Sample records for plastic composite support

  1. Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Ho, K L; Pometto, A L; Hinz, P N; Dickson, J S; Demirci, A

    1997-01-01

    Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5 - 1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P < 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P < 0.0001) and enhanced cell attachment (P < 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 x 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium. PMID:9212402

  2. Optimization of wood plastic composite decks

    NASA Astrophysics Data System (ADS)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  3. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders

    PubMed Central

    Cohen-Khait, Ruth; Schreiber, Gideon

    2016-01-01

    Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635

  4. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  5. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  6. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  7. Microplastic-associated Bacterial Assemblages in the Intertidal Zone

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Zhao, S.; Zhu, L.; Li, D.

    2017-12-01

    Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.

  8. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for composite packagings with inner... Standards for composite packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within...

  9. PNNL Technical Support to The Implementation of EMTA and EMTA-NLA Models in Autodesk® Moldflow® Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Wang, Jin

    2012-12-01

    Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA and EMTA-NLA in the Autodesk® Moldflow® packages. This report summarizes the recent results from Autodesk Simulation Moldlow Insight (ASMI) analyses using the EMTA models and EMTA-NLA/ABAQUS® analyses for further assessment of the EMTA-NLA models to support their implementation in Autodesk Moldflow Structural Alliance (AMSA). PNNL’s technical support to Autodesk, Inc. included (i) providing the theoretical property prediction models as described in published journal articles and reports, (ii) providing explanations of these models and computational procedure, (iii) providing the necessary LFT data for process simulations and property predictions, and (iv) performing ABAQUS/EMTA-NLA analyses to further assess and illustrate the models for selected LFT materials.« less

  10. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in...

  11. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in...

  12. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in...

  13. Wood-plastic composites in the United States : the interfacing of two industries

    Treesearch

    Craig Clemons

    2002-01-01

    The term wood-plastic composites refers to any composites that contain wood (of any form) and thermosets or thermoplastics. Thermosets are plastics that, once cured, cannot be melted by reheating. These include resins such as epoxies and phenolics, plastics with which the forest products industry is most familiar. Thermoplastics are plastics that can be repeatedly...

  14. Characterization and evaluation physical properties biodegradable plastic composite from seaweed (Eucheuma cottonii)

    NASA Astrophysics Data System (ADS)

    Deni, Glar Donia; Dhaningtyas, Shalihat Afifah; Fajar, Ibnu; Sudarno

    2015-12-01

    The characterization and evaluation of biodegradable plastic composed of a mixture PVA - carrageenan - chitosan was conducted in this study. Obtained data were then compared to commercial biodegradable plastic. Characteristic of plastic was mechanical tested such as tensile - strength and elongation. Plastic degradation was studied using composting method for 7 days and 14 days. The results showed that the increase carrageenan will decrease tensile-strength and elongation plastic composite. In addition, increase carrageenan would increase the degraded plastics composite.

  15. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  16. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  17. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  18. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  19. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    miniiiii’ 5 0712 01016774 9 x TECHNICA. . LIBRARY Jt U*Al>/l 1 Technical Report RL-75-6 STABILITY OF GLASS FIBER -PLASTIC COMPOSITES Wartan A...Subtitle) STABILITY OF GLASS FIBER -PLASTIC COMPOSITES 5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER 7...Exploratory research was conducted to determine the stages and nature of degradation of glass fiber -plastic composite systems under various environmental

  20. Formation of wood-plastic composites coupled with forest products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meister, J.J.; Zhang, Siyi

    We have developed a method to formulate (wood/paper)-plastic composites and developed a process to prepare materials with maximum strength, durability, and rigidity. We are applying the experience gained from our research to the preparation of wood reinforced, plastic blends. The steps in the process of making wood/plastic composites are described.

  1. Plastic-aluminum composites in transportation infrastructure.

    DOT National Transportation Integrated Search

    2017-03-01

    This report presents an initial investigation of the mechanics of I-beams developed with plastic-aluminum composite technology. Plastic-aluminum composites in structural beam/frame/truss elements are a relatively new concept that has seen little, if ...

  2. Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites.

    PubMed

    Koscho, Michael E; Grubbs, Robert H; Lewis, Nathan S

    2002-03-15

    Arrays of vapor detectors have been formed through addition of varying mass fractions of the plasticizer diethylene glycol dibenzoate to carbon black-polymer composites of poly(vinyl acetate) (PVAc) or of poly(N-vinylpyrrolidone). Addition of plasticizer in 5% mass fraction increments produced 20 compositionally different detectors from each polymer composite. Differences in vapor sorption and permeability that effected changes in the dc electrical resistance response of these compositionally different detectors allowed identification and classification of various test analytes using standard chemometric methods. Glass transition temperatures, Tg, were measured using differential scanning calorimetry for plasticized polymers having a mass fraction of 0, 0.10, 0.20, 0.30, 0.40, or 0.50 of plasticizer in the composite. The plasticized PVAc composites with Tg < 25 degrees C showed rapid responses at room temperature to all of the test analyte vapors studied in this work, whereas composites with Tg > 25 degrees C showed response times that were highly dependent on the polymer/analyte combination. These composites showed a discontinuity in the temperature dependence of their resistance, and this discontinuity provided a simple method for determining the Tg of the composite and for determining the temperature or plasticizer mass fraction above which rapid resistance responses could be obtained for all members of the test set of analyte vapors. The plasticization approach provides a method for achieving rapid detector response times as well as for producing a large number of chemically different vapor detectors from a limited number of initial chemical feedstocks.

  3. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    PubMed

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  5. Method of coextruding plastics to form a composite sheet

    DOEpatents

    Tsien, Hsue C.

    1985-06-04

    This invention pertains to a method of producing a composite sheet of plastic materials by means of coextrusion. Two plastic materials are matched with respect to their melt indices. These matched plastic materials are then coextruded in a side-by-side orientation while hot and soft to form a composite sheet having a substantially uniform demarkation therebetween. The plastic materials are fed at a substantially equal extrusion velocity and generally have substantially equal viscosities. The coextruded plastics can be worked after coextrusion while they are still hot and soft.

  6. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  7. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  8. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  9. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...

  10. 40 CFR 63.5790 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... subpart applies to each new or existing affected source at reinforced plastic composites production...) manufacturing, mixing, cleaning of equipment used in reinforced plastic composites manufacture, HAP-containing...

  11. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  12. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I know if my reinforced plastic... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or...

  13. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I know if my reinforced plastic... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected...

  14. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I know if my reinforced plastic... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected...

  15. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I know if my reinforced plastic... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected...

  16. 40 CFR 63.5785 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers... reinforced plastic composites production facility that is located at a major source of HAP emissions. Reinforced plastic composites production is limited to operations in which reinforced and/or nonreinforced...

  17. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... composites production facility is a new affected source or an existing affected source? 63.5795 Section 63... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or...

  18. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  19. 40 CFR 63.5787 - What if I also manufacture fiberglass boats or boat parts?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... the reinforced plastic composites you manufacture are used in manufacturing your boats, you are not... applicability criteria in § 63.5785, and produce reinforced plastic composites that are not used in fiberglass...

  20. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastic Composites... compound (VOC) emissions from reinforced plastic composites production operations. This rule applies to any facility that has reinforced plastic composites production operations. This rule is approvable because it...

  1. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Rui, Y.

    1989-01-01

    Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.

  2. Engineering Design Handbook Short Fiber Plastic Base Composites

    DTIC Science & Technology

    1975-07-31

    ENGINEERING DESIGN HANDBOOK N ’~rttl SHORT FIBER PLASTIC BASE COMPOSITES l ,.. HEADQUARTERS, US ARrm MAlERIEL COIVMAND JULY 1975 DEPARTMENT OF...HANDBOOK SHORT FIBER PLASTIC BASE COMPOSITES TABLE OF CONTENTS 31 July 1975 Paragraph Page 1-1 1-2 1-2.1 1-2.2 1-3 1-3.1 1-3.2 1-3.3 1...General ............................... . Molding Short Fiber Compounds ........... . Classification of Polymer Based Composites

  3. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons

    2004-01-01

    Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...

  4. Effect of processing method on accelerated weathering of wood-flour/HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons

    2003-01-01

    Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...

  5. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  6. Considerations in recycling of wood-plastic composites

    Treesearch

    J.E. Winandy; N.M. Stark; C.M. Clemons

    2004-01-01

    Wood-plastic composite decking has made major advances in material performance, processing and user acceptance. The growth of wood-plastic composite decking in North America has grown from less than 1 % in mid- 0's to over 10% today with growth projected by several studies to reach +20% before the end of this decade (2010). Preservative-treated wood decking...

  7. Heat release rate of wood-plastic composites

    Treesearch

    N. M. Stark; R. H. White; C. M. Clemons

    1997-01-01

    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  8. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  9. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. wo processing technologies were used to prepare wood-plastic composites: air-laying and melt-...

  10. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Treesearch

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  11. Solid-State Lithium Conductors for Lithium Metal Batteries Based on Electrospun Nanofiber/Plastic Crystal Composites.

    PubMed

    Zhou, Yundong; Wang, Xiaoen; Zhu, Haijin; Yoshizawa-Fujita, Masahiro; Miyachi, Yukari; Armand, Michel; Forsyth, Maria; Greene, George W; Pringle, Jennifer M; Howlett, Patrick C

    2017-08-10

    Organic ionic plastic crystals (OIPCs) are a class of solid-state electrolytes with good thermal stability, non-flammability, non-volatility, and good electrochemical stability. When prepared in a composite with electrospun polyvinylidene fluoride (PVdF) nanofibers, a 1:1 mixture of the OIPC N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C 2 mpyr][FSI]) and lithium bis(fluorosulfonyl)imide (LiFSI) produced a free-standing, robust solid-state electrolyte. These high-concentration Li-containing electrolyte membranes had a transference number of 0.37(±0.02) and supported stable lithium symmetric-cell cycling at a current density of 0.13 mA cm -2 . The effect of incorporating PVdF in the Li-containing plastic crystal was investigated for different ratios of PVdF and [Li][FSI]/[C 2 mpyr][FSI]. In addition, Li|LiNi 1/3 Co 1/3 Mn 1/3 O 2 cells were prepared and cycled at ambient temperature and displayed a good rate performance and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Implementation of recycled cellulosic fibres into cement based composites and testing their influence on resulting properties

    NASA Astrophysics Data System (ADS)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, the application of raw materials from renewable sources such as wood, plants and waste paper to building materials preparing has gained a significant interest in this research area. The aim of this paper is to investigate the impact of the selected plasticizer on properties of fibres composites made of cellulosic fibres coming from recycled waste paper and cement. Investigations were performed on specimens with 0.5 wt. % of fibre addition without and with plasticizer. A comparative study did not show positive influence of plasticizer on the density and thermal conductivity of 28 days hardened composite. The specimens after 1, 3 and 7 days of hardening with plasticizer exhibited the highest impact on compressive strength in comparison to composite without plasticizer but 28 days hardened specimens reached the same value of strength characteristic (41 MPa).

  13. Use of recycled plastics in wood plastic composites - a review.

    PubMed

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

    NASA Astrophysics Data System (ADS)

    Galvin, A. B.; Kistler, L. M.; Popecki, M. A.; Farrugia, C. J.; Simunac, K. D. C.; Ellis, L.; Möbius, E.; Lee, M. A.; Boehm, M.; Carroll, J.; Crawshaw, A.; Conti, M.; Demaine, P.; Ellis, S.; Gaidos, J. A.; Googins, J.; Granoff, M.; Gustafson, A.; Heirtzler, D.; King, B.; Knauss, U.; Levasseur, J.; Longworth, S.; Singer, K.; Turco, S.; Vachon, P.; Vosbury, M.; Widholm, M.; Blush, L. M.; Karrer, R.; Bochsler, P.; Daoudi, H.; Etter, A.; Fischer, J.; Jost, J.; Opitz, A.; Sigrist, M.; Wurz, P.; Klecker, B.; Ertl, M.; Seidenschwang, E.; Wimmer-Schweingruber, R. F.; Koeten, M.; Thompson, B.; Steinfeld, D.

    2008-04-01

    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ˜0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.

  15. Stretching-induced wrinkling in plastic-rubber composites.

    PubMed

    Yang, Junyu; Damle, Sameer; Maiti, Spandan; Velankar, Sachin S

    2017-01-25

    We examine the mechanics of three-layer composite films composed of an elastomeric layer sandwiched between two thin surface layers of plastic. Upon stretching and releasing such composite films, they develop a highly wrinkled surface texture. The mechanism for this texturing is that during stretching, the plastic layers yield and stretch irreversibly whereas the elastomer stretches reversibly. Thus upon releasing, the plastic layers buckle due to compressive stress imposed by the elastomer. Experiments are conducted using SEPS elastomer and 50 micron thick LLDPE plastic films. Stretching and releasing the composites to 2-5 times their original length induces buckles with wavelength on the order of 200 microns, and the wavelength decreases as the stretching increases. FEM simulations reveal that plastic deformation is involved at all stages during this process: (1) during stretching, the plastic layer yields in tension; (2) during recovery, the plastic layer first yields in-plane in compression and then buckles; (3) post-buckling, plastic hinges are formed at high-curvature regions. Homogeneous wrinkles are predicted only within a finite window of material properties: if the yield stress is too low, the plastic layers yield in-plane, without wrinkling, whereas if the yield stress is too high, non-homogeneous wrinkles are predicted. This approach to realizing highly wrinkled textures offers several advantages, most importantly the fact that high aspect ratio wrinkles (amplitude to wavelength ratios exceeding 0.4) can be realized.

  16. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  17. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  18. METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS

    DOEpatents

    Shonka, F.R.; Rose, J.E.; Failla, G.

    1961-10-24

    Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)

  19. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastics...) emissions from reinforced plastic composites production operations to Ohio's State Implementation plan (SIP). This rule applies to any facility that has reinforced plastic composites production operations. This...

  20. Plastics & Composites Technology Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed plastics and composites technology program for design engineers. General information was obtained through a literature search, from the Society of the Plastics Industry, Inc., the Michigan Employment Security Commission, and interviews with…

  1. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preparation for the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be.... (4) Rigid plastic IBCs and composite IBCs with plastic inner receptacles must be conditioned for... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  2. Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch.

    PubMed

    Schmitt, H; Guidez, A; Prashantha, K; Soulestin, J; Lacrampe, M F; Krawczak, P

    2015-01-22

    Starch was combined with plasticizers such as glycerol, sorbitol, glycerol/sorbitol and urea/ethanolamine blends by means of high shear extrusion process to prepare thermoplastic starch (TPS). Effect of storage time and plasticizers on the structural stability of melt processed TPS was investigated. Morphological observation, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal that melt extrusion process is efficient in transforming granular starch into a plasticized starch for all plasticizer compositions. XRD analysis highlights major changes in the microstructure of plasticized starch, and dependence of crystalline type and degree of crystallinity mainly on the plasticizer composition and storage time. Dynamical mechanical analysis (DMA) yields a decrease of the peak intensity of loss factor with aging time. The effect of ageing on tensile strength also appears to be highly dependent on the plasticizer composition. Thus, through different plasticizer combinations and ageing, starch-based materials with significant differences in tensile properties can be obtained, which may be tuned to meet the requirements of a wide range of applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. 40 CFR 63.5798 - What if I want to use, or I manufacture, an application technology (new or existing) whose...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Reinforced Plastic Composites Production Calculating Organic Hap Emissions Factors for Open Molding and... description of the resin or gel coat application technology and supporting organic HAP emissions test data obtained using EPA test methods or their equivalent. The emission test data should be obtained using a...

  4. 40 CFR 63.5798 - What if I want to use, or I manufacture, an application technology (new or existing) whose...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Reinforced Plastic Composites Production Calculating Organic Hap Emissions Factors for Open Molding and... description of the resin or gel coat application technology and supporting organic HAP emissions test data obtained using EPA test methods or their equivalent. The emission test data should be obtained using a...

  5. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.

    PubMed

    Brouwer, Marieke T; Thoden van Velzen, Eggo U; Augustinus, Antje; Soethoudt, Han; De Meester, Steven; Ragaert, Kim

    2018-01-01

    The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap -1 .a -1 ). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Composite Materials and Sandwich Structures - A Primer

    DTIC Science & Technology

    2010-05-01

    cooling through a temperature range characteristic of the plastic. In the softened stage the plastic can be formed in a desired shape by molding or...which components are placed in a mold , and the composite is built up and worked by hand. Hybrid- A composite laminate comprised of laminae of two or...ply orientation is symmetrical about the laminate mid- plane. Thermoplastic - A plastic that can be repeatedly softened by heating, and hardened by

  7. 75 FR 9638 - Safety Advisory Notice: Use of Composite Cargo Tanks Manufactured Under DOT Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    .... PHMSA-2010-0046; Notice No. 10-1] Safety Advisory Notice: Use of Composite Cargo Tanks Manufactured... use composite cargo tank motor vehicles authorized under DOT special permits of the requirement to... for composite cargo tanks, such as fiber reinforced plastic (FRP) or glass fiber reinforced plastic...

  8. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  9. Fabrication and characterization of polymer blends and composites derived from biopolymers

    NASA Astrophysics Data System (ADS)

    Sharma, Suraj

    This research focuses on fabricating blends and composites from natural polymers especially from proteins and natural epoxy, and describing the properties of plastics made from them. Specifically, plastic samples from partially denatured feathermeal and bloodmeal proteins, derived from the animal co-products (rendering) industry, were successfully produced through a compression molding process. The modulus (stiffness) of the material obtained was found to be comparable with that of commercial synthetic materials, such as polystyrene, but was found to have lower toughness characteristics, which is a common phenomenon among plastics produced from animal and plant proteins. Therefore, this study explored blending methods for improving the toughness. Plastic forming conditions for undenatured animal proteins such as chicken egg whites albumin and whey, used as a model, were established to prepare plastics from their blends with animal co-product proteins. The resultant plastic samples from these biomacromolecular blends demonstrated improved mechanical properties that were also compared with the established theoretical models known for polymer blends and composites. Moreover, plastics from albumin of chicken egg whites and human serum have demonstrated their potential in medical applications that require antibacterial properties. Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed oil, showed significant potential to replace petroleum-derived resins for use as a matrix for composites in structural applications. Moreover, the research showed the benefits of ultrasonic curing, which can help in preparing the out-of-autoclave composites.

  10. Scattering by tilted plastic cylinders having curved ends and truncated plastic cones

    NASA Astrophysics Data System (ADS)

    Espana, Aubrey; Baik, Kyungmin; Marston, Philip L.

    2005-04-01

    In prior research an acoustic backscattering enhancement was demonstrated for a bluntly truncated plastic cylinder caused by a merged caustic [F. J. Blonigen and P. L. Marston, J. Acoust. Soc. Am. 107, 689-698 (2000)]. This was confirmed with analogous light scattering experiments [P. L. Marston, Y. B. Zhang, and D. B. Thiessen, Appl. Opt. 42, 412-417 (2003)]. In recent work a different backscattering enhancement associated with a caustic was identified for tilted plastic cylinders having curved ends. When the cylinder is tilted so as to focus a shear wave at the point of internal specular reflection, the curvature of the outgoing acoustic wavefront vanishes orthogonal to the meridional plane. This was verified with analogous light scattering experiments. The flatness of the outgoing wavefront enhances the scattering. Backscattering by truncated plastic cones as a function of tilt also shows enhancements associated with the composition of the target. The time dependence of the backscattering envelope as a function of tilt reveals different features depending on whether the top or bottom of the cone is illuminated by tone bursts. [Work supported by the Office of Naval Research.

  11. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  12. PAFAC- PLASTIC AND FAILURE ANALYSIS OF COMPOSITES

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1994-01-01

    The increasing number of applications of fiber-reinforced composites in industry demands a detailed understanding of their material properties and behavior. A three-dimensional finite-element computer program called PAFAC (Plastic and Failure Analysis of Composites) has been developed for the elastic-plastic analysis of fiber-reinforced composite materials and structures. The evaluation of stresses and deformations at edges, cut-outs, and joints is essential in understanding the strength and failure for metal-matrix composites since the onset of plastic yielding starts very early in the loading process as compared to the composite's ultimate strength. Such comprehensive analysis can only be achieved by a finite-element program like PAFAC. PAFAC is particularly suited for the analysis of laminated metal-matrix composites. It can model the elastic-plastic behavior of the matrix phase while the fibers remain elastic. Since the PAFAC program uses a three-dimensional element, the program can also model the individual layers of the laminate to account for thickness effects. In PAFAC, the composite is modeled as a continuum reinforced by cylindrical fibers of vanishingly small diameter which occupy a finite volume fraction of the composite. In this way, the essential axial constraint of the phases is retained. Furthermore, the local stress and strain fields are uniform. The PAFAC finite-element solution is obtained using the displacement method. Solution of the nonlinear equilibrium equations is obtained with a Newton-Raphson iteration technique. The elastic-plastic behavior of composites consisting of aligned, continuous elastic filaments and an elastic-plastic matrix is described in terms of the constituent properties, their volume fractions, and mutual constraints between phases indicated by the geometry of the microstructure. The program uses an iterative procedure to determine the overall response of the laminate, then from the overall response determines the stress state in each phase of the composite material. Failure of the fibers or matrix within an element can also be modeled by PAFAC. PAFAC is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a segmented memory requirement of approximately 66K (octal) of 60 bit words. PAFAC was developed in 1982.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junsong; Liu, Yinong; Huan, Yong

    The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19)more » of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.« less

  14. Effect of weathering variables on the lightness of high-density polyethylene woodflour composites

    Treesearch

    Nicole M. Stark

    2005-01-01

    Wood-plastic lumber is promoted as a low-maintenance, high-durability product. After weathering, however, wood-plastic composites (WPCs) often fade. In the first part of this study, 50 percent woodflour-filled high- density polyethylene (HDPE) composite samples were manufactured. Composites were exposed to two accelerated weathering cycles in a xenon- arc type...

  15. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Bowman, D. E.

    1983-08-01

    Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation.

  16. 40 CFR 63.5780 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers... for hazardous air pollutants (NESHAP) for reinforced plastic composites production. This subpart also...

  17. 77 FR 37904 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Composites Production (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In...: NESHAP for Reinforced Plastic Composites Production (Renewal) ICR Numbers: EPA ICR Number 1976.05, OMB...: Owners or operators of reinforced plastic composites production facilities. Estimated Number of...

  18. Laser cutting plastic materials

    NASA Astrophysics Data System (ADS)

    Vancleave, R. A.

    1980-08-01

    A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.

  19. Injection molded composites from kenaf and recycled plastic

    Treesearch

    Poo Chow; Dilpreet S. Bajwa; Wen-da Lu; John A. Youngquist; Nicole M. Stark; Qiang Li; Brent English

    1998-01-01

    Kenaf-based thermoplastic composites were developed and evaluated in this study. The kenaf stems were collected from farms in central Illinois. The kenaf fibers were blended with commercial virgin plastic or polypropylene and with recycled plastics or low-cost polyethylene in form of post-consumer film wastes and shrink wraps. Investigations on the fiber properties and...

  20. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  1. Durability of Capped Wood Plastic Composites

    Treesearch

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  2. 40 CFR 63.5805 - What standards must I meet to comply with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... gel coat plus applied. (2)(i) If your new facility manufactures large reinforced plastic composites...

  3. Coupled thermal stresses analysis in the composite elastic-plastic cylinder

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Dats, E. P.

    2018-04-01

    The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.

  4. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    PubMed

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  5. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  6. Composite resin reinforcement of flared canals using light-transmitting plastic posts.

    PubMed

    Lui, J L

    1994-05-01

    Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.

  7. High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder.

    PubMed

    Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong

    2018-06-01

    A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model.

  9. Recycling of ligno-cellulosic and polythylene wastes from agricultural operations in thermoplastic composites

    USDA-ARS?s Scientific Manuscript database

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. In the past several years, the availability of good quality wood fiber has been diminishing and prices of wood and plastic have been increasing. Therefore, the vast qua...

  10. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  11. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach.

    PubMed

    Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio

    2015-04-01

    Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer.

    PubMed

    Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya

    2017-12-01

    The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.

  13. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lankford, J.

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate resultmore » previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.« less

  14. Failure of structural elements made of polymer supported composite materials during the multiyear natural aging

    NASA Astrophysics Data System (ADS)

    Blinkov, Pavel; Ogorodov, Leonid; Grabovyy, Peter

    2018-03-01

    Modern high-rise construction introduces a number of limitations and tasks. In addition to durability, comfort and profitability, projects should take into account energy efficiency and environmental problems. Polymer building materials are used as substitutes for materials such as brick, concrete, metal, wood and glass, and in addition to traditional materials. Plastic materials are light, can be formed into complex shapes, durable and low, and also possess a wide range of properties. Plastic materials are available in various forms, colors and textures and require minimal or no color. They are resistant to heat transfer and diffusion of moisture and do not suffer from metal corrosion or microbial attack. Polymeric materials, including thermoplastics, thermoset materials and wood-polymer composites, have many structural and non-structural applications in the construction industry. They provide unique and innovative solutions at a low cost, and their use is likely to grow in the future. A number of polymer composite materials form complex material compositions, which are applied in the construction in order to analyze the processes of damage accumulation under the conditions of complex nonstationary loading modes, and to determine the life of structural elements considering the material aging. This paper present the results of tests on short-term compression loading with a deformation rate of v = 2 mm/min using composite samples of various shapes and sizes.

  15. Nitroaliphatic difluoroformals and process of manufacture

    DOEpatents

    Peters, H.M.; Simon, R.L. Jr.

    1975-12-16

    Some new nitroaliphatic difluoroformal compounds are described. The compounds are intended for use in formulating PBX compositions and as energetic plasticizers or fluidic dispersant materials for plastic explosive compositions. Methods of preparation and several examples are given. (PMA)

  16. 40 CFR 63.3081 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is located at a plastic or composites molding facility; (ii) All of the body parts topcoated at your....) at your facility or at another plastic or composites molding facility which you own or operate, and...

  17. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Treesearch

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  18. Using small diameter trees for wood fiber-plastic composites

    Treesearch

    Phil T. Archuletta

    2008-01-01

    (Please note, this is an extended abstract only) P&M Plastics, Inc. ("P&M" or the "Company" began operation in 1998 as a result of efforts within P&M Signs, a sister company, to develop a new composite material to be used for external signage-one more rugged than wood. The result of these efforts is a 40% woody biomass and a 60% plastic...

  19. Unified Viscoplastic Behavior of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Robinson, D. N.; Bartolotta, P. A.

    1992-01-01

    The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated.

  20. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station

    NASA Technical Reports Server (NTRS)

    Startsev, Oleg V.; Nikishin, Eugene F.

    1995-01-01

    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  1. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts.

    PubMed

    Lahiri, Debrupa; Singh, Virendra; Benaduce, Ana Paula; Seal, Sudipta; Kos, Lidia; Agarwal, Arvind

    2011-01-01

    This study proposes boron nitride nanotube (BNNT) reinforced hydroxyapatite (HA) as a novel composite material for orthopedic implant applications. The spark plasma sintered (SPS) composite structure shows higher density compared to HA. Minimal lattice mismatch between HA and BNNT leads to coherent bonding and strong interface. HA-4 wt% BNNT composite offers excellent mechanical properties-120% increment in elastic modulus, 129% higher hardness and 86% more fracture toughness, as compared to HA. Improvements in the hardness and fracture toughness are related to grain refinement and crack bridging by BNNTs. HA-BNNT composite also shows 75% improvement in the wear resistance. The wear morphology suggests localized plastic deformation supported by the sliding of outer walls of BNNT. Osteoblast proliferation and cell viability show no adverse effect of BNNT addition. HA-BNNT composite is, thus, envisioned as a potential material for stronger orthopedic implants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Evaluation of various fire retardants for use in wood flour--polyethylene composites

    Treesearch

    Nicole M. Stark; Robert H. White; Scott A. Mueller; Tim A. Osswald

    2010-01-01

    Wood-plastic composites represent a growing class of materials used by the residential construction industry and the furniture industry. For some applications in these industries, the fire performance of the material must be known, and in some cases improved. However, the fire performance of wood-plastic composites is not well understood, and there is little...

  3. Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour

    Treesearch

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2016-01-01

    This study investigated weathering performance of an HDPE wood plastic composite reinforced with extracted or delignified wood flour (WF). The wood flour was pre-extracted with three different solvents, toluene/ethanol (TE), acetone/water (AW), and hot water (HW), or sodium chlorite/acetic acid. The spectral properties of the composites before and after artificial...

  4. Long term durability of wood-plastic composites made with chemically modified wood

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  5. Scrap? This Program Grows on It!

    ERIC Educational Resources Information Center

    Schureman, Robert

    1975-01-01

    A high school industrial arts program in plastics recycling provided students direct contact with production methods of the plastics industry as well as awareness of governmental functions. Experimentation included fuel cells, paving and construction composites, soil composites, and watercraft flotation. (EA)

  6. Construction loads experienced by plastic composite ties.

    DOT National Transportation Integrated Search

    2014-07-01

    Damage to plastic composite ties during handling and track installation has been reported by a number of railroads. Results from : a survey conducted to identify specific handling issues were used to develop field and laboratory tests to measure the ...

  7. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe.

    PubMed

    Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril

    2013-12-01

    A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.

  8. Crash safety assurance strategies for future plastic and composite intensive vehicles (PCIVs).

    DOT National Transportation Integrated Search

    2010-06-01

    This report identifies outstanding safety issues and research needs for Plastics and Composite Intensive Vehicles (PCIV) to facilitate their safe deployment by 2020. A PCIV definition is proposed, which ensures that the weight and efficiency objectiv...

  9. How craftsmen and home hobbyists can make and use wood-plastic composite materials.

    Treesearch

    Howard N. Rosen

    1974-01-01

    An inexpensive method that can be used by the home hobbyist, craftsman, or small businessman for making wood-plastic composites is described. Several examples are given to demonstrate the ease and versatility of the method.

  10. Analysis of non-phthalates plasticizers on porous graphitic carbon by supercritical fluid chromatography using evaporative light scattering detection.

    PubMed

    Vaccher, Claude; Decaudin, Bertrand; Sautou, Valérie; Lecoeur, Marie

    2014-09-12

    The analysis of several plasticizers, widely used in the production of medical devices, was investigated on porous graphitic carbon (PGC) stationary phase in supercritical fluid chromatography (SFC) with an evaporative light scattering detector (ELSD). Due to strong interaction of compounds with the PGC support, solvents of strong eluotropic strength were added to the CO2 supercritical fluid. The effect of alkyl chain (pentane, hexane, heptane) and chlorinated (CH2Cl2, CHCl3, CCl4) solvents was studied on the retention and on the ELSD detection of plasticizers. A co-solvent mixture composed of CHCl3/heptane, eluted under gradient mode, allowed a significant improvement of the ELSD response compared to the use of each solvent individually. Then, a central composite design (CCD) was implemented to optimize both the separation and the detection of plasticizers. The parameters involved were the outlet pressure, the gradient slope, the co-solvent composition and the drift tube temperature of the ELSD. After optimization, baseline separation of plasticizers was achieved in 7min and best signal-to-noise ratios were obtained with outlet pressure and drift tube temperature of ELSD set at 200bar and 31°C, respectively. The co-solvent mixture was also composed of CHCl3/heptane (35/65 v/v) and a gradient from 15 to 60% of co-solvent in 2.2min was employed. The results demonstrated that CCD is a powerful tool for the optimization of SFC/ELSD method and the response surface model analysis can provide statistical understandings of the significant factors required to achieve optimal separation and ELSD sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Do Polyethylene Plastic Covers Affect Smoke Emissions from Debris Piles?

    NASA Astrophysics Data System (ADS)

    Weise, D. R.; Jung, H.; Cocker, D.; Hosseini, E.; Li, Q.; Shrivastava, M.; McCorison, M.

    2010-12-01

    Shrubs and small diameter trees exist in the understories of many western forests. They are important from an ecological perspective; however, this vegetation also presents a potential hazard as “ladder fuels” or as a heat source to damage the overstory during prescribed burns. Cutting and piling of this material to burn under safe conditions is a common silvicultural practice. To improve ignition success of the piled debris, polyethylene plastic is often used to cover a portion of the pile. While burning of piled forest debris is an acceptable practice in southern California from an air quality perspective, inclusion of plastic in the piles changes these debris piles to rubbish piles which should not be burned. With support from the four National Forests in southern California, we conducted a laboratory experiment to determine if the presence of polyethylene plastic in a pile of burning wood changed the smoke emissions. Debris piles in southern California include wood and foliage from common forest trees such as sugar and ponderosa pines, white fir, incense cedar, and California black oak and shrubs such as ceanothus and manzanita in addition to forest floor material and dirt. Manzanita wood was used to represent the debris pile in order to control the effects of fuel bed composition. The mass of polyethylene plastic incorporated into the pile was 0, 0.25 and 2.5% of the wood mass—a range representative of field conditions. Measured emissions included NOx, CO, CO2, SO2, polycyclic and light hydrocarbons, carbonyls, particulate matter (5 to 560 nm), elemental and organic carbon. The presence of polyethylene did not alter the emissions composition from this experiment.

  12. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models

    NASA Astrophysics Data System (ADS)

    González, C.; Segurado, J.; LLorca, J.

    2004-07-01

    The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.

  13. Continuous lactic acid fermentation using a plastic composite support biofilm reactor.

    PubMed

    Cotton, J C; Pometto, A L; Gvozdenovic-Jeremic, J

    2001-12-01

    An immobilized-cell biofilm reactor was used for the continuous production of lactic acid by Lactobacillus casei subsp. rhamnosus (ATCC 11443). At Iowa State University, a unique plastic composite support (PCS) that stimulates biofilm formation has been developed. The optimized PCS blend for Lactobacillus contains 50% (wt/wt) agricultural products [35% (wt/wt) ground soy hulls, 5% (wt/wt) soy flour, 5% (wt/wt) yeast extract, 5% (wt/wt) dried bovine albumin, and mineral salts] and 50% (wt/wt) polypropylene (PP) produced by high-temperature extrusion. The PCS tubes have a wall thickness of 3.5 mm, outer diameter of 10.5 mm, and were cut into 10-cm lengths. Six PCS tubes, three rows of two parallel tubes, were bound in a grid fashion to the agitator shaft of a 1.2-1 vessel for a New Brunswick Bioflo 3000 fermentor. PCS stimulates biofilm formation, supplies nutrients to attached and suspended cells, and increases lactic acid production. Biofilm thickness on the PCS tubes was controlled by the agitation speed. The PCS biofilm reactor and PP control reactor achieved optimal average production rates of 9.0 and 5.8 g l(-1) h(-1), respectively, at 0.4 h(-1) dilution rate and 125-rpm agitation with yields of approximately 70%.

  14. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2007-01-01

    Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of...

  15. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  16. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  17. A safety roadmap for future plastics and composites intensive vehicles

    DOT National Transportation Integrated Search

    2007-11-01

    This report summarizes the approach, activities, and results of a study to evaluate the potential safety benefits of Plastics and Composites Intensive Vehicles (PCIVs) to enable their deployment by 2020. The main goals were to review and assess the s...

  18. Effects of raw materials on the properties of wood fiber-polyethylene composites--part 3: effect of a compatibilizer and wood adhesive on the interfacial adhesion of wood/plastic composites

    Treesearch

    Chin-yin Hwang; Chung-yun Hse; Todd F. Shupe

    2008-01-01

    The objective of this study was to examine the effect of maleated polypropylene compatabilizer on the interfacial properties of wood and polyolefins. Birch wood dowels containing an adhesive applied on the surface were embedded in molten plastic matrices using specially designed jigs. The three plastics investigated included low density polyethylene (LFPE), linear low...

  19. A phenomenological intra-laminar plasticity model for FRP composite materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yinhua; Hou, Chi; Wang, Wenzhi; Zhao, Meiying; Wan, Xiaopeng

    2015-07-01

    The nonlinearity of fibre-reinforced polymer (FRP) composites have significant effects on the analysis of composite structures. This article proposes a phenomenological intralaminar plasticity model to represent the nonlinearity of FRP composite materials. Based on the model presented by Ladeveze et al., the plastic potential and hardening functions are improved to give a more rational description of phenomenological nonlinearity behavior. A four-parameter hardening model is built to capture important features of the hardening curve and consequently gives the good matching of the experiments. Within the frame of plasticity theory, the detailed constitutive model, the numerical algorithm and the derivation of the tangent stiffness matrix are presented in this study to improve model robustness. This phenomenological model achieved excellent agreement between the experimental and simulation results in element scale respectively for glass fibre-reinforced polymer (GFRP) and carbon fibre-reinforced polymer (CFRP). Moreover, the model is capable of simulating the nonlinear phenomenon of laminates, and good agreement is achieved in nearly all cases.

  20. Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation

    PubMed Central

    Gayle, Andrew J.; Cook, Robert F.

    2016-01-01

    An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168

  1. Feasibility of using saltcedar as a filler in injection-molded polyethylene composites

    Treesearch

    Craig M. Clemons; Nicole M. Stark

    2009-01-01

    Saltcedar (Tamarix ramosissima) was investigated for use as a filler in wood–plastic composites (WPCs). The mineral content, water-soluble extractive content, and thermal stability of saltcedar flour were compared with those of a commercial pine wood flour. The wood flours were compounded with plastic, and the viscosities of the composite melts containing the two...

  2. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.

  3. Molding apparatus. [for thermosetting plastic compositions

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  4. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of naphthalene modifies the shape of the pulses produced by alpha and beta particles leading to better alpha/beta separation.

  5. Incorporation of Damage and Failure into an Orthotropic Elasto-Plastic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of experimental tests.

  6. Ductilisation of tungsten (W): Tungsten laminated composites

    DOE PAGES

    Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...

    2017-08-02

    Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.

  7. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... drums, Plastic drums and Jerricans, Composite packagings which are in the shape of a drum Six—(three for... of natural wood, Plywood boxes, Reconstituted wood boxes, Fiberboard boxes, Plastic boxes, Steel or... Administrator. (c) Special preparation of test samples for the drop test. (1) Testing of plastic drums, plastic...

  8. Characterization of terahertz waves on foreign materials of composite materials

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Kim, Sun-Kyu; Chiou, Chien-Ping; Jung, Jong-An

    2018-04-01

    Carbon-fiber reinforced plastics (CFRP) are widely utilized due to their comparatively high performance in engineering structures. It is well understood that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for its importance in technological applications. Recently, T-ray (terahertz ray) advances in technology and instrumentation have provided a probing field on the electromagnetic spectrum. In carbon composites, the penetration characterization of T-ray waves was fundamentally investigated in order to measure the painting thickness. Also, another study dealt with THz scan images of honeycomb sandwich composite panels using a refractive index (n), an absorption coefficient (α), the electrical conductivity of glass fiber embedded epoxy matrix composites, and carbon fiber reinforced plastics (CFRP) skin. For experiments, a method of detecting FRP composites with impact damage is presented, which utilizes aluminum wires intertwined with woven carbon fibers as they are inserted into the surface of the CFRP honeycomb sandwich panels. Intensive characterization of T-ray for the nondestructive evaluation (NDE) of carbon composite reinforced plastics (CFRP) composites is discussed in relation to the E-field influence with CFRP composite laminates.

  9. Optimization of Recycled Glass Fibre-Reinforced Plastics Gear via Integration of the Taguchi Method and Grey Relational Analysis

    NASA Astrophysics Data System (ADS)

    Mizamzul Mehat, Nik; Syuhada Zakarria, Noor; Kamaruddin, Shahrul

    2018-03-01

    The increase in demand for industrial gears has resulted in the increase in usage of plastic-matrix composites particularly glass fibre-reinforced plastics as the gear materials. The usage of these synthetic fibers is to enhance the mechanical strength and the thermal resistance of the plastic gears. Nevertheless, the production of large quantities of these synthetic fibre-reinforced composites poses a serious threat to the ecosystem. Comprehending to this fact, the present work aimed at investigating the effects of incorporating recycled glass fibre-reinforced plastics in various compositions particularly on dimensional stability and mechanical properties of gear produced with diverse injection moulding processing parameters setting. The integration of Grey relational analysis (GRA) and Taguchi method was adopted to evaluate the influence of recycled glass fibre-reinforced plastics and variation in processing parameters on gear quality. From the experimental results, the blending ratio was found as the most influential parameter of 56.0% contribution in both improving tensile properties as well as in minimizing shrinkage, followed by mould temperature of 24.1% contribution and cooling time of 10.6% contribution. The results obtained from the aforementioned work are expected to contribute to accessing the feasibility of using recycled glass fibre-reinforced plastics especially for gear application.

  10. 49 CFR 173.35 - Hazardous materials in IBCs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., cracks, cuts, or other damage which would render it unable to pass the prescribed design type test to... metal, rigid plastic, or composite IBC that is appropriately resistant to an increase in internal pressure likely to develop during transportation. (1) A rigid plastic or composite IBC may only be filled...

  11. Characterizing wood-plastic composites via data-driven methodologies

    Treesearch

    John G. Michopoulos; John C. Hermanson; Robert Badaliance

    2007-01-01

    The recent increase of wood-plastic composite materials in various application areas has underlined the need for an efficient and robust methodology to characterize their nonlinear anisotropic constitutive behavior. In addition, the multiplicity of various loading conditions in structures utilizing these materials further increases the need for a characterization...

  12. Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics

    USDA-ARS?s Scientific Manuscript database

    Sugar beet pulp (SBP), the residue from sugar extraction, was compounded and turned into thermoplastic composite materials. The compounding was performed using a common twin screw compounding extruder and water and glycerol were used as plasticizers. The plasticization of SBP utilized the water-solu...

  13. Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites

    Treesearch

    Nicole M. Stark

    2006-01-01

    Wood–plastic lumber is promoted as a low-maintenance high-durability product. When exposed to accelerated weathering, however, wood–plastic composites may experience a color change and loss in mechanical properties. Differences in weathering cycle and composite surface characteristics can affect the rate and amount of change caused by weathering. In this study, 50%...

  14. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    PubMed

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  15. Wood-plastic composites as promising green-composites for automotive industries!

    PubMed

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  16. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  17. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  18. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  19. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  20. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  1. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  2. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  3. Recycled plastics in highway construction and maintenance : construction report.

    DOT National Transportation Integrated Search

    1993-12-01

    Oregon Senate Bill 66 directed the Oregon Department of Transportation to conduct a research project to evaluate the use of recycled plastic products and composite materials containing recycled plastic in construction maintenance. This report documen...

  4. The clays of the United States east of the Mississippi River

    USGS Publications Warehouse

    Ries, Henrich

    1903-01-01

    Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa. 

  5. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows

    PubMed Central

    Muñoz-Garcia, Agustí; Williams, Joseph B.

    2008-01-01

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments. PMID:18838693

  6. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows.

    PubMed

    Muñoz-Garcia, Agustí; Williams, Joseph B

    2008-10-07

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments.

  7. 24 CFR 3280.608 - Hangers and supports.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... supporting plastic pipe shall not compress, distort, cut or abrade the piping and shall allow free movement..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...

  8. 24 CFR 3280.608 - Hangers and supports.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... supporting plastic pipe shall not compress, distort, cut or abrade the piping and shall allow free movement..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...

  9. 24 CFR 3280.608 - Hangers and supports.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... supporting plastic pipe shall not compress, distort, cut or abrade the piping and shall allow free movement..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...

  10. Orthotropic elastic-plastic behavior of AS4/APC-2 thermoplastic composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1989-01-01

    Inelastic and strength properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the strength can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.

  11. Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1988-01-01

    Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.

  12. Cumulative-genetic plasticity, parenting and adolescent self-regulation.

    PubMed

    Belsky, Jay; Beaver, Kevin M

    2011-05-01

    The capacity to control or regulate one's emotions, cognitions and behavior is central to competent functioning, with limitations in these abilities associated with developmental problems. Parenting appears to influence such self-regulation. Here the differential-susceptibility hypothesis is tested that the more putative 'plasticity alleles' adolescents carry, the more positively and negatively influenced they will be by, respectively, supportive and unsupportive parenting. One thousand, five hundred and eighty-six (1586) adolescents (n = 754 males; n = 832 females) enrolled in the American Add Health project were scored in terms of how many of 5 putative 'plasticity alleles' they carried - the 10R allele of DAT1, the A1 allele of DRD2, the 7R allele of DRD4, the short allele of 5HTTLPR, and the 2R/3R alleles of MAOA. Then the effect of the resultant index (ranging from 0 to 5) of cumulative-genetic plasticity in moderating effects of parenting on adolescent self-regulation was evaluated. Consistent with differential susceptibility, the more plasticity alleles males (but not females) carried, the more and less self-regulation they manifested under, respectively, supportive and unsupportive parenting conditions. Adolescent males appear to vary for genetic reasons in their susceptibility to parenting vis-à-vis self-regulation, perhaps due to epistatic and/or epigenetic processes. G×E research may benefit from compositing candidate genes. To afford comparative evaluation of differential-susceptibility vs. diathesis-stress models of environmental action, future G×E work should focus on positive as well as negative environmental conditions and developmental outcomes. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.

  13. On the indentation failure of carbon-epoxy cross-ply laminates, and its suppression by elasto-plastic interleaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joergensen, O.; Horsewell, A.

    1997-08-01

    Elastic and elasto-plastic modelling of indentation in CFRP cross-ply laminates has been performed. Detailed knowledge of the field solutions in the volume below the indentor forms the basis for the reported micromechanical interpretation of the observed damage in test specimens. The analysis shows that matrix cracks originate at sites of maximum tensile stress perpendicular to fibers. The predicted stress fields due to indentation show that stress concentrations occur in the interface between alternating plies. It is found that microcracking in this zone is a precursor to the observed failure. This analysis is supported by in-situ scanning electron microscopy during loadingmore » by a cylindrical indentor onto the laminate supported on a rigid substrate. The microscopy reveals microdamage in the region of interfacial tensile stress concentrations. The onset of indentation failure in these layered composites suggests that plastic interleaves would delay failure. It is shown numerically that plastic deformation of the interleaves redistributes stresses and thereby weakens the tensile stress concentrations which arise during indentation. Experimentally it is shown that aluminium interleaves affect the formation of indentation failure. In a cross-ply laminate, where alternating ply groups are separated by aluminium sheets, matrix cracking and delamination failures are suppressed by the occurrence of plastic deformation. Since the aluminium is likely to be weakly bonded to the plies, it is seen that weak interlaminar fracture toughness does not necessarily cause delaminations, nor lead to a lower indentation strength. High indentation strength and delamination resistance are complex qualities which, among others, seem to be achieved in laminate geometries which have a minimum of stress concentration at interfaces between ply groups of different orientation.« less

  14. Dispersion of borax in plastic is excellent fire-retardant heat insulator

    NASA Technical Reports Server (NTRS)

    Evans, H.; Hughes, J.; Schmitz, F.

    1967-01-01

    A mix of borax powder and a chlorinated anhydrous polyester resin yields a plastic composition that is fire-retardant, yields a minimum of toxic gases when heated, and exhibits high thermal insulating properties. This composition can be used as a coating or can be converted into laminated or cast shapes.

  15. 49 CFR 180.350 - Applicability and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... metal, rigid plastic or composite IBCs produced as a UN type from a non-UN type, or are converted from... subchapter for design type definition). (b) Repaired IBCs are metal, rigid plastic or composite IBCs that, as a result of impact or for any other cause (such as corrosion, embrittlement or other evidence of...

  16. Colemanite: a fire retardant candidate for wood plastic composites

    Treesearch

    Evren Terzi; Saip Nami Kartal; Sabriye Piskin; Nicole Stark; Aysel Kanturk Figen; Robert H. White

    2018-01-01

    The use of raw boron minerals (i.e. tincalconite, colemanite, and ulexite) was evaluated to increase the fire performance of wood plastic composites (WPCs) in comparison with commercially available fire retardants (FRs). Cone calorimetry and limited oxygen index tests were performed to evaluate the fire properties of WPC specimens. Artificial weathering and 3-point...

  17. Durability of wood-plastic composite lumber

    Treesearch

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  18. 49 CFR 180.352 - Requirements for retest and inspection of IBCs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inspections for metal, rigid plastic, and composite IBCs. Each IBC is subject to the following test and... proper examination of the IBC body. (3) Each metal, rigid plastic and composite IBC must be internally... from cuts, tears and punctures. Additionally, fabric must be free from scoring which may render the IBC...

  19. 49 CFR 180.352 - Requirements for retest and inspection of IBCs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inspections for metal, rigid plastic, and composite IBCs. Each IBC is subject to the following test and... proper examination of the IBC body. (3) Each metal, rigid plastic and composite IBC must be internally... from cuts, tears and punctures. Additionally, fabric must be free from scoring which may render the IBC...

  20. 49 CFR 180.352 - Requirements for retest and inspection of IBCs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inspections for metal, rigid plastic, and composite IBCs. Each IBC is subject to the following test and... proper examination of the IBC body. (3) Each metal, rigid plastic and composite IBC must be internally... from cuts, tears and punctures. Additionally, fabric must be free from scoring which may render the IBC...

  1. 49 CFR 180.352 - Requirements for retest and inspection of IBCs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inspections for metal, rigid plastic, and composite IBCs. Each IBC is subject to the following test and... proper examination of the IBC body. (3) Each metal, rigid plastic and composite IBC must be internally... from cuts, tears and punctures. Additionally, fabric must be free from scoring which may render the IBC...

  2. Tension and Compression Creep Apparatus for wood-Plastic Composites

    Treesearch

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2011-01-01

    Design of structural members made of wood-plastic composites (WPC) is not possible without accurate test data for tension and compression. The viscoelastic behavior of these materials means that these data are required for both the quasi-static stress-strain response, and the long-term creep response. Their relative incompressibility causes inherent difficulties in...

  3. Moisture sorption properties of composite boards from esterified aspen fiber

    Treesearch

    C. Clemons; R. A. Young; R. M. Rowell

    1992-01-01

    One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...

  4. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Treesearch

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  5. Mechanical properties of wood fiber composites under the influence of temperature and humidity

    Treesearch

    Yibin Xue; David Veazie; Cindy Glinsey; Meagan Wright; Roger M. Rowell

    2003-01-01

    Woodfiber-thermoplastic composites (WPC) have received considerable attentions from the forest product industry for civil engineering applications due to its superior properties over wood and plastics alone. Particularly WPCs can be easily fabricated using traditional plastic processing techniques. The major limitation in the applications of WPCs is the poor...

  6. Wood-plastic composites utilizing wood flours derived from fast- growing trees common to the midwest

    USDA-ARS?s Scientific Manuscript database

    There are several non- or under-utilized hardwood trees common to the Midwestern states. Wood flour (WF) derived from fast-growing Midwest trees (Osage orange, Black Locust and Red Mulberry) were evaluated as a source of bio-based fiber reinforcements. Wood plastic composites (WPC) of high density p...

  7. 76 FR 20598 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Control of Emissions of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... methods and definitions. The most significant problem with the prior version is the definition of... submitted to EPA a new Rule 3745-21-25 ``Control of VOC emissions from reinforced plastic composites... acceptable because Ohio has adopted OAC 3745-21- 25 for Reinforced Plastics Composites Production Operations...

  8. Considerations in the weathering of wood-plastic composites

    Treesearch

    Nicole M. Stark

    2007-01-01

    During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...

  9. Composite rotor blades for large wind energy installations

    NASA Technical Reports Server (NTRS)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  10. Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, J.W.; Chen, T.M.

    A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less

  11. All-natural bio-plastics using starch-betaglucan composites.

    PubMed

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna

    PubMed Central

    Borrell Pichs, Yaisel J.; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse attached community than non-plastic materials. The predicted frequency of several taxa attached to beached litter significantly correlated with the actually observed frequencies. Therefore we suggest that the composition of stranded litter on a beach or an area could allow for predictions about the corresponding attached biotic community, including invasive species. PMID:29385195

  13. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    PubMed

    Rech, Sabine; Borrell Pichs, Yaisel J; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse attached community than non-plastic materials. The predicted frequency of several taxa attached to beached litter significantly correlated with the actually observed frequencies. Therefore we suggest that the composition of stranded litter on a beach or an area could allow for predictions about the corresponding attached biotic community, including invasive species.

  14. Effect of coal filler on the properties of soy protein plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.H.; Zhou, A.N.; Hu, M.B.

    2006-11-15

    The influence of ultrafine coal filler (UFC) content on tensile properties, water absorption, and biodegradability of soy protein plastics were investigated. The addition of UFC in the soy protein plastics, with different content of glycerol as a plasticizer, was at different ratio varying from 10:0 to 6:4. Blend sheets of the soy protein composites were prepared by the compression molding processing. The results show that, with 23.08 wt % glycerol, the tensile strength and elongation at break for the soy protein sheet with coal filler (range from 5 to 30 parts) can be enhanced as compared with nonfilled soy proteinmore » plastics. Water resistance of the soy protein plastics improves with the increase in UFC content. The derivative thermogravimetry (DTG) curves indicate a double-stage degradation process for defatted soy flour (SPF), while three-stage degradation process for soy plastics and the soy protein composites. FT-IR, XPS, and SEM were applied to study the interfacial interaction between coal macromolecules and soy protein molecules in UFC filled soy protein plastics. The results demonstrated that there is strong interfacial interaction in the soy protein plastics caused by the compression molding processing.« less

  15. Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV

    NASA Astrophysics Data System (ADS)

    Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy

    2011-04-01

    In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.

  16. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  17. A resonant force sensor based on ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  18. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements; NESHAP: Reinforced Plastic... Requirements (Heavy-Duty 610 Review); NESHAP: Reinforced Plastic Composites Production (Plastics 610 Review...-0313 (for the Heavy-Duty 610 Review), Docket ID No. EPA-HQ- OAR-2012-0816 (for the Plastics 610 Review...

  19. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  20. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  1. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  2. Predicting the flexure response of wood-plastic composites from uni-axial and shear data using a finite-element model

    Treesearch

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2014-01-01

    Wood-plastic composites (WPCs), commonly used in residential decks and railings, exhibit mechanical behavior that is bimodal, anisotropic, and nonlinear viscoelastic. They exhibit different stress-strain responses to tension and compression, both of which are nonlinear. Their mechanical properties vary with respect to extrusion direction, their deformation under...

  3. 49 CFR 173.35 - Hazardous materials in IBCs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., cracks, cuts, or other damage which would render it unable to pass the prescribed design type test to... plastic or composite IBC may only be filled with a liquid having a vapor pressure less than or equal to... -57 portable tanks. (j) No IBC may be filled with a Packing Group I liquid. Rigid plastic, composite...

  4. Moisture Sorption in Artificially aged wood-plastic composites

    Treesearch

    B. Kristoffer Segerholm; Rebecca E. Ibach; Magnus E.P. Wålinder

    2012-01-01

    Moisture sorption in wood-plastic composites (WPCs) affects their durability and dimensional stability. In certain outdoor exposures, the moisture properties of WPCs are altered due to e.g. cracks induced by swelling and shrinkage of the components, as well as UV degradation or biological attack. The aim of this work was to study the effect of different artificial...

  5. Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour

    Treesearch

    Rebecca E. Ibach; Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Yongming Fan; Jianmin Gao

    2014-01-01

    The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by...

  6. Field and Laboratory Decay Evaluations of wood-plastic Composites

    Treesearch

    Rebecca E. Ibach; Marek Gnatowski; Grace Sun

    2013-01-01

    Experimental wood–plastic composites (WPCs) were made so that they matched the manufacturing process, dimensions, and water absorption of some commercial decking boards. WPC samples from selected formulations were divided into two identical groups. The first group was exposed in exterior conditions in Vancouver, British Columbia, and Hilo, Hawaii, at sun and shadow...

  7. Wood-plastic composites with reduced moisture : effects of chemical modification on durability in the laboratory and field

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons; Rebecca L. Schumann

    2007-01-01

    Although laboratory evaluations of wood-plastic composites (WPCs) are helpful in predicting long-term durability, field studies are needed to verify overall long-term durability. Field exposure can encompass numerous degradations i.e., fungal, ultraviolet light, moisture, wind, temperature, freeze/thaw, wet/ dry cycling, termites, mold, etc. that traditionally are...

  8. 49 CFR 173.35 - Hazardous materials in IBCs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plastic or composite IBC may only be filled with a liquid having a vapor pressure less than or equal to... -57 portable tanks. (j) No IBC may be filled with a Packing Group I liquid. Rigid plastic, composite... point of 60 °C (140 °F) (closed cup) or lower, or powders with the potential for dust explosion...

  9. Plastic and Large-Deflection Analysis of Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.

    1982-01-01

    Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.

  10. An All-Organic Composite System for Resistive Change Memory via the Self-Assembly of Plastic-Crystalline Molecules.

    PubMed

    Cha, An-Na; Lee, Sang-A; Bae, Sukang; Lee, Sang Hyun; Lee, Dong Su; Wang, Gunuk; Kim, Tae-Wook

    2017-01-25

    An all-organic composite system was introduced as an active component for organic resistive memory applications. The active layer was prepared by mixing a highly polar plastic-crystalline organic molecule (succinonitrile, SN) into an insulating polymer (poly(methyl methacrylate), PMMA). As increasing concentrations of SN from 0 to 3.0 wt % were added to solutions of different concentrations of PMMA, we observed distinguishable microscopic surface structures on blended films of SN and PMMA at certain concentrations after the spin-casting process. The structures were organic dormant volcanos composed of micron-scale PMMA craters and disk type SN lava. Atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDX) analysis showed that these structures were located in the middle of the film. Self-assembly of the plastic-crystalline molecules resulted in the phase separation of the SN:PMMA mixture during solvent evaporation. The organic craters remained at the surface after the spin-casting process, indicative of the formation of an all-organic composite film. Because one organic crater contains one SN disk, our system has a coplanar monolayer disk composite system, indicative of the simplest composite type of organic memory system. Current-voltage (I-V) characteristics of the composite films with organic craters revealed that our all-organic composite system showed unipolar type resistive switching behavior. From logarithmic I-V characteristics, we found that the current flow was governed by space charge limited current (SCLC). From these results, we believe that a plastic-crystalline molecule-polymer composite system is one of the most reliable ways to develop organic composite systems as potential candidates for the active components of organic resistive memory applications.

  11. Utilization starch of jackfruit seed (Artocarpus heterophyllus) as raw material for bioplastics manufacturing using sorbitol as plasticizer and chitosan as filler

    NASA Astrophysics Data System (ADS)

    Lubis, M.; Harahap, M. B.; Manullang, A.; Alfarodo; Ginting, M. H. S.; Sartika, M.

    2017-01-01

    Starch is a natural polymer that can be used for the production of bioplastics because its source is abundant, renewable and easily degraded. Jackfruit seeds can be used as raw material for bioplastics because its contains starch. The aim of this study to determine the characteristics of jackfruit seeds and determine the effect of chitosan and sorbitol on the physicochemical properties of bioplastics from jackfruit seeds. Starch is extracted from jackfruit seeds were then characterized to determine its chemical composition. In the manufacture of bioplastics starch composition jackfruit seeds - chitosan used was 7: 3, 8: 2 and 9: 1 (g/g), while the concentration of sorbitol used was 20%, 25%, 30%, 35%, and 40% by weight dry ingredients. From the analysis of jackfruit seed starch obtained water content of 6.04%, ash content of 1.08%, the starch content of 70.22%, 16.39% amylose content, amylopectin content of 53.83%, 4.68% protein content, fat content 0.54%. The best conditions of starch bioplastics jackfruit seeds obtained at a ratio of starch: chitosan (w/w) = 8: 2 and the concentration of plasticizer sorbitol 25% with tensile strength 13.524 MPa. From the results of FT-IR analysis indicated an increase for the OH group and the group NH on bioplastics due to the addition of chitosan and sorbitol. The results of mechanical tests is further supported by analysis of scanning electron microscopy (SEM) showing jackfruit seed starch has a small granule size with the size of 7.6 μm and in bioplastics with chitosan filler and plasticizer sorbitol their fracture surface is smooth and slightly hollow compared bioplastics without fillers chitosan and plasticizer sorbitol.

  12. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  13. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.

  14. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    DTIC Science & Technology

    1985-11-01

    Geopolymers for Reinforced Plastics/ Composits ," PACTEC 󈨓, Society of Plastic Engineers, Costa Mesa, CA, 1979, pp. 151-153. Davidovits, Joseph. 1983...34 Geopolymers II, Processing and Applications of Ultra-High Temperature, Inorganic Matrix Resin for Cast Composite Structures, Molds and Tools for RP/C and...alumino-silicate hydrates with an approximate composition of 3CaO - AI20 3 • 2i0 2 2120, begin to crystallize. As the gels begin to coalesce, bound water

  15. Evaluation on the feasibility of using bamboo fillers in plastic gear manufacturing via the Taguchi optimization method

    NASA Astrophysics Data System (ADS)

    Mehat, N. M.; Kamaruddin, S.

    2017-10-01

    An increase in demand for industrial gears has instigated the escalating uses of plastic-matrix composites, particularly carbon or glass fibre reinforced plastics as gear material to enhance the properties and limitation in plastic gears. However, the production of large quantity of these synthetic fibres reinforced composites has posed serious threat to ecosystem. Therefore, this work is conducted to study the applicability and practical ability of using bamboo fillers particularly in plastic gear manufacturing as opposed to synthetic fibres via the Taguchi optimization method. The results showed that no failure mechanism such as gear tooth root cracking and severe tooth wear were observed in gear tested made of 5-30 wt% of bamboo fillers in comparing with the unfilled PP gear. These results indicated that bamboo can be practically and economically used as an alternative filler in plastic material reinforcement as well as in minimizing the cost of raw material in general.

  16. The size, mass, and composition of plastic debris in the western North Atlantic Ocean.

    PubMed

    Morét-Ferguson, Skye; Law, Kara Lavender; Proskurowski, Giora; Murphy, Ellen K; Peacock, Emily E; Reddy, Christopher M

    2010-10-01

    This study reports the first inventory of physical properties of individual plastic debris in the North Atlantic. We analyzed 748 samples for size, mass, and material composition collected from surface net tows on 11 expeditions from Cape Cod, Massachusetts to the Caribbean Sea between 1991 and 2007. Particles were mostly fragments less than 10mm in size with nearly all lighter than 0.05 g. Material densities ranged from 0.808 to 1.24 g ml(-1), with about half between 0.97 and 1.04 g ml(-1), a range not typically found in virgin plastics. Elemental analysis suggests that samples in this density range are consistent with polypropylene and polyethylene whose densities have increased, likely due to biofouling. Pelagic densities varied considerably from that of beach plastic debris, suggesting that plastic particles are modified during their residence at sea. These analyses provide clues in understanding particle fate and potential debris sources, and address ecological implications of pelagic plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes.

    PubMed

    Wang, Lei; Chen, Season S; Tsang, Daniel C W; Poon, Chi Sun; Ok, Yong Sik

    2017-05-01

    Considering the resource waste and environmental burden for timber and plastic materials ending up at landfills, this study proposed upcycling wood and plastic waste into value-added wood-plastic composites (WPCs), complying with the standard requirements of flexural strength, thickness swelling, water absorption and thermal insulation. Biological deterioration is a major concern of WPCs. Bacterial survival, fungal attack and algal growth of bactericide-treated WPCs were holistically analysed. Melamine resin was adopted for impregnating anti-microbial agents on the surface. All the agents showed excellent bactericidal rate (Escherichia coli), yet poly-diallyl-dimethyl-ammonium chloride (PolyDADMAC) and silver had the lowest minimum inhibitory concentrations. In terms of weight loss and strength reduction due to fungal decay (Coriolus versicolor), PolyDADMAC, silver and cetyltrimethylammonium bromide (CTAB) imparted the highest resistance on the WPCs. Moreover, PolyDADMAC and copper provided the most protection against algal growth (Chlorella vulgaris), and the former presented durable inhibitory effect. This study presents a value-added solution to wood/plastic waste recycling.

  18. Colour stability of aesthetic brackets: ceramic and plastic.

    PubMed

    Filho, Hibernon Lopes; Maia, Lúcio Henrique; Araújo, Marcus V; Eliast, Carlos Nelson; Ruellas, Antônio Carlos O

    2013-05-01

    The colour stability of aesthetic brackets may differ according to their composition, morphology and surface property, which may consequently influence their aesthetic performance. To assess the colour stability of aesthetic brackets (ceramic and plastic) after simulating aging and staining. Twelve commercially manufactured ceramic brackets and four different plastic brackets were assessed. To determine possible colour change (change of E*(ab)) and the value of the NBS (National Bureau of Standards) unit system, spectrophotometric colour measurements for CIE L*, a* and b* were taken before and after the brackets were aged and stained. Statistical analysis was undertaken using a one-way ANOVA analysis of variance and a Tukey multiple comparison test (alpha = 0.05). The colour change between the various (ceramic and plastic) materials was not significant (p > 0.05), but still varied significantly (p < 0.001) between the brackets of the same composition or crystalline structure and among commercial brands. Colour stability cannot be confirmed simply by knowing the type of material and crystalline composition or structure.

  19. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  20. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  1. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  2. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  3. Moisture Performance of wood-plastic composites reinforced with extracted and delignified wood flour

    Treesearch

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    This study investigated the effect of using extracted and delignified wood flour on water sorption properties of wood–plastic composites. Wood flour (WF) extraction was performed with three solvent systems: toluene/ethanol (TE), acetone/water (AW), and hot water (HW); delignification was conducted using sodium chlorite/acetic acid solution. A 24 full-factorial...

  4. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour

    Treesearch

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 2 4...

  5. Properties of flat-pressed wood plastic composites containing fire retardants

    Treesearch

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  6. Modern Instrumental Methods to Investigate the Mechanism of Biological Decay in Wood Plastic Composites

    Treesearch

    Grace Sun; Rebecca Ibach; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2014-01-01

    Various instrumental techniques were used to study the fungal decay process in wood plastic composite (WPC) boards. Commercial boards exposed near Hilo, Hawaii (HI) for eight years in both sun and shadow locations were inspected and tested periodically. After eight years of exposure, both boards were evaluated using magnetic resonance imaging (MRI), while a selected...

  7. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Treesearch

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  8. Exterior Decay of Wood-Plastic Composite Boards: Characterization and Magnetic Resonance Imaging

    Treesearch

    Rebecca Ibach; Grace Sun; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2016-01-01

    Magnetic resonance imaging (MRI) was used to evaluate free water content and distribution in wood-plastic composite (WPC) materials decayed during exterior exposure near Hilo, Hawaii. Two segments of the same board blend were selected from 6 commercial decking boards that had fungal fruiting bodies. One of the two board segments was exposed in sun, the other in shadow...

  9. Laboratory and environmental decay of wood–plastic composite boards: flexural properties

    Treesearch

    Rebecca Ibach; Marek Gnatowski; Grace Sun; Jessie Glaeser; Mathew Leung; John Haight

    2017-01-01

    The flexural properties of wood–plastic composite (WPC) deck boards exposed to 9.5 years of environmental decay in Hilo, Hawaii, were compared to samples exposed to moisture and decay fungi for 12 weeks in the laboratory, to establish a correlation between sample flexural properties and calculated void volume. Specimens were tested for flexural strength and modulus,...

  10. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  11. Effect of Plasticizers on Physicochemical and Mechanical Properties of Chitosan-Gelatin Films

    NASA Astrophysics Data System (ADS)

    Manshor, N. Mohammed; Rezali, M. I.; Jai, J.; Yahya, A.

    2018-05-01

    Composite chitosan-gelatin films were produced to investigate the effect of plasticizer and composition of chitosan and gelatin on physicochemical and mechanical properties of the films. The films were prepared according to ratio of chitosan: gelatin of 1:1, 1:2 and 2:1. For each film, glycerol, sorbitol and sucrose were added as plasticizer. The film forming solution was poured on a glass plate and dried for 12 hours in an oven at 60°C. The highest tensile strength was 4.04 MPa for films of ratio 2:1 plasticized with glycerol compared to sorbitol and sucrose which were 3.94 MPa and 3.84 MPa, respectively. However, films plasticized with sorbitol at ratio of 1:2 had the highest percent elongation which was 68.20%, followed by glycerol and sucrose which were 26.51% and 24.08%, respectively.

  12. Plastics Distribution and Degradation on Lake Huron Beaches

    NASA Astrophysics Data System (ADS)

    Zbyszewski, M.; Corcoran, P.

    2009-05-01

    The resistivity of plastic debris to chemical and mechanical weathering processes poses a serious threat to the environment. Numerous marine beaches are littered with plastic fragments that entangle and become ingested by organisms including birds, turtles and plankton. Although many studies have been conducted to determine the amount and effects of plastics pollution on marine organisms, relatively little is known about the distribution and quantity of polymer types along lacustrine beaches. Plastic particles sampled from selected beaches on Lake Huron were analyzed using Fourier Transform Infrared Spectroscopy (FTIR) to determine polymer composition. The majority of the plastic fragments are industrial pellets composed of polypropylene and polyethylene. Varying degrees of oxidation are indicated by multiple irregular peaks in the lower wavenumber region on the FTIR spectra. The oxidized pellets also represent the plastic particles with the most pronounced surface textures, as identified using Scanning Electron Microscopy (SEM). Crazes and flakey, fibrous, or granular textures are consistent with chemical weathering processes, whereas gauges and pits occur through abrasion during mechanical weathering. Further textural and compositional analysis will indicate which polymer types are more resistant to weathering processes. Additional investigation of the distribution of plastic debris along the beaches of Lake Huron will indicate the amount and primary transport directions of resistant plastic debris polluting one of Ontario's Great Lakes.

  13. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  14. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  15. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Subramanian, Rajan; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  16. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  17. Development and Characterization of a Rate-Dependent Three-Dimensional Macroscopic Plasticity Model Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2015-01-01

    Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material model. The presented paper will present in detail the development of the orthotropic plasticity model and the procedures used to obtain the required material parameters. Methods in which a combination of actual testing and selective numerical testing can be combined to yield the appropriate input data for the model will be described. A specific laminated polymer matrix composite will be examined to demonstrate the application of the model.

  18. Strategies to improve electrode positioning and safety in cochlear implants.

    PubMed

    Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M

    1999-03-01

    An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.

  19. [Preliminary evaluation of plastic crown restoration supported by osseointegrated implants].

    PubMed

    Huang, J; Zhang, K

    1997-08-01

    This study was to evaluate the feasibility of plastic crown restoration supported by osseointegrated implants. The following conclusions were drawn from this study: plastic crown gave better biomechanical consideration than porcelain fused to metal (PFM) crown in osseointegrated prostheses, but plastic crown gave worse wearability, tensile strength, compression strength and flexuaral strength than PFM crown. After restoration the disadvantages of the plastic crown were beyond the clinical acceptable range. It showed plastic crown designed dental prothetic implantation was unfeasible.

  20. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    PubMed

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mechanical and time-dependent behavior of wood-plastic composites subjected to tension and compression

    Treesearch

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2012-01-01

    The thermoplastics within wood—plastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...

  2. Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay

    Treesearch

    Anke Schirp; Rebecca E. Ibach; David E. Pendleton; Michael P. Wolcott

    2008-01-01

    Much of the research on wood-plastic composites (WPC) has focused on formulation development and processing while high biological durability of the material was assumed. The gap between assumption and knowledge in biodeterioration of WPC needs to be reduced. Although some information on the short-term resistance of WPC against biological degradation is available, long-...

  3. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Treesearch

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  4. Effect of hot plastic deformation on the structural state of a Al-10%SiC composite

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Vichuzhanin, D. I.; Michurov, N. S.; Smirnov, A. S.

    2017-12-01

    The paper studies the microstructure of honeycomb aluminum matrix composites with a granulated Al-Zn-Cu-Mg alloy matrix filled SiC particles amounting to 10 vol % after hot plastic deformation at near-solidus temperatures. It demonstrates the possibility of the collapse of the SiC filler network and the formation of filler clusters separated from each other.

  5. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Treesearch

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  6. Thermophysical properties of cement based composites and their changes after artificial ageing

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Pavlendová, Gabriela; Lukovičová, Jozefa; Kopčok, Michal

    2017-07-01

    The usage of recycled plastic materials in concrete mix gained increased attention. The behaviour of such environmental friendly material is studied. In this paper an investigation of the thermophysical properties of cement based composites containing plastic waste particles with different percentage is presented. Measurements were carried out using pulse transient method before and after artificial ageing in climatic chamber BINDER MKF (E3).

  7. Magnetic resonance imaging used for the evaluation of water presence in wood plastic composite boards exposed to exterior conditions

    Treesearch

    Marek Gnatowski; Rebecca Ibach; Mathew Leung; Grace Sun

    2014-01-01

    Two wood plastic composite (WPC) boards, one experimental and one commercial, were exposed to exterior conditions and evaluated non-destructively using a clinical magnetic resonance imaging (MRI) unit for moisture content (MC) and distribution. The experimental board was exposed in Vancouver, British Columbia, for more than 8 years, and the commercial board was exposed...

  8. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Treesearch

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  9. Effect of teapot materials on the chemical composition of oolong tea infusions.

    PubMed

    Liao, Zih-Hui; Chen, Ying-Jie; Tzen, Jason Tze-Cheng; Kuo, Ping-Chung; Lee, Maw-Rong; Mai, Fu-Der; Rairat, Tirawat; Chou, Chi-Chung

    2018-01-01

    The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  11. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    NASA Technical Reports Server (NTRS)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  12. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  13. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.

  14. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation.

    PubMed Central

    Ho, K L; Pometto, A L; Hinz, P N

    1997-01-01

    Four customized bioreactors, three with plastic composite supports (PCS) and one with suspended cells (control), were operated as repeated-batch fermentors for 66 days at pH 5 and 37 degrees C. The working volume of each customized reactor was 600 ml, and each reactor's medium was changed every 2 to 5 days for 17 batches. The performance of PCS bioreactors in long-term biofilm repeated-batch fermentation was compared with that of suspended-cell bioreactors in this research. PCS could stimulate biofilm formation, supply nutrients to attached and free suspended cells, and reduce medium channelling for lactic acid production. Compared with conventional repeated-batch fermentation, PCS bioreactors shortened the lag time by threefold (control, 11 h; PCS, 3.5 h) and sixfold (control, 9 h; PCS, 1.5 h) at yeast extract concentrations of 0.4 and 0.8% (wt/vol), respectively. They also increased the lactic acid productivity of Lactobacillus casei subsp. rhamnosus (ATCC 11443) by 40 to 70% and shortened the total fermentation time by 28 to 61% at all yeast extract concentrations. The fastest productivity of the PCS bioreactors (4.26 g/liter/h) was at a starting glucose concentration of 10% (wt/vol), whereas that of the control (2.78 g/liter/h) was at 8% (wt/vol). PCS biofilm lactic acid fermentation can drastically improve the fermentation rate with reduced complex-nutrient addition. PMID:9212403

  15. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    PubMed

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  16. Pyrolysis characteristics of typical biomass thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  17. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.

    PubMed

    Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2015-09-01

    Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.

  18. Local melting to design strong and plastically deformable bulk metallic glass composites

    PubMed Central

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-01-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties. PMID:28211890

  19. Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avilés, F.; Seidel, G. D.

    2013-08-01

    The piezoresistive response of multiwalled carbon nanotube/vinyl ester composites containing 0.3, 0.5 and 1% w/w carbon nanotubes (CNTs) loaded in tension and compression is investigated. The change in electrical resistance (ΔR) under tension loading was positive and showed a linear relationship with the applied strain up to failure, with slightly increased sensitivity for decreased CNT content. In compression, a nonlinear and non-monotonic piezoresistive behavior was observed, with ΔR initially decreasing in the elastic regime, leveling off at the onset of yielding and increasing after matrix yielding. The piezoresistive response of the composite is more sensitive to the CNT content for compression than for tension, and the calculated gage factors are higher in the compressive plastic regime. The results show that the piezoresistive signal is dependent on the CNT concentration, loading type and material elastoplastic behavior, and that recording ΔR during mechanical loading can allow self-identification of the elastic and plastic regimes of the composite.

  20. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  1. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  2. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    PubMed

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  3. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    PubMed Central

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  4. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  5. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  6. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite.

    PubMed

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Critical fictive temperature for plasticity in metallic glasses

    PubMed Central

    Kumar, Golden; Neibecker, Pascal; Liu, Yan Hui; Schroers, Jan

    2013-01-01

    A long-sought goal in metallic glasses is to impart ductility without conceding their strength and elastic limit. The rational design of tough metallic glasses, however, remains challenging because of the inability of existing theories to capture the correlation between plasticity, composition and processing for a wide range of glass-forming alloys. Here we propose a phenomenological criterion based on a critical fictive temperature, Tfc, which can rationalize the effect of composition, cooling rate and annealing on room-temperature plasticity of metallic glasses. Such criterion helps in understanding the widespread mechanical behaviour of metallic glasses and reveals alloy-specific preparation conditions to circumvent brittleness. PMID:23443564

  8. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  9. Transformation Weakening of Ceramic Composite Interfaces.

    DTIC Science & Technology

    1996-12-06

    20 90 80 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 "Plastic" Shear Strain, yp (rn/rn)(b) "Plastic" stain due to transformation in MgSiQ3 with 2 molo Mn2...for Ceramic Matrix Composites," C. M. Huang, F. Xiong, Y. Xu, A. Zangvil and W. M. Kriven, J. Materials Science and Engineering, A191 (1995) 249-256

  10. Improving the color stability of wood-plastic composites through fiber pre-treatment

    Treesearch

    Nicole M. Stark; Scott A. Mueller

    2008-01-01

    Wood-plastic composites (WPCs) continue to make inroads into the decking market. One of the main drawbacks from the consumer’s perspective is that they can fade during weathering. It has been shown that WPCs fade more when exposed to a combination of light and water spray than when exposed only to light. This suggests that the loss of the color-imparting extractives...

  11. Mechanical and time-dependent behavior of wood-plastic composites subjected to bending

    Treesearch

    S. E. Hamel; John Hermanson; S. M. Cramer

    2015-01-01

    The most popular use of wood–plastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the material’s mechanical behavior be understood. Since most of the potential structural uses of this...

  12. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  13. Study on mechanical and physical properties of composite materials with recycled PET as fillers for paving block application

    NASA Astrophysics Data System (ADS)

    Wicaksono, Sigit Tri; Ardhyananta, Hosta; Rasyida, Amaliya

    2018-04-01

    Base on Sidoarjo's goverment data, there was more than 4000 metric ton perday of waste that has been accumulated during 2016. More than 10 percent from overall waste is plastics. In accordance with the Indonesia government regulation, "Indonesia clean from waste" by 2020 through 3R (Reduce, Reuse and Recycle) program, we have been focusing research on how to reduce the accumulation of the plastics waste in Sidoarjo by processing it become a new product. In this research, we have made the plastic waste of PET bottle as additional fillers or agregates of composite material for construction application as a paving block. The composition of PET plastic used as fillers is vary from 0, 10, 20, 30, 40 and 50% from total volume of agregates. The ratio of cement binder to sands agregate is 1:3. The specimens were characterized its mechanical and physical properties by using flexural testing, compressive testing, density and water absorbance measurement. The results show that the mechanical (flexural and compressive) properties of composite materials is increased significantly by increasing PET fillers up to 20%, however it was decreased when PET content more than 20%. But, both the density and water absobance of specimens are decreased by increasing of PET fillers.

  14. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  15. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    NASA Astrophysics Data System (ADS)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  16. Recycling potential of post-consumer plastic packaging waste in Finland.

    PubMed

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the composition study only on mixed MSW plastic fraction. In order to obtain more precise figures of the recycling potential of post-consumer plastic packaging, more studies should be performed on both the quantities and the qualities of plastic wastes. The mechanical and rheological test results indicated that even plastic wastes originating from the mixed MSW, can be useful raw materials. Recycled HDPE showed a smaller decline in the mechanical properties than recycled PP. The origin and processing method of waste plastic seemed to have less effect on the mechanical quality than the type of plastic. The applicability of a plastic waste for a product needs to be assessed case by case, due to product specific quality requirements. In addition to mechanical properties, the chemical composition of plastic wastes is of major importance, in order to be able to restrict hazardous substances from being circulated undesirably. In addition to quantity and quality of plastic wastes, the sustainability of the whole recycling chain needs to be assessed prior to launching operations so that the chain can be optimized to generate both environmental and economic benefits to society and operators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    stress, high fiber permeability, moderate fibe orientation, and water- plasticization . The proposed mechanism for bond cleava e involves cyclization of...tensile stress, high fiber permeability, moderate fiber orientation, and water- plasticization . The proposed mechanism for bond cleavage involves...chemical composition, plasticization , and other factors. It will be shown that the etching behavior does not reflect underlying hetero- geneities in the

  18. Analysis of Plastics Industries in the Major Industrial Countries

    DOT National Transportation Integrated Search

    1981-01-01

    This report provides data needed to support an assessment of the relative position of the US plastics resins industry, on a worldwide basis, in terms of its being able to support automotive manufacturing operations. The use of plastics in US and fore...

  19. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    PubMed

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.

  20. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    PubMed Central

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface. PMID:27487037

  1. Racial and Ethnic Diversity of U.S. Plastic Surgery Trainees.

    PubMed

    Silvestre, Jason; Serletti, Joseph M; Chang, Benjamin

    Increased diversity of U.S. physicians can improve patient communication and mitigate health disparities for racial minorities. This study analyzes trends in racial and ethnic diversity of plastic surgery residents. Demographic data of surgical residents, medical students, and integrated plastic surgery residency applicants were obtained from the Association of American Medical Colleges. Data for college students and the general population were obtained from the U.S. Census for comparison with plastic surgery. Interspecialty differences and temporal trends in racial composition were analyzed with chi-square tests. From 1995 to 2014, Asian and Hispanic plastic surgery residents increased nearly 3-fold (7.4%-21.7%, p < 0.001) and 2-fold (4.6%-7.9%, p < 0.001), respectively. African American plastic surgery residents did not increase significantly (3.0%-3.5%, p = 0.129). Relative to the U.S. population, Hispanics (range: 0.1-0.5-fold) and African Americans (range: 0.1-0.4-fold) were underrepresented, whereas Asians (range: 2.2-5.3-fold) were overrepresented in plastic surgery. A "bottleneck" existed in the pipeline of African American and Hispanic plastic surgery residents. Significant differences in racial composition existed between plastic surgery and other surgical disciplines, which varied over time. The percentage of Hispanic (10.6% vs 7.0%, p = 0.402) and African American (6.4% vs 2.1%, p < 0.001) plastic surgery residency applicants exceeded those in residency. Hispanics and African Americans are underrepresented in plastic surgery residency relative to whites and Asians. This study underscores the need for greater initiatives to increase diversity in plastic surgery residency. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  3. Investigation and modeling of the elastic-plastic fracture behavior of continuous woven fabric-reinforced ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahl, W.K.

    1997-03-01

    The paper describes a study which attempted to extrapolate meaningful elastic-plastic fracture toughness data from flexure tests of a chemical vapor-infiltrated SiC/Nicalon fiber-reinforced ceramic matrix composite. Fibers in the fabricated composites were pre-coated with pyrolytic carbon to varying thicknesses. In the tests, crack length was not measured and the study employed an estimate procedure, previously used successfully for ductile metals, to derive J-R curve information. Results are presented in normalized load vs. normalized displacements and comparative J{sub Ic} behavior as a function of fiber precoating thickness.

  4. Gelcasting compositions having improved drying characteristics and machinability

    DOEpatents

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiev, R.Z.; Islamgaliev, R.K.; Kuzmina, N.F.

    Intense plastic straining techniques such as torsion straining and equal channel angular (ECA) pressing are processing procedures which may be used to make beneficial changes in the properties of materials through a substantial refinement in the microstructure. Although intense plastic straining procedures have been used for grain refinement in numerous experiments reported over the last decade, there appears to have been no investigations in which these procedures were used with metal matrix composites. The present paper describes a series of experiments in which torsion straining and ECA pressing were applied to an Al-6061 metal matrix composite reinforced with 10 volumemore » % of Al{sub 2}O{sub 3} particulates. As will be demonstrated, intense plastic straining has the potential for both reducing the grain size of the composite to the submicrometer level and increasing the strength at room temperature by a factor in the range of {approximately}2 to {approximately}3.« less

  6. Nonlinear deformation of composites with consideration of the effect of couple-stresses

    NASA Astrophysics Data System (ADS)

    Lagzdiņš, A.; Teters, G.; Zilaucs, A.

    1998-09-01

    Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.

  7. The effect of recycled Natural Rubber Glove (rRG) Plasticizers to Deflection and Flexural Strength Properties of PP/MMt/rRG Smart Composites and Its Inflammability

    NASA Astrophysics Data System (ADS)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Saputri, L. N. M. Z.; Ariesta, N.

    2018-03-01

    Had been synthesized PP/rRG/MMt+ZB smart material composite in solution reactive processes with various rRG concentration. The addition of rRG plasticizers will improve the deflection properties and increase the filler capacity MMt loading to reach the optimum concentration. The addition of 3% rRG is capable of loading filler capacity MMt to 23% as the optimum condition. At the optimum conditions it can increase the deflection (Defl) and flexural strength (FS) up to 16% and 15% respectively compared to that of the composites without rRG. The rRG plasticizer serves as a bio-compatibilizer that can reduce surface tension of the mixture and leads to decrease the Defl., follow by the increase of loading filler capacity and well interaction finally can increase the FS properties. The increase of loading filler MMt up to 23% can also improve the inflammability of the composites. Time to Ignition (TTI) increase by 5% and Burning Rate (BR) decrease by 4.5% compared to that of the composites which is containing MMt 20% without rRG.

  8. REDUCING EMISSIONS IN FIBERGLASS REINFORCED PLASTICS MANUFACTURING

    EPA Science Inventory

    The paper summarizes results of an evaluation of pollution prevention techniques, so that technical assistance providers can provide better information to fiber-reinforced plastics and composites (FRP/C) facilities about pollution prevention options. It gives background about the...

  9. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.

  10. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  11. Defense Scrap Yard Handbook

    DTIC Science & Technology

    1985-06-01

    34thermosetting" is an adjective position and the basic resin used. The major class- applied to plastics (such as melamine , phenoliL, es are:a. Acrylics...to heat or flame e. Melamine resins : melamine formalde- test plastic materials for identification purposes. hyde. They must therefore work closely...plastics, together with helpful information as to 1. Polystyrenes. their composition , characteristics and typical ap- m. Polyurethane resins (isocyanate

  12. Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans.

    PubMed

    Ryan, Peter G

    2008-08-01

    I compare plastic ingested by five species of seabirds sampled in the 1980s and again in 1999-2006. The numbers of ingested plastic particles have not changed significantly, but the proportion of virgin pellets has decreased 44-79% in all five species: great shearwater Puffinus gravis, white-chinned petrel Procellaria aequinoctialis, broad-billed prion Pachyptila vittata, white-faced storm petrel Pelagodroma marina and white-bellied storm petrel Fregetta grallaria. The populations sampled range widely in the South Atlantic and western Indian Oceans. The most marked reduction occurred in great shearwaters, where the average number of pellets per bird decreased from 10.5 to 1.6. This species migrates between the South and North Atlantic each year. Similar decreases in virgin pellets have been recorded in short-tailed shearwaters Puffinus tenuirostris in the Pacific Ocean and northern fulmars Fulmarus glacialis in the North Sea. More data are needed on the relationship between plastic loads in seabirds and the density of plastic at sea in their foraging areas, but the consistent decrease in pellets in birds suggests there has been a global change in the composition of small plastic debris at sea over the last two decades.

  13. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    NASA Astrophysics Data System (ADS)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  14. Compression failure mechanisms of uni-ply composite plates with a circular cutout

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The effect of circular-hole size on the failure mode of uniply graphite-epoxy composite plates is investigated experimentally and analytically for uniaxial compressive loading. The test specimens are sandwiched between polyetherimide plastic for nondestructive evaluations of the uniply failure mechanisms associated with a range of hole sizes. Finite-element modeling based on classical lamination theory is conducted for the corresponding materials and geometries to reproduce the experimental results analytically. The type of compressive failure is found to be a function of hole size, with fiber buckling/kinking at the hole being the dominant failure mechanism for hole diam/plate width ratios exceeding 0.062. The results of the finite-element analysis supported the experimental data for these failure mechanisms and for those corresponding to smaller hole sizes.

  15. Creep prediction of a layered fiberglass plastic

    NASA Astrophysics Data System (ADS)

    Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.

    1998-05-01

    The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.

  16. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  17. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 75 FR 7931 - Airworthiness Directives; Airbus Model A380-841, -842, and -861 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... addition, delamination has been observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP... observed within the monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support... monolithic Carbon Fibre Reinforced Plastic (CFRP) structure around the pivot support-ring. This condition, if...

  19. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth.

  20. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers.

    PubMed

    Ochi, Shinji

    2011-02-25

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  1. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    PubMed Central

    Ochi, Shinji

    2011-01-01

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms. PMID:28880000

  2. Benthic plastic debris in marine and fresh water environments.

    PubMed

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  3. Brain Energetics During the Sleep-Wake Cycle

    PubMed Central

    DiNuzzo, Mauro; Nedergaard, Maiken

    2017-01-01

    Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-generated neuronal activity and network homeostasis are proposed to account for the high sleep-related energy demand. PMID:29024871

  4. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  5. Sunflower cake as a natural composite: composition and plastic properties.

    PubMed

    Geneau-Sbartaï, Céline; Leyris, Juliette; Silvestre, Françoise; Rigal, Luc

    2008-12-10

    Nowadays, the end-of-life of plastic products and the decrease of fossil energy are great environmental problems. Moreover, with the increase of food and nonfood transformations of renewable resources, the quantities of agro-industrial byproducts and wastes increase hugely. These facts allow the development of plastic substitutes made from agro-resources. Many researches show the feasibility of molding biopolymers extracted from plants like a common polymeric matrix. Other natural macromolecules are used like fillers into polyolefins, for example. However, limited works present results about the transformation of a natural blend of biopolymers into a plastic material. The aim of this study is the determination of the composition of sunflower cake (SFC) and also the characterization of its components. These were identified by chemical and biochemical analysis often used in agricultural or food chemistry. Most of the extraction and purification processes modify the macrostructure of several biopolymers (e.g., denaturation of proteins, cleavage or creation of weak bonds, etc.). So, the composition of different parts of the sunflower seed (husk, kernel, and also protein isolate) was determined, and the plasticlike properties of their components were studied with thermogravimetric analysis, differential scanning calorimetry, and a dynamic mechanical thermal analysis apparatus. Finally, this indirect way of characterization showed that SFC can be considered a natural composite. In SFC, several components like lignocellulosic fibers [40%/dry matter (DM)], which essentially come from the husk of sunflower seed, can act as fillers. However, other biopolymers like globulins ( approximately 30% of the 30% of sunflower seed proteins/DM of SFC) can be shaped as a thermoplastic-like material because this kind of protein has a temperature of glass transition and a temperature of denaturation that seems to be similar to a melting temperature. These proteins have also viscoelastic properties. Moreover, SFC has similar rheological properties and other physicochemical properties compatible with shaping or molding behaviors of plastic-processing machinery.

  6. Properties of wood-plastic composites: effect of inorganic additives

    NASA Astrophysics Data System (ADS)

    Bakraji, Elias Hanna; Salman, Numan

    2003-01-01

    Wood-plastic composites from Syrian tree species (white poplar, cypress tree, and white willow) were prepared using gamma-ray irradiation. Dry wood was impregnated with acrylamide or butylmethacrylate at various methanol compositions as the swelling solvent. Effect of inorganic additives and co-additives such as lithium nitrate (LiNO 3), copper sulfate (CuSO 4) and sulfuric acid (H 2SO 4), used at a very low concentration (1%), on the polymer loading (PL) and the compression strength (CS) was also investigated. It has been found that all the additives and co-additives, except Cu 2+, increase the PL values and only Li + has a positive effect on CS.

  7. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary.

    PubMed

    Jiang, Peilin; Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2018-05-15

    Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On Technological Properties of Modified Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Gavrilov, M.

    2017-11-01

    The technological properties of epoxy composite materials based on constructional and chemical waste have been reviewed. The viscosity and component wettability of modified epoxy composites have been researched. The use of plasticizing additives to improve mixtures forming has been justified.

  9. Revealing Slip Bands In A Metal-Matrix/Fiber Composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.

    1995-01-01

    Experimental procedure includes heat treatments and metallographic techniques developed to facilitate studies of deformation of metal-matrix/fiber composite under stress. Reveals slip bands, indicative of plastic flow occurring in matrix during mechanical tests of specimens of composite.

  10. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed Central

    Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat. PMID:26394047

  11. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed

    Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.

  12. Fire Resistant Composite Closed Cell Foam and Nonwoven Textiles for Tents and Shelters

    DTIC Science & Technology

    2006-01-01

    when heated. The heat causes the plasticizer to dissolve in the PVC to form a flexible, plasticized PVC film . The foam and/or fabric surfaces were...PVC/NBR AF-U9D foam formed a char and only the edge of the material was damaged. These data suggested that burn-through resistance , in addition to...AFRL-ML-TY-TR-2006-4571 FIRE RESISTANT COMPOSITE CLOSED CELL FOAM AND NONWOVEN TEXTILES FOR TENTS AND SHELTERS Stephen C. Davis

  13. A new hyperspectral imaging based device for quality control in plastic recycling

    NASA Astrophysics Data System (ADS)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  14. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    NASA Astrophysics Data System (ADS)

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  15. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  16. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling.

    PubMed

    Taurino, Rosa; Pozzi, Paolo; Zanasi, Tania

    2010-12-01

    In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets.

    PubMed

    Fisner, Mara; Majer, Alessandra; Taniguchi, Satie; Bícego, Márcia; Turra, Alexander; Gorman, Daniel

    2017-09-15

    This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Parameter determination of hereditary models of deformation of composite materials based on identification method

    NASA Astrophysics Data System (ADS)

    Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.

    2018-03-01

    In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.

  19. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE PAGES

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  20. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    PubMed

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  1. On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.

    1993-01-01

    Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.

  2. Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics

    NASA Astrophysics Data System (ADS)

    Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto

    2013-05-01

    Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials

  3. Bonding of strain gages to fiber reinforced composite plastic materials

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hanson, M. P.; Serafini, T. T.

    1970-01-01

    Strain gage is installed during molding of composite and utilizes the adhesive properties of the matrix resin in the composite to bond the strain gage in place. Gages thus embedded provide data at all temperatures that the matrix can withstand.

  4. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    NASA Astrophysics Data System (ADS)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  5. Perioperative antibiotic usage by facial plastic surgeons: national survey results and comparison with evidence-based guidelines.

    PubMed

    Grunebaum, Lisa Danielle; Reiter, David

    2006-01-01

    To determine current practice for use of perioperative antibiotics among facial plastic surgeons, to determine the extent of use of literature support for preferences of facial plastic surgeons, and to compare patterns of use with nationally supported evidence-based guidelines. A link to a Web site containing a questionnaire on perioperative antibiotic use was e-mailed to more than 1000 facial plastic surgeons in the United States. Responses were archived in a dedicated database and analyzed to determine patterns of use and methods of documenting that use. Current literature was used to develop evidence-based recommendations for perioperative antibiotic use, emphasizing current nationally supported guidelines. Preferences varied significantly for medication used, dosage and regimen, time of first dose relative to incision time, setting in which medication was administered, and procedures for which perioperative antibiotic was deemed necessary. Surgical site infection in facial plastic surgery can be reduced by better conformance to currently available evidence-based guidelines. We offer specific recommendations that are supported by the current literature.

  6. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.

    PubMed

    Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z

    2017-05-12

    The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.

  7. Recycling disposable cups into paper plastic composites.

    PubMed

    Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher

    2014-11-01

    The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additionalmore » products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum-derived plastics in WFRTCs. Using this strategy, we could greatly reduce the cost of producing and utilizing these renewable plastics in WFRTCs. This was a collaborative project among the Idaho National Laboratory, Washington State University, the University of California-Davis, Glatfelter Corporation, Strandex Corporation, and ECO:LOGIC Engineering, Inc. The project was comprised of five tasks. The first four tasks addressed PHA production, extrusion, and composite properties. Feedstock performance and compositional properties were determined in the laboratory by WSU. Both pure commercial PHAs (Task 1) and unpurified effluentderived PHAs (Task 4) were used. Results were used to define appropriate effluent feedstocks (Task 2) and optimize supplements (Task 3) to produce biosolids for the preferred composite formulations. Task 5 included a pilot-scale extrusion of wood-PHA-biosolids composites.« less

  9. Mechanical characterization of new micro-composites composed by natural clay matrix and PEG 6000 fillers

    NASA Astrophysics Data System (ADS)

    El Jai, Mostapha; Akhrif, Iatimad; Mesrar, Laila; Jabrane, Raouf

    2018-05-01

    The aim of this paper is to characterize mechanically the new micro-composites that have been developed in our laboratories. The composites are composed by natural clay (as a matrix) with variant percentages of Polyethylene Glycol 6000 (PEG 6000) as micro-fillers. We used the compression test for the measurement of the static parameters such as elasticity modulus in elastic region and the hardening coefficient which permits to describe the plasticity behaviour of the materials. An additional energetic approach is proposed in order to quantify the evolution of the plasticity of the reinforced materials, caused by the PEG 6000, for different percentages of this polymer.

  10. Plastic Foam Withstands Greater Temperatures And Pressures

    NASA Technical Reports Server (NTRS)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  11. Barriers and benefits to desired behaviors for single use plastic items in northeast Ohio's Lake Erie basin.

    PubMed

    Bartolotta, Jill F; Hardy, Scott D

    2018-02-01

    Given the growing saliency of plastic marine debris, and the impact of plastics on beaches and aquatic environments in the Laurentian Great Lakes, applied research is needed to support municipal and nongovernmental campaigns to prevent debris from reaching the water's edge. This study addresses this need by examining the barriers and benefits to positive behavior for two plastic debris items in northeast Ohio's Lake Erie basin: plastic bags and plastic water bottles. An online survey is employed to gather data on the use and disposal of these plastic items and to solicit recommendations on how to positively change behavior to reduce improper disposal. Results support a ban on plastic bags and plastic water bottles, with more enthusiasm for a bag ban. Financial incentives are also seen as an effective way to influence behavior change, as are location-specific solutions focused on education and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Starch-based Foam Composite Materials: processing and bioproducts

    USDA-ARS?s Scientific Manuscript database

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  13. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  14. Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites

    DOE PAGES

    Jia, Haoling; Zheng, Lili; Li, Weidong; ...

    2015-02-18

    In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less

  15. The Influence of Injection Molding Parameter on Properties of Thermally Conductive Plastic

    NASA Astrophysics Data System (ADS)

    Hafizah Azis, N.; Zulafif Rahim, M.; Sa'ude, Nasuha; Rafai, N.; Yusof, M. S.; Tobi, ALM; Sharif, ZM; Rasidi Ibrahim, M.; Ismail, A. E.

    2017-05-01

    Thermally conductive plastic is the composite between metal-plastic material that is becoming popular because if it special characteristic. Injection moulding was regarded as the best process for mass manufacturing of the plastic composite due to its low production cost. The objective of this research is to find the best combination of the injection parameter setting and to find the most significant factor that effect the strength and thermal conductivity of the composite. Several parameter such as the volume percentage of copper powder, nozzle temperature and injection pressure of injection moulding machine were investigated. The analysis was done using Design Expert Software by implementing design of experiment method. From the analysis, the significant effects were determined and mathematical models of only significant effect were established. In order to ensure the validity of the model, confirmation run was done and percentage errors were calculated. It was found that the best combination parameter setting to maximize the value of tensile strength is volume percentage of copper powder of 3.00%, the nozzle temperature of 195°C and the injection pressure of 65%, and the best combination parameter settings to maximize the value of thermal conductivity is volume percentage of copper powder of 7.00%, the nozzle temperature of 195°C and the injection pressure of 65% as recommended..

  16. Long-term changes in the type, but not amount, of ingested plastic particles in short-tailed shearwaters in the southeastern Bering Sea.

    PubMed

    Vlietstra, Lucy S; Parga, Joyce A

    2002-09-01

    We report the current (1997-1999, 2001) incidence and amount of ingested plastic in short-tailed shearwaters (Puffinus tenuirostris) in the southeastern Bering Sea and compare our results with plastic reported in shearwaters during 1970-1978. We also examine correlations between plastic loads and shearwater body mass. We found that 84% (N = 330) of shearwaters sampled in 1997-1999 and 2001 contained plastic. The incidence and amount of ingested plastic have not significantly changed since the 1970s. In contrast, the predominant type of plastic has changed over time, from industrial plastic to user plastic. S,asonal patterns in the incidence and amount of ingested plastic also changed from peak levels during early and late summer in the 1970s to mid summer in the late 1990s and 2001. We suggest that the availability of neuston plastic to seabirds in the Bering Sea has undergone a shift in composition since the 1970s. Shearwater body mass appears little if at all impaired by plastic, at least at present levels of consumption.

  17. An in situ neutron diffraction study of plastic deformation in a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D. M.; Chen, Yan; Mu, Juan

    Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less

  18. An in situ neutron diffraction study of plastic deformation in a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite

    DOE PAGES

    Wang, D. M.; Chen, Yan; Mu, Juan; ...

    2018-05-21

    Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less

  19. A new technique for detecting colored macro plastic debris on beaches using webcam images and CIELUV.

    PubMed

    Kataoka, Tomoya; Hinata, Hirofumi; Kako, Shin'ichiro

    2012-09-01

    We have developed a technique for detecting the pixels of colored macro plastic debris (plastic pixels) using photographs taken by a webcam installed on Sodenohama beach, Tobishima Island, Japan. The technique involves generating color references using a uniform color space (CIELUV) to detect plastic pixels and removing misdetected pixels by applying a composite image method. This technique demonstrated superior performance in terms of detecting plastic pixels of various colors compared to the previous method which used the lightness values in the CIELUV color space. We also obtained a 10-month time series of the quantity of plastic debris by combining a projective transformation with this technique. By sequential monitoring of plastic debris quantity using webcams, it is possible to clean up beaches systematically, to clarify the transportation processes of plastic debris in oceans and coastal seas and to estimate accumulation rates on beaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.

    PubMed

    Romera-Castillo, Cristina; Pinto, Maria; Langer, Teresa M; Álvarez-Salgado, Xosé Antón; Herndl, Gerhard J

    2018-04-12

    Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.

  1. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  2. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  3. Localized coating removal using plastic media blasting

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.

    1988-01-01

    Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.

  4. Novel products from starch based feedstocks

    USDA-ARS?s Scientific Manuscript database

    There has been progress in the utilization of starch as a partial replacement for petroleum based plastics, but it remains a poor direct substitute for plastics, and a moderate one for composites. Our research focuses on using polymers produced from direct fermentation such as poly(lactic acid) or m...

  5. 24 CFR 3280.608 - Hangers and supports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...

  6. 24 CFR 3280.608 - Hangers and supports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Hangers and supports. (a) Strains and stresses. Piping in a plumbing system shall be installed without undue strains and stresses, and provision shall be made for expansion, contraction, and structural..., plastic drainage piping shall be supported at intervals not to exceed 4 feet and plastic water piping...

  7. Bio-composites from mycelium reinforced agricultural substrates

    USDA-ARS?s Scientific Manuscript database

    There is a need for biodegradable alternatives to the inert plastics and expanded foams currently used in in manufacturing processes and device components. The material focused on in this report is a bio-composite patented by Ecovative Design, LLC. The bio-composite utilizes the fungus mycelium to i...

  8. In Situ Manufacturing of Plastics and Composites to Support H&R Exploration

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon

    2006-01-01

    With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In Situ Resources Utilization (ISRU) is more critical and timely than ever before. Beyond the production of life support consumables or propellants, long term missions will require much greater levels of utilization of indigenous resources, including fabrication of habitats, radiation shielding, and replacement parts and tools. This paper reports the development of a reactor system for the synthesis of polyethylene from carbon dioxide and water. One technology commonly found in most NASA In Situ Resources Utilization scenarios is the use of the Sabatier reaction and water electrolysis to produce methane and oxygen. The system presented uses methane and oxygen to produce ethylene, and subsequently ethylene is polymerized to produce polyethylene. The process selected enables the synthesis of high-density polyethylene suitable for the fabrication of many products for space exploration, including sheets, films, channels, etc, which can be used to construct extraterrestrial habitats, tools, replacement parts, etc. Conventional fabrication processes, such as extrusion and injection molding, which are used in the fabrication of polyethylene parts, can be adapted for space operation, making polyethylene a versatile feedstock for future in-situ manufacturing plants. Studies show that polyethylene is a very good radiation shield material, making it very suitable for construction of habitats, as well as incorporation in space suits. For the fabrication of massive structures, polyethylene can be combined with indigenous soil to maximize the use of unprocessed resources, either enclosed in channels, bags, etc., or compounded in varying proportions. The focus of this paper is to present current progress in the development of manufacturing systems and processes for the production of plastics and composites utilizing indigenous resources such as planetary atmosphere and soil.

  9. Pollutants in Plastics within the North Pacific Subtropical Gyre.

    PubMed

    Chen, Qiqing; Reisser, Julia; Cunsolo, Serena; Kwadijk, Christiaan; Kotterman, Michiel; Proietti, Maira; Slat, Boyan; Ferrari, Francesco F; Schwarz, Anna; Levivier, Aurore; Yin, Daqiang; Hollert, Henner; Koelmans, Albert A

    2018-01-16

    Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.

  10. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  11. Chapter 13:Wood/Nonwood Thermoplastic Composites

    Treesearch

    Craig M. Clemons; Roger M. Rowell; David Plackett; B. Kristoffer Segerholm

    2013-01-01

    Composites made from wood, other biomass resources and polymers have existed for a long time but the nature of many of these composites has changed in recent decades. Wood-thermoset composites date to the early 1900s. "Thermosets" or thermosetting polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins such as epoxies...

  12. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea.

    PubMed

    Gewert, Berit; Ogonowski, Martin; Barth, Andreas; MacLeod, Matthew

    2017-07-15

    We collected plastic debris in the Stockholm Archipelago using a manta trawl, and additionally along a transect in the Baltic Sea from the island of Gotland to Stockholm in a citizen science study. The samples were concentrated by filtration and organic material was digested using hydrogen peroxide. Suspected plastic material was isolated by visual sorting and 59 of these were selected to be characterized with Fourier transform infrared spectroscopy. Polypropylene and polyethylene were the most abundant plastics identified among the samples (53% and 24% respectively). We found nearly ten times higher abundance of plastics near central Stockholm than in offshore areas (4.2×10 5 plastics km -2 compared to 4.7×10 4 plastics km -2 ). The abundance of plastic debris near Stockholm was similar to urban areas in California, USA, and the overall abundance in the Stockholm Archipelago was similar to plastic abundance reported in the northwestern Mediterranean Sea. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Ingestion of plastic marine debris by longnose lancetfish (Alepisaurus ferox) in the North Pacific Ocean.

    PubMed

    Jantz, Lesley A; Morishige, Carey L; Bruland, Gregory L; Lepczyk, Christopher A

    2013-04-15

    Plastic marine debris affects species on most trophic levels, including pelagic fish. While plastic debris ingestion has been investigated in planktivorous fish in the North Pacific Ocean, little knowledge exists on piscivorous fish. The objectives of this study were to determine the frequency of occurrence and the composition of ingested plastic marine debris in longnose lancetfish (Alepisaurus ferox), a piscivorous fish species captured in the Hawaii-based pelagic longline fishery. Nearly a quarter (47 of 192) of A. ferox sampled contained plastic marine debris, primarily in the form of plastic fragments (51.9%). No relationship existed between size (silhouette area) or amount of plastic marine debris ingested and morphometrics of A. ferox. Although A. ferox are not consumed by humans, they are common prey for fish commercially harvested for human consumption. Further research is needed to determine residence time of ingested plastic marine debris and behavior of toxins associated with plastic debris. Published by Elsevier Ltd.

  14. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel.

    PubMed

    Zhou, Nan; Liu, Chang; Lv, Shijie; Sun, Dongsheng; Qiao, Qinglong; Zhang, Rui; Liu, Yang; Xiao, Jing; Sun, Guangwei

    2016-12-01

    Gelatin hydrogel has great potential in regenerative medicine. The degradation of gelatin hydrogel is important to control the release profile of encapsulated biomolecules and regulate in vivo tissue repair process. As a plasticizer, PEG can significantly improve the mechanical property of gelatin hydrogel. However, how preparation parameters affect the degradation rate of gelatin-PEG composite hydrogel is still not clear. In this study, the significant effect factor, glutaraldehyde (GA) concentration, was confirmed by means of Plackett-Burman method. Then a mathematical model was built to predict the degradation rate of composite hydrogels under different preparation conditions using the response surface method (RSM), which was helpful to prepare the certain composite hydrogel with desired degradation rate. In addition, it was found that gelatin-PEG composite hydrogel surface well supported the adhesion and growth of human mesenchymal stem cells (MSCs). Moreover, PEG concentration not only could adjust hydrogel degradation more subtly, but also might increase the cross-linking degree and affect the cell migration. Therefore, these results would be useful to optimize the preparation of gelatin-PEG composite hydrogel for drug delivery or tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3149-3156, 2016. © 2016 Wiley Periodicals, Inc.

  15. Characterization of household waste in Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisted, Rasmus, E-mail: raei@env.dtu.dk; Christensen, Thomas H.

    2011-07-15

    The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important materialmore » fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.« less

  16. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    PubMed

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  17. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    EPA Science Inventory

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  18. Cellulose Nanofiber Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2012-01-01

    Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...

  19. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  20. FRP MODEL - VERSION 1.0 FOR ESTIMATING STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTICS FABRICATION PROCESSES

    EPA Science Inventory

    This software estimates styrene emissions from the manufacture of fiber-reinforced plastics/composite (FRP/C) products. In using the model, the user first chooses the appropriate process: gel coating, resin sprayup, hand layup, etc. Choosing a process will cause the 'baseline' in...

  1. 40 CFR 247.17 - Miscellaneous products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or plastic. (e) Mats containing recovered rubber and/or plastic. (f)(1) Non-road signs containing recovered plastic or aluminum and road signs containing recovered aluminum. (2) Sign supports and posts...

  2. 40 CFR 247.17 - Miscellaneous products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or plastic. (e) Mats containing recovered rubber and/or plastic. (f)(1) Non-road signs containing recovered plastic or aluminum and road signs containing recovered aluminum. (2) Sign supports and posts...

  3. 40 CFR 247.17 - Miscellaneous products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or plastic. (e) Mats containing recovered rubber and/or plastic. (f)(1) Non-road signs containing recovered plastic or aluminum and road signs containing recovered aluminum. (2) Sign supports and posts...

  4. 40 CFR 247.17 - Miscellaneous products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or plastic. (e) Mats containing recovered rubber and/or plastic. (f)(1) Non-road signs containing recovered plastic or aluminum and road signs containing recovered aluminum. (2) Sign supports and posts...

  5. 40 CFR 247.17 - Miscellaneous products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or plastic. (e) Mats containing recovered rubber and/or plastic. (f)(1) Non-road signs containing recovered plastic or aluminum and road signs containing recovered aluminum. (2) Sign supports and posts...

  6. Atomic-level deformation of CuxZr100-x metallic glasses under shock loading

    NASA Astrophysics Data System (ADS)

    Demaske, Brian J.; Wen, Peng; Phillpot, Simon R.; Spearot, Douglas E.

    2018-06-01

    Plastic deformation mechanisms in CuxZr100-x bulk metallic glasses (MGs) subjected to shock are investigated using molecular dynamics simulations. MGs with Cu compositions between 30 and 70 at. % subjected to shock waves generated via piston velocities that range from 0.125 to 2.0 km/s are considered. In agreement with prior studies, plastic deformation is initiated via formation of localized regions of high von Mises shear strain, known as shear transformation zones (STZs). At low impact velocities, but above the Hugoniot elastic limit, STZ nucleation is dispersed behind the shock front. As impact velocity is increased, STZ nucleation becomes more homogeneous, eventually leading to shock-induced melting, which is identified in this work via high atomic diffusivity. The shear stress necessary to initiate plastic deformation within the shock front is independent of composition at shock intensities near the elastic limit but increases with increasing Cu content at high shock intensities. By contrast, both the flow stress in the plastically deformed MG and the critical shock pressure associated with melting behind the shock front are found to increase with increasing Cu content over the entire range of impact velocities. The evolution of the short-range order in the MG samples during shock wave propagation is analyzed using a polydisperse Voronoi tessellation method. Cu-centered polyhedra with full icosahedral symmetry are found to be most resistant to change under shock loading independent of the MG composition. A saturation is observed in the involvement of select Cu-centered polyhedra in the plastic deformation processes at a piston velocity around 0.75 km/s.

  7. Green's Function and Stress Fields in Stochastic Heterogeneous Continua

    NASA Astrophysics Data System (ADS)

    Negi, Vineet

    Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.

  8. Composites from wood and plastics

    Treesearch

    Craig Clemons

    2010-01-01

    Composites made from thermoplastics and fillers or reinforcements derived from wood or other natural fibers are a dynamic research area encompassing a wide variety of composite materials. For example, as the use of biopolymers grows, wood and other natural fiber sources are being investigated as renewable sources of fillers and reinforcements to modify performance....

  9. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    USDA-ARS?s Scientific Manuscript database

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  10. Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska

    Treesearch

    V. Yadama; Eini Lowell; N. Petersen; D. Nicholls

    2009-01-01

    The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...

  11. ANALYSIS AND EVALUATION OF MYCELIUM REINFORCED NATURAL FIBER BIO-COMPOSITES

    USDA-ARS?s Scientific Manuscript database

    There is a need for biodegradable alternatives to the inert plastics and expanded foams that are common in both the manufacturing process and device componentry. The material in this study is a bio-composite patented by Ecovative Design LLC. The manufacturer's bio-composite utilizes fungal mycelium ...

  12. Effect of the conditions of prepreg preparation on the strength of structural plastics

    NASA Astrophysics Data System (ADS)

    Zaborskaya, L. V.; Yurkevich, O. R.

    1995-05-01

    A study is made of the effect of the temperature and duration of heat treatment of polymer composite prepregs on their strength. It is established that heat treatment under conditions ensuring close to maximal adhesive interaction between the components of the prepreg and subsequent shaping makes it possible to more than double the strength of the plastic (Table 1), A new approach is proposed to optimizing the conditions of formation of structural plastics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, I.

    TiC/Ni compositions with 10, 20, and 40 percent nickel were tested for transverse rupture strengths up to 1600 deg C. Transverse bend, cantilever beam, hot deformation, and hot extrusion experiments were performed in order to study the onset of plastic deformation. These materials were plastically deformed, and their microstructures were studied to learn about the mode of deiormation, plastic flow of the nickel binder, and alignment of the carbide grains. Other refractory hardmetal compositions, both single phase and cemented, were tested in transverse rupture up to 1600 deg C and were also subjected to various forms of hot deformation. Transversemore » strength peaks, versus temperature, were found for each material in the range 800 to 1500 deg C. Reasons for this behavior are developed. Microstructures of these materials were examined in connection with the strength tests and deformation studies. (auth)« less

  14. Design and development of solid carbide step drill K34 for machining of CFRP and GFRP composite laminates

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Nagaraja, R.

    2018-04-01

    The Study focused on design and development of solid carbide step drill K34 to drill holes on composite materials such as Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP). The step drill K34 replaces step wise drilling of diameter 6.5mm and 9 mm holes that reduces the setup time, cutting speed, feed rate cost, delamination and increase the production rate. Several researchers have analyzed the effect of drilling process on various fiber reinforced plastic composites by carrying out using conventional tools and machinery. However, this process operation can lead to different kind of damages such as delamination, fiber pullout, and local cracks. To avoid the problems encountered at the time of drilling, suitable tool material and geometry is essential. This paper deals with the design and development of K34 Carbide step drill used to drill holes on CFRP and GFRP laminates. An Experimental study carried out to investigate the tool geometry, feed rate and cutting speed that avoids delamination and fiber breakage.

  15. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    PubMed

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  16. Filling behaviour of wood plastic composites

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Lucyshyn, T.; Holzer, C.

    2017-01-01

    Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

  17. How quickly do albatrosses and petrels digest plastic particles?

    PubMed

    Ryan, Peter G

    2015-12-01

    Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Influence of moisture absorption on mechanical properties of wood flour- polypropylene composites

    Treesearch

    Nicole Stark

    2001-09-01

    Wood-plastic composites are being examined for a greater number of structural-type applications that may be exposed to different environments, some of them adverse. This paper discusses the influence of moisture absorption on the mechanical proper-ties of wood flour-polypropylene composites. Composites filled with 20% or 40% wood flour (by weight) were placed in...

  19. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  20. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    NASA Astrophysics Data System (ADS)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  1. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  2. Cracking and impact performance characteristics of plastic composite ties.

    DOT National Transportation Integrated Search

    2012-03-01

    As followup to a workshop on Engineered Composite Ties sponsored by the American Railway Engineering and Maintenance-of-Way Association and the Federal Railroad Administration, the Transportation Technology Center, Inc., in Pueblo, CO, conducted a se...

  3. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  4. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  5. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  6. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  7. Modified pavement cement concrete

    NASA Astrophysics Data System (ADS)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  8. Filament Winding of a Ship Hull. A Study of the Design of a 30 Ft. Filament Wound Model of a 150 Ft. GRP (Glass Reinforced Plastic) Ship.

    DTIC Science & Technology

    1983-10-01

    by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model

  9. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  10. Properties of fiber reinforced plastics about static and dynamic loadings

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2016-05-01

    A method for investigation of impact toughness of anisotropic polymer composite materials (reinforced plastics) with the help of CM model sample in the configuration of microplastic (micro plastic) and impact pendulum-type testing machine under static and dynamic loadings has been developed. The method is called "Break by Impact" (Impact Break IB). The estimation of impact resistance CFRP by this method showed that an increase in loading velocity ~104 times the largest changes occurs in impact toughness and deformation ability of a material.

  11. State-of-the-Art Review on Composite Material Fatigue/Damage Tolerance.

    DTIC Science & Technology

    1985-12-01

    Automobile Structures," Plastic Rubber Material Application, Vol. 3, No. 2, May 1978. 148. Nguyen, D.T., Arora, J.S., and Belegundu, A.D., "Design...Vanthier, D., " Kunststoff -Verstaerkung MIT Kevlar 49," [Reinforcing Plastics With "Kevlar" 49], Plastverarbeiter, Vol. 31, No. 9, September 1980. 232

  12. Thermally stable, plastic-bonded explosives

    DOEpatents

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  13. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition

    DTIC Science & Technology

    2015-05-01

    HMX ); ethylene glycol dinitrate (EGDN); ammonium nitrate (AN); and nitrocellulose (NC).1–4 Alternatively, in one recent study,5 fluorescence-based...saturation transfer difference AN ammonium nitrate BSA bovine serum albumin EGDN ethylene glycol dinitrate HDO partially deuterated water HMX

  14. Applications of nanocomposites and woodfiber plastics for microcellular injection molding

    Treesearch

    Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield

    2003-01-01

    The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...

  15. Effects of various plasticizers and nanoclays on the mechanical properties of red algae film.

    PubMed

    Jang, S A; Shin, Y J; Seo, Y B; Song, K B

    2011-04-01

    To manufacture red algae (RA) film, we used various plasticizers such as glycerol, sorbitol, sucrose, fructose, and polypropylene glycol (PPG), and then determined the mechanical properties of the RA films. The tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of the films containing various plasticizers ranged between 0.43 to 9.10 MPa, 10.93% to 47.17%, and 1.28 to 1.42 ng m/m2sPa, respectively. RA films containing fructose as a plasticizer had the best mechanical properties of all the films evaluated. Incorporation of nanoclay (Cloisite Na+ and 30B) improved the mechanical properties of the films. RA film with 3% Cloisite Na+ had a TS of 10.89, while RA film with 30B had a TS of 10.85 MPa; these films also had better E and WVP values than the other RA films evaluated. These results suggest that RA/nanoclay composite films are suitable for use as food packaging materials.   Edible RE/nanoclay composite films prepared in the present investigation can be applied in food packaging.

  16. Composite starch-based coatings applied to strawberries (Fragaria ananassa).

    PubMed

    García, M A; Martino, M N; Zaritzky, N E

    2001-08-01

    Starch-based coatings were used to the extend storage life of strawberries (Fragaria ananassa) stored at 0 degree C and 84.8% relative humidity. Effects of coating formulation (including starch type, plasticizer, lipid and antimicrobial agent) were analysed with respect to fruit quality. Plasticizer addition was necessary for film and coating integrity to avoid pores and cracks. Plasticizer presence reduced weight losses and maintained surface colour of fruits. Amylomaize coatings showed lower water vapour and gas permeabilities and decreased weight losses for longer periods than corn starch ones. Coatings with sorbitol showed lower permeabilities than glycerol ones. Coatings with antimicrobial agents decreased microbial counts, extending storage life of coated fruits by 10 to 14 days in comparison to the control. The addition of 2 g/l sunflower oil to the formulations decreased the water vapour permeability of starch-based films, maintained the surface colour of coated fruits and controlled effectively fruit weight losses during storage. Lipid addition minimized the effects of starch and plasticizer types. Composite starch-based coatings showed selective gas permeability (CO2 higher than O2) which helps to delay senescence of fruits.

  17. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    ERIC Educational Resources Information Center

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  18. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    USDA-ARS?s Scientific Manuscript database

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  19. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  20. Properties of foam and composite materials made o starch and cellulose fiber

    USDA-ARS?s Scientific Manuscript database

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  1. Graphite fiber polyimide composites for spherical bearings to 340 C (650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Johnson, R. L.

    1972-01-01

    Journal bearings with self-alining spherical elements of graphite-fiber-reinforced-polyimide composites were tested from 24 to 340 C (75 to 650 F) at unit loads up to 3.5 times 10 to the 7th power N/sq m (5000 psi). The journal oscillated in the cylindrical bore of the composite element + or - 15 deg at 1 hertz. Outer races and journals were metal hardened of Rockwell C-32 and finished to 10 to the minus 7th power m. A 45 wt. percent graphite-fiber composite gave low friction (0.08 to 0.13), low wear, and almost no plastic deformation under any of the test conditions. Composites with 15 and 25 wt. percent graphite fiber failed by plastic deformation at 315 C (600 F) and 3.5 times 10 to the 7th power N/sq m (5000 psi). A composite with 60 wt. percent graphite fiber failed by brittle fracture under the same conditions, but had very low friction coefficients (0.05 to 0.10) and may be a good bearing material at lighter loads.

  2. Thickening compositions containing xanthomonas gum and hydroxyalkyl ether of guar gum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.A.

    1973-07-24

    Natural and synthetic gums have been used as thickeners for foods, coatings, paints, dyes, explosive slurries, oil-well fluids, and many other applications. Thickening compositions are described which consist of xanthomonas gum and hydroxyalkyl ether of guar gum and are suitable for use in explosive slurries. Aqueous sols of xanthomonas gum are plastic in nature and exhibit higher gel strengths than sols of other gums. Aqueous sols of hydroxyalkyl ether of guar are almost Newtonian and exhibit little or no gel strength. Aqueous sols of the thickening compositions of the present invention are plastic in character. At certain concentrations of themore » thickening compositions in aqueous sols, the sols have higher gel strengths than can be obtained from xanthomonas gum alone. At certain concentrations, the aqueous sols containing the thickening compositions exhibit greater viscosity differentials than do sols containing xanthomonas gum alone. In addition, the aqueous sols exhibit a greater drop in viscosity as the thickening composition concentration is reduced than do aqueous sols of xanthomonas gum alone.(5 claims)« less

  3. Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo

    A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.

  4. Investigations of plastic composite materials for highway safety structures

    DOT National Transportation Integrated Search

    1998-08-01

    This report presents a basic overview and assessment of different concepts and technologies of using polymer composites in structures generally used for highway safety. The structural systems included a highway barrier guardrail with its posts and bl...

  5. Optimization of the method of the content-containing interaction evaluation for cosmetic products by gas chromatography - mass spectrometry.

    PubMed

    Charron, C; De Vaugelade, S; Richard, F; Largitte, A; Pirnay, S

    2018-04-25

    Nowadays, plastics are ubiquitous in our daily life. Most of materials used in cosmetic packaging are plastics. It is due to their great diversity of form and colour, their low cost and their easy production. The manufacture of plastic packaging requires the use of several additives such as plasticizers. These molecules are able to migrate from the packaging to the product [1] and can change the product composition, his properties and be harmful to the consumer health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Electroless shielding of plastic electronic enclosures

    NASA Astrophysics Data System (ADS)

    Thompson, D.

    1985-12-01

    The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.

  7. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olguin, E; Flampouri, S; Lipnharski, I

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less

  8. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco; Monakhova, Yulia B

    2016-05-15

    We inserted 190 FTIR spectra of plastic samples in a digital database and submitted it to Independent Component Analysis (ICA) to extract the "pure" plastic polymers present. These identified plastics were polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE), high density polyethylene terephthalate (HDPET), low density polyethylene terephthalate (LDPET), polystyrene (PS), Nylon (NL), polyethylene oxide (OPE), and Teflon (TEF) and they were used to establish the similarity with unknown plastics using the correlation coefficient (r), and the crosscorrelation function (CC). For samples with r<0.8 we determined the Mahalanobis Distance (MD) as additional tool of identification. For instance, for the four plastic fragments found in the Carretta carretta, one plastic sample was assigned to OPE due to its r=0.87; for all the other three plastic samples, due to the r values ranging between 0.83 and0.70, the support of MD suggested LDPET and OPE as co-polymer constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    NASA Technical Reports Server (NTRS)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  10. Rheological properties of wood polymer composites and their role in extrusion

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Schuschnigg, S.; Gooneie, A.; Langecker, G. R.; Holzer, C.

    2015-04-01

    The influence of the rheological behaviour of PP based wood plastic composites (WPC) has been investigated in this research by means of a high pressure capillary rheometer incorporating dies having different geometries. The rheological experiments were performed using slit and round dies. The influence of moisture content on the flow properties of the WPC has been investigated as well. It was observed that higher moisture contents lead to wall slippage effect. Furthermore, measured viscosity data have been used in flow simulation of an extrusion profile die. Also, the influence of different rheological models on the simulation results is demonstrated. This research work presents a theoretical and experimental study on the measurement and prediction of the die pressure in the extrusion process of wood-plastic composite (WPC).

  11. Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings

    NASA Astrophysics Data System (ADS)

    Apinis, R.

    2004-03-01

    The possibility of using high-frequency loading in fatigue tests of polymer composite materials is discussed. A review of studies on the use of high-frequency loading of organic-, carbon-, and glass-fiber-reinforced plastics is presented. The results obtained are compared with those found in conventional low-frequency loadings. A rig for fatigue tests of rigid materials at loading frequencies to 500 Hz is described, and results for an LM-L1 unidirectional glass-fiber plastic in loadings with frequencies of 17 and 400 Hz are given. These results confirm that it is possible to accelerate the fatigue testing of polymer composite materials by considerably increasing the loading frequency. The necessary condition for using this method is an intense cooling of specimens to prevent them from vibration heating.

  12. Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.

    PubMed

    Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena

    2016-12-01

    The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.

  13. An applied investigation of corn-based distillers dried grains with solubles in the production of natural fiber-plastic composites

    NASA Astrophysics Data System (ADS)

    Castillo, Hugo Eudosio

    The main objective of this research was to examine uses for distillers dried grains with solubles (DDGS), a coproduct of ethanol production plant, in the fiber-reinforced plastic composites industry. Initially the effort intended to take advantage of the DDGS components, using chemical reactions, to produce coupling agents to improve the physical properties of the composite. Four different chemicals plus water were used to convert proteins into soluble amino acids. The results were not as expected, and appeared to show an early pyrolysis of DDGS components. This may be due to regeneration of proteins when pH of solutions is neutralized. Procedures were then investigated to utilize DDGS for different markets. Considering that oils and proteins of DDGS can thermally decompose, it seemed important to separate the major components and work with DDGS fiber alone. A procedure to extract oil from DDGS using ethanol and then to hydrolyze proteins with ethanol diluted with water, acid and sodium sulfite, was developed. The resulting DDGS fiber or residual material, with a low content of oil and proteins, was used as filler in a propylene matrix with a lubricant and coupling agent to make natural fiber plastic composites (NFPC). Composites containing wood flour (WPC) were prepared simultaneously with those of DDGS fiber to compare tensile properties and fracture surfaces of the specimens by scanning electron microscope (SEM). This study demonstrates that DDGS fiber can replace wood fiber as a filler in NFPC.

  14. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites.

    Treesearch

    Craig M. Clemons; Rebecca E. Ibach

    2004-01-01

    The purpose of this study was to clarify the effects of composite processing and moisture sorption on laboratory fungal resistance of wood-plastic composites. A 2-week water soaking or cyclic boiling-drying procedure was used to infuse moisture into composites made from high-density polyethylene filled with 50 percent wood flour and processed by extrusion, compression...

  15. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  16. The effect of piezoelectric ultrasonic instrumentation on titanium discs: a microscopy and trace elemental analysis in vitro study.

    PubMed

    Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H

    2016-08-01

    To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Innovative use of wood-plastic-composites (WPC) as a core material in the sandwich injection molding process

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Martin, Yannick

    2016-03-01

    The demand for materials based on renewable raw materials has risen steadily in recent years. With society's increasing interest for climate protection and sustainability, natural-based materials such as wood-plastic-composites (WPC) have gained market share thanks to their positive reputation. Due to advantages over unreinforced plastics such as cost reduction and weight savings it is possible to use WPC in a wide area of application. Additionally, an increase in mechanical properties such as rigidity and strength is achieved by the fibers compared to unreinforced polymers. The combination of plastic and wood combines the positive properties of both components in an innovative material. Despite the many positive properties of wood-plastic-composite, there are also negative characteristics that prevent the use of WPC in many product areas, such as automotive interiors. In particular, increased water intake, which may result in swelling of near-surface particles, increased odor emissions, poor surface textures and distortion of the components are unacceptable for many applications. The sandwich injection molding process can improve this situation by eliminating the negative properties of WPC by enclosing it with a pure polymer. In this case, a layered structure of skin and core material is produced, wherein the core component is completely enclosed by the skin component. The suitability of WPC as the core component in the sandwich injection molding has not yet been investigated. In this study the possibilities and limitations of the use of WPC are presented. The consideration of different fiber types, fiber contents, skin materials and its effect on the filling behavior are the focus of the presented analysis.

  18. Solid Waste Composition Study at Taman Universiti, Parit Raja, Batu Pahat

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sani, M. S. A. M.

    2016-07-01

    Solid waste management is recognised as one of the most challenging issues confronted by both the developed and developing countries. The problems rise due to growing population in current years which results in increased generation of waste with various compositions. The aim of this study was to determine the waste compositions at Taman Universiti. Taman Universiti is a mix residential and commercial area which a preferred residential location amongst students and lecturers due to its proximate location to UTHM main campus. The waste collection was carried out for 50 houses on a daily basis. The collection and sorting out method was conducted according to Malaysian Standard MS 2505:2012 and the data was collected and recorded The result showed that the average generation rate of household waste at Taman Universiti was 0.16kg/person/day and the moisture content was approximately ranging from 61%-68%. Household wastes collected were categorized and it consisted of food and organic, paper, rigid plastics, plastics film, baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, garden waste and leather. The proportion of each wastes were approximately 64.67%, 9.36%, 9.22%, 5.33%, 3.51%, 2.53%, 1.37%, 1.05%, 0.84%, 0.85%, 0.80%, 0.27%, and 0.23%, respectively. Results from the analyses indicated that the food and organic waste are the major composition of household waste at Taman Universiti followed by the paper, rigid plastics, and plastic film. Meanwhile, the proportion of baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, and garden decreasing accordingly. In addition, leather was recognized as the least category that contributed to the household waste.

  19. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    PubMed

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  20. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  1. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    DTIC Science & Technology

    2007-12-01

    and thermal properties of composites. Ch. 3 in Fibre Composite Hybrid Materials. Hancox NL (Ed). Applied Science Publishers, London, 1981. 95...Kretsis G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre -reinforced plastics. Composites 1987; 18: 13-23. 96...advanced degrees in engineering. Page 3 3. Technical Background 3.1: Usage of composites in Army ground vehicles The use of high

  2. Performance of waste-paper/PETG wood–plastic composites

    NASA Astrophysics Data System (ADS)

    Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei

    2018-05-01

    Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  3. 1200 and 1300 K slow plastic compression properties of Ni-50Al composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.

  4. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    PubMed

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  5. Constitutive Equations: Plastic and Viscoelastic Properties. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.

  6. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    PubMed

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  7. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  8. Durability of Structural Adhesively Bonded System.

    DTIC Science & Technology

    1981-06-01

    Composites , Finite Element Method. II DURABILITY OF STRUCTURAL ADHESIVELY BONDED SYSTEMS TABLE OF CONTENTS 1. Introduction...That investigation was mainly devoted to the temperature effects in time on the mechanical behavior of fiber-reinforced plastic (FRP) composites and...ervironmental-loading history on the mechanical performance of similar FRP composites (which may serve as adherends in structural bcnded systems). That

  9. Virtual Parts Engineering Research Center

    DTIC Science & Technology

    2010-05-20

    engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical

  10. Changes in wood flour/HDPE composites after accelerated weathering with and without water spray

    Treesearch

    Nicole M. Stark

    2005-01-01

    Wood-plastic lumber is promoted as a low-maintenance high-durability product. After weathering, however, wood-plasticcomposites (WPCs) often fide and lose mechanical properties. In the first part ofthis study, 50%wood-flour-filled high-density polyethylene (HDPE) composite samples were injection molded or extruded. Composites were exposed to two accelerated weathering...

  11. Opportunities for composites from recycled wastewood-based resources: A problem analysis and research plan

    Treesearch

    Roger M. Rowell; Henry Spelter; Rodger A. Arola; Phil Davis; Tom Friberg; Richard W. Hemingway; Tim Rials; David Luneke; Ramani Narayan; John Simonsen; Don White

    1993-01-01

    There are many opportunities to produce composites from recycled biobased fiber. The fiber can be used alone to make low-cost and high-performance composites, combined with inorganic materials, or combined with other recycled materials, such as plastics, to produce mixtures, compatibilized blends, and alloys. This report describes the resources available: problems...

  12. Evaluation of the mechanical and thermal properties of coffee tree wood flour - polypropylene composites

    USDA-ARS?s Scientific Manuscript database

    Columbian coffee trees are subject to frequent replacement plantings due to disease and local climate changes which makes them an ideal source of wood fibers for wood plastic composites (WPC). Composites of polypropylene (PP) consisting of 25% and 40% by weight of coffee wood flour (CF) and 0% or 5%...

  13. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  14. Laboratory assays evaluate the influence of physical guidelines on subterranean termite (Isoptera: Rhinotermitidae) tunneling, bait discovery, and consumption.

    PubMed

    Swoboda, L E; Miller, D M

    2004-08-01

    Laboratory assays were conducted to determine whether physical guidelines could direct subterranean termite foraging behavior. Several materials (wood, plastics, and wood thermoplastic composites) were evaluated for their potential to serve as termite guidelines. Termite tunneling along the different types of guidelines was measured. The proportion of baits discovered when connected by a guideline was compared with the proportion of unconnected baits discovered. Termite consumption of baits also was quantified. Assay results indicated that the termites did not respond to all guideline materials in the same way. Termites built significantly longer tunnels along wood guidelines than they did along any of the plastic guidelines tested. However, tunnel length along the wood and the wood thermoplastic composites was not significantly different. The probability of two baits being discovered when they were connected by wood guidelines was significantly greater than when the baits were connected by plastic guidelines or left unconnected (no guideline). Pairs of baits connected by wood thermoplastic composites were also significantly more likely to be discovered than unconnected baits. Bait consumption was not enhanced by the presence of the guidelines. It is likely that guidelines made of wood competed with the baits as a termite food resource.

  15. Nutrient-mediated architectural plasticity of a predatory trap.

    PubMed

    Blamires, Sean J; Tso, I-Min

    2013-01-01

    Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  16. Comparison studies on the percolation thresholds of binary mixture tablets containing excipients of plastic/brittle and plastic/plastic deformation properties.

    PubMed

    Amin, Mohd C I; Fell, John T

    2004-01-01

    Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.

  17. Briquettes of rice husk, polyethylene terephthalate (PET), and dried leaves as implementation of wastes recycling

    NASA Astrophysics Data System (ADS)

    Hariyanto, Sucipto; Usman, Mohammad Nurdianfajar; Citrasari, Nita

    2017-06-01

    This research aim is to determine the best briquettes as implementation of wastes recycle based on scoring method, main component composition, compressive strength, caloric value, water content, vollatile content, and ash content, also the suitability with SNI 01-6235-2000. Main component that used are rice husk, 2mm and 6 mm PET, and dried leaves. Composition variation in this research are marked as K1, K2, K3, K4, and K5 with 2 mm PET plastic and K1, K2, K3, K4, and K5 with 6 mm PET plastic. The total weight of the briquettes is 100 g and divided into 90% main components and 10% tapioca as binder. The compressive strength, caloric value, water content, vollatile content, and ash content were tested according to ASTM D 5865-04, ASTM D 3173-03, ASTM D 3175-02, ASTM D 3174-02. The tested results were used to determine the best briquette by scoring method, and the chosen briquettes is K2 with 6 mm PET plastic. The composition is 70% rice husk, 20% 6 mm PET plastic, and 10% dried leaves with the compressive strength, caloric value, water content, vollatile content, and ash content value is 51,55 kg/cm2; 5123 kal/g; 3,049%; 31,823%, dan 12,869%. The suitable value that meet the criteria according to SNI 01-6235-2000 is compressive strength, caloric value, water content, and ash content.

  18. Thermoformed protein based composites in presence of organic acids

    USDA-ARS?s Scientific Manuscript database

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...

  19. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  20. Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC

    NASA Astrophysics Data System (ADS)

    Al-Matar, Basem Jawad

    The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.

  1. Composite material making from empty fruit bunches of palm oil (EFB) and Ijuk (Arengapinnata) using plastic bottle waste as adhesives

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.

    2018-03-01

    Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.

  2. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    DOE PAGES

    Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn; ...

    2017-03-15

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less

  3. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    NASA Astrophysics Data System (ADS)

    Yeager, John D.; Watkins, Erik B.; Higginbotham Duque, Amanda L.; Majewski, Jaroslaw

    2018-01-01

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, the HMX-binder interface and phase transition were studied for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions-pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. This effect increased with NC content.

  4. Implementation of a Tabulated Failure Model Into a Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther

    2017-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.

  5. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  6. Phthalates and alternative plasticizers and potential for contact exposure from children's backpacks and toys.

    PubMed

    Xie, Mingjie; Wu, Yaoxing; Little, John C; Marr, Linsey C

    2016-01-01

    This work focuses on the mass content of plasticizers in children's backpacks and toys, and their mass transfer from product surfaces to cotton wipes. The mass content of plasticizers in six backpacks and seven toys was measured by extracting them in tetrahydrofuran. Bis(2-ethylhexyl) terephthalate (DEHT) was the most common plasticizer, dominating the composition of plasticizers in four backpacks (average mass content in product polyvinyl chloride, 5.38 ± 1.98%-25.5 ± 3.54%) and six plastic toys (8.17 ± 1.85%-21.2 ± 1.11%). The surface of each product was wiped with three dry and three wet (by isopropanol) cotton wipes, so as to evaluate the mass transfer of plasticizers to clothing and human skin, respectively. DEHT was the most common plasticizer detected on wipe samples. There were strong correlations (backpacks r=0.90; plastic toys r=0.96) between average mass transfer of DEHT to wet wipes and its average mass content in the product. The mass transfers of the five dominant plasticizers in one backpack to both dry and wet wipes were also correlated (both r=1.00) with their mass contents. These results suggest that the mass transfer of plasticizers from products to clothing or human skin is strongly associated with their mass content.

  7. EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.

  8. Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite

    NASA Astrophysics Data System (ADS)

    Wang, Daqun; Sun, Dongli; Han, Xiuli; Wang, Qing; Wang, Guangwei

    2018-03-01

    Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.

  9. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  10. Modeling the interaction of binary mixtures of estradiol and bisphenol A or its analogues in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ...

  11. Morphology and properties of wood-fiber reinforced blends of recycled polystyrene and polyethylene

    Treesearch

    John Simonsen; Timothy G. Rials

    1996-01-01

    Material properties of composites produced from recycled plastics and recycled wood fiber were compared. A blend of high-density polyethylene and polystyrene was used as a simulated mixed plastic. Stiffness was generally improved by the addition of fiber, as expected, but brittleness also increased. Pre-treatment of the wood filler with phenol-formaldehyde resins did...

  12. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters.

    PubMed

    Suaria, Giuseppe; Avio, Carlo G; Mineo, Annabella; Lattin, Gwendolyn L; Magaldi, Marcello G; Belmonte, Genuario; Moore, Charles J; Regoli, Francesco; Aliani, Stefano

    2016-11-23

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  13. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    NASA Astrophysics Data System (ADS)

    Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano

    2016-11-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  14. 5. EXTERIOR OF TRIPLEX COTTAGE ROOF SHOWING MANVILLE COMPOSITION SHINGLES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF TRIPLEX COTTAGE ROOF SHOWING MANVILLE COMPOSITION SHINGLES, POURED CONCRETE CHIMNEYS, AND TRANSLUCENT PLASTIC COVERING OVER WALKWAY AT REAR OF HOUSE (PHOTO LEFT). VIEW TO NORTHWEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  15. Academic plastic surgery: faculty recruitment and retention.

    PubMed

    Chen, Jenny T; Girotto, John A; Kitzmiller, W John; Lawrence, W Thomas; Verheyden, Charles N; Vedder, Nicholas B; Coleman, John J; Bentz, Michael L

    2014-03-01

    A critical element of a thriving academic plastic surgery program is the quality of faculty. A decline in recruitment and retention of faculty has been attributed to the many challenges of academic medicine. Given the substantial resources required to develop faculty, academic plastic surgery has a vested interest in improving the process of faculty recruitment and retention. The American Council of Academic Plastic Surgeons Issues Committee and the American Society of Plastic Surgeons/Plastic Surgery Foundation Academic Affairs Council surveyed the 83 existing programs in academic plastic surgery in February of 2012. The survey addressed the faculty-related issues in academic plastic surgery programs over the past decade. Recruitment and retention strategies were evaluated. This study was designed to elucidate trends, and define best strategies, on a national level. Academic plastic surgery programs have added substantially more full-time faculty over the past decade. Recruitment efforts are multifaceted and can include guaranteed salary support, moving expenses, nurse practitioner/physician's assistant hires, protected time for research, seed funds to start research programs, and more. Retention efforts can include increased compensation, designation of a leadership appointment, protected academic time, and call dilution. Significant change and growth of academic plastic surgery has occurred in the past decade. Effective faculty recruitment and retention are critical to a successful academic center. Funding sources in addition to physician professional fees (institutional program support, grants, contracts, endowment, and so on) are crucial to sustain the academic missions.

  16. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  17. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  18. Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Rangaswamy, T.

    2018-04-01

    Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.

  19. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  20. Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites

    Treesearch

    Vera Steckel; Craig Merrill Clemons; Heiko Thoemen

    2007-01-01

    Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. Knowledge of moisture uptake and transport properties would be useful in estimating moisture-related effects such as fungal attack and loss of mechanical strength. Our objectives were to determine how material...

  1. Thermal load histories for North American roof assembles using various cladding materials including wood-thermoplastic composite shingles

    Treesearch

    J. E. Winandy

    2006-01-01

    Since 1991, thermal load histories for various roof cladding types have been monitored in outdoor attic structures that simulate classic North American light-framed construction. In this paper, the 2005 thermal loads for wood-based composite roof sheathing, wood rafters, and attics under wood-plastic composite shingles are compared to common North American roof...

  2. Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Rahmayani, R. F. I.; Munandar

    2018-03-01

    This study has been conducted on bioplastic synthesis of chitosan and yellow pumpkin starch (Cucurbita moschata) with castor oil as plasticizer. The purpose of this study is to determine the characteristics of the effect of chitosan and starch composition of pumpkins against solvent absorption, tensile strength and biodegradable. The first stage of the research is the making of bioplastic by blending yellow pumpkin starch, chitosan and castor oil. Further, it tested the absorption capacity of the solvent, tensile strength test, and biodegradable analysis. The optimum absorption capacity of the solvent is obtained on the composition of Pumpkin/Chitosan was 50/50 in H2O and C2H5OH solvent. Meanwhile the optimum absorbency in HCl and NaOH solvents is obtained by 60/40 composition. The characterization of the optimum tensile strength test was obtained on the 40/60 composition of 6.787 ± 0.274 Mpa and the fastest biodegradation test process within 5-10 days occurred in the 50/50 composition. The more chitosan content the higher the value of tensile strength test obtained, while the fastest biodegradation rate occureds in the composition of yellow pumpkin starch and chitosan balanced 50:50.

  3. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites

    PubMed Central

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-01-01

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs. PMID:28793726

  4. Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites.

    PubMed

    Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin

    2015-12-08

    Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.

  5. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  6. Casting Molding of PDCPD Material for Purpose of Car’s Power Steering Body

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2018-01-01

    The growing industry of polymer and composite materials is facing new challenges posed by the automotive industry. In this industry, traditional materials such as steel and aluminum are widely replaced with plastic materials, including polymers. In the past, such behavior concerned design and interior elements, but more and more often plastics are used in the case of load-bearing elements, i.e. those that require high strength and durability nowadays. This kind of materials are also often used in safety systems or driver assistance systems. Therefore, the aim of the activities described in this article are to carry out an innovative process of injection of cold polymeric material, PDCPD (Polidicyclopentadiene), polymerizing with the use of Metathesis reaction, which in 2005 was awarded the Nobel Prize. This injection applies to the worm gear components of the system, supports the power steering system of the passenger car. Also the process of selecting the appropriate parameters to carry out this process, guaranteeing the best quality of the obtained elements is necessary. The aim of the activities was to achieve a fully useful power steering support system, using a polymer body, which is replacing the aluminum. These activities were aimed at reducing the costs and weight of the final product. The injection process and the way to achieve the finished product were carried out in an innovative way, never used in industry before.

  7. Liquid Hydrogenation of Maleic Anhydride with Pd/C Catalyst at Low Pressure and Temperature in Batch Reactor.

    PubMed

    Kim, Ji Sun; Baek, Jae Ho; Ryu, Young Bok; Hong, Seong-Soo; Lee, Man Sig

    2015-01-01

    Succinic acid (SA) produced from hydrogenation of maleic anhydride (MAN) is used widely in manufacturing of pharmaceuticals, agrochemicals, surfactants and detergent, green solvent and biodegradable plastic. In this study, we performed that liquid hydrogenation of MAN to SA with 5 wt% Pd supported on activated carbon (Pd/C) at low pressure and temperature. The synthesis of SA was performed in aqueous solution while varying temperature, pressure, catalytic amount and agitation speed. We confirmed that the composition of the products consisting of SA, maleic acid (MA), fumaric acid (FA) and malic acid (MLA) depends on the process. The catalytic characteristics were analyzed by TGA, TEM.

  8. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    NASA Astrophysics Data System (ADS)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  9. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  10. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  11. Photostabilization of wood flour filled HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2002-01-01

    Wood/plastic composites are increasingly examined for non-structural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, resulting in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. This study...

  12. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique will not only reduce cost but also improve processability due to the use of supercritical fluid. Various material properties of the solid (without the foaming agent) and microcellular components (with foaming agent) made of PHBV-based polymer blends or composites were investigated including static mechanical properties (tensile testing), dynamic mechanical properties (dynamic mechanical analysis), thermal properties (differential scanning calorimetry and thermo gravimetric analysis), crystallinity(wide angle X-ray scattering analysis), and morphology (scanning electron microscopy and transmission electron microscopy). The composition-processing-structure-property relationship of these solid and microcellular components were established.

  13. Investigation of in-situ poly(lactic acid)/soy protein concentrate composites: Composite preparation, properties and foam application development

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2011-12-01

    In this study, soy protein (SP), the residue of oil crushing, was used for preparation of value-added thermoplastics. Novel poly(lactic acid) (PLA)/soy protein concentrate (SPC) blends were investigated and foaming of the resulting blends was developed. PLA/SPC blends were prepared by twin-screw extrusion and test specimens by injection molding. Unlike the practice elsewhere SP was used as a filler in mixing with other polymers, SPC was processed as a plastic component in blending process in this work. Processing SPC as plastic component, water played an important role in terms of the deformability and the morphology of SP thus the properties of the blends. Plasticization of SP, compatibilization of the blends and structure-property relationship of the PLA/SPC blends were studied. In the literature water and glycerol were often used together in preparing SP plastics or plastic blends, but this study found that this traditional combination did not provide the best results in terms of morphology and mechanical properties. Water is only recommended in plasticizing SP in the blends. This study showed water as a plasticizer was a domain factor on control of morphology and properties of PLA/SPC blends. The due to the evaporation of water after extrusion, SP domain lost its deformability thus resulted in in-situ composites. Interconnected SPC phase structure was achieved by control water content in the pre-formulated SPC and SPC content in the blends. A novel dual compatibilization method was developed to improve the properties of PLA/SPC blends. Poly(2-ethyl-2-oxazoline) was used to improve the dispersion of SPC in the blending stage, and polymeric methylene diphenyl diisocyanate was used to improve the interfacial adhesion between SPC and PLA in the subsequent processing. The result showed excellent mechanical properties and improved thermal properties of PLA/SPC blends. Using processing aids is an effective way to decrease processing temperature and thermal degradation of PLA/SPC blends. Interfacial adhesion and chemical blowing agent (CBA) played important roles in extrusion foaming PLA/SPC blends. The interconnected SPC particles provided a convenient passage for gas escape due to the weak adhesion between PLA melt and SPC, especially when CBA content was high. Strong interfacial adhesion is necessary to prevent gas escape and get low density foam at low CBA content. The new findings in this work contribute to the knowledgebase of polymer blends and composites. The findings in this work and implementation of the investigation of preparation and properties of PLA/SP blends set up a framework for future research and development of similar natural polymer blends and will contribute to the commercialization of natural polymer based polymer blends such as starch and sugar beet pulp.

  14. Individual differences in behavioural plasticities.

    PubMed

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural plasticities observed at a given age. Several authors have predicted correlations across individuals between different types of behavioural plasticities, i.e. that some individuals will be generally more plastic than others. However, empirical support for most of these predictions, including indirect evidence from studies of relationships between personality traits and plasticities, is currently sparse and equivocal. The final section of this review suggests how an appreciation of the similarities and differences between different types of behavioural plasticities may help theoreticians formulate testable models to explain the evolution of individual differences in behavioural plasticities and the evolutionary and ecological consequences of individual differences in behavioural plasticities. © 2015 Cambridge Philosophical Society.

  15. Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films.

    PubMed

    Romero-Bastida, Claudia A; Flores-Huicochea, Eduardo; Martin-Polo, Martha O; Velazquez, Gonzalo; Torres, J Antonio

    2004-04-21

    The effect of moisture content and film composition on biodegradability is the focus of this study. Flexible films were first characterized for the effect on water sorption isotherms of relative humidity, temperature, zein content, and the addition of the plasticizers stearic acid, poly(ethylene glycol), or etoxylated ricine oil. Zein/ethylcellulose (EC) mixture films had a behavior between that for pure zein and EC films, which had the lowest water sorption. For films with plasticizer, the lowest water sorption at 25 degrees C was observed for those with stearic acid. Biodegradability of zein/EC films, evaluated using bacterial cultures selected for their zein proteolytic activity and isolated from a local solid waste landfill and a lagoon, showed no plasticizer effect even though its effect on moisture content was significant. Large differences were observed at different film zein concentration with the highest biodegradability for 100% zein. However, biodegradability did not mimic the water sorption behavior of zein/EC mixture films.

  16. Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation

    PubMed Central

    Katabira, Kenichi; Yoshida, Yu; Masuda, Atsuji; Watanabe, Akihito; Narita, Fumio

    2018-01-01

    The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe–Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe–Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe–Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe–Co fiber and the bias magnetic field. The magnetic flux density change of Fe–Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles. PMID:29522455

  17. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  18. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    NASA Astrophysics Data System (ADS)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  19. Composition, spatial distribution and sources of macro-marine litter on the Gulf of Alicante seafloor (Spanish Mediterranean).

    PubMed

    García-Rivera, Santiago; Lizaso, Jose Luis Sánchez; Millán, Jose María Bellido

    2017-08-15

    The composition, spatial distribution and source of marine litter in the Spanish Southeast Mediterranean were assessed. The data proceed from a marine litter retention programme implemented by commercial trawlers and were analysed by GIS. By weight, 75.9% was plastic, metal and glass. Glass and plastics were mainly found close to the coast. A high concentration of metal was observed in some isolated zones of both open and coastal waters. Fishing activity was the source of 29.16% of the macro-marine litter, almost 68.1% of the plastics, and 25.1% of the metal. The source of the other 60.84% could not be directly identified, revealing the high degree of uncertainty regarding its specific origin. Indirectly however, a qualitative analysis of marine traffic shows that the likely sources were merchant ships mainly in open waters and recreational and fishing vessels in coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An overview of the recent developments in polylactide (PLA) research.

    PubMed

    Madhavan Nampoothiri, K; Nair, Nimisha Rajendran; John, Rojan Pappy

    2010-11-01

    The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace oil-based traditional plastics. Among numerous kinds of degradable polymers, polylactic acid sometimes called polylactide, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the 'green' eco friendly material. Biodegradable plastics like polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyrate, etc. are commercially available for controlled drug releases, implantable composites, bone fixation parts, packaging and paper coatings, sustained release systems for pesticides and fertilizers and compost bags etc. This review will provide information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications.

  1. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  2. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    NASA Technical Reports Server (NTRS)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  3. Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite

    NASA Astrophysics Data System (ADS)

    Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott

    The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.

  4. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  5. Modeling the interaction of binary mixtures of estradiol and bisphenol A or its analogues in an in vitro estrogen mediated transcriptional activation assay (T47D-KBIuc).

    EPA Science Inventory

    Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ar...

  6. Plastic Media Blasting Data Gathering Study

    DTIC Science & Technology

    1986-12-01

    products of organic compounds containing the amino group (-NH 2 ) and an aldehyde. The better known members of this group are urea formaldehyde (a...suspected carcinogen) and melamine formaldehyde . The actual composition and toxicity of the dust from the various operations must be collected and...blasting is a paint removal technique in which small, granular amino thermoset or unsaturated polyester resins (plastic beads) are forced at high

  7. 75 FR 53277 - Notice of Intent To Terminate Selected National Voluntary Laboratory Accreditation Program (NVLAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... coatings, paper and related products, building seals and sealants, plastics, plumbing, roofing, and... products, building seals and sealants, plastics, plumbing, roofing, and mattresses. The purpose of this... plumbing laboratories are also accredited for plastic and paint testing in support of plumbing testing...

  8. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  9. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression.

    PubMed

    Weng, Shayuan; Ning, Huiming; Fu, Tao; Hu, Ning; Zhao, Yinbo; Huang, Cheng; Peng, Xianghe

    2018-02-15

    Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.

  10. Weathering Characteristics of Wood Plastic Composites Reinforced with Extracted or Delignified Wood Flour

    PubMed Central

    Chen, Yao; Stark, Nicole M.; Tshabalala, Mandla A.; Gao, Jianmin; Fan, Yongming

    2016-01-01

    This study investigated weathering performance of an HDPE wood plastic composite reinforced with extracted or delignified wood flour (WF). The wood flour was pre-extracted with three different solvents, toluene/ethanol (TE), acetone/water (AW), and hot water (HW), or sodium chlorite/acetic acid. The spectral properties of the composites before and after artificial weathering under accelerated conditions were characterized by Fourier transform infrared (FTIR) spectroscopy, the surface color parameters were analyzed using colorimetry, and the mechanical properties were determined by a flexural test. Weathering of WPC resulted in a surface lightening and a decrease in wood index (wood/HDPE) and flexural strength. WPCs that were reinforced with delignified wood flour showed higher ΔL* and ΔE* values, together with lower MOE and MOR retention ratios upon weathering when compared to those with non-extracted control and extracted WF. PMID:28773732

  11. Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.

    NASA Astrophysics Data System (ADS)

    Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad

    2018-04-01

    In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.

  12. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.

  13. JPRS Report (Erratum), Science & Technology, Japan, Selections from MITI White Paper on Industrial Technology Trends and Issues

    DTIC Science & Technology

    1989-08-30

    year period in the following products: Technology Field Product New materials Composite materials Amorphous alloys Macromolecule separation...plastics 8. Composite materials B. Parts 9. Optical fiber 10. Semiconductor lasers 11. CCD 12. Semiconductor memory elements 13. Microcomputers...separation. Composite materials (containing carbon fiber) (1) Aerospace users required strict specifi cations for carbon fiber, resulting in

  14. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  15. Nanosized carbon modifier used to control plastic deformations of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Vysotskaya, M. A.; Shekhovtsova, S. Yu; Barkovsky, D. V.

    2018-03-01

    Aspects related to plastic track, the formation of which directly depends on the properties of the binder in the composition of asphalt concrete, are considered in this article. The effect of primary carbon nanomaterials on the quality of polymer and bitumen binder in comparison with the traditional binder including cross-linking agent is evaluated. The influence of binders on the resistance to the track formation of type B asphalt concrete is studied. To quantify the service life of surfacing, a calculation method based on the criteria for the resistance of surfacing material to plastic deformations is used.

  16. Correlation between elastic and plastic deformations of partially cured epoxy networks

    NASA Astrophysics Data System (ADS)

    Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik

    2018-05-01

    The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.

  17. Nutrient-Mediated Architectural Plasticity of a Predatory Trap

    PubMed Central

    Blamires, Sean J.; Tso, I-Min

    2013-01-01

    Background Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. Methodology/Principal Findings To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Conclusions/Significance Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders. PMID:23349928

  18. Raw materials for wood-polymer composites.

    Treesearch

    Craig Clemons

    2008-01-01

    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  19. Method of forming composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  20. Evaluation of mycelium reinforced agricultural fiber biocomposites for diverse applications

    USDA-ARS?s Scientific Manuscript database

    There is a genuine need for new biodegradable alternatives to the inert plastics and expanded foams that are common in both manufacturing processes and device componentry. The material emphasized in this report is a bio-composite patented by Ecovative Design, LLC. The bio-composite utilizes fungus m...

  1. Thermal and mechanical properties of compression-moulded poly(lactic acid)/gluten/clays bio(nano)composites

    USDA-ARS?s Scientific Manuscript database

    Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...

  2. A Study of Compaction and Deformation of a Powder Composite Material of the `Aluminum - Rare Earth Elements' System

    NASA Astrophysics Data System (ADS)

    Rudskoy, A. I.; Tsemenko, V. N.; Ganin, S. V.

    2015-01-01

    The possibility of fabrication of preforms of a composite material with special radiation-protective properties on the base of mechanically alloyed powders of the Al - REM system with the use of methods of severe plastic deformation is shown.

  3. Survey on plasticizers currently found in PVC toys on the Swiss market: Banned phthalates are only a minor concern.

    PubMed

    McCombie, Gregor; Biedermann, Sandra; Suter, Gaby; Biedermann, Maurus

    2017-04-16

    Plasticizers in toys are a recurring source of criticism and concern, as consumers feel they may endanger the health of their children. Most of the information available in literature concerns the presence or absence of certain phthalic acid ester plasticizers. Very little information can be found in the public domain with respect to the actually used plasticizers at a given time and place. In this paper, we present the plasticizer composition of 118 samples from 88 polyvinyl chloride toys found on the Swiss market in autumn 2015. Bis(2-ethylhexyl) terephthalate (DEHT) was by far the most frequent main plasticizer in the analyzed samples, which is a change when compared to the plasticizers found in toys and child care articles in 2007. Furthermore, the data show that the banned phthalates in toys are only a minor concern. The occurrence, however, is not evenly distributed between importers. If a toy is not designed to be sold on the European market by the manufacturer, it seems to be more likely to contain a banned phthalic acid ester.

  4. Pregnancy and the Plastic Surgery Resident.

    PubMed

    Garza, Rebecca M; Weston, Jane S; Furnas, Heather J

    2017-01-01

    Combining pregnancy with plastic surgery residency has historically been difficult. Two decades ago, 36 percent of plastic surgery program directors surveyed actively discouraged pregnancy among residents, and 33 percent of women plastic surgeons suffered from infertility. Most alarmingly, 26 percent of plastic surgery trainees had had an elective abortion during residency. With increasing numbers of women training in plastic surgery, this historical lack of support for pregnancy deserves further attention. To explore the current accommodations made for the pregnant plastic surgery resident, an electronic survey was sent to 88 plastic surgery program directors in the United States. Fifty-four responded, for a response rate of 61.36 percent. On average, a director trained a total of 7.91 women among 17.28 residents trained over 8.19 years. Of the women residents, 1.43 were pregnant during a director's tenure, with 1.35 of those residents taking maternity leave. An average 1.75 male residents took paternity leave. Approximately one-third of programs had a formal maternity/paternity leave policy (36.54 percent) which, in most cases, was limited to defining allowed weeks of leave, time required to fulfill program requirements, and remuneration during leave. This survey of plastic surgery directors is a first step in defining the challenges training programs face in supporting the pregnant resident. Directors provided comments describing their challenges accommodating an absent resident in a small program and complying with the American Board of Plastic Surgery's required weeks of training per year. A discussion of these challenges is followed by suggested solutions.

  5. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  6. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species.

    PubMed

    Hammer, S; Nager, R G; Johnson, P C D; Furness, R W; Provencher, J F

    2016-02-15

    Plastic is a common item in marine environments. Studies assessing seabird ingestion of plastics have focused on species that ingest plastics mistaken for prey items. Few studies have examined a scavenger and predatory species that are likely to ingest plastics indirectly through their prey items, such as the great skua (Stercorarius skua). We examined 1034 regurgitated pellets from a great skua colony in the Faroe Islands for plastics and found approximately 6% contained plastics. Pellets containing remains of Northern fulmars (Fulmarus glacialis) had the highest prevalence of plastic. Our findings support previous work showing that Northern fulmars have higher loads of plastics than other sympatric species. This study demonstrates that marine plastic debris is transferred from surface feeding seabird species to predatory great skuas. Examination of plastic ingestion in species that do not ingest plastics directly can provide insights into how plastic particles transfer vertically within the food web. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  8. Socially cued seminal fluid gene expression mediates responses in ejaculate quality to sperm competition risk.

    PubMed

    Simmons, Leigh W; Lovegrove, Maxine

    2017-08-30

    There is considerable evidence that males will increase the number of sperm ejaculated in response to sperm competition risk. However, whether they have the capacity to adjust seminal fluid components of the ejaculate has received less attention. Male crickets ( Teleogryllus oceanicus ) have been shown to adjust the viability of sperm in their ejaculate in response to sperm competition risk. Here we show that socially mediated plasticity in sperm viability is probably due, at least in part, to male adjustments in the protein composition of the seminal fluid. Seven seminal fluid protein genes were found to have an increased expression in males exposed to rival calls. Increased expression of these genes was correlated with increased sperm viability in whole ejaculates, and gene knockdown confirmed that at least one of these proteins promotes sperm viability. Our results lend support for recent theoretical models that predict complex responses in male allocation to seminal fluid composition in response to sperm competition risk. © 2017 The Author(s).

  9. Sources of federal funding in plastic and reconstructive surgery research.

    PubMed

    Larson, Kelsey E; Gastman, Brian

    2014-05-01

    In the last several years, federal funding has become increasingly difficult to obtain. The purpose of this project was to define the level of federal funding among plastic surgeons in the modern era. The authors evaluated members of the Plastic Surgery Research Council because of their expected invested interested in research. The authors collected information from 1998 to 2012 on funding using curricula vitae and publically available online tools. Data on Plastic Surgery Foundation funding was also collected to determine its role in supporting federally funded investigators. Of 256 individuals, the authors found 41 to be primary investigators on federally funded grants, with the majority receiving one to two awards. Common subtypes of awards included National Institutes of Health R01 (n = 15), K08 (n = 9), and R21 (n = 6). Limited funding from the National Science Foundation and the Department of Defense was identified. Despite a steady number of available National Institutes of Health awards, plastic surgery recipients have grown in number over the past 15 years. In a review of 20 years of Plastic Surgery Foundation awards, 113 Plastic Surgery Research Council members (44.1 percent) were awardees, averaging 1.8 awards per person. Twenty-nine Plastic Surgery Foundation awardees were also recipients of federal funding; 12 individuals received federal funding without prior Plastic Surgery Foundation funding. A search of plastic surgeons indicates a limited but increasing number of individuals receive federal funding. Plastic Surgery Foundation awards appear to be helpful in supporting investigators as they move to larger federal awards.

  10. The influence of matrix microstructure

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; Allison, J. E.; Aken, D. C.

    1993-11-01

    The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and artificially aged 2219/TiC/15p and unreinforced 2219 Al were investigated utilizing plastic strain-controlled and stress-controlled testing. The cyclic response of both the reinforced and un-reinforced materials was similar for all plastic strain amplitudes tested except that the saturation stress level for the composite was always greater than that of the unreinforced material. The cyclic response of the naturally aged materials exhibited cyclic hardening and, in some cases, cyclic softening, while the cyclic response for the artificially aged materials showed no evidence of either cyclic hardening or softening. The higher ductility of the unreinforced material made it more resistant to fatigue failure at high strains, and thus, at a given plastic strain, it had longer fatigue life. It should be noted that the tensile ductilities of the 2219/TiC/15p were significantly higher than those previously reported for 2XXX-series composites. During stress-controlled test-ing at stresses below 220 MPa, the presence of TiC particles lead to an improvement in fatigue life. Above 220 MPa, no influence of TiC reinforcement on fatigue life could be detected. In both the composite and unreinforced materials, the low-cycle and high-cycle fatigue lives were found to be virtually independent of matrix microstructure.

  11. Preliminary study on antifungal effect of commercial essential oils against white rot fungi

    NASA Astrophysics Data System (ADS)

    Khalid, Nurul Izzaty; Baharum, Azizah; Daud, Fauzi

    2015-09-01

    Protecting and preserving wood plastic composite from deterioration caused by fungal attack is a high challenge issue to cater nowadays. The objective of this study was to carry out a screening test towards antifungal effect of essential oil and to investigate the potential of raw materials that will be used as basic material for manufacturing wood plastic composite against white rot fungi. Essential oils from four types of natural products comprising cinnamon, lemongrass, lavender and geranium have been screened for their ability to inhibit five types of white rot fungi species which are Lentinus squarrosulus, Pleuorotus pulmonarius, Lentinus sp., Pleuorotus sajor-caju and Lignosus rhinocerus. The antifungal evaluation showed that no inhibitory effect against tested white rot fungi since the mycelia completely filled the plates. From the observation, mycelia of L. squarrosulus, P. pulmonarius and Lentinus sp. were found to filled the surface of falcon tubes with rubber sawdust after 15 days. Mycelia of L. squarrosulus and P. pulmonarius also were found to completely covered the surface of media that contain polypropylene and maleic anhydride grafted polypropylene on it. Therefore, this report proved that the main materials that will be applicable in manufacturing of wood plastic composite had potential to be degraded by this type of fungal attack.

  12. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  13. Development of Methods of Characterizing Coal in Its Plastic State

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1978-01-01

    Coal in its plastic state (typically 400-460 C) was examined by the isothermal Gieseler plastometry of seven selected coals of widely varying plastic properties. Kinetic models were proposed for the isothermal plastometric curves. Plastic behavior was compared with a variety of laboratory analyses and characterizations of these coals, including classical coal analysis; mineral analysis; microstructural analysis (extractable fractions, surface area measurement, and petrographic analysis); and thermal analysis (thermogravimetric analysis, thermomechanical analysis, and differential scanning calorimetry). The phenomenon of a sharp, large, poorly reproducible exotherm in the differential scanning calorimetric analysis of coking coals was examined. Several coal extrudates show mineral distribution, organic maceral composition and overall calorific value to be little affected by 800 F extrusion. Volatile matter and plastic properties are moderately reduced, and the network structure (as gauged by extractables) appears to be slightly degraded in the extrusion process.

  14. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    NASA Astrophysics Data System (ADS)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNARTM, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo's T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.

  15. Plastic Polymers for Efficient DNA Microarray Hybridization: Application to Microbiological Diagnostics▿

    PubMed Central

    Zhao, Zhengshan; Peytavi, Régis; Diaz-Quijada, Gerardo A.; Picard, Francois J.; Huletsky, Ann; Leblanc, Éric; Frenette, Johanne; Boivin, Guy; Veres, Teodor; Dumoulin, Michel M.; Bergeron, Michel G.

    2008-01-01

    Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations. PMID:18784318

  16. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine the influence of various mesoscale properties such as the bonding of interfaces, the role of material properties, and the influence of mesoscale geometry. The results of this research are helpful in the design of material mesotructures conducive to the desirable behavior under dynamic loading.

  17. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes.

    PubMed

    Kim, Wonbin; Kim, Woong

    2016-06-03

    Stretchable supercapacitors often have laminated structures consisting of electrode, electrolyte, and supporting layers. Since the layers are likely to be composed of different materials, delamination is a major cause of failure upon stretching. In this study, we demonstrate delamination-free stretchable supercapacitors where all the component layers are prepared with a single matrix, which is composed of a polymer, poly(vinylidene fluoride-hexafluoropropylene) and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Since the ionic liquid in the composite plays a role as both an electrolyte and a plasticizer, this composite can be used as an electrolyte and a supporting layer in the stretchable supercapacitor. The electrode layer can be fabricated by incorporating carbon nanotubes in the common matrix. Then, all the layers can be seamlessly fused into one body by dissolving the surface of the composite with acetone, which evaporates after the integration, leaving no borders between the layers. This one-body stretchable supercapacitor not only has high durability against repetitive stretches but also is stretchable in all directions. This feature clearly distinguishes them from conventional stretchable supercapacitors fabricated using buckled structures, which are stretchable only in one or two directions. Moreover, this supercapacitor has high cell voltage (∼3 V) owing to the ionic liquid-based gel electrolytes. Our demonstration of isotropically stretchable high-durability supercapacitors may have a great implication in the development of stretchable energy storage devices for real applications.

  18. Polychlorinated biphenyls and organochlorine pesticides in plastics ingested by seabirds.

    PubMed

    Colabuono, Fernanda Imperatrice; Taniguchi, Satie; Montone, Rosalinda Carmela

    2010-04-01

    The occurrence of plastic objects in the digestive tract was assessed in eight species of Procellariiformes collected in southern Brazil and the occurrence of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the ingested plastics pellets and plastic fragments was evaluated. PCBs were detected in plastic pellets (491 ng g(-1)) and plastic fragments (243-418 ng g(-1)). Among the OCPs, p,p'-DDE had the highest concentrations, ranging from 68.0 to 99.0 ng g(-1). The occurrence of organic pollutants in post-consumer plastics supports the fact that plastics are an important source carrying persistent organic pollutants in the marine environment. Although transfer through the food chain may be the main source of exposure to POPs to seabirds, plastics could be an additional source for the organisms which ingest them, like Procellariiformes which are the seabirds most affected by plastic pollution. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    PubMed

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of cellulose whiskers on properties of soy protein thermoplastics.

    PubMed

    Wang, Yixiang; Cao, Xiaodong; Zhang, Lina

    2006-07-14

    Environmentally-friendly SPI/cellulose whisker composites were successfully prepared using a colloidal suspension of cellulose whiskers, to reinforce soy protein isolate (SPI) plastics. The cellulose whiskers, having an average length of 1.2 microm and diameter of 90 nm, respectively, were prepared from cotton linter pulp by hydrolyzing with sulfuric acid aqueous solution. The effects of the whisker content on the morphology and properties of the glycerol-plasticized SPI composites were investigated by scanning electron microscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, ultraviolet-visible spectroscopy, water-resistivity testing and tensile testing. The results indicated that, with the addition of 0 to 30 wt.-% of cellulose whiskers, strong interactions occurred both between the whiskers and between the filler and the SPI matrix, reinforcing the composites and preserving their biodegradability. Both the tensile strength and Young's modulus of the SPI/cellulose whisker composites increased from 5.8 to 8.1 MPa and from 44.7 to 133.2 MPa, respectively, at a relative humidity of 43%, following an increase of the whisker content from 0 to 30 wt.-%. Furthermore, the incorporation of the cellulose whiskers into the SPI matrix led to an improvement in the water resistance for the SPI-based composites.

Top