar to that of ovine PGHS-1. Moreover, studies of protein functionality demonstrate that the PIOX recombinant protein possesses at least one of the two enzymatic activities of PGHSs, that of catalyzing the oxygenation of polyunsaturated fatty acids. piox transcripts accumulated after protein elicitor treatment or inoculation with bacteria. Expression of piox was induced in tissues responding to inoculation with both incompatible and compatible bacteria, but RNA and protein accumulation differed for both types of interactions. We show that expression of piox is rapidly induced in response to various cellular signals mediating plant responses to pathogen infection and that activation of piox expression is most likely related to the oxidative burst that takes place during the cell death processes examined. Cyclooxygenase catalyzes the first committed step in the formation of prostaglandins and thromboxanes, which are lipid-derived signal molecules that mediate many cellular processes, including the immune response in vertebrates. The finding of tobacco PIOX suggests that more similarities than hitherto expected will be found between the lipid-based responses for plant and animal systems.

  9. Effects of an innovative strategy to contain grapevine Bois noir: field treatment with resistance inducers.

    PubMed

    Romanazzi, Gianfranco; Murolo, Sergio; Feliziani, Erica

    2013-08-01

    Grapevine Bois noir (BN) is a phytoplasma disease that is widespread in most viticultural regions of the world, and it can result in heavy reductions to yields and grape juice quality. At present, there is no effective strategy to reduce the incidence of BN-infected grapevines. However, phytoplasma-infected plants can recover through spontaneous or induced symptom remission. Five elicitors (chitosan, two glutathione-plus-oligosaccharine formulations, benzothiadiazole, and phosetyl-Al) were applied weekly to the canopy of BN-infected 'Chardonnay' grapevines from early May to late July. The best and most constant recovery inductions were obtained with benzothiadiazole and the two glutathione-plus-oligosaccharine formulations. The plants that recovered naturally or following the elicitors showed qualitative and quantitative parameters of production no different from healthy plants. In another vineyard, diseased plants showed reduced shoot length and production compared with healthy plants, and there were no negative effects on these parameters for grapevines sprayed with a glutathione-plus-oligosaccharine formulation. The application of resistance inducers promoted the recovery of BN-infected grapevines with no adverse effects on the plants. Therefore, grapevine can be used as a model species to test this innovative strategy to contain phytoplasma diseases. PMID:23489522

  10. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato[C][W][OA

    PubMed Central

    El Oirdi, Mohamed; El Rahman, Taha Abd; Rigano, Luciano; El Hadrami, Abdelbasset; Rodriguez, María Cecilia; Daayf, Fouad; Vojnov, Adrian; Bouarab, Kamal

    2011-01-01

    Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host. PMID:21665999

  11. Mechanisms of plant defense against insect herbivores.

    PubMed

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-10-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.

  12. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  13. Hypoglycemic activity of withanolides and elicitated Withania somnifera.

    PubMed

    Gorelick, Jonathan; Rosenberg, Rivka; Smotrich, Avinoam; Hanuš, Lumír; Bernstein, Nirit

    2015-08-01

    Withania somnifera, known in India as Asghawhanda, is used traditionally to treat many medical problems including diabetes and has demonstrated therapeutic activity in various animal models as well as in diabetic patients. While much of W. somnifera's therapeutic activity is attributed to withanolides, their role in the anti-diabetic activity of W. somnifera has not been adequately studied. In the present study, we evaluated the anti-diabetic activity of W. somnifera extract and purified withanolides, as well as the effect of various elicitors on this activity. W. somnifera leaf and root extracts increased glucose uptake in myotubes and adipocytes in a dose dependent manner, with the leaf extract more active than the root extract. Leaf but not root extract increased insulin secretion in basal pancreatic beta cells but not in stimulated cells. Six withanolides isolated from W. somnifera were tested for anti-diabetic activity based on glucose uptake in skeletal myotubes. Withaferin A was found to increase glucose uptake, with 10μM producing a 54% increase compared with control, suggesting that withaferin A is at least partially responsible for W. somnifera's anti-diabetic activity. Elicitors applied to the root growing solutions affected the physiological state of the plants, altering membrane leakage or osmotic potential. Methyl salicylate and chitosan increased withaferin A content by 75% and 69% respectively, and extracts from elicited plants increased glucose uptake to a higher extent than non-elicited plants, demonstrating a correlation between increased content of withaferin A and anti-diabetic activity.

  14. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

    PubMed Central

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-01

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310

  15. EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas.

    PubMed

    Hadwiger, Lee A; Tanaka, Kiwamu

    2014-12-23

    Pea pod endocarp suppresses the growth of an inappropriate fungus or non-pathogen by generating a "non-host resistance response" that completely suppresses growth of the challenging fungus within 6 h. Most of the components of this resistance response including pisatin production can be elicited by an extensive number of both biotic and abiotic inducers. Thus this phytoalexin serves as an indicator to be used in evaluating the chemical properties of inducers that can initiate the resistance response. Many of the pisatin inducers are reported to interact with DNA and potentially cause DNA damage. Here we propose that EDTA (ethylenediaminetetraacetic acid) is an elicitor to evoke non-host resistance in plants. EDTA is manufactured as a chelating agent, however at low concentration it is a strong elicitor, inducing the phytoalexin pisatin, cellular DNA damage and defense-responsive genes. It is capable of activating complete resistance in peas against a pea pathogen. Since there is also an accompanying fragmentation of pea DNA and alteration in the size of pea nuclei, the potential biochemical insult as a metal chelator may not be its primary action. The potential effects of EDTA on the structure of DNA within pea chromatin may assist the transcription of plant defense genes.

  16. Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole.

    PubMed

    Shang, Minmin; Ding, Wei; Zhao, Yongteng; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2016-10-20

    Haematococcus pluvialis is a promising natural source of high-value antioxidant astaxanthin under stress conditions. Biotic or abiotic elicitors are effective strategies for improving astaxanthin production in H. pluvialis. Butylated hydroxyanisole (BHA) was identified as an effective inducer for H. pluvialis LUGU. Under a treatment of 2mgL(-1) BHA (BHA2), astaxanthin content reached a maximum of 29.03mgg(-1) dry weight (DW) (2.03-fold of that in the control) after 12day of the mid-exponential growth phase. Subsequently, H. pluvialis LUGU was subjected to BHA2 at different growth phases because an appropriate time node for adding elicitors is vital for the entire production to succeed. As a result, the highest astaxanthin content (29.3mgg(-1) DW) was obtained in cells on day 14 (BHA2 14) of the late-exponential growth phase. Furthermore, the samples treated with BHA2 14 and the control group were compared in terms of the transcriptional expression of seven carotenogenesis genes, fatty acid composition, and total accumulated astaxanthin. All selected genes exhibited up-regulated expression profiles, with chy, crtO, and bkt exhibiting higher maximum transcriptional levels than the rest. Oleic acid content increased 33.15-fold, with acp, fad, and kas expression being enhanced on the day when astaxanthin was produced rapidly. PMID:27590093

  17. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    PubMed

    Salmela, Heli; Amdam, Gro V; Freitak, Dalial

    2015-07-01

    Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin. PMID:26230630

  18. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts.

    PubMed

    Mendoza-Sánchez, Magdalena; Guevara-González, Ramón G; Castaño-Tostado, Eduardo; Mercado-Silva, Edmundo M; Acosta-Gallegos, Jorge A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2016-12-01

    The aim of this study was to determine the effect of chitosan (CH), salicylic acid (SA) and hydrogen peroxide (H2O2) at different concentrations on the antinutritional and nutraceutical content, as well as the antioxidant capacity of bean sprouts (cv Dalia). All elicitors at medium and high concentrations reduced the antinutritional content of lectins (48%), trypsin inhibitor (57%), amylase inhibitor (49%) and phytic acid (56%). Sprouts treated with CH, SA and H2O2 (7μM; 1 and 2mM, and 30mM respectively) increased the content of phenolic compounds (1.8-fold), total flavonoids (3-fold), saponins (1.8-fold) and antioxidant capacity (37%). Furthermore, the UPLC-ESI-MS/MS analysis showed an increase of several nutraceutical compounds in bean sprouts treated with SA such as coumaric (8.5-fold), salicylic (115-fold), gallic (25-fold) and caffeic (1.7-fold) acids, as well as epigallocatechin (63-fold), rutin (41-fold) and quercetin (16.6-fold) flavonoids. The application of elicitors in bean seed during sprouting enhances their nutraceutical properties. PMID:27374516

  19. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.).

    PubMed

    Kim, Hyun-Jin; Chen, Feng; Wang, Xi; Rajapakse, Nihal C

    2005-05-01

    The effect of the treatment of chitosan at various concentrations (0.01%, 0.05%, 0.1%, 0.5%, and 1%) upon sweet basil (Ocimum basilicum L.) before seeding and transplanting was investigated in aspects of the amount of phenolic and terpenic compounds, antioxidant activity, and growth of the basil, as well as the phenylalanine ammonia lyase (PAL) activity. The total amount of the phenolic and terpenic compounds increased after the chitosan treatment. Especially, the amounts of rosmarinic acid (RA) and eugenol increased 2.5 times and 2 times, respectively, by 0.1% and 0.5% chitosan treatment. Due to the significant induction of phenolic compounds, especially RA, the corresponding antioxidant activity assayed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging test increased at least 3.5-fold. Also, the activity of PAL, a key regulatory enzyme for the phenylpropanoid pathway, increased 32 times by 0.5% chitosan solution. Moreover, after the elicitor chitosan treatment, the growth in terms of the weight and height of the sweet basil significantly increased about 17% and 12%, respectively. Our study demonstrates that an elicitor such as chitosan can effectively induce phytochemicals in plants, which might be another alternative and effective means instead of genetic modification.

  20. Differential enhancement of benzophenanthridine alkaloid content in cell suspension cultures of Sanguinaria canadensis under conditions of combined hormonal deprivation and fungal elicitation.

    PubMed

    Cline, S D; McHale, R J; Coscia, C J

    1993-08-01

    An elicitation protocol, resulting in the accumulation of sanguinarine in suspension cultures of Papaver bracteatum, was assessed for induction of the same alkaloid in Sanguinaria canadensis. Although only a trace constituent of P. bracteatum plants, sanguinarine is a major alkaloid (1-3% dry wt) of S. canadensis rhizomes. By combining hormonal deprivation for various intervals and a 3-day fungal (Verticillium dahliae) elicitation, benzophenanthridine alkaloid accumulation was induced in S. canadensis cell suspensions. Chelirubine content increased (0.1-1.3% dry wt) consistently in elicited cell cultures while chelerythrine (0.01-0.10% dry wt) and sanguinarine (0-0.02% dry wt) levels were considerably less. Alkaloid accumulation always occurred upon removal of hormone but only at certain time intervals in the log phase upon fungal elicitation. Levels of dopamine, a precursor of the alkaloids, fluctuated over the incubation period, but displayed a 2- to 6-fold increase in cell suspensions grown without hormone. In some experiments dopamine accumulated to levels > 20% dry wt, and these increases were enhanced by the addition of fungal elicitor. Although the same fungal elicitor induces benzophenanthridines in taxonomically related S. canadensis and P. bracteatum, it did not elicit the accumulation of the same alkaloid in the two different plant cultures.

  1. Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinaria canadensis.

    PubMed

    Mahady, G B; Beecher, C W

    1994-12-01

    Addition of micromolar concentrations of quercetin or rutin to suspension cell cultures of Sanguinaria canadensis L. (bloodroot) induced the biosynthesis of sanguinarine and chelerythrine in a dose-dependent manner. In contrast, related compounds: baicalein, naringin, naringenin, catechin, caffeic acid and benzoic acid displayed very weak inductive activity. Of the two active flavonoids, quercetin was the most effective for inducing benzophenanthridine alkaloid biosynthesis, with doses of 100 microM increasing alkaloid production over 375% as compared to negative controls. Quercetin's inductive effects were similar to that of an elicitor derived from fungus Penicillium expansum (PE-elicitor). Suppression of quercetin and PE-induced alkaloid biosynthesis by low doses of actinomycin D (5 micrograms/ml, alpha-amanitin (20 micrograms/ml), or cycloheximide (1 microgram/ml) demonstrate a requirement for both RNA and de novo cytoplasmic protein synthesis and suggest that alterations in gene expression are involved in the inductive mechanism. Furthermore, quercetin-induced alkaloid biosynthesis was significantly reduced by pretreatment of the cells with the calcium chelator, EGTA (3 mM), or the calcium channel inhibitor, verapamil (100 microM), suggesting that this process was calcium dependent.

  2. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin

    PubMed Central

    Salmela, Heli; Amdam, Gro V.; Freitak, Dalial

    2015-01-01

    Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin. PMID:26230630

  3. PAMP Activity of Cerato-Platanin during Plant Interaction: An -Omic Approach

    PubMed Central

    Luti, Simone; Caselli, Anna; Taiti, Cosimo; Bazihizina, Nadia; Gonnelli, Cristina; Mancuso, Stefano; Pazzagli, Luigia

    2016-01-01

    Cerato-platanin (CP) is the founder of a fungal protein family consisting in non-catalytic secreted proteins, which work as virulence factors and/or as elicitors of defense responses and systemic resistance, thus acting as PAMPs (pathogen-associated molecular patterns). Moreover, CP has been defined an expansin-like protein showing the ability to weaken cellulose aggregates, like the canonical plant expansins do. Here, we deepen the knowledge on CP PAMP activity by the use of a multi-disciplinary approach: proteomic analysis, VOC (volatile organic compound) measurements, and gas exchange determination. The treatment of Arabidopsis with CP induces a differential profile either in protein expression or in VOC emission, as well changes in photosynthetic activity. In agreement with its role of defense activator, CP treatment induces down-expression of enzymes related to primary metabolism, such as RuBisCO, triosephosphate isomerase, and ATP-synthase, and reduces the photosynthesis rate. Conversely, CP increases expression of defense-related proteins and emission of some VOCs. Interestingly, CP exposure triggered the increase in enzymes involved in GSH metabolism and redox homeostasis (glutathione S-transferase, thioredoxin, Cys-peroxiredoxin, catalase) and in enzymes related to the “glucosinolate-myrosinase” system, which are the premise for synthesis of defence compounds, such as camalexin and some VOCs, respectively. The presented results are in agreement with the accepted role of CP as a PAMP and greatly increase the knowledge of plant primary defences induced by a purified fungal elicitor. PMID:27271595

  4. Impacts of biotic and abiotic stress on major quality attributing metabolites of coffee beans.

    PubMed

    Vaddadi, Sridevi; Parvatam, Giridhar

    2015-03-01

    Biotic stress factors such as Rhizopus oligosporus and Aspergillus niger mycelial extracts and abiotic elements methyljasmonate (MJ) and salicylic acid (SA), when administered through floral spray to Coffea canephora, showed significant influence on major bioactive metabolites of beans. Up to 42% caffeine, 39% theobromine and 46% trigonelline, along with 32% cafestol and kahweol content elevation was evident under respective elicitor treatments. Over all, the surge in respective metabolites depends on elicitor stress type and concentration. Abiotic factors MJ and SA were found to be efficient at 1 to 5 microM concentration in augmenting all the metabolites, compared to R. oligosporus and A. niger spray at 0.5-2.0% wherein the response was moderate as compared to abiotic stress, however significant compared to control. Though this elevation in caffeine, theobromine, cafestol and kahweol is not warranted from quality point of view, increase in trigonelline improves coffee quality. Besides increase in metabolites, stress mediated augmentation of bioactive compounds in coffee has a wide scope for studying gene expression pattern. PMID:25895259

  5. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica.

    PubMed

    Vásquez-Rivera, Andrés; Chicaiza-Finley, Diego; Hoyos, Rodrigo A; Orozco-Sánchez, Fernando

    2015-09-01

    Neem tree (Azadirachta indica) cell suspension culture is an alternative for the production of limonoids for insect control that overcomes limitations related to the supply of neem seeds. To establish conditions for cell growth and azadiracthin-related limonoid production, the effect of different sucrose concentrations, nitrate and phosphate in Murashige and Skoog (MS) medium, and the addition of one precursor and three elicitors was evaluated in shake flasks. The process was scaled up to a 3-l stirred tank bioreactor in one- and two-stage batch cultivation. In shake flasks, more than fivefold increase in the production of limonoids with the modified MS medium was observed (increase from 0.77 to 4.52 mg limonoids/g dry cell weight, DCW), while an increase of more than fourfold was achieved by adding the elicitors chitosan, salicylic acid, and jasmonic acid together (increase from 1.03 to 4.32 mg limonoids/g DCW). In the bioreactor, the volumetric production of limonoids was increased more than threefold with a two-stage culture in day 18 (13.82 mg limonoids/l in control single-stage process and 41.44 mg/l in two-stage process). The cultivation and operating mode of the bioreactor reported in this study may be adapted and used in optimization and process plant development for production of insect antifeedant limonoids with A. indica cell suspension cultures.

  6. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    PubMed

    Filgueiras, Camila Cramer; Willett, Denis S; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W; Stelinski, Lukasz L; Duncan, Larry W

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  7. Hypoglycemic activity of withanolides and elicitated Withania somnifera.

    PubMed

    Gorelick, Jonathan; Rosenberg, Rivka; Smotrich, Avinoam; Hanuš, Lumír; Bernstein, Nirit

    2015-08-01

    Withania somnifera, known in India as Asghawhanda, is used traditionally to treat many medical problems including diabetes and has demonstrated therapeutic activity in various animal models as well as in diabetic patients. While much of W. somnifera's therapeutic activity is attributed to withanolides, their role in the anti-diabetic activity of W. somnifera has not been adequately studied. In the present study, we evaluated the anti-diabetic activity of W. somnifera extract and purified withanolides, as well as the effect of various elicitors on this activity. W. somnifera leaf and root extracts increased glucose uptake in myotubes and adipocytes in a dose dependent manner, with the leaf extract more active than the root extract. Leaf but not root extract increased insulin secretion in basal pancreatic beta cells but not in stimulated cells. Six withanolides isolated from W. somnifera were tested for anti-diabetic activity based on glucose uptake in skeletal myotubes. Withaferin A was found to increase glucose uptake, with 10μM producing a 54% increase compared with control, suggesting that withaferin A is at least partially responsible for W. somnifera's anti-diabetic activity. Elicitors applied to the root growing solutions affected the physiological state of the plants, altering membrane leakage or osmotic potential. Methyl salicylate and chitosan increased withaferin A content by 75% and 69% respectively, and extracts from elicited plants increased glucose uptake to a higher extent than non-elicited plants, demonstrating a correlation between increased content of withaferin A and anti-diabetic activity. PMID:25796090

  8. Use of the cryptogein gene to stimulate the accumulation of Bacopa saponins in transgenic Bacopa monnieri plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2012-10-01

    Genetic transformation of the Indian medicinal plant, Bacopa monnieri, using a gene encoding cryptogein, a proteinaceous elicitor, via Ri and Ti plasmids, were established and induced bioproduction of bacopa saponins in crypt-transgenic plants were obtained. Transformed roots obtained with A. rhizogenes strain LBA 9402 crypt on selection medium containing kanamycin (100 mg l(-1)) dedifferentiated forming callus and redifferentiated to roots which, spontaneously showed shoot bud induction. Ri crypt-transformed plants thus obtained showed integration and expression of rol genes as well as crypt gene. Ti crypt-transformed B. monnieri plants were established following transformation with disarmed A. tumefaciens strain harboring crypt. Transgenic plants showed significant enhancement in growth and bacopa saponin content. Bacopasaponin D (1.4-1.69 %) was maximally enhanced in transgenic plants containing crypt. In comparison to Ri-transformed plants, Ri crypt-transformed plants showed significantly (p ≤ 0.05) enhanced accumulation of bacoside A(3), bacopasaponin D, bacopaside II, bacopaside III and bacopaside V. Produced transgenic lines can be used for further research on elicitation in crypt-transgenic plants as well as for large scale production of saponins. Key message The cryptogein gene, which encodes a proteinaceous elicitor is associated with increase in secondary metabolite accumulation-either alone or in addition to the increases associated with transformation by A. rhizogenes.

  9. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  10. Cyclic [beta]-1,6-1,3-Glucans of Bradyrhizobium japonicum USDA 110 Elicit Isoflavonoid Production in the Soybean (Glycine max) Host.

    PubMed Central

    Miller, K. J.; Hadley, J. A.; Gustine, D. L.

    1994-01-01

    High levels of cyclic [beta]-1,6-1,3-glucans (e.g. 0.1 mg mg-1 of total protein) are synthesized by free-living cells as well as by bacteroids of Bradyrhizobium japonicum USDA 110 (K.J. Miller, R.S. Gore, R. Johnson, A.J. Benesi, V.N. Reinhold [1990] J Bacteriol 172: 136-142; R.S. Gore and K.J. Miller [1993] Plant Physiol 102: 191-194). These molecules share structural features with glucan fragments isolated from the mycelial cell wall of the soybean (Glycine max) pathogen Phytophthora megasperma. These latter glucans have been shown to be potent elicitors (at nanogram levels) of the phytoalexin glyceollin in G. max. Using the well-characterized soybean cotyledon bioassay, we now show that the cyclic [beta]-1,6-1,3-glucans of B. japonicum USDA 110 are also biologically active elicitors of glyceollin production (but at microgram levels). We further show that both classes of [beta]-glucans elicit the production of the isoflavone daidzein within soybean cotyledon wound droplets. PMID:12232136

  11. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  12. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts.

    PubMed

    Athukorala, Sarangi N P; Piercey-Normore, Michele D

    2015-01-01

    Recognition and defense responses are early events in plant-pathogen interactions and between lichen symbionts. The effect of elicitors on responses between lichen symbionts is not well understood. The objective of this study was to compare the difference in recognition- and defense-related gene expression as a result of culture extracts (containing secreted water-soluble elicitors) from compatible and incompatible interactions at each of 3 resynthesis stages in the symbionts of Cladonia rangiferina. This study investigated gene expression by quantitative PCR in cultures of C. rangiferina and its algal partner, Asterochloris glomerata/irregularis, after incubation with liquid extracts from cultures of compatible and incompatible interactions at 3 early resynthesis stages. Recognition-related genes were significantly upregulated only after physical contact, demonstrating symbiont recognition in later resynthesis stages than expected. One of 3 defense-related genes, chit, showed significant downregulation in early resynthesis stages and upregulation in the third resynthesis stage, demonstrating a need for the absence of chitinase early in thallus formation and a need for its presence in later stages as an algal defense reaction. This study revealed that recognition- and defense-related genes are triggered by components in culture extracts at 3 stages of resynthesis, and some defense-related genes may be induced throughout thallus growth. The parasitic nature of the interaction shows parallels between lichen symbionts and plant pathogenic systems.

  13. Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid.

    PubMed

    Fauth, M.; Merten, A.; Hahn, M. G.; Jeblick, W.; Kauss, H.

    1996-02-01

    To study H2O2 production, the epidermal surfaces of hypocotyl segments from etiolated seedlings of cucumber (Cucumis sativus L.) were gently abraded. Freshly abraded segments were not constitutively competent for rapid H2O2 elicitation. This capacity developed subsequent to abrasion in a time-dependent process that was greatly enhanced in segments exhibiting an acquired resistance to penetration of their epidermal cell walls by Colletotrichum lagenarium, because of root pretreatment of the respective seedlings with 2,6-dichloroisonicotinic acid. When this compound or salicylic acid was applied to abraded segments, it also greatly enhanced the induction of competence for H2O2 elicitation. This process was fully inhibited by 5 [mu]M cycloheximide or 200 [mu]M puromycin, suggesting a requirement for translational protein synthesis. Both a crude elicitor preparation and a partially purified oligoglucan mixture from Phytophthora sojae also induced, in addition to H2O2 production, a refractory state, which explains the transient nature of H2O2 elicitation. Taken together, these results suggest that the cucumber hypocotyl epidermis becomes conditioned for competence to produce H2O2 in response to elicitors by a stimulus resulting from breaching the cuticle and/or cutting segments. This conditioning process is associated with protein synthesis and is greatly enhanced when substances able to induce systemic acquired resistance are present in the tissue.

  14. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani

    PubMed Central

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C.; Trivedi, Prabodh K.; Asif, Mehar H.; Chauhan, Puneet S.; Nautiyal, Chandra S.

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  15. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain.

    PubMed

    Chen, Xiaojiao; Zhu, Min; Jiang, Lei; Zhao, Wenyang; Li, Jia; Wu, Jianyan; Li, Chun; Bai, Baohui; Lu, Gang; Chen, Hongyu; Moffett, Peter; Tao, Xiaorong

    2016-10-01

    The tomato resistance protein Sw-5b differs from the classical coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) resistance proteins by having an extra N-terminal domain (NTD). To understand how NTD, CC and NB-LRR regulate autoinhibition and activation of Sw-5b, we dissected the function(s) of each domain. When viral elicitor was absent, Sw-5b LRR suppressed the central NB-ARC to maintain autoinhibition of the NB-LRR segment. The CC and NTD domains independently and additively enhanced the autoinhibition of NB-LRR. When viral elicitor was present, the NB-LRR segment of Sw-5b was specifically activated to trigger a hypersensitive response. Surprisingly, Sw-5b CC suppressed the activation of NB-LRR, whereas the extra NTD of Sw-5b became a positive regulator and fully activated the resistance protein, probably by relieving the inhibitory effects of the CC. In infection assays of transgenic plants, the NB-LRR segment alone was insufficient to confer resistance against Tomato spotted wilt tospovirus; the layers of NTD and CC regulation on NB-LRR were required for Sw-5b to confer resistance. Based on these findings, we propose that, to counter the negative regulation of the CC on NB-LRR, Sw-5b evolved an extra NTD to coordinate with the CC, thus developing a multilayered regulatory mechanism to control autoinhibition and activation. PMID:27558751

  16. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique.

    PubMed

    Singh, Shachi

    2016-05-15

    Phytochemicals are health promoting compounds, synthesized by the plants to protect them against biotic or abiotic stress. The metabolic pathways leading to the synthesis of these phytochemicals are highly inducible; therefore methods could be developed to enhance their production by the exogenous application of chemical inducers/elicitors. In the present experiment, chitosan was used as an elicitor molecule to improve the phytochemical content of spinach plant. When applied at a concentration of 0.01 mg/ml as a foliar spray, chitosan was able to cause an increase in the enzymatic (peroxidase, catalase and phenylalanine ammonium lyase (PAL)) and non enzymatic (total phenolics, flavonoids and proteins) defensive metabolites, as well as, in the total antioxidant activity of the spinach leaves. A 1.7-fold increase in the total phenolics, a 2-fold increase in total flavonoid and a 1.6-fold increase in total protein were achieved with the treatment. A higher level of enzymatic activity was observed with a 4-fold increase in peroxidase and approximately 3-fold increases in catalase and phenylalanine ammonium lyase activity. Antioxidant activity showed a positive correlation between phenolic compounds and the enzymatic activity. Direct analysis in real time mass spectrometry (DART-MS) was applied to generate the metabolite profile of control and treated leaves. DART analysis revealed the activation of phenylpropanoid pathway by chitosan molecule, targeting the synthesis of diverse classes of flavonoids and their glycosides. Important metabolites of stress response were also visible in the DART spectra, including proline and free sugars.

  17. The Elicitation Effect of Pathogenic Fungi on Trichodermin Production by Trichoderma brevicompactum

    PubMed Central

    Shentu, Xu-Ping; Liu, Wei-Ping; Zhan, Xiao-Huan; Yu, Xiao-Ping; Zhang, Chuan-Xi

    2013-01-01

    The effects of six species of phytopathogenic fungi mycelia as elicitors on trichodermin yield by Trichoderma brevicompactum were investigated. Neither nonviable nor viable mycelia of Botrytis cinerea, Alternaria solani, Colletotrichum lindemuthianum, and Thanatephorus cucumeris demonstrated any elicitation on the accumulation of trichodermin. However, the production of trichodermin was increased by the presence of viable/nonviable Rhizoctonia solani and Fusarium oxysporum mycelia. The strongest elicitation effect was found at the presence of nonviable R. solani. At the presence of nonviable R. solani, the maximum yield of trichodermin (144.55 mg/L) was significantly higher than the Control (67.8 mg/L), and the cultivation time to obtain the maximum yield of trichodermin decreased from 72 h to 60 h. No difference of trichodermin accumulation was observed by changing the concentration of nonviable R. solani from 0.1 to 1.6 g/L. It was observed that the optimum time for adding nonviable R. solani is immediately after inoculation. The diameter of T. brevicompactum mycelial globule after 72 h cultivation with nonviable R. solani elicitor was smaller than that of the Control. PMID:24385883

  18. Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens.

    PubMed

    Kröner, Alexander; Marnet, Nathalie; Andrivon, Didier; Val, Florence

    2012-08-01

    Physiological and molecular mechanisms underlying quantitative resistance of plants to pathogens are still poorly understood, but could depend upon differences in the intensity or timing of general defense responses. This may be the case for the biosynthesis of phenolics which are known to increase after elicitation by pathogens. We thus tested the hypothesis that differences in quantitative resistance were related to differential induction of phenolics by pathogen-derived elicitors. Five potato cultivars (Solanum tuberosum, L.) spanning a range of quantitative resistance were treated with a concentrated culture filtrate (CCF) of Phytophthora infestans or purified lipopolysaccharides (LPS) from Pectobacterium atrosepticum. The kinetic of phenolics accumulation was followed and a set of typical phenolics was identified: chlorogenic acid, phenolamides and flavonols including rutin (quercetin-3-O-rutinoside) and nicotiflorin (kaempferol-3-O-rutinoside). Our results showed that CCF but not LPS induced differential accumulation of major phenolics among cultivars. Total phenolics were related with resistance to P. atrosepticum but not to P. infestans. However, nicotiflorin was inversely related with resistance to both pathogens. Rutin, but not nicotiflorin, inhibited pathogen growth in vitro at physiological concentrations. These data therefore suggest that (i) several phenolics are candidate markers for quantitative resistance in potato, (ii) some of these are pathogen specific although they are produced by a general defense pathway, (iii) resistance marker molecules do not necessarily have antimicrobial activity, and (iv) the final content of these target molecules-either constitutive or induced-is a better predictor of resistance than their inducibility by pathogen elicitors.

  19. Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate.

    PubMed

    Kirakosyan, Ara; Kaufman, Peter B; Chang, Soo Chul; Warber, Sara; Bolling, Steven; Vardapetyan, Hrachik

    2006-12-01

    A mini-hydroponic growing system was employed for seedlings of kudzu vine (Pueraria montana) and contents of isoflavones (daidzein, genistein, daidzin, genistin, and puerarin) from shoot and root parts of seedlings were analyzed quantitatively. In addition, exogenous cork pieces, polymeric adsorbent, XAD-4, and universal elicitor, methyl jasmonate (MeJA), were used to regulate the production of these isoflavones. It was shown that cork pieces up-regulate the production of daidzein and genistein up to seven- and eight-fold greater than the levels obtained for control roots. In contrast, levels of glucosyl conjugates, daidzin and genistin, decrease up to five- and eight-fold, respectively. Cork treatment also induces the excretion of the root isoflavone constituents into the growth medium. Minimal levels of isoflavones are absorbed by the cork pieces. XAD-4 stimulates the production of glucosyl conjugates, daidzin and genistin, in root parts about 1.5-fold greater than that obtained in control roots. These are the highest amounts of daidzin and genistin that are observed (5.101 and 6.759 mg g(-1) dry weight, respectively). In contrast to these two adsorbents, MeJA increases the accumulation of isoflavones in shoot rather than in root parts of seedlings, about three- to four-fold over control levels, with the exception of genistein. These studies reveal new observations on the regulation of isoflavone production in hydroponically grown Pueraria montana plants by two adsorbents (cork pieces and XAD-4) and MeJA elicitor.

  20. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  1. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses.

    PubMed

    Paparella, Chiara; Savatin, Daniel Valentin; Marti, Lucia; De Lorenzo, Giulia; Ferrari, Simone

    2014-05-01

    Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.

  2. In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium).

    PubMed

    Darvishi, E; Kahrizi, D; Bahraminejad, S; Mansouri, M

    2016-01-01

    Medicinal plants are known as important sources of secondary metabolites. Because of the economic value of pennyroyal [Mentha pulegium L. (Lamiaceae)] in food industries, propagation of this valuable plant has special importance. Plant cell suspension culture can increase some produced components. The aim of this research was performing cell culture for induction of some secondary metabolites of M. pulegium and compares it with native one. The MS medium was used for suspension culture. To investigate quantitative materials, 4 levels of yeast extract elicitor (20, 40, 60 and 80 mg/L) and salicylic acid in 4 levels (2, 4, 6 and 8 mg/L) were used. Obtained extracts were analyzed by GC-MS. Statistical analysis showed that the amount of limonene, menthone, menthol and α-pinene were more than mentioned compounds in natural plant as control. The maximum amount of this metabolites were obtained as limonene (in 60 mg/l yeast extract), menthone (in 40 mg/l yeast extract and 2 mg/l salicylic acid), menthol (in 6 mg/l salicylic acid) and α-pinene (in 4 mg/l salicylic acid) in the M. pulegium cell culture. The Pulegone was fond more in natural plants than cell culture mass. The most important secondary metabolites were increased by cell culture containing of salicylic acid and yeast extract elicitors in M. pulegume.

  3. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.

  4. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease

    PubMed Central

    Ding, Xupo; Yang, Min; Huang, Huichuan; Chuan, Youcong; He, Xiahong; Li, Chengyun; Zhu, Youyong; Zhu, Shusheng

    2015-01-01

    Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance. PMID:26528303

  5. Enhanced Production of Resveratrol, Piceatannol, Arachidin-1, and Arachidin-3 in Hairy Root Cultures of Peanut Co-treated with Methyl Jasmonate and Cyclodextrin.

    PubMed

    Yang, Tianhong; Fang, Lingling; Nopo-Olazabal, Cesar; Condori, Jose; Nopo-Olazabal, Luis; Balmaceda, Carlos; Medina-Bolivar, Fabricio

    2015-04-22

    Peanut (Arachis hypogaea) produces stilbenoids upon exposure to abiotic and biotic stresses. Among these compounds, the prenylated stilbenoids arachidin-1 and arachidin-3 have shown diverse biological activities with potential applications in human health. These compounds exhibit higher or novel biological activities in vitro when compared to their nonprenylated analogues piceatannol and resveratrol, respectively. However, assessment of these bioactivities in vivo has been challenging because of their limited availability. In this study, hairy root cultures of peanut were induced to produce stilbenoids upon treatment with elicitors. Co-treatment with 100 μM methyl jasmonate (MeJA) and 9 g/L methyl-β-cyclodextrin (CD) led to sustained high levels of resveratrol, piceatannol, arachidin-1, and arachidin-3 in the culture medium when compared to other elicitor treatments. The average yields of arachidin-1 and arachidin-3 were 56 and 148 mg/L, respectively, after co-treatment with MeJA and CD. Furthermore, MeJA and CD had a synergistic effect on resveratrol synthase gene expression, which could explain the higher yield of resveratrol when compared to treatment with either MeJA or CD alone. Peanut hairy root cultures were shown to be a controlled and sustainable axenic system for the production of the diverse types of biologically active stilbenoids.

  6. Effect of ultrasound on the isoflavonoid production in Genista tinctoria L. suspension cultures

    PubMed Central

    Tůmová, Lenka; Tůma, Jiří; Hendrychová, Helena

    2014-01-01

    Background: Application of ultrasound (US) to biotechnology is relatively new but several processes that take place in the presence of cells or enzymes are activated by ultrasonic waves. Genista tinctoria L. (Fabaceae) is rich on various kind of flavonoids, including isoflavones with valuable estrogenic activity. Objective: This study verified use of low-energy US elicitor to enhance secondary metabolite production in plant cell cultures. Materials and Methods: Suspension cultures of G. tinctoria cells was exposed to low-power US (with fixed frequency 35 kHz and power level 0.1 mW/cm3) for period 1-5 min. Results: The US exposure significantly stimulated genistin content (0.8 mg/g DW) after 3 min of US treatment (sampled after 72 h). The highest daidzein level (1.4 mg/g DW) was reached after US irradiation for 5 min and 168 h sampling. Conclusion: The achieved results suggest that US can act as a potent abiotic elicitor to induce the defense responses of plant cells and to stimulate secondary metabolite production in plant cell cultures. PMID:24991122

  7. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  8. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes

    PubMed Central

    Pearce, Gregory; Yamaguchi, Yube; Barona, Guido; Ryan, Clarence A.

    2010-01-01

    Among the arsenal of plant-derived compounds activated upon attack by herbivores and pathogens are small peptides that initiate and amplify defense responses. However, only a handful of plant signaling peptides have been reported. Here, we have isolated a 12-aa peptide from soybean (Glycine max) leaves that causes a pH increase of soybean suspension-cultured cell media within 10 min at low nanomolar concentrations, a response that is typical of other endogenous peptide elicitors and pathogen-derived elicitors. The amino acid sequence was determined and was found to be derived from a member of the subtilisin-like protease (subtilase) family. The sequence of the peptide was located within a region of the protein that is unique to subtilases in legume plants and not found within any other plant subtilases thus far identified. We have named this peptide signal Glycine max Subtilase Peptide (GmSubPep). The gene (Glyma18g48580) was expressed in all actively growing tissues of the soybean plant. Although transcription of Glyma18g48580 was not induced by wounding, methyl jasmonate, methyl salicylate, or ethephon, synthetic GmSubPep peptide, when supplied to soybean cultures, induced the expression of known defense-related genes, such as Cyp93A1, Chib-1b, PDR12, and achs. GmSubPep is a unique plant defense peptide signal, cryptically embedded within a plant protein with an independent metabolic role, providing insights into plant defense mechanisms. PMID:20679205

  9. Disgust trait modulates frontal-posterior coupling as a function of disgust domain

    PubMed Central

    de Jong, Peter J.; Renken, Remco J.; Georgiadis, Janniko R.

    2013-01-01

    Following the two-stage model of disgust, ‘core disgust’ (e.g. elicited by rotten food) is extended to stimuli that remind us of our animal nature ‘AR disgust’ (e.g. mutilations, animalistic instincts). There is ample evidence that core and AR represent distinct domains of disgust elicitors. Moreover, people show large differences in their tendency to respond with disgust to potential disgust elicitors (propensity), as well as in their appraisal of experiencing disgust (sensitivity). Thus these traits may be important moderators of people's response patterns. Here, we aimed to find brain mechanisms associated with these distinct disgust domains and traits, as well as the interaction between them. The right ventrolateral occipitotemporal cortex, which preferentially responded to visual AR, was functionally coupled to the middle cingulate cortex (MCC), thalamus and prefrontal cortex (medial, dorsolateral), as a function of disgust domain. Coupling with the anterior part of MCC was modulated by disgust ‘propensity’, which was strongest during AR. Coupling with anterior insula and ventral premotor cortex was weaker, but relied fully on this domain–trait interaction. Disgust ‘sensitivity’ modulated left anterior insula activity irrespective of domain, and did not affect functional connectivity. Thus a frontal-posterior network that interacts with disgust ‘propensity’ dissects AR and core disgust. PMID:22258801

  10. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  11. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani.

    PubMed

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C; Trivedi, Prabodh K; Asif, Mehar H; Chauhan, Puneet S; Nautiyal, Chandra S

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants' physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  12. Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans

    PubMed Central

    Chizzali, Cornelia

    2012-01-01

    Summary Biphenyls and dibenzofurans are the phytoalexins of the Pyrinae, a subtribe of the plant family Rosaceae. The Pyrinae correspond to the long-recognized Maloideae. Economically valuable species of the Pyrinae are apples and pears. Biphenyls and dibenzofurans are formed de novo in response to infection by bacterial and fungal pathogens. The inducible defense compounds were also produced in cell suspension cultures after treatment with biotic and abiotic elicitors. The antimicrobial activity of the phytoalexins was demonstrated. To date, 10 biphenyls and 17 dibenzofurans were isolated from 14 of the 30 Pyrinae genera. The most widely distributed compounds are the biphenyl aucuparin and the dibenzofuran γ-cotonefuran. The biosynthesis of the two classes of defense compounds is not well understood, despite the importance of the fruit crops. More recent studies have revealed simultaneous accumulation of biphenyls and dibenzofurans, suggesting sequential, rather than the previously proposed parallel, biosynthetic pathways. Elicitor-treated cell cultures of Sorbus aucuparia served as a model system for studying phytoalexin metabolism. The key enzyme that forms the carbon skeleton is biphenyl synthase. The starter substrate for this type-III polyketide synthase is benzoyl-CoA. In apples, biphenyl synthase is encoded by a gene family, members of which are differentially regulated. Metabolism of the phytoalexins may provide new tools for designing disease control strategies for fruit trees of the Pyrinae subtribe. PMID:22563359

  13. Stimulation of callose synthesis in vivio correlates with changes in intracellular distribution of the callose synthase activator [beta]-Furfuryl-[beta]-Glucoside

    SciTech Connect

    Ohana, P.; Benziman, M.; Delmer, D.P. )

    1993-01-01

    [beta]-Furfuryl-[beta]-glucoside (FG) has been shown to be a specific endogenous activator of higher plant callose synthase. Because glycosides such as FG are usually sequestered in vacuoles, we have proposed that activation of callose synthesis in vivo may involve a change in the compartmentation on FG and Ca[sup 2+], resulting in a synergistic activation of callose synthase. The use of suspension-cultured barley (Hordeum bulbosum L.) cells provides evidence that FG is largely sequestered in the vacuole. Furthermore, conditions that lead to induction of callose synthesis in vivo correspondingly lead to elevation of the cytoplasmic concentration of FG. These conditions include the lowering of cytoplasmic pH or elevation of cytoplasmic Ca[sup 2+]. Oligogalacturonide elicitors have also been reported to cause similar changes in cytoplasmic pH and Ca[sup 2+] concentration, and such an elicitor also causes and elevation in cytoplasmic FG coupled with stimulation of callose synthesis. These results support the concept that a relative redistribution of FG between cytoplasm and vacuole may be one of the components of the signal transduction pathway for elicitation of callose synthase in vivo. 18 refs., 1 fig., 2 tabs.

  14. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.

    PubMed

    Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J

    1999-01-19

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.

  15. Elicitation of Diosgenin Production in Trigonella foenum-graecum (Fenugreek) Seedlings by Methyl Jasmonate

    PubMed Central

    Chaudhary, Spandan; Chikara, Surendra K.; Sharma, Mahesh C.; Chaudhary, Abhinav; Alam Syed, Bakhtiyar; Chaudhary, Pooja S.; Mehta, Aditya; Patel, Maulik; Ghosh, Arpita; Iriti, Marcello

    2015-01-01

    The effects of methyl jasmonate (MeJA), an elicitor of plant defense mechanisms, on the biosynthesis of diosgenin, a steroidal saponin, were investigated in six fenugreek (Trigonella foenum-graecum) varieties (Gujarat Methi-2, Kasuri-1, Kasuri-2, Pusa Early Branching, Rajasthan Methi and Maharashtra Methi-5). Treatment with 0.01% MeJA increased diosgenin levels, in 12 days old seedlings, from 0.5%–0.9% to 1.1%–1.8%. In addition, MeJA upregulated the expression of two pivotal genes of the mevalonate pathway, the metabolic route leading to diosgenin: 3-hydroxy-3-methylglutaryl-CoA reductase (HMG) and sterol-3-β-glucosyl transferase (STRL). In particular, MeJA increased the expression of HMG and STRL genes by 3.2- and 22.2-fold, respectively, in the Gujarat Methi-2 variety, and by 25.4- and 28.4-fold, respectively, in the Kasuri-2 variety. Therefore, MeJA may be considered a promising elicitor for diosgenin production by fenugreek plants. PMID:26694357

  16. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions. PMID:26467716

  17. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata

    PubMed Central

    Camps, Céline; Kappel, Christian; Lecomte, Pascal; Léon, Céline; Gomès, Eric; Coutos-Thévenot, Pierre; Delrot, Serge

    2010-01-01

    Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14 500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S–R+), and healthy plants (S–R–). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S+R+ plants compared with S–R– plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa. PMID:20190040

  18. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions.

  19. Simultaneous quantification of sporangia and zoospores in a biotrophic oomycete with an automatic particle analyzer: disentangling dispersal and infection potentials.

    PubMed

    Delmas, Chloé E L; Mazet, Isabelle D; Jolivet, Jérôme; Delière, Laurent; Delmotte, François

    2014-12-01

    Quantitative pathogenicity traits drive the fitness and dynamics of pathogens in agricultural ecosystems and are key determinants of the correct management of crop production over time. However, traits relating to infection potential (i.e. zoospore production) have been less thoroughly investigated in oomycetes than traits relating to dispersal (i.e. sporangium production). We simultaneously quantified sporangium and zoospore production in a biotrophic oomycete, for the joint assessment of life-cycle traits relating to dispersal and infection potentials. We used an automatic particle analyzer to count and size the sporangia and/or zoospores produced at t = 0 min (no zoospore release) and t = 100 min (zoospore release) in 43 Plasmopara viticola isolates growing on the susceptible Vitis vinifera cv. Cabernet Sauvignon. We were able to differentiate and quantify three types of propagules from different stages of the pathogen life cycle: full sporangia, empty sporangia and zoospores. The method was validated by comparing the sporangium and zoospore counts obtained with an automatic particle analyzer and under a stereomicroscope (manual counting). Each isolate produced a mean of 5.8 ± 1.9 (SD) zoospores per sporangium. Significant relationships were found between sporangium production and sporangium size (negative) and between sporangium size and the number of zoospores produced per sporangium (positive). However, there was a significant positive correlation between total sporangium production and total zoospore production. This procedure can provide a valid quantification of the production of both sporangia and zoospores by oomycetes in large numbers of samples, facilitating joint estimation of the dispersal and infection potentials of plant pathogens in various agro-ecological contexts.

  20. Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni.

    PubMed

    Lorenzon, Mauro; Pozzebon, Alberto; Duso, Carlo

    2012-11-01

    Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni are generalist predatory mites important in controlling tetranychid and eriophyoid mites in European vineyards. They can persist by exploiting various non-prey foods when their main prey is absent or scarce. A comparative analysis of the effects of various prey and non-prey foods on the life history of these predators is lacking. In the laboratory, predatory mites were reared on herbivorous mites (Panonychus ulmi, Eotetranychus carpini and Colomerus vitis), a potential alternative prey (Tydeus caudatus) and two non-prey foods, i.e. the pollen of Typha latifolia and the mycelium of Grape downy mildew (GDM) Plasmopara viticola. Developmental times, survival, sex ratio and fecundity as well as life table parameters were estimated. Kampimodromus aberrans developed faster on E. carpini, C. vitis or pollen than on P. ulmi and laid more eggs on pollen than on prey. Low numbers of this predator developed on GDM infected leaves. Tydeus caudatus was not suitable as prey for any of the three predatory mites. Kampimodromus aberrans showed the highest intrinsic rate of population increase when fed on pollen. Developmental times of T. pyri on prey or pollen were similar but fecundity was higher on pollen than on P. ulmi. Typhlodromus pyri had higher intrinsic rates of population increase on C. vitis and pollen than on P. ulmi; E. carpini showed intermediate values whereas GDM resulted in the lowest r ( m ) values. Development of A. andersoni females was faster on pollen and C. vitis than on P. ulmi and GDM. Fecundity was higher on pollen and mites compared to GDM. Life table parameters of A. andersoni did not differ when predators were fed with prey or pollen while GDM led to a lower r ( m ) value. On a specific diet A. andersoni exhibited faster development and higher fecundity than T. pyri and K. aberrans. These findings improve knowledge on factors affecting the potential of predatory mites in controlling

  1. Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.).

    PubMed

    Anđelković, Marko; Radovanović, Blaga; Anđelković, Ana Milenkovic; Radovanović, Vladimir

    2015-09-01

    We investigated the phenolic composition, radical scavenging activity, and antimicrobial activity of grapevine leaf extracts from two red grape varieties, Vranac and Merlot (Vitis vinifera L.). The extracts were prepared from healthy grapevine leaves and those infected by Plasmopara viticola (downy mildew). The phenolic composition of the grapevine leaf extracts was determined using spectrophotometric assays and reverse-phase high performance liquid chromatography (RP-HPLC). The radical scavenging activity of grapevine leaf extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl assay, and their antimicrobial activity was determined by microwell dilution tests. The total phenolic content was higher in healthy grapevine leaf extracts than in infected grapevine leaf extracts. The RP-HPLC analysis detected significant amounts of flavonols, phenolic acids, and flavan-3-ols, and small amounts of stilbenes in the grapevine leaf extracts. Compared with the infected grapevine leaf extracts, the healthy grapevine leaf extracts were richer in flavonols, phenolic acids, and flavan-3-ols, but had lower stilbenes contents. All extracts showed strong free radical scavenging activity, which was strongly correlated with the total phenolic content (R(2) = 0.978). The extracts showed a stronger antimicrobial activity towards Gram-positive bacterial strains than towards Gram-negative bacterial strains and yeast. The phenolic compounds in grapevine leaves were responsible for their strong radical scavenging and antimicrobial activities. Together, these results demonstrate that grapevine leaves have high nutritional value and can be used as a fresh food and to prepare extracts that can be used as additives in food and medicines. PMID:26174183

  2. Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores.

    PubMed

    Islam, Md Tofazzal; von Tiedemann, Andreas; Laatsch, Hartmut

    2011-08-01

    The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.

  3. Genetic diversity of stilbene metabolism in Vitis sylvestris

    PubMed Central

    Duan, Dong; Halter, David; Baltenweck, Raymonde; Tisch, Christine; Tröster, Viktoria; Kortekamp, Andreas; Hugueney, Philippe; Nick, Peter

    2015-01-01

    Stilbenes, as important secondary metabolites of grapevine, represent central phytoalexins and therefore constitute an important element of basal immunity. In this study, potential genetic variation in Vitis vinifera ssp. sylvestris, the ancestor of cultivated grapevine, was sought with respect to their output of stilbenes and potential use for resistance breeding. Considerable variation in stilbene inducibility was identified in V. vinifera ssp. sylvestris. Genotypic differences in abundance and profiles of stilbenes that are induced in response to a UV-C pulse are shown. Two clusters of stilbene ‘chemovars’ emerged: one cluster showed quick and strong accumulation of stilbenes, almost exclusively in the form of non-glycosylated resveratrol and viniferin, while the second cluster accumulated fewer stilbenes and relatively high proportions of piceatannol and the glycosylated piceid. For all 86 genotypes, a time dependence of the stilbene pattern was observed: piceid, resveratrol, and piceatannol accumulated earlier, whereas the viniferins were found later. It was further observed that the genotypic differences in stilbene accumulation were preceded by differential accumulation of the transcripts for chalcone synthase (CHS) and stilbene-related genes: phenylalanine ammonium lyase (PAL), stilbene synthase (StSy), and resveratrol synthase (RS). A screen of the population with respect to susceptibility to downy mildew of grapevine (Plasmopara viticola) revealed considerable variability. The subpopulation of genotypes with high stilbene inducibility was significantly less susceptible as compared with low-stilbene genotypes, and for representative genotypes it could be shown that the inducibility of stilbene synthase by UV correlated with the inducibility by the pathogen. PMID:25873669

  4. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties.

    PubMed

    Venuti, Silvia; Copetti, Dario; Foria, Serena; Falginella, Luigi; Hoffmann, Sarolta; Bellin, Diana; Cindrić, Petar; Kozma, Pál; Scalabrin, Simone; Morgante, Michele; Testolin, Raffaele; Di Gaspero, Gabriele

    2013-01-01

    The Amur grape (Vitis amurensis Rupr.) thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.). A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance-a hypersensitive response in leaves challenged with P. viticola-was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12(+) haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12(+) haplotype is shared by 15 varieties, the most ancestral of which are the century-old 'Zarja severa' and 'Michurinets'. Before this knowledge, the chromosome segment around Rpv12(+) became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3) only by phenotypic selection. Rpv12(+) has an additive effect with Rpv3(+) to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3(+) plants.

  5. Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis amurensis into Grapevine Varieties

    PubMed Central

    Venuti, Silvia; Copetti, Dario; Foria, Serena; Falginella, Luigi; Hoffmann, Sarolta; Bellin, Diana; Cindrić, Petar; Kozma, Pál; Scalabrin, Simone; Morgante, Michele; Testolin, Raffaele; Di Gaspero, Gabriele

    2013-01-01

    The Amur grape (Vitis amurensis Rupr.) thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.). A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance–a hypersensitive response in leaves challenged with P. viticola–was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old ‘Zarja severa’ and ‘Michurinets’. Before this knowledge, the chromosome segment around Rpv12+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3) only by phenotypic selection. Rpv12+ has an additive effect with Rpv3+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3+ plants. PMID:23593440

  6. Direct ingestion method for enhancing production and bioavailability of resveratrol and other phytoalexins in Vitis vinifera.

    PubMed

    Leifer, Ari; Barberio, Dana M

    2016-03-01

    Phytoalexins such as resveratrol and pterostilbene, produced de novo by many plant species, including grapevine (Vitis vinifera), play a role in plant defense against injury and pathogens. In human cell lines and in animal studies, phytoalexins have been shown to be highly beneficial, with protective effects against cancer, cardiovascular disease, neurodegenerative diseases, diabetes, hyperglycemia, as well as potential effects on longevity. However, in clinical studies, there are multiple factors that restrict this plethora of health benefits attributed to phytoalexins. One of these barriers is rapid metabolism in the intestines and liver. As a means to overcome this barrier, there is evidence that retaining resveratrol in the mouth for extended periods allows for higher plasma levels of resveratrol. Processing, transport or storage may cause degradation due to light and air exposure. When the berries have been picked, they may not be at their peak phytoalexin production due to lack of elicitor induction. To overcome these barriers inherent in phytoalexin production and uptake, it is proposed that berries and possibly the edible leaves be directly ingested off of a grapevine, without harvesting. In addition to the benefit of removing these barriers to potential health benefits, this method introduces a variety of known phytoalexin elicitors, in the form of plant wounding and human saliva, which may enhance the levels of phytoalexins dramatically. The combined effect of multiple phytoalexins may also play a role in enhanced health benefits. To test this hypothesis, experiments with direct ingestion would be performed, followed by testing the participants' plasma levels of resveratrol and potentially other phytoalexins. Proposed variables to be tested include: different subjects, elicitors, cultivars of grapevine, ripeness of fruit, and a range of time for the ingestion process. The potential implications include a direct means of obtaining, in clinically beneficial

  7. Direct ingestion method for enhancing production and bioavailability of resveratrol and other phytoalexins in Vitis vinifera.

    PubMed

    Leifer, Ari; Barberio, Dana M

    2016-03-01

    Phytoalexins such as resveratrol and pterostilbene, produced de novo by many plant species, including grapevine (Vitis vinifera), play a role in plant defense against injury and pathogens. In human cell lines and in animal studies, phytoalexins have been shown to be highly beneficial, with protective effects against cancer, cardiovascular disease, neurodegenerative diseases, diabetes, hyperglycemia, as well as potential effects on longevity. However, in clinical studies, there are multiple factors that restrict this plethora of health benefits attributed to phytoalexins. One of these barriers is rapid metabolism in the intestines and liver. As a means to overcome this barrier, there is evidence that retaining resveratrol in the mouth for extended periods allows for higher plasma levels of resveratrol. Processing, transport or storage may cause degradation due to light and air exposure. When the berries have been picked, they may not be at their peak phytoalexin production due to lack of elicitor induction. To overcome these barriers inherent in phytoalexin production and uptake, it is proposed that berries and possibly the edible leaves be directly ingested off of a grapevine, without harvesting. In addition to the benefit of removing these barriers to potential health benefits, this method introduces a variety of known phytoalexin elicitors, in the form of plant wounding and human saliva, which may enhance the levels of phytoalexins dramatically. The combined effect of multiple phytoalexins may also play a role in enhanced health benefits. To test this hypothesis, experiments with direct ingestion would be performed, followed by testing the participants' plasma levels of resveratrol and potentially other phytoalexins. Proposed variables to be tested include: different subjects, elicitors, cultivars of grapevine, ripeness of fruit, and a range of time for the ingestion process. The potential implications include a direct means of obtaining, in clinically beneficial

  8. Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor.

    PubMed

    Verma, Priyanka; Khan, Shamshad Ahmad; Mathur, Ajay K; Ghosh, Sumit; Shanker, Karuna; Kalra, Alok

    2014-11-01

    Elicitors play an important role in challenging the plant defense system through plant-environment interaction and thus altering the secondary metabolite production. Culture filtrates of four endophytic fungi, namely, Chaetomium globosum, Aspergillus niveoglaucus, Paecilomyces lilacinus, and Trichoderma harzianum were tested on embryogenic cell suspensions of latex-less Papaver somniferum in dose-dependent kinetics. Besides this, abiotic elicitors salicylic acid, hydrogen peroxide, and carbon dioxide were also applied for improved sanguinarine production. Maximum biomass accumulation (growth index (GI) = 293.50 ± 14.82) and sanguinarine production (0.090 ± 0.008 % dry wt.) were registered by addition of 3.3 % v/v T. harzanium culture filtrate. Interestingly, it was further enhanced (GI = 323.40 ± 25.30; 0.105 ± 0.008 % dry wt.) when T. harzanium culture filtrate was employed along with 50 μM shikimate. This was also supported by real-time (RT) (qPCR), where 8-9-fold increase in cheilanthifoline synthase (CFS), stylopine synthase (STS), tetrahydroprotoberberine cis-N-methyltransferase (TNMT), and protopine 6-hydroxylase (P6H) transcripts was observed. Among abiotic elicitors, while hydrogen peroxide and carbon dioxide registered low level of sanguinarine accumulation, maximum sanguinarine content was detected by 250 μM salicylic acid (0.058 ± 0.003 % dry wt.; GI = 172.75 ± 13.40). RT (qPCR) also confirms the downregulation of sanguinarine pathway on CO2 supplementation. Various parameters ranging from agitation speed (70 rpm), impeller type (marine), media volume (2 l), inoculum weight (100 g), and culture duration (9 days) were optimized during upscaling in 5-l stirred tank bioreactor to obtain maximum sanguinarine production (GI = 434.00; 0.119 ± 0.070 % dry wt.). Addition of 3.3 % v/v T. harzanium culture filtrate and 50-μM shikimate was done on the 6th day of bioreactor run.

  9. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants.

    PubMed

    Cascone, Pasquale; Iodice, Luigi; Maffei, Massimo E; Bossi, Simone; Arimura, Gen-Ichiro; Guerrieri, Emilio

    2015-01-15

    In the last decade plant-to-plant communication has received an increasing attention, particularly for the role of Volatile Organic Compounds as possible elicitors of plant defense. The role of β-ocimene as an interspecific elicitor of plant defense has been recently assessed in multitrophic systems including different plant species (Solanaceae, Poaceae, legumes) and different pest species including chewer insects and phytophagous mites. Both chewer insects and phytophagous mites are known to elicit specific plant defensive pathways which are different (at least in part) from those elicited by sap feeders. The aim of this research was to fill this gap of knowledge and to assess the role of β-ocimene as an elicitor of plant defense against aphid pests, which are sap feeders. For this purpose we used as transgenic tobacco plant releasing an odour plume enriched in this compound as emitter and a tomato plant as receiver. We selected the aphid Macrosiphum euphorbiae and its natural enemy, the parasitoid Aphidius ervi, as the targets of plant induced defense. Tomato plant defense induced by β-ocimene was assessed by characterizing the aphid performance in terms of fixing behaviour, development and reproduction (direct plant defense) and the parasitoid performance in terms of attraction towards tomato plants (indirect plant defense). The characterization of tomato response to β-ocimene was completed by the identification of Volatile Organic Compounds as released by conditioned tomato plants. Tomato plants that were exposed to the volatiles of transgenic tobacco enriched in β-ocimene resulted in less suitable for the aphids in respect to control ones (direct defense). On tomato plants "elicited" by β-ocimene we recorded: a significant lower number of aphids settled; a significant lower number newborn nymphs; a significant lower weight of aphids feeding. In addition, tomato plants "elicited" by β-ocimene resulted became more attractive towards the parasitoid A. ervi

  10. Salt Stress Perception and Plant Growth Regulators in the Halophyte Mesembryanthemum crystallinum.

    PubMed Central

    Thomas, J. C.; Bohnert, H. J.

    1993-01-01

    We selected indicators of four different metabolic processes (Crassulacean acid metabolism [CAM], amino acid and nitrogen mobilization metabolism, osmoprotection, and plant defense mechanisms) to study the relationship between salt-stress-mediated and plant growth regulator (PGR)-induced responses in Mesembryanthemum crystallinum (ice plant). Nacl and PGRs (cytokinin and abscisic acid [ABA]) are efficient elicitors of the well-studied Nacl stress responses: induction of the CAM form of phosphoenolpyruvate carboxylase, proline pinitol accumulation, and the increase of an osmotin-like protein. NaCl and cytokinin are more effective than ABA in stimulating accumulation of proline and an osmotin-like protein before the plants are committed to flowering. The results are consistent with a plant defense-induction model, in which environmental stress and PGRs are distinct signals whose subsequent effects lead to overlapping responses, the magnitude of which depends on plant developmental status. PMID:12232022

  11. Norlittorine and norhyoscyamine identified as products of littorine and hyoscyamine metabolism by (13)C-labeling in Datura innoxia hairy roots.

    PubMed

    Al Balkhi, Mohamad Houssam; Schiltz, Séverine; Lesur, David; Lanoue, Arnaud; Wadouachi, Anne; Boitel-Conti, Michèle

    2012-02-01

    The presence of two compounds, norlittorine and norhyoscyamine, has been reported in leaves and roots of Datura innoxia; however their metabolic origin in the tropane alkaloid pathway has remained unknown. Precise knowledge of this pathway is a necessary pre-requisite to optimize the production of hyoscyamine and scopolamine in D. innoxia hairy root cultures. The exact structure of norlittorine and norhyoscyamine was confirmed by LC-MS/MS and NMR analyses. Isotopic labeling experiments, using [1-(13)C]-phenylalanine, [1'-(13)C]-littorine and [1'-(13)C]-hyoscyamine, combined with elicitor treatments, using methyl jasmonate, coronalon and 1-aminocyclopropane-1-carboxylic acid, were used to investigate the metabolic origin of the N-demethylated tropane alkaloids. The results suggest that norlittorine and norhyoscyamine are induced under stress conditions by conversion of littorine and hyoscyamine. We propose the N-demethylation of tropane alkaloids as a mechanism to detoxify cells in overproducing conditions.

  12. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore.

    PubMed

    Tamiru, Amanuel; Bruce, Toby J A; Woodcock, Christine M; Caulfield, John C; Midega, Charles A O; Ogol, Callistus K P O; Mayon, Patrick; Birkett, Michael A; Pickett, John A; Khan, Zeyaur R

    2011-11-01

    Natural enemies respond to herbivore-induced plant volatiles (HIPVs), but an often overlooked aspect is that there may be genotypic variation in these 'indirect' plant defence traits within plant species. We found that egg deposition by stemborer moths (Chilo partellus) on maize landrace varieties caused emission of HIPVs that attract parasitic wasps. Notably, however, the oviposition-induced release of parasitoid attractants was completely absent in commercial hybrid maize varieties. In the landraces, not only were egg parasitoids (Trichogramma bournieri) attracted but also larval parasitoids (Cotesia sesamiae). This implies a sophisticated defence strategy whereby parasitoids are recruited in anticipation of egg hatching. The effect was systemic and caused by an elicitor, which could be extracted from egg materials associated with attachment to leaves. Our findings suggest that indirect plant defence traits may have become lost during crop breeding and could be valuable in new resistance breeding for sustainable agriculture.

  13. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum)

    PubMed Central

    Stamler, Rio A.; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J.

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay. PMID:26020237

  14. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs.

    PubMed

    Luna-González, Antonio; Maeda-Martínez, Alfonso N; Vargas-Albores, Francisco; Ascencio-Valle, Felipe; Robles-Mungaray, Miguel

    2003-10-01

    Phenoloxidase (PO) activity was studied in larval and juvenile homogenates and in the plasma and haemocytes of adult Crassostrea gigas, Argopecten ventricosus, Nodipecten subnodosus, and Atrina maura. Samples were tested for the presence of PO activity by incubation with the substrate L-3, 4-dihydroxyphenylalanine using trypsin, alpha-chymotrypsin, laminarin, lipopolysaccharides (LPS), and sodium dodecyl sulphate (SDS) to elicit activation of prophenoloxidase (proPO) system. PO activity was not detected in larval homogenate. In juvenile homogenate, PO activity was found only in C. gigas and N. subnodosus. PO activity was present in adult samples and was enhanced by elicitors in the plasma of all species tested, but in haemocyte lysate supernatant (HLS) of only N. subnodosus. Activation of proPO by laminarin was suppressed by a protease inhibitor cocktail (P-2714) in plasma and HLS of all species tested.

  15. Analysis of the lmmunity-Related Oxidative Bursts by a Luminol-Based Assay.

    PubMed

    Trujillo, Marco

    2016-01-01

    The rapid production of reactive oxygen species (ROS) in response to biotic and abiotic cues is a conserved hallmark of plant responses. The detection and quantification of ROS generation during immune responses is an excellent readout to analyze signaling triggered by the perception of pathogens. The assay described here is easy to employ and versatile, allowing its use in a multitude of variations. For example, ROS production can be analyzed using different tissues including whole seedlings, roots, leaves, protoplasts, and cultured cells, which can originate from different ecotypes or mutants. Samples can be tested in combination with any ROS-inducing elicitors, such as the FLS2-activating peptide flg22, but also lipids or even abiotic stresses. Furthermore, early (PAMP-triggered) and late (effector-triggered) ROS production induced by virulent and avirulent bacteria, respectively, can also be assayed. PMID:26867635

  16. Capsaicin: From Plants to a Cancer-Suppressing Agent.

    PubMed

    Chapa-Oliver, Angela M; Mejía-Teniente, Laura

    2016-01-01

    Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent. PMID:27472308

  17. The effect of temperature on phenolic content in wounded carrots.

    PubMed

    Han, Cong; Li, Jing; Jin, Peng; Li, Xiaoan; Wang, Lei; Zheng, Yonghua

    2017-01-15

    Reactive oxygen species (ROS) have been shown to play important roles in biosynthesis of phenolic antioxidants in wounded carrots. This study has gone further to understand the effects of storage temperature on phenolics accumulation in wounded carrots. The results indicated that both increased wounding intensity and higher storage temperature promoted the generation of ROS and enhanced phenolics accumulation in wounded carrots. Moreover, treatment with ROS inhibitor inhibited ROS generation, suppressed the activities of key enzymes in phenylpropanoid pathway (phenylalanine ammonia lyase, PAL; cinnamate-4-hydroxylase, C4H; 4-coumarate coenzyme A ligase, 4CL) and restrained phenolics accumulation in shredded carrots confirming previous reports. In contrast, treatment with ROS elicitor promoted ROS generation, enhanced the activities of PAL, C4H and 4CL, and induced phenolics accumulation. Thus, our results confirmed that ROS are essential for mediating wound-induced phenolics accumulation in carrots and suggested that increase temperature enhanced the accumulation of phenolics through inducing ROS generation. PMID:27542457

  18. Translocation of bacteria from the gut to the eggs triggers maternal transgenerational immune priming in Tribolium castaneum

    PubMed Central

    Knorr, Eileen; Schmidtberg, Henrike; Arslan, Derya; Bingsohn, Linda; Vilcinskas, Andreas

    2015-01-01

    Invertebrates can be primed to enhance their protection against pathogens they have encountered before. This enhanced immunity can be passed maternally or paternally to the offspring and is known as transgenerational immune priming. We challenged larvae of the red flour beetle Tribolium castaneum by feeding them on diets supplemented with Escherichia coli, Micrococcus luteus or Pseudomonas entomophila, thus mimicking natural exposure to pathogens. The oral uptake of bacteria induced immunity-related genes in the offspring, but did not affect the methylation status of the egg DNA. However, we observed the translocation of bacteria or bacterial fragments from the gut to the developing eggs via the female reproductive system. Such translocating microbial elicitors are postulated to trigger bacterial strain-specific immune responses in the offspring and provide an alternative mechanistic explanation for maternal transgenerational immune priming in coleopteran insects. PMID:26701756

  19. Capsaicin: From Plants to a Cancer-Suppressing Agent.

    PubMed

    Chapa-Oliver, Angela M; Mejía-Teniente, Laura

    2016-07-27

    Capsaicinoids are plant secondary metabolites, capsaicin being the principal responsible for the pungency of chili peppers. It is biosynthesized through two pathways involved in phenylpropanoid and fatty acid metabolism. Plant capsaicin concentration is mainly affected by genetic, environmental and crop management factors. However, its synthesis can be enhanced by the use of elicitors. Capsaicin is employed as food additive and in pharmaceutical applications. Additionally, it has been found that capsaicin can act as a cancer preventive agent and shows wide applications against various types of cancer. This review is an approach in contextualizing the use of controlled stress on the plant to increase the content of capsaicin, highlighting its synthesis and its potential use as anticancer agent.

  20. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection

    PubMed Central

    Dimopoulos, George; Christophides, George K.; Meister, Stephan; Schultz, Jörg; White, Kevin P.; Barillas-Mury, Carolina; Kafatos, Fotis C.

    2002-01-01

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  1. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection.

    PubMed

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; de Azevedo, Rafael Ricci; da Silva, Francilene Lopes; Noronha, Eliane F; Ulhoa, Cirano José; Monteiro, Valdirene Neves; Cardoza, Rosa Elena; Gutiérrez, Santiago; Silva, Roberto Nascimento

    2015-01-01

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants. PMID:26647876

  2. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays

    PubMed Central

    Trouvelot, Sophie; Héloir, Marie-Claire; Poinssot, Benoît; Gauthier, Adrien; Paris, Franck; Guillier, Christelle; Combier, Maud; Trdá, Lucie; Daire, Xavier; Adrian, Marielle

    2014-01-01

    Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of “PAMP, MAMP, and DAMP (Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type” oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure/activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora. PMID:25408694

  3. Advances in preparation, analysis and biological activities of single chitooligosaccharides.

    PubMed

    Li, Kecheng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2016-03-30

    Chitooligosaccharides (COS), as a source of potential bioactive material, has been reported to possess diverse bioactivities. These bioactivities of COS are often tested using relatively poorly characterized oligomer mixtures during past few decades, resulting in difficult identification of COS molecules responsible for biological effects. Therefore, a new interest has recently been emerged on highly purified COS of defined size. Several technological approaches have been used to produce single COS and new improvements were introduced to their characterization in order to understand the unrevealed structure-function relationship. Here we provide an overview of techniques that were used to prepare and analyze reasonably well-defined COS fractions. Based on the latest reports, several applications of single COS for plants and animals, are also presented, including antitumor, immunostimulatory, antioxidant, antimicrobial, elicitors of plant defence and neural activity. PMID:26794961

  4. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum).

    PubMed

    Stamler, Rio A; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.

  5. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales⋆

    PubMed Central

    Renner, Tanya; Specht, Chelsea D

    2013-01-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales. PMID:23830995

  6. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2013-08-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales. PMID:23830995

  7. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection.

    PubMed

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; de Azevedo, Rafael Ricci; da Silva, Francilene Lopes; Noronha, Eliane F; Ulhoa, Cirano José; Monteiro, Valdirene Neves; Cardoza, Rosa Elena; Gutiérrez, Santiago; Silva, Roberto Nascimento

    2015-12-09

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants.

  8. Methyl jasmonate foliar application to Tempranillo vineyard improved grape and wine phenolic content.

    PubMed

    Portu, Javier; Santamaría, Pilar; López-Alfaro, Isabel; López, Rosa; Garde-Cerdán, Teresa

    2015-03-01

    The importance of phenolic compounds for grape and wine quality has drawn attention to studying different practices with the aim of increasing their content. Cluster application of elicitors is a viticultural practice that has shown promising results in recent years. However, cluster application requires a previous defoliation, which is time-consuming and expensive. In the present study, methyl jasmonate was foliar applied to Tempranillo grapevines in order to study its effect on grape and wine phenolic composition. Methyl jasmonate foliar application increased anthocyanin and stilbene content in both grape and wine, besides enhancing wine flavonol content. This treatment induced the synthesis of 3-O-glucosides of petunidin and peonidin and trans-p-coumaroyl derivatives of cyanidin and peonidin. For stilbenes, trans-piceid content was considerably increased in both grape and wine. The results obtained suggest that methyl jasmonate foliar application could be a simple and accessible practice to enhance grape and wine quality. PMID:25672964

  9. Role of viticultural factors on stilbene concentrations of grapes and wine.

    PubMed

    Bavaresco, L

    2003-01-01

    Stilbenes are phenolics that can be found in different grapevine organs, such as berries, leaves, canes and roots. Stilbenes act as antifungal compounds since they are synthesized by the plant in response to pathogen attack. Other abiotic elicitors, such as ultraviolet rays and heavy metals, can trigger stilbene production. Many stilbenic compounds have been detected in grapes and wine (resveratrol, piceid, viniferins, astringin, etc.). The latest stilbene to be analyzed is piceatannol (or astringinin). Stilbene synthesis in grapes depends on different viticultural factors such as the grape variety, the environment and cultural practices. Concerning grape variety, red berry-grapes have higher stilbene levels than white berry-grapes. With regard to climate, preliminary results suggest a positive correlation between vineyard elevation and stilbene grape concentrations. Quality-oriented cultural practices produce grapes with high levels of stilbenes. PMID:15134373

  10. Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans

    PubMed Central

    Vinagre, Fabiano; Estevez, Yandi; Bernal, Aydiloide; Perez, Juana; Cavalcanti, Janaina; Santana, Ignacio; Hemerly, Adriana S

    2006-01-01

    A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), β-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack. PMID:19516988

  11. Face to face with emotion: holistic face processing is modulated by emotional state.

    PubMed

    Curby, Kim M; Johnson, Kareem J; Tyson, Alyssa

    2012-01-01

    Negative emotions are linked with a local, rather than global, visual processing style, which may preferentially facilitate feature-based, relative to holistic, processing mechanisms. Because faces are typically processed holistically, and because social contexts are prime elicitors of emotions, we examined whether negative emotions decrease holistic processing of faces. We induced positive, negative, or neutral emotions via film clips and measured holistic processing before and after the induction: participants made judgements about cued parts of chimeric faces, and holistic processing was indexed by the interference caused by task-irrelevant face parts. Emotional state significantly modulated face-processing style, with the negative emotion induction leading to decreased holistic processing. Furthermore, self-reported change in emotional state correlated with changes in holistic processing. These results contrast with general assumptions that holistic processing of faces is automatic and immune to outside influences, and they illustrate emotion's power to modulate socially relevant aspects of visual perception.

  12. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    PubMed

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils.

  13. Being moved: linguistic representation and conceptual structure

    PubMed Central

    Kuehnast, Milena; Wagner, Valentin; Wassiliwizky, Eugen; Jacobsen, Thomas; Menninghaus, Winfried

    2014-01-01

    This study explored the organization of the semantic field and the conceptual structure of moving experiences by investigating German-language expressions referring to the emotional state of being moved. We used present and past participles of eight psychological verbs as primes in a free word-association task, as these grammatical forms place their conceptual focus on the eliciting situation and on the felt emotional state, respectively. By applying a taxonomy of basic knowledge types and computing the Cognitive Salience Index, we identified joy and sadness as key emotional ingredients of being moved, and significant life events and art experiences as main elicitors of this emotional state. Metric multidimensional scaling analyses of the semantic field revealed that the core terms designate a cluster of emotional states characterized by low degrees of arousal and slightly positive valence, the latter due to a nearly balanced representation of positive and negative elements in the conceptual structure of being moved. PMID:25404924

  14. Role of viticultural factors on stilbene concentrations of grapes and wine.

    PubMed

    Bavaresco, L

    2003-01-01

    Stilbenes are phenolics that can be found in different grapevine organs, such as berries, leaves, canes and roots. Stilbenes act as antifungal compounds since they are synthesized by the plant in response to pathogen attack. Other abiotic elicitors, such as ultraviolet rays and heavy metals, can trigger stilbene production. Many stilbenic compounds have been detected in grapes and wine (resveratrol, piceid, viniferins, astringin, etc.). The latest stilbene to be analyzed is piceatannol (or astringinin). Stilbene synthesis in grapes depends on different viticultural factors such as the grape variety, the environment and cultural practices. Concerning grape variety, red berry-grapes have higher stilbene levels than white berry-grapes. With regard to climate, preliminary results suggest a positive correlation between vineyard elevation and stilbene grape concentrations. Quality-oriented cultural practices produce grapes with high levels of stilbenes.

  15. Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status.

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2013-01-15

    Foliage of Coriandrum sativum is a rich source of natural folates amenable for enhancement through salicylic acid-mediated elicitation, thereby holding a great promise for natural-mode alleviation of this vitamin (B(9)) deficiency. In the present study we report salicylic acid-mediated differential elicitation of different forms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microwave-drying and bioaccessibilities from fresh and dried foliage. The first two compounds nearly doubled and the third increased sixfold post-elicitation, with all three showing concomitant increase in bioaccessibilities. Although a slight decrease in bioaccessibility was observed in dried foliage, over twofold increase of each form of folate upon elicitation would deliver much higher levels of natural folates from this traditional culinary foliage, which is widely used in many cuisines. Elicitor-mediated folate enhancement also imparted reduction of oxidative status and the enhancement of antioxidant enzyme activities in coriander foliage.

  16. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK. PMID:16533608

  17. Sterol-dependent induction of plant defense responses by a microbe-associated molecular pattern from Trichoderma viride.

    PubMed

    Sharfman, Miya; Bar, Maya; Schuster, Silvia; Leibman, Meirav; Avni, Adi

    2014-02-01

    Plant-microbe interactions involve numerous regulatory systems essential for plant defense against pathogens. An ethylene-inducing xylanase (Eix) of Trichoderma viride is a potent elicitor of plant defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum). We demonstrate that tomato cyclopropyl isomerase (SlCPI), an enzyme involved in sterol biosynthesis, interacts with the LeEix2 receptor. Moreover, we examined the role of SlCPI in signaling during the LeEix/Eix defense response. We found that SlCPI is an important factor in the regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis, and the induction of pathogenesis-related protein expression in the case of LeEix/Eix. Our results also suggest that changes in the sterol composition reduce LeEix internalization, thereby attenuating the induction of plant defense responses. PMID:24351686

  18. Trichoderma research in the genome era.

    PubMed

    Mukherjee, Prasun K; Horwitz, Benjamin A; Herrera-Estrella, Alfredo; Schmoll, Monika; Kenerley, Charles M

    2013-01-01

    Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.

  19. The structural basis of cell-mediated immunological reactions of collagen

    PubMed Central

    Adelmann, B. C.

    1972-01-01

    Denatured calf and rat skin collagen and α1- and α2-chains from these collagens were tested for their capacity to sensitize guinea-pigs for the cutaneous delayed hypersensitivity reaction and to elicit this reaction in sensitized animals. Alpha-chains from neutral salt extracted and from urea extracted collagen were also compared. All preparations were fully active as sensitizers as well as elicitors of the skin reaction. In spite of extensive cross-reactions, significant differences between α1- and α2-chains of a given species as well as between corresponding chains of different species could be detected. Differences between chains from neutral salt extracted collagen and from urea extracted collagen were also revealed. PMID:4636288

  20. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling

    PubMed Central

    Padmanabhan, Meenu S; Dinesh-Kumar, Savithramma P

    2014-01-01

    Plant innate immune response against viruses utilizes intracellular Nucleotide Binding domain Leucine Rich Repeat (NLR) class of receptors. NLRs recognize different viral proteins termed elicitors and initiate diverse signaling processes that induce programmed cell death (PCD) in infected cells and restrict virus spread. In this review we describe the recent advances made in the study of plant NLRs that detect viruses. We describe some of the physical and functional interactions these NLRs undertake. We elaborate on the intra-molecular and homotypic association of NLRs that function in self-regulation and activation. Nuclear role for some viral NLRs is discussed as well as the emerging importance of the RNAi pathway in regulating the NLR family. PMID:24906192

  1. [Modulation of plant resistance to diseases by water-soluble chitosan].

    PubMed

    Vasiukova, N I; Zinov'eva, S V; Il'inskaia, L I; Perekhod, E A; Chalenko, G I; Gerasimova, N G; Il'ina, A V; Varlamov, V P; Ozeretskovskaia, O L

    2001-01-01

    Low-molecular-weight water-soluble chitosan with a molecular weight of 5 kDa obtained after enzymatic hydrolysis of native crab chitosan was shown to display an elicitor activity by inducing the local and systemic resistance of Solanumi tuberosum potato and Lycopesicon esculentum tomato to Phytophthora infestans and nematodes, respectively. Chitosan induced the accumulation of phytoalexins in tissues of host plants, decreased the total content and changed the composition of free sterols producing adverse effects on infesters, activated chitinases, beta-glucanases, and lipoxygenases, and stimulated the generation of reactive oxygen species. The activation of protective mechanisms in plant tissues inhibited the growth of taxonomically different pathogens (parasitic fungus Phytophthora infestans and root knot nematode Meloidogyne incognita).

  2. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    PubMed

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. PMID:27451148

  3. Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding.

    PubMed

    Godoy, Andrea V.; Zanetti, María Eugenia; San Segundo, Blanca; Casalongué, Claudia A.

    2001-06-01

    Coadaptors or coactivators are a new class of transcription factors capable of interconnecting a regulator DNA-binding protein with a component of the basal transcription machinery allowing transcriptional activation to proceed. We report the identification of a novel Solanum tuberosum ssp. tuberosum putative transcription coactivator, named StMBF1 (Solanum tuberosum multiprotein bridging factor 1). The StMBF1 cDNA was isolated from a Fusarium solani f. sp. eumartii-infected potato tuber cDNA library, using a differential screening approach. StMBF1 is up-regulated during fungal attack as well as on wounding. A Fusarium elicitor source and ethylene precursor and salicylic acid also regulate StMBF1 expression. The precise role of StMBF1 during the plant response against environmental stresses remains to be elucidated.

  4. Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    PubMed Central

    Louis, Joe; Shah, Jyoti

    2013-01-01

    The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed. PMID:23847627

  5. Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits.

    PubMed

    Cao, Ying; Hu, Shanglian; Dai, Qilin; Liu, Yongsheng

    2014-08-01

    Recombinant tomato terpene synthases, TPS5/37/39, catalyze the formation of linalool or nerolidol in vitro. However, little is known about their actual biological activities in tomato plants, especially in their fruits. Here, when all three TPSs were induced in tomato fruits by a chemical elicitor, geraniol, a significant linalool peak was detected in fruit tissues but not in control fruits. Considering the compartments of these TPS proteins and available substrates, the linalool peak induced by geraniol might be attributed to TPS5 and TPS37, both of them putatively localized in the plastids where high levels of monoterpene substrate geranyl diphosphate exist. In addition, application of geraniol also triggered jasmonic acid (JA)-related defense genes suggesting that the inducible TPSs might be correlated with JA-signaled defense responses.

  6. Intracellular localization of prenyltransferases of isoflavonoid phytoalexin biosynthesis in bean and soybean.

    PubMed

    Biggs, D R; Welle, R; Grisebach, H

    1990-05-01

    The intracellular localization of prenyltransferases involved in the biosynthesis of the phytoalexins glyceollin in soybean (Glycine max L.) and phaseollin in French bean (Phaseolus vulgaris L.) has been investigated. By sucrose- and Percoll-gradient centrifugation of microsomes of an elicitor-challenged soybean cell culture, the membranes containing prenyltransferase were separated from the endoplasmic reticulum and shown to be lighter in density. In a continuous Percoll gradient the peak of prenyltransferase activity coincided with the peak of galactolipid synthesis, as determined by incorporation of uridine 5'-diphospho-[(14)C]galactose (UDP-[(14)C]galactose). Intact chloroplasts isolated from cupricchloride-treated bean leaves contained both prenyltransferase and UDP-galactose transferase activity. Both activities increased during chloroplast isolation. Fractionation of swollen chloroplasts on a discontinuous sucrose gradient showed prenyltransferase and UDP-galactose transferase activity in the envelope membrane subfraction. It is concluded that in both plants prenyltransferase is located in the envelope membrane of plastids.

  7. Emotional selection in memes: the case of urban legends.

    PubMed

    Bell, C; Sternberg, E

    2001-12-01

    This article explores how much memes like urban legends succeed on the basis of informational selection (i.e., truth or a moral lesson) and emotional selection (i.e., the ability to evoke emotions like anger, fear, or disgust). The article focuses on disgust because its elicitors have been precisely described. In Study 1, with controls for informational factors like truth, people were more willing to pass along stories that elicited stronger disgust. Study 2 randomly sampled legends and created versions that varied in disgust; people preferred to pass along versions that produced the highest level of disgust. Study 3 coded legends for specific story motifs that produce disgust (e.g., ingestion of a contaminated substance) and found that legends that contained more disgust motifs were distributed more widely on urban legend Web sites. The conclusion discusses implications of emotional selection for the social marketplace of ideas.

  8. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    PubMed Central

    Treutter, Dieter

    2010-01-01

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations. PMID:20479987

  9. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2013-08-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales.

  10. Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua.

    PubMed

    Baldi, Ashish; Dixit, V K

    2008-07-01

    Artemisinin, isolated from the shrub-Artemisia annua, is a sesquiterpene lactone used to treat multi-drug resistant strains of falciparum malaria. It is also effective against a wide variety of cancers such as leukemia and colon cancer. To counter the present low content in leaves and uneconomical chemical synthesis, alternate ways to produce artemisinin have been sought. But this compound remains elusive in cell cultures of A. annua despite the extensive studies undertaken. This work reports the first successful approach for production of artemisinin by cell cultures of Indian variety of A. annua. In the present study, an integrated yield enhancement strategy, developed by addition of selected precursor (mevalonic acid lactone) and elicitor (methyl jasmonate) at optimized concentrations, resulted in 15.2g/l biomass and 110.2mg/l artemisinin, which was 5.93 times higher in productivity in comparison to control cultures. PMID:17804216

  11. Rethinking natural altruism: Simple reciprocal interactions trigger children’s benevolence

    PubMed Central

    Cortes Barragan, Rodolfo; Dweck, Carol S.

    2014-01-01

    A very simple reciprocal activity elicited high degrees of altruism in 1- and 2-y-old children, whereas friendly but nonreciprocal activity yielded little subsequent altruism. In a second study, reciprocity with one adult led 1- and 2-y-olds to provide help to a new person. These results question the current dominant claim that social experiences cannot account for early occurring altruistic behavior. A third study, with preschool-age children, showed that subtle reciprocal cues remain potent elicitors of altruism, whereas a fourth study with preschoolers showed that even a brief reciprocal experience fostered children’s expectation of altruism from others. Collectively, the studies suggest that simple reciprocal interactions are a potent trigger of altruism for young children, and that these interactions lead children to believe that their relationships are characterized by mutual care and commitment. PMID:25404334

  12. The application of chitosan and benzothiadiazole in vineyard (Vitis vinifera L. cv Groppello Gentile) changes the aromatic profile and sensory attributes of wine.

    PubMed

    Vitalini, Sara; Ruggiero, Antonietta; Rapparini, Francesca; Neri, Luisa; Tonni, Marco; Iriti, Marcello

    2014-11-01

    This work reports the effects of resistance inducers on wine aroma compounds and sensory attributes. Resistance inducers are a class of products able to elicit the plant defence mechanisms against pathogens, incurring lower toxicological risks than conventional agrochemicals. Among them, chitosan (CHT) and benzothiadiazole (BTH) are particularly effective in stimulating the biosynthesis of bioactive phytochemicals. They were used in a two-year survey conducted to assess experimental wines obtained from elicitor-treated grapes. Compared with conventional fungicides (penconazole and methyldinocap), in 2009, BTH increased total acetals and esters, while CHT raised the levels of total acetals and alcohols. Sensory analysis revealed that overall acceptance was higher in CHT than in BTH. In 2010, differences were not significant. Therefore, plant activators deserve attention beyond their efficacy in crop protection. In particular, in our experimental conditions, CHT improved the volatile profile, flavour and taste of Groppello wine.

  13. Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    NASA Astrophysics Data System (ADS)

    Faizal, Ahmad; Geelen, Danny

    2015-09-01

    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage.

  14. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor).

    PubMed

    Haine, Eleanor R; Pollitt, Laura C; Moret, Yannick; Siva-Jothy, Michael T; Rolff, Jens

    2008-06-01

    Much work has elucidated the pathways and mechanisms involved in the production of insect immune effector systems. However, the temporal nature of these responses with respect to different immune insults is less well understood. This study investigated the magnitude and temporal variation in phenoloxidase and antimicrobial activity in the mealworm beetle Tenebrio molitor in response to a number of different synthetic and real immune elicitors. We found that antimicrobial activity in haemolymph increased rapidly during the first 48h after a challenge and was maintained at high levels for at least 14 days. There was no difference in the magnitude of responses to live or dead Escherichia coli or Bacillus subtilis. While peptidoglylcan also elicited a long-lasting antimicrobial response, the response to LPS was short lived. There was no long-lasting upregulation of phenoloxidase activity, suggesting that this immune effector system is not involved in the management of microbial infections over a long time scale. PMID:18513740

  15. Quantification of jasmonic acid by SPME in tomato plants stressed by ozone.

    PubMed

    Zadra, Claudia; Borgogni, Andrea; Marucchini, Cesare

    2006-12-13

    Jasmonates are signalling molecules induced in plants as a response to various biotic and/or abiotic stresses. As ozone is known to activate defense responses in plants, we have monitored the concentration of jasmonic acid in tomato leaves during and after an acute exposure to this abiotic elicitor. In this experiment, we observed that the maximum induction of jasmonic acid in O3-fumigated plants occurred 9 h after the end of treatment and the concentration of jasmonic acid in stressed plants increased 13-fold. However, the level of endogenous methyl-jasmonate was constant during the observed period. The extraction and quantification of jasmonic acid as its methyl ester was performed by headspace-solid-phase microextraction (or HS-SPME) in combination with GC-FID and GC-MS. The sensitivity (LOD = 2 ng/g) of this method permitted the detection and quantification of jasmonic acid present in plant tissues at very low concentrations. PMID:17147413

  16. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust

    PubMed Central

    Ciaramelli, Elisa; Sperotto, Rebecca G.; Mattioli, Flavia

    2013-01-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach. PMID:22842816

  17. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit.

    PubMed

    Saavedra, Gabriela M; Figueroa, Nicolás E; Poblete, Leticia A; Cherian, Sam; Figueroa, Carlos R

    2016-01-01

    Fragaria chiloensis fruit has a short postharvest life mainly due to its rapid softening. In order to improve its postharvest life, preharvest applications of methyl jasmonate (MeJA) and chitosan were evaluated during postharvest storage at room temperature. The quality and chemical parameters, and protection against decay were evaluated at 0, 24, 48 and 72 h of storage from fruits of two subsequent picks (termed as first harvest and second harvest). In general, fruits treated with MeJA and chitosan maintained higher levels of fruit firmness, anthocyanin, and showed significant delays in decay incidence compared to control fruit. MeJA-treated fruits exhibited a greater lignin content and SSC/TA ratio, and delayed decay incidences. Instead, chitosan-treated fruits presented higher antioxidant capacity and total phenol content. In short, both the elicitors were able to increase the shelf life of fruits as evidenced by the increased levels of lignin and anthocyanin, especially of the second harvest. PMID:26212995

  18. Different groups, different threats: a multi-threat approach to the experience of stereotype threats.

    PubMed

    Shapiro, Jenessa R

    2011-04-01

    Two studies demonstrated that different negatively stereotyped groups are at risk for distinct forms of stereotype threats. The Multi-Threat Framework articulates six distinct stereotype threats and the unique constellations of variables (e.g., group identification, stereotype endorsement) that elicit each stereotype threat. Previous research suggests that different negatively stereotyped groups systematically vary across these stereotype threat elicitors; a pilot study confirms these differences. Across two studies, groups that tend to elicit low stereotype endorsement (religion, race/ethnicity, congenital blindness) were less likely to report experiencing self-as-source stereotype threats (stereotype threats requiring stereotype endorsement) and groups that tend to elicit low group identification (mental illness, obesity, blindness later in life) were less likely to report experiencing group-as-target stereotype threats (stereotype threats requiring group identification). This research suggests that traditional models may overlook the experiences of stereotype threats within some groups and that interventions tailored to address differences between stereotype threats will be most effective.

  19. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin.

    PubMed

    Sinagawa-García, Sugey R; Rascón-Cruz, Quintín; Valdez-Ortiz, Angel; Medina-Godoy, Sergio; Escobar-Gutiérrez, Alejandro; Paredes-López, Octavio

    2004-05-01

    Prospective testing for allergenicity of proteins obtained from sources with no prior history of causing allergy has been difficult to perform. Thus, the objective of this work was to assess the food safety of genetically modified maize with an amaranth globulin protein termed amarantin. Transgenic maize lines evaluated showed, in relation to nontransgenic, 4-35% more protein and 0-44% higher contents of specific essential amino acids. Individual sequence analysis with known amino acid sequences, reported as allergens, showed that none of these IgE elicitors were identified in amarantin. Amarantin was digested within the first 15 min by Simulated Gastric Fluid treatment as observed by Western blot. Expressed amarantin did not induce important levels of specific IgE antibodies in BALB/c mice, as analyzed by ELISA. We conclude that the transgenic maize with amarantin is not an important allergenicity inducer, just as nontransgenic maize.

  20. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection

    PubMed Central

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; Ricci de Azevedo, Rafael; da Silva, Francilene Lopes; Noronha, Eliane F.; José Ulhoa, Cirano; Neves Monteiro, Valdirene; Elena Cardoza, Rosa; Gutiérrez, Santiago; Nascimento Silva, Roberto

    2015-01-01

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants. PMID:26647876