Science.gov

Sample records for plastic limit load

  1. Variable response load limiting device

    NASA Technical Reports Server (NTRS)

    Mcsmith, Dwight D. (Inventor)

    1988-01-01

    An energy absorbing device used as a load limiting member in a structure to control its response to applied loads is described. It functions by utilizing a spool assembly having flanged ends and an interior cavity of sufficiently large diameter to cause it to deform plastically at a prescribed load. In application, the spool is utilized as a pivot point for the legs of an airplane seat. When properly designed and integrated into the seat arrangement the spool will twist about its axis, deforming plastically when the impact load exceeds the spool yield value. Through this deformation, the spool absorbs the kinetic energy of the movement of the seat at a substantially constant rate, thereby controlling the level of loads transmitted to the seat occupant. By proper sizing and collection of materials, it is possible to control load response in a predictable manner.

  2. Plastic instabilities in statically and dynamically loaded spherical vessels

    SciTech Connect

    Duffey, Thomas A; Rodriguez, Edward A

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

  3. CYCLIC-LOADING TESTS OF TWO GLASSREINFORCED PLASTIC CYLINDERS,

    DTIC Science & Technology

    SUBMARINE HULLS, *LAMINATED PLASTICS , COMPOSITE MATERIALS, GLASS TEXTILES, PRESSURE VESSELS, HYDROSTATIC PRESSURE, FATIGUE(MECHANICS), MODEL TESTS, LOADS(FORCES), RINGS, TAPES, CREEP, SHELLS(STRUCTURAL FORMS).

  4. Load limiting parachute inflation control

    SciTech Connect

    Redmond, J.; Hinnerichs, T.; Parker, G.

    1994-01-01

    Excessive deceleration forces experienced during high speed deployment of parachute systems can cause damage to the payload and the canopy fabric. Conventional reefing lines offer limited relief by temporarily restricting canopy inflation and limiting the peak deceleration load. However, the open-loop control provided by existing reefing devices restrict their use to a specific set of deployment conditions. In this paper, the sensing, processing, and actuation that are characteristic of adaptive structures form the basis of three concepts for active control of parachute inflation. These active control concepts are incorporated into a computer simulation of parachute inflation. Initial investigations indicate that these concepts promise enhanced performance as compared to conventional techniques for a nominal release. Furthermore, the ability of each controller to adapt to off-nominal release conditions is examined.

  5. Plasticity model for metals under cyclic large-strain loading

    NASA Astrophysics Data System (ADS)

    Greshnov, V. M.; Puchkova, I. V.

    2010-03-01

    This paper deals with mathematical modeling of one of the effective technologies of plastic metal forming — multistep cold metal forging. Experimental results are given on the plastic behavior of metals under cyclic loading at large strains accumulated for one cycle. Based on the experimental data obtained, a plasticity model is developed and shown to be effective in testing and improving the technology of forging a nut blank by using a computer-aided engineering analysis system.

  6. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  7. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  8. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  9. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  10. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  11. The Rhetorical Limits of the "Plastic Body"

    ERIC Educational Resources Information Center

    Jordan, John W.

    2004-01-01

    This essay analyzes the "plastic body" as it is produced in the discourse of plastic surgery. The contemporary industry has constructed a popular image of plastic surgery as a readily available and personally empowering means to resolve body image issues, on the presumption that any body can become a "better" body. The ideology underlying the…

  12. Force limit specifications vs. design limit loads in vibration testing

    NASA Technical Reports Server (NTRS)

    Chang, K. Y.

    2000-01-01

    The purpose of the work presented herein is to discuss the results of force limit notching during vibration testing with respect to the traditional limit load design criteria. By using a single-degree-of-freedom (SDOF) system approach, this work shows that with an appropriate force specification the notched response due to force limiting will result in loads comparable with the structural design limit criteria.

  13. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.

    PubMed

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-10-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

  14. Properties of fiber reinforced plastics about static and dynamic loadings

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2016-05-01

    A method for investigation of impact toughness of anisotropic polymer composite materials (reinforced plastics) with the help of CM model sample in the configuration of microplastic (micro plastic) and impact pendulum-type testing machine under static and dynamic loadings has been developed. The method is called "Break by Impact" (Impact Break IB). The estimation of impact resistance CFRP by this method showed that an increase in loading velocity ~104 times the largest changes occurs in impact toughness and deformation ability of a material.

  15. Plasticity Effects in Dynamically Loaded Nickel Aluminide Bicrystals

    SciTech Connect

    Loomis, E; Swift, D; McNaney, J; Lorenzana, H; Peralta, P

    2008-12-02

    Elastic and plastic anisotropy are believed to play large roles in the dynamic deformation of many materials at the grain-level. More importantly to polycrystalline materials is how velocity and stress perturbations are transmitted across interfaces in anisotropic materials. Very little work has been done in this area even though it is important for understanding shock/grain boundary interactions. Therefore, experiments have been performed using nanosecond laser shocks of grown Nickel Aluminide bicrystals at tens of GPa. Velocity histories were measured along a line on the back (free) surface of the bicrystals and used to characterize the material behavior. Unstable plastic flow in <100> grains was seen to occur when loaded above 700 m/s free surface velocity. Flow stresses in <111> and <100> grains were measured to be 2.9 and 3.3 GPa, respectively. Calculations were performed based on anisotropic elasticity and dislocation motion on primary slip systems to measure plastic flow properties where plastic strain-rates on the order of 10{sup 6} s{sup -1} were calculated using the experimental velocity histories. Definitive evidence of plastic wave scattering at the grain boundary was not observed experimentally; however, behavior across the grain boundary has been measured. The observations show that a smooth transition occurs between the elastic precursors in both grains as well as the plastic waves (when plastic flow is evident). An anisotropic elastic-plastic wave scattering model has been developed to explain the mechanisms affecting shock/grain boundary interactions.

  16. Reagent-loaded plastic microfluidic chips for detecting homocysteine

    NASA Astrophysics Data System (ADS)

    Suk, Ji Won; Jang, Jae-Young; Cho, Jun-Hyeong

    2008-05-01

    This report describes the preliminary study on plastic microfluidic chips with pre-loaded reagents for detecting homocysteine (Hcy). All reagents needed in an Hcy immunoassay were included in a microfluidic chip to remove tedious assay steps. A simple and cost-effective bonding method was developed to realize reagent-loaded microfluidic chips. This technique uses an intermediate layer between two plastic substrates by selectively patterning polydimethylsiloxane (PDMS) on the embossed surface of microchannels and fixing the substrates under pressure. Using this bonding method, the competitive immunoassay for SAH, a converted form of Hcy, was performed without any damage to reagents in chips, and the results showed that the fluorescent signal from antibody antigen binding decreased as the SAH concentration increased. Based on the SAH immunoassay, whole immunoassay steps for Hcy detection were carried out in plastic microfluidic chips with all necessary reagents. These experiments demonstrated the feasibility of the Hcy immunoassay in microfluidic devices.

  17. Cyclic Plasticity under Shock Loading in an HCP Metal

    SciTech Connect

    Prime, Michael B.; Hunter, Abigail; Canfield, Thomas R.; Adams, Chris D.

    2012-06-08

    Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.

  18. A Dynamic Discrete Dislocation Plasticity Method for the Dimulation of Plastic Relaxation under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, Benat; Sutton, Adrian; Eakins, Daniel; Balint, Daniel; Dini, Daniele

    2013-06-01

    This talk intends to offer some insight as to how Discrete Dislocation Plasticity (DDP) can be adapted to simulate plastic relaxation processes under weak shock loading and high strain rates. In those circumstances, dislocations are believed to be the main cause of plastic relaxation in crystalline solids. Direct simulation of dislocations as the dynamic agents of plastic relaxation in those cases remains a challenge. DDP, where dislocations are modelled as discrete discontinuities in elastic continuum media, is often unable to adequately simulate plastic relaxation because it treats dislocation motion quasi-statically, thus neglecting the time-dependent nature of the elastic fields and assuming that they instantaneously acquire the shape and magnitude predicted by elastostatics. Under shock loading, this assumption leads to several artefacts that can only be overcome with a fully time-dependent formulation of the elastic fields. In this talk one of such formulations for the creation, annihilation and arbitrary motion of straight edge dislocations will be presented. These solutions are applied in a two-dimensional model of time-dependent plastic relaxation under shock loading, and some relevant results will be presented. EPSRC CDT in Theory and Simulation of Materials

  19. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    SciTech Connect

    W.R. Solonick

    2003-04-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  20. Elastic-plastic strain acceptance criterion for structures subject to rapidly applied transient dynamic loading

    SciTech Connect

    Solonick, W.

    1996-11-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local, or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  1. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor...

  2. 14 CFR 29.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5...

  3. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5...

  4. 14 CFR 29.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5...

  5. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor...

  6. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor...

  7. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor...

  8. 14 CFR 23.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit maneuvering load factors. 23.337... Flight Loads § 23.337 Limit maneuvering load factors. (a) The positive limit maneuvering load factor n... airplanes; or (3) 6.0 for acrobatic category airplanes. (b) The negative limit maneuvering load factor...

  9. EXPLORING THE LIMITS TO LIGNINS' METABOLIC PLASTICITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just how far can lignification be pushed with the aim of improving wood processing (and possibly solid wood properties)? We will explore the limits to which the 3 traditional monolignols can be manipulated, but also broaden our scope to begin thinking about how the entire monomer pool for lignificat...

  10. 29 CFR 1919.29 - Limitations on safe working loads and proof loads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Limitations on safe working loads and proof loads. 1919.29... Loads; Heat Treatment; Competent Persons § 1919.29 Limitations on safe working loads and proof loads. The proof loads specified by §§ 1919.27 and 1919.28 shall be adjusted as necessary to meet...

  11. Load limiting energy absorbing lightweight debris catcher

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor); Schneider, William C. (Inventor)

    1991-01-01

    In the representative embodiment of the invention disclosed, a load limiting, energy absorbing net is arranged to overlay a normally-covered vent opening in the rear bulkhead of the space orbiter vehicle. Spatially-disposed flexible retainer straps are extended from the net and respectively secured to bulkhead brackets spaced around the vent opening. The intermediate portions of the straps are doubled over and stitched together in a pattern enabling the doubled-over portions to progressively separate at a predicable load designed to be well below the tensile capability of the straps as the stitches are successively torn apart by the forces imposed on the retainer members whenever the cover plate is explosively separated from the bulkhead and propelled into the net. By arranging these stitches to be successively torn away at a load below the strap strength in response to forces acting on the retainers that are less than the combined strength of the retainers, this tearing action serves as a predictable compact energy absorber for safely halting the cover plate as the retainers are extended as the net is deployed. The invention further includes a block of an energy-absorbing material positioned in the net for receiving loose debris produced by the explosive release of the cover plate.

  12. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Martinez, H. Paul; Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Eric L.; Payne, Stephen A.

    2016-09-01

    Plastic scintillators are widely deployed for ionizing radiation detection, as they can be fabricated in large sizes, for high detection efficiency. However commercial plastics are limited in use for gamma spectroscopy, since their photopeak is too weak, due to low Z, and they are also limited in use for neutron detection, since proton recoils are indistinguishable from other ionizing radiation absorption events in standard plastics. We are working on scale up and production of transparent plastic scintillators based on polystyrene (PS) with high loading of bismuth metallorganics for gamma spectroscopy, and with lithium metallorganics for neutron detection. When activated with standard organic fluors, PS scintillators containing 8 wt% bismuth provide energy resolution of 11% at 662 keV. A PS plastic formulation including 1.3 wt% lithium-6 provides a neutron capture peak at 525 keVee, with 11% resolution for the capture peak and 90% efficiency for thermal neutron capture in 2mm thickness. Acknowledgements This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been supported by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development under Contract No. DE-AC03-76SF00098

  13. Limit Load and Buckling Analysis for Assessing Hanford Single-Shell Tank Dome Structural Integrity

    SciTech Connect

    Johnson, Kenneth I.; Deibler, John E.; Julyk, Larry J.; Karri, Naveen K.; Pilli, Siva Prasad

    2012-12-07

    The U.S. Department of Energy, Office of River Protection has commissioned a structural analysis of record (AOR) for the Hanford single shell tanks (SSTs) to assess their structural integrity. The analysis used finite element techniques to predict the tank response to the historical thermal and operating loads. The analysis also addressed the potential tank response to a postulated design basis earthquake. The combined response to static and seismic loads was then evaluated against the design requirements of American Concrete Institute (ACI) standard, ACI-349-06, for nuclear safety-related concrete structures. Further analysis was conducted to estimate the plastic limit load and the elastic-plastic buckling capacity of the tanks. The limit load and buckling analyses estimate the margin between the applied loads and the limiting load capacities of the tank structure. The potential for additional dome loads from waste retrieval equipment and the addition of large dome penetrations to accommodate retrieval equipment has generated additional interest in the limit load and buckling analyses. This paper summarizes the structural analysis methods that were used to evaluate the limit load and buckling of the single shell tanks.

  14. Limit Load and Buckling Analysis for Assessing Hanford Single-Shell Tank Dome Structural Integrity - 12278

    SciTech Connect

    Johnson, Ken I.; Deibler, John E.; Karri, Naveen K.; Pilli, Siva P.; Julyk, Larry J.

    2012-07-01

    The U.S. Department of Energy, Office of River Protection has commissioned a structural analysis of record for the Hanford single shell tanks to assess their structural integrity. The analysis used finite element techniques to predict the tank response to the historical thermal and operating loads. The analysis also addressed the potential tank response to a postulated design basis earthquake. The combined response to static and seismic loads was then evaluated against the design requirements of American Concrete Institute standard, ACI-349-06, for nuclear safety-related concrete structures. Further analysis was conducted to estimate the plastic limit load and the elastic-plastic buckling capacity of the tanks. The limit load and buckling analyses estimate the margin between the applied loads and the limiting load capacities of the tank structure. The potential for additional dome loads from waste retrieval equipment and the addition of large dome penetrations to accommodate retrieval equipment has generated additional interest in the limit load and buckling analyses. This paper summarizes the structural analysis methods that were used to evaluate the limit load and buckling of the single shell tanks. This paper summarizes the structural analysis methods that were used to evaluate the limit load and buckling limit states of the underground single shell tanks at the Hanford site. The limit loads were calculated using nonlinear finite element models that capture the progressive deformation and damage to the concrete as it approaches the limit load. Both uniform and concentrated loads over the tank dome were considered, and the analysis shows how adding a penetration in the center of the tank would affect the limit loads. For uniform surface loads, the penetration does not affect the limit load because concrete crushing and rebar yielding initiates first at the top of the wall, away from the penetration. For concentrated loads, crushing initiates at the center of the

  15. Transparent lithium loaded plastic scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Breukers, R. D.; Bartle, C. M.; Edgar, A.

    2013-02-01

    The fabrication of a series of novel, optically transparent, bulk plastic scintillators loaded with lithium methacrylate, and incorporating 2,5-diphenyloxazole and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole fluorescent centres, is described. The attenuation length, photoluminescence, and both gamma ray and thermal neutron scintillation responses were compared over a range of lithium methacrylate concentrations. The maximum concentration corresponded to a weight percentage of lithium-6 of 0.63%. The photoluminescence shows a composite 2,5-diphenyloxazole and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole broad band with vibronic features in the range 350-500 nm, and lifetimes in the range 0.9-2.7 ns. An increasing luminescence in a thermal neutron beam with increasing lithium-6 content is demonstrated.

  16. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit load static tests. 23.681 Section 23.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of...

  17. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit load static tests. 23.681 Section 23.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of...

  18. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit load static tests. 23.681 Section 23.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of...

  19. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit load static tests. 23.681 Section 23.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of...

  20. 14 CFR 23.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit load static tests. 23.681 Section 23.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of...

  1. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factors. 25.337... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift... maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding...

  2. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 25.337... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift... maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding...

  3. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Maintenance and load limits. 1917.111 Section 1917.111..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.111 Maintenance and load limits... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of...

  4. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Maintenance and load limits. 1917.111 Section 1917.111..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.111 Maintenance and load limits... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of...

  5. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit load static tests. 29.681 Section 29.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this part must be shown by...

  6. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit load static tests. 25.681 Section 25.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this Part must be shown by...

  7. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit load static tests. 25.681 Section 25.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this Part must be shown by...

  8. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit load static tests. 29.681 Section 29.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this part must be shown by...

  9. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit load static tests. 29.681 Section 29.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this part must be shown by...

  10. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit load static tests. 29.681 Section 29.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this part must be shown by...

  11. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit load static tests. 25.681 Section 25.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this Part must be shown by...

  12. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit load static tests. 25.681 Section 25.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this Part must be shown by...

  13. 14 CFR 29.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit load static tests. 29.681 Section 29.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this part must be shown by...

  14. 14 CFR 25.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit load static tests. 25.681 Section 25.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... load static tests. (a) Compliance with the limit load requirements of this Part must be shown by...

  15. Limit loads for centrally cracked square plates under biaxial tension

    NASA Astrophysics Data System (ADS)

    Graba, Marcin

    2016-12-01

    This paper is concerned with the determination of limit loads for centrally cracked square plates subjected to biaxial tension. It briefly discusses the concept of limit loads and some aspects of numerical modelling. It presents results of numerical calculations conducted for two-dimensional (plane strain state and plane stress state) and three-dimensional cases. It also considers the relationship between the limit load and the crack length, the specimen thickness, the yield strength and the biaxial load factor, defined for the purpose of this work. The paper includes approximation formulae to calculate the limit load.

  16. 14 CFR 29.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.337... ranging from a positive limit of 3.5 to a negative limit of −1.0; or (b) Any positive limit...

  17. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.337... ranging from a positive limit of 3.5 to a negative limit of −1.0; or (b) Any positive limit...

  18. 14 CFR 29.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.337... ranging from a positive limit of 3.5 to a negative limit of −1.0; or (b) Any positive limit...

  19. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.337... ranging from a positive limit of 3.5 to a negative limit of −1.0; or (b) Any positive limit...

  20. Elevated Temperature Primary Load Design Method Using Pseudo Elastic-Perfectly Plastic Model

    SciTech Connect

    Carter, Peter; Sham, Sam; Jetter, Robert I

    2012-01-01

    A new primary load design method for elevated temperature service has been developed. Codification of the procedure in an ASME Boiler and Pressure Vessel Code, Section III Code Case is being pursued. The proposed primary load design method is intended to provide the same margins on creep rupture, yielding and creep deformation for a component or structure that are implicit in the allowable stress data. It provides a methodology that does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. Use of elastic-perfectly plastic analysis based on allowable stress with corrections for constraint, steady state stress and creep ductility is described. This approach is intended to ensure that traditional primary stresses are the basis for design, taking into account ductility limits to stress re-distribution and multiaxial rupture criteria.

  1. Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints.

    PubMed

    Ravosa, Matthew J; Kunwar, Ravinder; Stock, Stuart R; Stack, M Sharon

    2007-02-01

    Excessive, repetitive and altered loading have been implicated in the initiation of a series of soft- and hard-tissue responses or ;functional adaptations' of masticatory and locomotor elements. Such adaptive plasticity in tissue types appears designed to maintain a sufficient safety factor, and thus the integrity of given element or system, for a predominant loading environment(s). Employing a mammalian species for which considerable in vivo data on masticatory behaviors are available, genetically similar domestic white rabbits were raised on diets of different mechanical properties so as to develop an experimental model of joint function in a normal range of physiological loads. These integrative experiments are used to unravel the dynamic inter-relationships among mechanical loading, tissue adaptive plasticity, norms of reaction and performance in two cranial joint systems: the mandibular symphysis and temporomandibular joint (TMJ). Here, we argue that a critical component of current and future research on adaptive plasticity in the skull, and especially cranial joints, should employ a multifaceted characterization of a functional system, one that incorporates data on myriad tissues so as to evaluate the role of altered load versus differential tissue response on the anatomical, cellular and molecular processes that contribute to the strength of such composite structures. Our study also suggests that the short-term duration of earlier analyses of cranial joint tissues may offer a limited notion of the complex process of developmental plasticity, especially as it relates to the effects of long-term variation in mechanical loads, when a joint is increasingly characterized by adaptive and degradative changes in tissue structure and composition. Indeed, it is likely that a component of the adaptive increases in rabbit TMJ and symphyseal proportions and biomineralization represent a compensatory mechanism to cartilage degradation that serves to maintain the overall

  2. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to symmetrical maneuvers resulting in the...

  3. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to symmetrical maneuvers resulting in the...

  4. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to symmetrical maneuvers resulting in the...

  5. Structural loads prediction in force-limited vibration testing

    NASA Technical Reports Server (NTRS)

    Chang, K. Y.

    2002-01-01

    The purpose of this paper is to study whether the force limiting has accomplished the notching requirement to limit the equipment structural response in low frequency vibration tests to something less than the design load.

  6. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit load static tests. 27.681 Section 27.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... static tests. (a) Compliance with the limit load requirements of this part must be shown by tests...

  7. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit load static tests. 27.681 Section 27.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... static tests. (a) Compliance with the limit load requirements of this part must be shown by tests...

  8. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit load static tests. 27.681 Section 27.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... static tests. (a) Compliance with the limit load requirements of this part must be shown by tests...

  9. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit load static tests. 27.681 Section 27.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... static tests. (a) Compliance with the limit load requirements of this part must be shown by tests...

  10. 14 CFR 27.681 - Limit load static tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit load static tests. 27.681 Section 27.681 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... static tests. (a) Compliance with the limit load requirements of this part must be shown by tests...

  11. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    NASA Astrophysics Data System (ADS)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  12. The theory of plasticity in the case of simple loading accompanied by strain-hardening

    NASA Technical Reports Server (NTRS)

    Ilyushin, A A

    1949-01-01

    The author has previously shown that a deformation theory of plasticity is entirely adequate when the loading is simple; that is, when all the applied forces grow in proportion to a single parameter. The author now shows how a general plasticitytheory for any complex loading may be constructed by successively adding quantities of the nature of correction terms to the deformation theory. All of the theories of plasticity so far suggested for the complex loading condition are shown to be special cases of this general theory.

  13. Phenotypic plasticity of stem water potential correlates with crop load in horticultural trees.

    PubMed

    Sadras, Victor O; Trentacoste, Eduardo R

    2011-05-01

    Conceptual models accounting for the influence of source:sink ratio on water relations of trees are theoretically relevant from a physiological perspective and practically important for irrigation scheduling. Midday stem water potential of horticultural trees often declines with increasing crop load but the actual response depends on environmental, management and plant factors. Here we advance a quantitative synthesis of the response of stem water potential to crop load from the perspective of phenotypic plasticity, defined as 'the amount by which the expression of individual characteristics of a genotype are changed by different environments'. Data sets of stem water potential for contrasting crop loads were compiled for apple (Malus domestica L. Borkh.), olive (Olea europea L.), peach (Prunus persica L.), pear (Pyrus communis L.) and plum (Prunus domestica L.). Phenotypic plasticity of stem water potential was calculated as the slope of the linear regression between stem water potential for each crop load and the environmental mean of stem water potential across crop loads. Regression lines for trees with different crop load diverged with decreasing environmental mean stem water potential. For the pooled data, plasticity of stem water potential was a linear function of relative crop load. This represents a significant shift in perspective: the effect of crop load on the trait per se (stem water potential) is environmentally contingent, but the effect of crop load on the plasticity of the trait is not. We conclude that research on the effects of crop load on tree water relations would return more robust results if plant traits are considered from the dual perspective of the trait per se and its plasticity.

  14. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may...

  15. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may...

  16. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may...

  17. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may...

  18. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may...

  19. 14 CFR 27.339 - Resultant limit maneuvering loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Resultant limit maneuvering loads. 27.339 Section 27.339 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads §...

  20. 14 CFR 27.337 - Limit maneuvering load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337 Section 27.337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads §...

  1. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  2. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in...

  3. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in...

  4. Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure

    NASA Astrophysics Data System (ADS)

    Hartmaier, Alexander; Gumbsch, Peter

    2005-01-01

    Metals with a body centered cubic crystal structure, like tungsten, exhibit a pronounced semibrittle regime at intermediate temperatures. In this regime their fracture toughness strongly depends on loading rate and temperature. Crack-tip plasticity has been studied with two-dimensional numerical simulations on different length scales. The method of discrete dislocation dynamics has been employed to test various assumptions made on the deformation mechanisms and the origin of the strong loading rate and temperature dependence of fracture toughness in this regime. A continuum elasticity-viscoplasticity model capable of describing larger plastic deformations yields complementary information with respect to the discrete dislocation method. Despite of their fundamental differences, both simulations consistently show that crack-tip plasticity can be described as a time-dependent microplastic deformation with well-defined activation energy and that the blunting of the crack tip plays an important role for the transition from semibrittle to ductile behavior. Based on general findings of the numerical simulations an Arrheniuslike relation between loading rate and temperature at points of constant fracture toughness is derived. This scaling relation shows the dominance of dislocation mobility as the rate limiting factor for fracture toughness and for the brittle-to-ductile transition itself. The results of our simulations are also consistent with experimental data gathered on tungsten single crystals. Thus, the proposed scaling relation can be used to predict fracture toughnesses in a wide range of temperatures and loading rates, based on only a small number of experiments.

  5. Simple bounds on limit loads by elastic finite element analysis

    SciTech Connect

    Mackenzie, D.; Nadarajah, C.; Shi, J.; Boyle, J.T. . Dept. of Mechanical Engineering)

    1993-02-01

    A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limit-load bounds for pressure vessel design by analysis applications with useful accuracy.

  6. The load separation criterion in elastic-plastic fracture mechanics: Rate and temperature dependence of the material plastic deformation function in an ABS resin

    NASA Astrophysics Data System (ADS)

    Agnelli, Silvia; Baldi, Francesco; Riccò, Theonis

    2012-07-01

    This work is aimed at analyzing the effects of temperature and loading rate on the plastic deformation behavior of an acrylonitrile-butadiene-styrene (ABS) resin during a fracture process. According to the load separation criterion, the plastic deformation behavior during the fracture process of an elastic-plastic material is described by a plastic deformation function. For the ABS here examined, the material plastic deformation function was constructed at different temperatures and loading rates, by single edge notched in bending (SEB) tests on blunt notched specimens. Both low and moderately high (impact) loading rates were explored. For the various conditions of temperature and loading rate the material yield stress was also measured by uniaxial tensile tests. The relationships between material deformation function and yield stress were researched and discussed.

  7. Functional stability limits while holding loads in various positions.

    PubMed

    Holbein, M A; Redfern, M S

    1997-05-01

    Stability of the body during manual material handling is an important issue in the prevention of falls and over-exertion injuries. This research investigated stability limits while standing and holding loads in different positions relative to the body. Theoretically, the stability region is the full base of support defined by the perimeter of the foot contact area. However, the functional stability region may be smaller. The purpose of this study was to locate functional stability limits with respect to the base of support. Fifteen male subjects leaned as far as possible in four directions in the sagittal and frontal planes. Their center of gravity location at these extremes determined the stability limit. The results showed that functional stability limits reached only about 60% of the distance to the maximum base of support limits under the conditions of this study. The sway angles reached at the stability limits averaged 9.2 degrees anteroposteriorly and 15.3 degrees laterally. External load positions which lowered the center of gravity of the body-and-load system extended those stability limits. This study provides a postural stability perspective of load-holding which may be applied in establishing safe lifting and reach limits.

  8. A distributional model for elastic-plastic behavior of shock loaded materials.

    SciTech Connect

    Vogler, Tracy John; Asay, James Russell

    2003-07-01

    To address known shortcomings of classical metal plasticity for describing material behavior under shock loading, a model which incorporates a distribution in the deviatoric stress state is developed. This distribution will translate in stress space under loading, and growth of the distribution can be included in the model as well. This proposed model is capable of duplicating the key features of a set of reshock and release experiments on 6061-T6 aluminum, many of which are not captured by classical plasticity. The model is relatively simple, is only moderately more computationally intensive, and requires few additional material parameters.

  9. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.

    2015-12-01

    The present work proposes a novel thermodynamically consistent model for the behavior of interfaces under shear (i.e. mode-II) cyclic loading conditions. The interface behavior is defined coupling damage and plasticity. The admissible states' domain is formulated restricting the tangential interface stress to non-negative values, which makes the model suitable e.g. for interfaces with thin adherends. Linear softening is assumed so as to reproduce, under monotonic conditions, a bilinear mode-II interface law. Two damage variables govern respectively the loss of strength and of stiffness of the interface. The proposed model needs the evaluation of only four independent parameters, i.e. three defining the monotonic mode-II interface law, and one ruling the fatigue behavior. This limited number of parameters and their clear physical meaning facilitate experimental calibration. Model predictions are compared with experimental results on fiber reinforced polymer sheets externally bonded to concrete involving different load histories, and an excellent agreement is obtained.

  10. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.

    2015-04-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS(6Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.

  11. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material.

  12. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  13. Heat loading limits for solid transuranic wastes storage

    SciTech Connect

    Spatz, T.L.

    1993-07-01

    Heat loading limits have been established for four storage configurations of TRU wastes. The calculations were performed assuming the worst case scenario whereby all the heat generated within a drum was generated within one ``cut`` and that this cut was located in the very center of the drum. Poly-boxes containing one HEPA filter were assumed to have a uniform heat generation throughout the filter. The maximum allowable temperatures were based on the materials in the containers. A comparison between the drum center temperature for a uniform heat load distribution and for the center temperature when the heat load is confined to one cut in the center of the drum is also illustrated. This comparison showed that the heat load of a particular drum can be more than doubled by distributing the sources of heat uniformly throughout the container.

  14. Centaur Standard Shroud (CSS) static limit load structural tests

    NASA Technical Reports Server (NTRS)

    Eastwood, C.

    1975-01-01

    The structural capabilities of the jettisonable metal shroud were tested and the interaction of the shroud with the Centaur stage was evaluated. A flight-configured shroud and the assemblies of the associated Centaur stage were tested for applied axial and shear loads to flight limit values. The tests included various thermal, pressure, and load conditions to verify localized strength capabilities, to evaluate subsystem performance, and to determine the aging effect on insulation system properties. The tests series verified the strength capabilities of the shroud and of all associated flight assembles. Shroud deflections were shown to remain within allowable limits so long as load sharing members were connected between the shroud and the Centaur stage.

  15. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution...

  16. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution...

  17. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution...

  18. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution...

  19. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution...

  20. Elastic-plastic analysis of a propagating crack under cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Armen, H., Jr.

    1974-01-01

    Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.

  1. Discrete dislocation plasticity analysis of loading rate-dependent static friction

    NASA Astrophysics Data System (ADS)

    Song, H.; Deshpande, V. S.; Van der Giessen, E.

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length (≲0.6 μ m), the onset of sliding is fully controlled by adhesion while for large contact length (≳10 μ m), the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  2. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-07

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

  3. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    PubMed Central

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  4. Load-limiting landing gear footpad energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Tsai, Ted

    1994-01-01

    As a precursor to future manned missions to the moon, an inexpensive, unmanned vehicle that could carry small, scientific payloads to the lunar surface was studied by NASA. The vehicle, called the Common Lunar Lander, required extremely optimized structural systems to increase the potential payload mass. A lightweight energy-absorbing system (LAGFEAS), which also acts as a landing load-limiter was designed to help achieve this optimized structure. Since the versatile and easily tailored system is a load-limiter, it allowed for the structure to be designed independently of the ever-changing landing energy predictions. This paper describes the LAGFEAS system and preliminary verification testing performed at NASA's Johnson Space Center for the Common Lunar Lander program.

  5. Experimental and Simulative Investigations of Laser Assisted Plastic-metal-joints Considering Different Load Directions

    NASA Astrophysics Data System (ADS)

    Engelmann, Christoph; Eckstaedt, Johannes; Olowinsky, Alexander; Aden, Mirko; Mamuschkin, Viktor

    Particularly in the automotive industry, the combination of dissimilar materials presents manufacturing engineering with major challenges. Notably, the adapted use of plastic and metal opens up further potential for weight savings. Directly and firmly bonding the two materials together fails, however, on account of the chemical and physical dissimilarity of plastic and metal. Since joining of plastics and metals nowadays is based on adhesive bonding, the joint is weak and underlies ageing processes. A promising approach to overcome these problems is a laser based two-step process. In the first process step laser radiation is applied to generate microstructures on the surface of the metallic joining partner. In the subsequent laser joining process, the plastic is molten and interlocked into the microstructures after curing. The mechanical strength of the joint depends strongly on the load direction and can be influenced by the geometry and arrangement of microstructures. These influencing factors are investigated for three different load directions (tensile shear, tensile and peel) by experiments and by structural mechanics simulations.

  6. Rodent auditory perception: Critical band limitations and plasticity.

    PubMed

    King, J; Insanally, M; Jin, M; Martins, A R O; D'amour, J A; Froemke, R C

    2015-06-18

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception.

  7. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    PubMed Central

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  8. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  9. Elastic-plastic analysis of the PVRC burst disk tests with comparison to the ASME code -- Primary stress limits

    SciTech Connect

    Jones, D.P.; Holliday, J.E.

    1999-02-01

    This paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 years ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this re-analysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (1998) and to qualify the use of elastic-plastic (EP-FEA) for limit load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low strength high ductility material, a medium strength medium ductility material, and a high strength low ductility low alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks.

  10. Improved Loading of Sulfate-Limited Waste in Glass

    SciTech Connect

    Aloy, A.; Soshnikov, R.; Trofimenko, A.V.; Vienna, J.D.; Elliott, M.L.; Holtzscheiter, E.W.

    2006-07-01

    The allowable sulfate concentration limits waste loading in borosilicate glasses (e.g., Hanford low-activity waste [LAW] and Idaho National Laboratory sodium-bearing waste. By the Hanford baseline formulation method, the tolerated amount of sulfate in LAW is 0.77 wt% (as SO{sub 3}) at the lowest soda contents, decreasing to 0.35 wt% at the highest soda contents. Roughly half of the Hanford LAW (on a glass mass basis) will be limited by sulfate tolerance of the glass melt. If the allowable concentrations of sulfate were to be increased only moderately, the cost and time required to vitrify the Hanford LAW would be significantly reduced A series of high-sulfate glass formulations were developed by Khlopin Radium Institute (Russian Federation) and Pacific Northwest National Laboratory. These glasses were tested at crucible, small melter, and larger test melter scales for not only sulfate retention but key product quality criteria as well. The key properties of the glasses to be disposed of at Hanford were measured (product consistency test and vapor hydration test), and processing-related properties (viscosity and electrical conductivity) were predicted using property composition models. The results for 28 glass compositions tested at crucible-scale, 6 glass compositions tested at small-melter-scale, and 4 glass compositions tested at larger melter scale are presented in this paper. The melter tests were all performed with waste composition and processing parameters (e.g., bubbling rate, melting rate, temperature) prototypic for the Hanford LAW melter design. The results show that sulfate loadings as high as 1.5 wt% with soda concentrations as high as 20 wt% are viable with improved formulation methods. These results suggest that the loading of sulfate-limited Hanford LAW may be increased by over 300%, relative to the current formulation. However, additional work is recommended before implementing the new formulations. (authors)

  11. Linear and Non-linear Analysis of Fibre Reinforced Plastic Bridge Deck due to Vehicle Loads

    NASA Astrophysics Data System (ADS)

    Ray, Chaitali; Mandal, Bibekananda

    2015-06-01

    The present work deals with linear and nonlinear static analysis of fibre reinforced plastics composite bridge deck structures using the finite element method. The nonlinear static analysis has been carried out considering geometric nonlinearity. The analysis of bridge deck has been carried out under vehicle load as specified by IRC Class B wheel load classification. The formulation has been carried out using the finite element software package ANSYS 14.0 and the SHELL281 element is used to model the bridge deck. The bridge deck has also been modeled as a plate stiffened with closely spaced hollow box sections and a computer code is developed based on this formulation. The results obtained from the present formulation are compared with those available in the published literature. A parametric study on the stiffened bridge deck has also been carried out with varying dimensions of the stiffeners under vehicle loads.

  12. Improved Loading of Sulfate-Limited Waste in Glass

    SciTech Connect

    Aloy, A. S.; Soshnikov, R. A.; Trofimenko, A. V.; Vienna, John D.; Elliott, Michael L.; Holtzscheiter, Earl W.

    2006-02-28

    The loading of many wastes in borosilicate glass are limited by the allowable sulfate concentration (e.g., Hanford low-activity waste [LAW] and Idaho National Laboratory [INL] sodium-bearing waste [SBW]). By the Hanford baseline formulation method, the tolerated amount of sulfate in LAW is 0.77 wt% (as SO3) at the lowest soda contents, decreasing to 0.35 wt% at the highest soda contents. Roughly half of the Hanford LAW (on a glass mass basis) will be limited by sulfate tolerance of the glass melt. If the allowable concentrations of sulfate were to be increased only moderately, the cost and time required to vitrify the Hanford LAW would be significantly reduced.

  13. Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading

    SciTech Connect

    Eslami, M.R.; Shariyat, M.

    1997-02-01

    Based on the concept of secant and tangent modulus, the nonlinear equilibrium and stability equations of thin cylindrical shells under axial compression, external pressure, or external fluid pressure are derived. The resulting equations are applicable to shells without length limitation as the rotations and transverse shears are included in the derivations. The reduction factors for plastic and creep buckling are then obtained. A procedure for determining secant and tangent modulus in the very general case of elastic, plastic, or creep stress in the presence of temperature gradient is proposed. Then, using Donnell`s nonlinear theory of shells, the effect of initial imperfection on the strength of the elastic shell is discussed. The foregoing results are extended to plastic and creep buckling of cylindrical shells of arbitrary length and temperature gradient. Some design curves are proposed using the obtained equations. Finally, the present results are compared with available results in the literature and the accuracy of the method is examined.

  14. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    SciTech Connect

    Sokovikov, Mikhail E-mail: naimark@icmm.ru; Chudinov, Vasiliy E-mail: naimark@icmm.ru; Bilalov, Dmitry E-mail: naimark@icmm.ru; Oborin, Vladimir E-mail: naimark@icmm.ru; Uvarov, Sergey E-mail: naimark@icmm.ru; Plekhov, Oleg E-mail: naimark@icmm.ru; Terekhina, Alena E-mail: naimark@icmm.ru; Naimark, Oleg E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  15. Plastic set of smooth large radii of curvature thermal conductance specimens at light loads

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.

    1972-01-01

    Thermal contact conductance test data at high vacuum were obtained from two Armco iron specimens having smooth, large radii of curvature, convex, one-half wave length surfaces. The data are compared with calculations based on two macroscopic elastic deformation theories and an empirical expression. Major disagreement with the theories and fair agreement with the empirical expression resulted. Plastic deformation of all the contacting surfaces was verified from surface analyzer statistics. These results indicate that the theoretical assumption of macroscopic elastic deformation is inadequate for accurate prediction of heat transfer with light loads for Armco iron specimens similar to those used in this investigation.

  16. Crystal Plasticity Finite Element Analysis of Loading-Unloading Behaviour in Magnesium Alloy Sheet

    SciTech Connect

    Hama, Takayuki; Fujimoto, Hitoshi; Takuda, Hirohiko

    2010-06-15

    Magnesium alloy sheets exhibit strong inelastic response during unloading. In this study crystal plasticity finite element analysis of loading-unloading behaviour during uniaxial tension in a rolled magnesium alloy sheet was carried out, and the mechanism of this inelastic response was examined in detail in terms of macroscopic and mesoscopic deformations. The unloading behaviour obtained by the simulation was in good agreement with the experiment in terms of variation with stress of instantaneous tangent modulus during unloading. Variations of activities of each family of slip systems during the deformation showed that the activation of basal slip systems is the largest during unloading, and the slip direction during unloading is opposite from during loading. These results indicated that one of the factors of the inelastic behaviour during unloading is the fact that the basal slip systems are easily activated during unloading because of their low strengths.

  17. [Multiaxial evaluation of the pathophysiology of mood disorder and therapeutic mechanisms of clinical drugs by neuronal plasticity and neuronal load].

    PubMed

    Omata, Naoto; Mizuno, Tomoyuki; Mitsuya, Hironori; Wada, Yuji

    2013-11-01

    Impairment of neuronal plasticity is important in the pathophysiology of mood disorder. Both zinc deficiency and social isolation impair neuronal plasticity. Both cause a depressive state. However, in experiments using animals, their combined loading induced manic-like behavior. Therefore, it was inferred that moderate impairment of neuronal plasticity induces a depressive state, and that further impairment of neuronal plasticity induces a manic state. However, some kind of load toward neuronal function through neural transmission can influence mood disorder symptoms without direct effects on neuronal plasticity. Our hypothesis is that mania is an aggravation of depression from the perspective of neuronal plasticity, and that multiaxial evaluation by neuronal plasticity and neuronal load through neural transmission is useful for understanding the pathophysiology of mood disorder. There are many clinical aspects that have been difficult to interpret in mood disorder: Why is a mood stabilizer or electric convulsive therapy useful for both mania and depression? What is the pathophysiology of the mixed state? Why does manic switching by an antidepressant occur or not? Our hypothesis is useful to understand these aspects, and using this hypothesis, it is expected that the pathophysiology of mood disorder and clinical mechanism of mood stabilizers and antidepressants can now be understood as an integrated story.

  18. Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads

    NASA Astrophysics Data System (ADS)

    Gilabert, F. A.; Roux, J.-N.; Castellanos, A.

    2008-09-01

    The quasistatic behavior of a simple two-dimensional model of a cohesive powder under isotropic loads is investigated by discrete element simulations. We ignore contact plasticity and focus on the effect of geometry and collective rearrangements on the material behavior. The loose packing states, as assembled and characterized in a previous numerical study [Gilabert, Roux, and Castellanos, Phys. Rev. E 75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4-0.5 to 0.75-0.8). The system state goes through three stages, with different forms of the plastic consolidation curve, i.e., Φ as a function of the growing reduced pressure P*=Pa/F0 , defined with adhesion force F0 and grain diameter a . In the low-confinement regime (I), the system undergoes negligible plastic compaction, and its structure is influenced by the assembling process. In regime II the material state is independent of initial conditions, and the void ratio varies linearly with lnP [i.e., Δ(1/Φ)=λΔ(lnP*) ], as described in the engineering literature. Plasticity index λ is reduced in the presence of a small rolling resistance (RR). In the last stage of compaction (III), Φ approaches an asymptotic, maximum solid fraction Φmax , as a power law Φmax-Φ∝(P*)-α , with α≃1 , and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a large amount. Plastic deformation events correspond to very small changes in the network topology, while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the bending of thin junctions in loose systems. For growing RR those tend to form particle chains, the

  19. [Treatment of the human body : the possibilities and limits of plastic surgery].

    PubMed

    Bermes, C

    2015-01-01

    The desire for authenticity is often cited as a motive for making use of plastic surgery. This article aims to elaborate on the meaning of this particular authenticity. At the same time, it discusses reasons that justify or forbid a plastic surgery intervention in the light of ethics. For this purpose, a distinction is made between "objective body" (Körper) and "subjective body" (Leib), and the objectives of medical actions are questioned. Through the terminological differentiation between integrity (Integrität), prosperity (Wohlergehen), and well-being (Wohlbefinden), these objectives are qualified and the limits of medical actions are determined.

  20. Subextensive Scaling in the Athermal, Quasistatic Limit of Amorphous Matter in Plastic Shear Flow

    SciTech Connect

    Maloney, C; Lemaitre, A

    2004-01-29

    We present the results of numerical simulations of an atomistic system undergoing plastic shear flow in the athermal, quasistatic limit. The system is shown to undergo cascades of local re-arrangements, associated with quadrupolar energy fluctuations, which induce system-spanning events organized into lines of slip oriented along the Bravais axes of the simulation cell. A finite size scaling analysis reveals subextensive scaling of the energy drops and participation numbers, linear in the length of the simulation cell, in good agreement with the real-space structure of plastic events

  1. Plasticity of Binocularity and Visual Acuity Are Differentially Limited by Nogo Receptor

    PubMed Central

    Stephany, Céleste-Élise; Chan, Leanne L.H.; Parivash, Sherveen N.; Dorton, Hilary M.; Piechowicz, Mariel

    2014-01-01

    The closure of developmental critical periods consolidates neural circuitry but also limits recovery from early abnormal sensory experience. Degrading vision by one eye throughout a critical period both perturbs ocular dominance (OD) in primary visual cortex and impairs visual acuity permanently. Yet understanding how binocularity and visual acuity interrelate has proven elusive. Here we demonstrate the plasticity of binocularity and acuity are separable and differentially regulated by the neuronal nogo receptor 1 (NgR1). Mice lacking NgR1 display developmental OD plasticity as adults and their visual acuity spontaneously improves after prolonged monocular deprivation. Restricting deletion of NgR1 to either cortical interneurons or a subclass of parvalbumin (PV)-positive interneurons alters intralaminar synaptic connectivity in visual cortex and prevents closure of the critical period for OD plasticity. However, loss of NgR1 in PV neurons does not rescue deficits in acuity induced by chronic visual deprivation. Thus, NgR1 functions with PV interneurons to limit plasticity of binocularity, but its expression is required more extensively within brain circuitry to limit improvement of visual acuity following chronic deprivation. PMID:25164659

  2. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    SciTech Connect

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Hamel, Matthieu; Sguerra, Fabien; Dehe-Pittance, Chrystele; Normand, Stephane; Mechin, Laurence

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon part of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)

  3. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-05-01

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  4. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  5. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... COMMISSION Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components... Combinations for Metal Primary Reactor Containment System Components,'' in which there are no substantive... loading combinations for metal primary reactor containment system components. ADDRESSES: Please refer...

  6. The role of the mobility law of dislocations in the plastic response of shock loaded pure metals

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, Beñat

    2016-08-01

    This article examines the role that the choice of a dislocation mobility law has in the study of plastic relaxation at shock fronts. Five different mobility laws, two of them phenomenological fits to data, and three more based on physical models of dislocation inertia, are tested by employing dynamic discrete dislocation plasticity (D3P) simulations of a shock loaded aluminium thin foil. It is found that inertial laws invariably entail very short acceleration times for dislocations changing their kinematic state. As long as the mobility laws describe the same regime of terminal speeds, all mobility laws predict the same degree of plastic relaxation at the shock front. This is used to show that the main factor affecting plastic relaxation at the shock front is in fact the speed of dislocations.

  7. A Simplistic Look at Limit Stresses from Random Loading

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1993-01-01

    Utilizing a continuous beam model, this report compares the potential stresses imposed on the beam from a random environment with those resulting from a typical static load analysis or test simulation. The Miles' equation used to develop peak response accelerations is shown to become a force equation in the hands of strength assessment personnel. This may prove to be unrealistic since hardware dynamic stresses are related to deflection rather than load. Correlation of the stress state for any static analysis or test with the actual dynamic response stress is strictly dependent upon how well the static deflections simulate the predominant dynamic mode shape. The report proposes that the general shape of this predominant mode, along with the peak response accelerations of major masses be used in strength assessments. From these data, a tailored enforced displacement loading may prove to be more effective in reproducing random induced stresses on flight hardware.

  8. Narrative skill in children with early unilateral brain injury: a possible limit to functional plasticity.

    PubMed

    Demir, Ozlem Ece; Levine, Susan C; Goldin-Meadow, Susan

    2010-07-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions by examining the narrative production of children with PL. Using an elicitation technique that involves asking children to create stories de novo in response to a story stem, we collected narratives from 11 children with PL and 20 typically developing (TD) children. Narratives were analysed for length, diversity of the vocabulary used, use of complex syntax, complexity of the macro-level narrative structure and use of narrative evaluation. Children's language performance on vocabulary and syntax tasks outside the narrative context was also measured. Findings show that children with PL produced shorter stories, used less diverse vocabulary, produced structurally less complex stories at the macro-level, and made fewer inferences regarding the cognitive states of the story characters. These differences in the narrative task emerged even though children with PL did not differ from TD children on vocabulary and syntax tasks outside the narrative context. Thus, findings suggest that there may be limitations to the plasticity for language functions displayed by children with PL, and that these limitations may be most apparent in complex, decontextualized language tasks such as narrative production.

  9. Prediction of plastic instabilities under thermo-mechanical loadings in tension and simple shear

    NASA Astrophysics Data System (ADS)

    Manach, P. Y.; Mansouri, L. F.; Thuillier, S.

    2016-08-01

    Plastic instabilities like Portevin-Le Châtelier were quite thoroughly investigated experimentally in tension, under a large range of strain rates and temperatures. Such instabilities are characterized both by a jerky flow and a localization of the strain in bands. Similar phenomena were also recorded for example in simple shear [1]. Modelling of this phenomenon is mainly performed at room temperature, taking into account the strain rate sensitivity, though an extension of the classical Estrin-Kubin-McCormick was proposed in the literature, by making some of the material parameters dependent on temperature. A similar approach is considered in this study, furthermore extended for anisotropic plasticity with Hill's 1948 yield criterion. Material parameters are identified at 4 different temperatures, ranging from room temperature up to 250°C. The identification procedure is split in 3 steps, related to the elasticity, the average stress level and the magnitude of the stress drops. The anisotropy is considered constant in this temperature range, as evidenced by experimental results [2]. The model is then used to investigate the temperature dependence of the critical strain, as well as its capability to represent the propagation of the bands. Numerical predictions of the instabilities in tension and simple shear at room temperature and up to 250°C are compared with experimental results [3]. In the case of simple shear, a monotonic loading followed by unloading and reloading in the reverse direction (“Bauschinger-type” test) is also considered, showing that (i) kinematic hardening should be taken into account to fully describe the transition at re-yielding (ii) the modelling of the critical strain has to be improved.

  10. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  11. Biaxial ratcheting and cyclic plasticity for Bree-type loading. Part 1: Finite element analysis

    SciTech Connect

    Ng, H.W.; Nadarajah, C.

    1996-05-01

    The Bree diagram has been incorporated in the ASME B and PV Code in the elevated temperature Code Case N47 as a design approach for limiting strain accumulation in cylinders subjected to cyclic thermal loadings under sustained primary stress. Since the Bree diagram is based upon uniaxial-stress model, it is pertinent to examine the influence of biaxial stresses on strain growth and cyclic stress-strain hysteresis response. The results of inelastic analyses presented in this paper showed that ratcheting and hysteresis behavior may also occur in the axial direction in addition to the hoop direction. Results of almost 100 load cases were presented to clarify the influence of biaxial membrane and thermal bending stresses on the structural behavior. A design approach for the assessment of this type of problem was suggested which utilizes these results.

  12. Analysis of behavior of simply supported flat plates compressed beyond the buckling load into the plastic range

    NASA Technical Reports Server (NTRS)

    Mayers, J; Budiansky, Bernard

    1955-01-01

    An analysis is presented of the postbuckling behavior of a simply supported square flat plate with straight edges compressed beyond the buckling load into the plastic range. The method of analysis involves the application of a variational principle of the deformation theory of plasticity in conjunction with computations carried out on a high-speed calculating machine. Numerical results are obtained for several plate proportions and for one material. The results indicate plate strengths greater than those that have been found experimentally on plates that do not satisfy straight-edge conditions. (author)

  13. Reducing insecticide and fungicide loads in runoff from plastic mulch with vegetative-covered furrows.

    PubMed

    Rice, Pamela J; Harman-Fetcho, Jennifer A; Sadeghi, Ali M; McConnell, Laura L; Coffman, C Benjamin; Teasdale, John R; Abdul-Baki, Aref; Starr, James L; McCarty, Gregory W; Herbert, Rachel R; Hapeman, Cathleen J

    2007-02-21

    A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.

  14. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  15. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  16. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ..., the engine mounts and the supporting structures must be designed to withstand a ``limit engine torque... structures be able to support limit loads without detrimental permanent deformation, meaning that supporting... of producing much higher transient loads on the engine mounts and supporting structures. As a...

  17. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  18. Limiting performance of ground transportation vehicles subject to transient loading

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.

    1974-01-01

    A computational approach to determining the limiting performance of vehicles subject to transient disturbances based on response variable criteria is set forth. For the purposes of a limiting performance study, the transportation system dynamics are described using second- or first-order equations in which the sought for quantity is a vector of time-varying functions called control or isolator forces that have replaced portions of the physical system. Computations are performed as a linear programming problem. As an example of the limiting performance of vehicles in protecting passengers or cargo under crash conditions, the problem of lading damage of a rail vehicle that is struck by another vehicle is considered.

  19. Calculation Method for Flight Limit Load of V-band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified calculation method for estimating a flight limit load of the V-band clamp separation shock was established. With this method, the flight limit load is estimated through addition of an appropriate envelope margin to the results acquired with the simplified analysis method proposed in our previous paper. The envelope margin used in the method was calculated based on the reviews on the differences observed between the results of a pyroshock test and the analysis. Using the derived envelope margin, a calculating formula of the flight limit load, which envelopes the actual pyroshock responses with a certain probability, was developed. Based on the formula, flight limit loads for several actual satellites were estimated and compared to the test results. The comparative results showed that the estimated flight limit loads appropriately envelope the test results, which confirmed the effectiveness of the proposed method.

  20. Immediate-loading post extractive implants: indications, advantages and limits.

    PubMed

    Mampieri, G; Ottria, L; Barlattani, A

    2008-07-01

    The possibility of rehabilitating immediately an edentulous patient offers today remarkable advantages because it satisfies the patient's demands for comfort, aesthetics, and functionality and reduces the surgical stages for the professional.In the last years clinicians and companies have been concentrating their efforts in the development of new surgical techniques and biomaterials in order to speed up the osteointegration process, which fosters the functionality, that is the immediate-loading.This clinical report, based on the analysis of the literature and on the presentation of a case report, shows how satisfying results in functionality and aesthetic can be obtained by a careful diagnosis and an accurate therapeutic planning, reducing at the same time the stress for the patient and the surgical stages for the professional.In any case, it is necessary to have the rehabilitations with immediate-loaded implants directed by workers with a good knowledge and experience in surgery, periodontology, and prosthesis or by a work team able to face all the complications such advanced rehabilitations may cause.

  1. Rankine cycle load limiting through use of a recuperator bypass

    DOEpatents

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  2. Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Oskay, Caglar

    2016-06-01

    A crystal plasticity finite element (CPFE) model considering isothermal, large deformation and cyclic loading conditions has been formulated and employed to investigate the mechanical response of a nickel-based alloy at high temperature. The investigations focus on fatigue and creep-fatigue hysteresis response of IN 617 subjected to fatigue and creep-fatigue cycles. A new slip resistance evolution equation is proposed to account for cyclic transient features induced by solute drag creep that occur in IN 617 at 950 °C. The crystal plasticity model parameters are calibrated against the experimental fatigue and creep-fatigue data based on an optimization procedure that relies on a surrogate modeling (i.e. Gaussian process) technique to accelerate multi-parameter optimizations. The model predictions are validated against experimental data, which demonstrates the capability of the proposed model in capturing the hysteresis behavior for various hold times and strain ranges in the context of fatigue and creep-fatigue loading.

  3. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Chowdhury, M. A.; Rahaman, M. L.; Oumer, A. N.

    2016-02-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity.

  4. Estimating the loading limit margin taking into account voltage collapse areas

    SciTech Connect

    Barquin, J.; Gomez, T.; Pagola, F.L.

    1995-11-01

    This paper addresses the computation of the margin to the maximum loading limit. In the maximum loading point the minimum singular value of the load flow jacobian matrix becomes zero. A new generalized singular value analysis is proposed to compute this critical singular value far away of the singular point. In addition, a second order approximation of the load flow equations is formulated and used to determine the margin to the loading limit in physical terms of MW and Mvar. The proposed algorithm is computationally efficient. It is formulated so that it could consider different models for the power system components. It takes into account operating and equipment limits, such as the reactive power generator limits. The algorithm is tested in two systems: a 6-machines test system, which is a CIGRE benchmark for voltage instability studies, and the IEEE-118 buses system.

  5. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants.

    PubMed

    Caballero, B M; de Marco, I; Adrados, A; López-Urionabarrenechea, A; Solar, J; Gastelu, N

    2016-11-01

    The possibilities and limits of pyrolysis as a means of recycling plastic rich fractions derived from discarded phones have been studied. Two plastic rich samples (⩾80wt% plastics) derived from landline and mobile phones provided by a Spanish recycling company, have been pyrolysed under N2 in a 3.5dm(3) reactor at 500°C for 30min. The landline and mobile phones yielded 58 and 54.5wt% liquids, 16.7 and 12.6wt% gases and 28.3 and 32.4wt% solids respectively. The liquids were a complex mixture of organic products containing valuable chemicals (toluene, styrene, ethyl-benzene, etc.) and with high HHVs (34-38MJkg(-1)). The solids were composed of metals (mainly Cu, Zn, and Al) and char (≈50wt%). The gases consisted mainly of hydrocarbons and some CO, CO2 and H2. The halogens (Cl, Br) of the original samples were mainly distributed between the gases and solids. The metals and char can be easily separated and the formers may be recycled, but the uses of the char will be restricted due to its Cl/Br content. The gases may provide the energy requirements of the processing plant, but HBr and HCl must be firstly eliminated. The liquids could have a potential use as energy or chemicals source, but the practical implementation of these applications will be no exempt of great problems that may become insurmountable (difficulty of economically recovering pure chemicals, contamination by volatile metals, etc.).

  6. Pushing the Limits: Cognitive, Affective, and Neural Plasticity Revealed by an Intensive Multifaceted Intervention

    PubMed Central

    Mrazek, Michael D.; Mooneyham, Benjamin W.; Mrazek, Kaita L.; Schooler, Jonathan W.

    2016-01-01

    Scientific understanding of how much the adult brain can be shaped by experience requires examination of how multiple influences combine to elicit cognitive, affective, and neural plasticity. Using an intensive multifaceted intervention, we discovered that substantial and enduring improvements can occur in parallel across multiple cognitive and neuroimaging measures in healthy young adults. The intervention elicited substantial improvements in physical health, working memory, standardized test performance, mood, self-esteem, self-efficacy, mindfulness, and life satisfaction. Improvements in mindfulness were associated with increased degree centrality of the insula, greater functional connectivity between insula and somatosensory cortex, and reduced functional connectivity between posterior cingulate cortex (PCC) and somatosensory cortex. Improvements in working memory and reading comprehension were associated with increased degree centrality of a region within the middle temporal gyrus (MTG) that was extensively and predominately integrated with the executive control network. The scope and magnitude of the observed improvements represent the most extensive demonstration to date of the considerable human capacity for change. These findings point to higher limits for rapid and concurrent cognitive, affective, and neural plasticity than is widely assumed. PMID:27047361

  7. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine.

    PubMed

    Lamy, Jean-Baptiste; Delzon, Sylvain; Bouche, Pauline S; Alia, Ricardo; Vendramin, Giovanni Giuseppe; Cochard, Hervé; Plomion, Christophe

    2014-02-01

    Resistance to cavitation is a major determinant of plant survival under severe drought and can be used to quantify species adaptive potential. Interspecific variation in this key trait is well defined in woody species, but intraspecific variation (level and structure) resulting from standing genetic variation and phenotypic plasticity has never been determined. Combining for the first time in situ characterization of natural populations and two reciprocal common gardens in dry and wet sites, we estimated variance components (phenotypic, genetic, environmental, and genetic × environmental) of cavitation resistance based on 513 genotypes of a Mediterranean pine, Pinus pinaster. Despite the selected populations being climatically contrasted, phenotypic plasticity in resistance to cavitation remained low and was essentially attributed to family level. Between-population variation in cavitation resistance for both phenotypic and genetic variation was limited. These results strongly suggest that cavitation resistance is buffered against genetic and to a lesser extent environmental variation (canalization) in maritime pine. Consequently, in a drier world, the increasing drought tolerance of Pinus species might be severely constrained by the low level of cavitation resistance variation, resulting in a large-scale loss of productivity.

  8. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level.

  9. An Analytical Means for Determination of Scoring Limited Load Capacity in Sliding/Rolling Contact

    DTIC Science & Technology

    1979-12-01

    Scoring limited load capacity of paired discs in sliding/rolling lubricated contact is addressed. The approach used previously acquired data in a multiple regression analysis. The resulting mathematical expression for load capacity at failure has a correlation coefficient greater than 99%.

  10. 78 FR 79074 - Technical Report Evaluating Seat Belt Pretensioners and Load Limiters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... seats of passenger cars and LTVs. The report's title is: Effectiveness of Pretensioners and Load... vehicles. By model year 2008, all new cars and LTVs sold in the United States were equipped with... without pretensioners and load limiters at those seats. In passenger cars, CUVs, and minivans, a...

  11. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load... occur about once in the lifetime of any airplane. Section 25.305 requires that supporting structures be... of producing much higher transient loads on the engine mounts and supporting structures. As a...

  12. Economic impact analysis of effluent limitations and standards for plastics molding and forming industry. Final report

    SciTech Connect

    Not Available

    1984-12-01

    The U.S. Environmental Protection Agency issued effluent limitations and standards in December, 1984, for the Plastics Molding and Forming Industry. The report estimates the economic impacts associated with pollution control costs. Plant-specific treatment costs for 20 percent of the impacted plants are compared to estimated pre-tax plant income to assess the impact of treatment costs on plant liquidity. Then a closure analysis is performed, comparing the current salvage value of the plant's assets with the present value of the plant's cash flow plus the terminal value of its assets. The results are extrapolated to the 558 plants which, as direct dischargers, would be impacted. The results of this plant-level analysis are used to assess the indirect impacts of the regulation, e.g., price changes, unemployment and shifts, in the balance of foreign trade.

  13. MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity.

    PubMed

    Deng, Jie V; Wan, Yehong; Wang, Xiaoting; Cohen, Sonia; Wetsel, William C; Greenberg, Michael E; Kenny, Paul J; Calakos, Nicole; West, Anne E

    2014-03-26

    The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors.

  14. MeCP2 Phosphorylation Limits Psychostimulant-Induced Behavioral and Neuronal Plasticity

    PubMed Central

    Deng, Jie V.; Wan, Yehong; Wang, Xiaoting; Cohen, Sonia; Wetsel, William C.; Greenberg, Michael E.; Kenny, Paul J.; Calakos, Nicole

    2014-01-01

    The methyl-DNA binding protein MeCP2 is emerging as an important regulator of drug reinforcement processes. Psychostimulants induce phosphorylation of MeCP2 at Ser421; however, the functional significance of this posttranslational modification for addictive-like behaviors was unknown. Here we show that MeCP2 Ser421Ala knock-in mice display both a reduced threshold for the induction of locomotor sensitization by investigator-administered amphetamine and enhanced behavioral sensitivity to the reinforcing properties of self-administered cocaine. These behavioral differences were accompanied in the knock-in mice by changes in medium spiny neuron intrinsic excitability and nucleus accumbens gene expression typically observed in association with repeated exposure to these drugs. These data show that phosphorylation of MeCP2 at Ser421 functions to limit the circuit plasticities in the nucleus accumbens that underlie addictive-like behaviors. PMID:24671997

  15. Limitations to the small scale yielding approximation for crack tip plasticity

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1974-01-01

    Recent finite-element results by S. G. Larsson and A. J. Carlsson suggest a limited range of validity to the 'small scale yielding approximation,' whereby small crack tip plastic zones are correlated in terms of the elastic stress intensity factor. It is shown with the help of a model for plane strain yielding that their results may be explained by considering the non-singular stress, acting parallel to the crack at its tip, which accompanies the inverse square-root elastic singularity. Further implications of the non-singular stress term for crack tip deformations and fracturing are examined. It is suggested that its effect on crack tip parameters, such as the opening displacement and J-integral, is less pronounced than its effect on the yield zone size.

  16. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development.

    PubMed

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H

    2015-12-18

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this

  17. Elastic-Plastic Finite-Difference Analysis of Unidirectional Composites Subjected to Thermomechanical Cyclic Loading

    DTIC Science & Technology

    1992-12-01

    1Nb matrix was attained using a bilinear elastic -plastic model with temperature dependent elastic and plastic moduli , yield stress and coefficient of...J., "Investigation of the Thermomechanical Response of a Titanium - Aluminide /Silicon-Carbide Composite using a Unified State Variable Model and the...Analysis of MMC Subjected to Thermomechanical Fatigue", Titanium Aluminide Composites, WL-TR-91- 4020, Wright Laboratory, Wright-Patterson AFB, Ohio

  18. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories

    PubMed Central

    Scalf, Paige E.; Torralbo, Ana; Tapia, Evelina; Beck, Diane M.

    2013-01-01

    Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory. PMID:23717289

  19. Study of plastic strain localization mechanisms caused by nonequilibrium transitions in mesodefect ensembles under high-speed loading

    SciTech Connect

    Sokovikov, Mikhail Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Naimark, Oleg

    2015-10-27

    The behavior of specimens dynamically loaded during split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in-situ using a high-speed infrared camera CEDIP Silver 450M. The temperature field distribution obtained at different time allowed one to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infrared camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profiler and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  20. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual

  1. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    SciTech Connect

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.; Majumdar, Saurin; Natesan, Ken

    2016-09-01

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in air or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.

  2. Plasticized drug-loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics.

    PubMed

    Balogh, Attila; Drávavölgyi, Gábor; Faragó, Kornél; Farkas, Attila; Vigh, Tamás; Sóti, Péter Lajos; Wagner, István; Madarász, János; Pataki, Hajnalka; Marosi, György; Nagy, Zsombor Kristóf

    2014-04-01

    Melt electrospinning (MES) was used to prepare fast dissolving fibrous drug delivery systems in the presence of plasticizers. This new method was found promising in the field of pharmaceutical formulation because it combines the advantages of melt extrusion and solvent-based electrospinning. Lowering of the process temperature was performed using plasticizers in order to avoid undesired thermal degradation. Carvedilol (CAR), a poorly water-soluble and thermal-sensitive model drug, was introduced into an amorphous methacrylate terpolymer matrix, Eudragit® E, suitable for fiber formation. Three plasticizers (triacetin, Tween® 80, and polyethylene glycol 1500) were tested, all of which lowered the process temperature effectively. Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and Raman microspectrometry investigations showed that crystalline CAR turned into an amorphous form during processing and preserved it for longer time. In vitro dissolution studies revealed ultrafast drug dissolution of the fibrous samples. According to the HPLC impurity tests, the reduced stability of CAR under conditions applied without plasticizer could be avoided using plasticizers, whereas storage tests also indicated the importance of optimizing the process parameters during MES.

  3. Comparative Gamma Spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded Plastic Scintillators

    SciTech Connect

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; Kuntz, Joshua; Seeley, Zachary; Rupert, B. L.; Sanner, Robert; Drury, Owen; Hurst, T.; Fisher, S E; Groza, Michael; Matei, L.; Burger, Arnold; Hawrami, Rastgo; Shah, Kanai; Boatner, Lynn A

    2011-01-01

    We are developing new scintillator materials that offer potential for high resolution gamma ray spectroscopy at low cost. Single crystal SrI2(Eu) offers ~3% resolution at 662 keV, in sizes of ~1 in3. We have developed ceramics processing technology allowing us to achieve cubic inch scale transparent ceramic scintillators offering gamma spectroscopy performance superior to NaI(Tl). We fabricated a bismuth-loaded plastic scintillator that demonstrates energy resolution of ~8% at 662 keV in small sizes.

  4. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    SciTech Connect

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf

    2005-08-05

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress.

  5. Narrative Skill in Children with Early Unilateral Brain Injury: A Possible Limit to Functional Plasticity

    ERIC Educational Resources Information Center

    Demir, Ozlem Ece; Levine, Susan C.; Goldin-Meadow, Susan

    2010-01-01

    Children with pre- or perinatal brain injury (PL) exhibit marked plasticity for language learning. Previous work has focused mostly on the emergence of earlier-developing skills, such as vocabulary and syntax. Here we ask whether this plasticity for earlier-developing aspects of language extends to more complex, later-developing language functions…

  6. Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack

    NASA Astrophysics Data System (ADS)

    Chaiyat, Sumitra; Jin, Xiaoqing; Keer, Leon M.; Kiattikomol, Kraiwood

    2008-01-01

    Analytical and numerical approaches are used to solve an axisymmetric crack problem with a refined Barenblatt-Dugdale approach. The analytical method utilizes potential theory in classical linear elasticity, where a suitable potential is selected for the treatment of the mixed boundary problem. The closed-form solution for the problem with constant pressure applied near the tip of a penny-shaped crack is studied to illustrate the methodology of the analysis and also to provide a fundamental solution for the numerical approach. Taking advantage of the superposition principle, an exact solution is derived to predict the extent of the plastic zone where a Tresca yield condition is imposed, which also provides a useful benchmark for the numerical study presented in the second part. For an axisymmetric crack, the numerical discretization is required only in the radial direction, which renders the programming work efficient. Through an iterative scheme, the numerical method is able to determine the size of the crack tip plasticity, which is governed by the nonlinear von Mises criterion. The relationships between the applied load and the length of the plastic zone are compared for three different yielding conditions. To cite this article: S. Chaiyat et al., C. R. Mecanique 336 (2008).

  7. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  8. 76 FR 8778 - Construction Standards on Posting Emergency Telephone Numbers and Floor Load Limits; Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Floor Load Limits; Extension of the Office of Management and Budget's (OMB) Approval of Information... extend OMB approval of the information collection requirements specified by the Construction Standards on... for the Information Collection Request (ICR) (OSHA-2011- 0032). All comments, including any...

  9. 76 FR 32323 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... conditions as issued by the National Weather Service Nearshore Marine Forecasts for Lake Michigan as being an... SECURITY Coast Guard 46 CFR Part 45 RIN 1625-AA17 Limited Service Domestic Voyage Load Lines for River... established in the final rule published on November 18, 2010. Specifically, the weather restrictions based...

  10. A simple method of calculating lower-bound limit loads for axisymmetric thin shells

    SciTech Connect

    Boyle, J.T.; Hamilton, R.; Shi, J.; Mackenzie, D.

    1997-05-01

    In this paper, a simple method for calculating lower-bound limit loads for shells is presented, based on Ilyushin`s and Ivanov`s generalized yield criterion, respectively, and using the elastic compensation procedure. Several examples, including torispherical and conical ends, radial nozzles, and a skirted vessel, are examined using this method. The results are compared with previously published results.

  11. Numerical and Theoretical Analysis of Plastic Response of 5A06 Aluminum Circular Plates Subjected to Underwater Explosion Loading

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei

    2013-06-01

    Dynamic response analysis of structures subjected to underwater explosion loading has been always an interesting field for researchers. Understanding the deformation and failure mechanism of simple structures plays an important role in an actual project under this kind of loading. In this paper, the deformation and failure characteristics of 5A06 aluminum circular plates were investigated computationally and theoretically. The computational study was based on a Johnson-cook material parameter mode which was obtained from several previous studies provides a good description of deformation and failure of 5A06 aluminum circular plates under underwater explosion loading. The deformation history of the clamped circular plate is recorded; the maximum deflection and the thickness reduction measurements of target plates at different radii were conducted. The computational approach provided insight into the relationship between the failure mechanism and the strength of impact wave, and a computing formulae for strain field of the specimen was derived based on the same volume principle and rigid-plastic assumption. The simulation and theoretical calculation results are in good agreement with the experiments results. National Natural Science Foundation of China (NO:11272057).

  12. 40 CFR Table 2 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Loading Racks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... another loading rack or lane to the atmosphere; and (d) Limit the loading of gasoline into gasoline cargo... from the bottom of the cargo tank; and(b) Make records available within 24 hours of a request by...

  13. 40 CFR Table 2 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Loading Racks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... another loading rack or lane to the atmosphere; and (d) Limit the loading of gasoline into gasoline cargo... from the bottom of the cargo tank; and(b) Make records available within 24 hours of a request by...

  14. Limit analysis for combined edge and pressure loading on a cylindrical shell.

    NASA Technical Reports Server (NTRS)

    Ho, H. S.; Updike, D. P.

    1971-01-01

    Equations describing the stress field and velocity field occurring in a circular cylindrical shell at plastic collapse are derived corresponding to stress states lying on each face of a yield surface for a uniform shell of material obeying the Tresca yield condition. They are then applied to the case of a shell under combined axisymmetric loadings (moment, shear force, and axial force) at one end and uniform internal or external pressure on the lateral surface. For a sufficiently long shell, complete solutions are obtained for a fixed far end, and for a certain range of values of axial force and pressure, they are obtained for a free far end. All the solutions are represented by either closed form or by quadratures. It is shown that in many cases the radial velocity field is proportional to the shear force.

  15. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    SciTech Connect

    Hamel, M.; Normand, S.; Turk, G.; Darbon, S.

    2011-07-01

    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  16. The Legal Doctrine on 'Limitation of Liability' in the Precedent Analysis on Plastic Surgery Medical Malpractice Lawsuits.

    PubMed

    Park, Bo Young; Pak, Ji-Hyun; Hong, Seung-Eun; Kang, So Ra

    2015-12-01

    This study intended to review the precedents on plastic surgery medical malpractice lawsuits in lower-court trials, classify the reasons of 'limitation of liability' by type, and suggest a standard in the acknowledgement of limitation of liability ratio. The 30 lower-court's rulings on the cases bearing the medical negligence of the defendants acknowledged the liability ratio of the defendants between 30% and 100%. Ten cases ruled that the defendants were wholly responsible for the negligence or malpractice, while 20 cases acknowledged the limitation of liability principle. In the determination of damage compensation amount, the court considered the cause of the victim side, which contributed in the occurrence of the damage. The court also believed that it is against the idea of fairness to have the assailant pay the whole compensation, even there is no victim-side cause such as previous illness or physical constitution of the patient, and applies the legal doctrine on limitation of liability, which is an independent damage compensation adjustment system. Most of the rulings also limited the ratio of responsibility to certain extent. When considering that the legal doctrine on limitation of liability which supports concrete validity for the fair sharing of damage, the tangible classification of causes of limitation of liability suggested in this study would be a useful tool in forecasting the ruling of a plastic surgery medical malpractice lawsuit.

  17. The Legal Doctrine on 'Limitation of Liability' in the Precedent Analysis on Plastic Surgery Medical Malpractice Lawsuits

    PubMed Central

    Kang, So Ra

    2015-01-01

    This study intended to review the precedents on plastic surgery medical malpractice lawsuits in lower-court trials, classify the reasons of 'limitation of liability' by type, and suggest a standard in the acknowledgement of limitation of liability ratio. The 30 lower-court's rulings on the cases bearing the medical negligence of the defendants acknowledged the liability ratio of the defendants between 30% and 100%. Ten cases ruled that the defendants were wholly responsible for the negligence or malpractice, while 20 cases acknowledged the limitation of liability principle. In the determination of damage compensation amount, the court considered the cause of the victim side, which contributed in the occurrence of the damage. The court also believed that it is against the idea of fairness to have the assailant pay the whole compensation, even there is no victim-side cause such as previous illness or physical constitution of the patient, and applies the legal doctrine on limitation of liability, which is an independent damage compensation adjustment system. Most of the rulings also limited the ratio of responsibility to certain extent. When considering that the legal doctrine on limitation of liability which supports concrete validity for the fair sharing of damage, the tangible classification of causes of limitation of liability suggested in this study would be a useful tool in forecasting the ruling of a plastic surgery medical malpractice lawsuit. PMID:26713045

  18. Plastic temporary abutments with provisional restorations in immediate loading procedures: a clinical report.

    PubMed

    Mijiritsky, Eitan

    2006-09-01

    A provisional restoration in combination with an implant-retained restoration provides many of the same benefits as nonimplant-retained fixed restorations. Provisional restorations serve as a diagnostic tool to confirm esthetics, contours, accessibility for oral hygiene, and can be used to duplicate the definitive restoration. A provisional restoration allows for communication between the patient, dentist, and technician. The soft tissue around the implants can heal according to the contours of the provisional restoration. However, implant-retained treatment can require an extended period of osseointegration, and provisional treatment can be a challenge if a removable prosthesis is provided because adjustments of the denture may become necessary during healing. This article presents a case report that describes the simultaneous placement of implants with the connection of fixed provisional restorations to prefabricated plastic provisional abutments.

  19. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    NASA Astrophysics Data System (ADS)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment.

  20. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

    PubMed Central

    Vermerris, Wilfred; Sherman, Debra M.; McIntyre, Lauren M.

    2010-01-01

    The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants

  1. Modeling complex plastic deformation and fracture of metals under disproportionate loading

    NASA Astrophysics Data System (ADS)

    Volkov, I. A.; Korotkikh, Yu. G.; Tarasov, I. S.

    2009-09-01

    A mathematical model is developed to describe fatigue-damage accumulation in structural materials (metals and their alloys) on multiaxial paths of disproportionate combined heat and power loading. The effect of the shape of the strain path on the fatigue life of metals was studied to obtain qualitative and quantitative estimates of the obtained constitutive relations. It is shown that the proposed constitutive relations adequately describe the main elastoplastic deformation effects and damage accumulation in structural materials for arbitrary strain paths.

  2. EFFECTS OF HIGH-RATE COMPRESSION LOADING ON SHORT REINFORCED PLASTIC MEMBERS

    DTIC Science & Technology

    thin-walled tubular aluminum columns, solid columns of cellular cellulose acetate , and tubular epoxy columns. Permanent deformations of both the...tubular aluminum columns and the solid cellular cellulose acetate columns appeared to occur intermittently as the columns resisted series of maximum...varied for the cellular cellulose acetate test pieces. the epoxy columns gave the least reproducibility, shattering severely under load. It was concluded

  3. Effects of altered loading states on muscle plasticity: what have we learned from rodents?

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.

    1996-01-01

    This paper summarizes the key findings concerning the adaptive properties of rodent muscle in response to altered loading states. When the mechanical stress on the muscle is chronically increased, the muscle adapts by hypertrophying its fibers. This response is regulated by processes resulting in contractile protein expression reflecting slower phenotypes, thereby enabling the muscle to better support load-hearing activity. In contrast, reducing the load-bearing activity induces an opposite response whereby muscles used for both antigravity function and locomotion atrophy while transforming some of the slow fibers into faster contractile phenotypes. Accompanying the atrophy is both a reduced power generating and activity sustaining capability. These adaptive processes are regulated by both transcriptional and translational processes. Available evidence further suggests that the interaction of heavy resistance activity and hormonal/growth factors (insulin-like growth factor, growth hormone, glucocorticoids, etc.) are critical in the maintenance of muscle mass and function. Also resistance training, in contrast to other activities such as endurance running, provides a more economical form of stress because less mechanical activity is required to maintain muscle homeostasis in the context of chronic states of weightlessness.

  4. Effects of altered loading states on muscle plasticity: what have we learned from rodents?

    PubMed

    Baldwin, K M

    1996-10-01

    This paper summarizes the key findings concerning the adaptive properties of rodent muscle in response to altered loading states. When the mechanical stress on the muscle is chronically increased, the muscle adapts by hypertrophying its fibers. This response is regulated by processes resulting in contractile protein expression reflecting slower phenotypes, thereby enabling the muscle to better support load-hearing activity. In contrast, reducing the load-bearing activity induces an opposite response whereby muscles used for both antigravity function and locomotion atrophy while transforming some of the slow fibers into faster contractile phenotypes. Accompanying the atrophy is both a reduced power generating and activity sustaining capability. These adaptive processes are regulated by both transcriptional and translational processes. Available evidence further suggests that the interaction of heavy resistance activity and hormonal/growth factors (insulin-like growth factor, growth hormone, glucocorticoids, etc.) are critical in the maintenance of muscle mass and function. Also resistance training, in contrast to other activities such as endurance running, provides a more economical form of stress because less mechanical activity is required to maintain muscle homeostasis in the context of chronic states of weightlessness.

  5. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    PubMed Central

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour. PMID:24619446

  6. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    USGS Publications Warehouse

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  7. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage.

    PubMed

    Zimova, Marketa; Mills, L Scott; Lukacs, Paul M; Mitchell, Michael S

    2014-05-07

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  8. Elasto/visco-plastic deformation of multi-layered shells of revolution under thermal loading due to fluid

    SciTech Connect

    Takezono, S.; Tao, K.; Inamura, E.

    1995-11-01

    An analytical method for the elasto/visco-plastic deformation of the multi-layered shells subjected to thermal loads due to fluid is developed. First, the temperature distribution through the thickness in each layer is assumed to be linear, and the temperature field in the shell is determined using the equations of heat conduction and heat transfer. Secondly, the stresses and deformations are analyzed by the thermal stress equations. The equations of equilibrium and the relationships between the strains and displacements are derived from the Sanders shell theory. For the constitutive relations, Perzyna`s equations are employed. As a numerical example, a two-layered cylindrical shell composed of mild steel and titanium subjected to locally distributed thermal loads due to fluid is analyzed. Numerical computations are carried out for three cases of the ratio of the thickness of the titanium layer to the shell thickness. It is fund from the computations that the temperature and stress distributions and the deformation vary significantly depending on the thickness ratio.

  9. Face-specific capacity limits under perceptual load do not depend on holistic processing.

    PubMed

    Thoma, Volker

    2014-12-01

    Previous observations that face recognition may proceed automatically, without drawing on attentional resources, have been challenged by recent demonstrations that only a few faces can be processed at one time. However, a question remains about the nature of the stimulus properties that underlie face-specific capacity limits. Two experiments showed that speeded categorization of a famous face (such as a politician or pop star) is facilitated when it is congruent with a peripheral distractor face. This congruency effect is eliminated if the visual search is loaded with more than one face, unlike previous demonstrations of speeded classification using semantic information. Importantly, congruency effects are also eliminated when the search task is loaded with nontarget faces that are shown in an inverted orientation. These results indicate that face-specific capacity limits are not determined by the configural ("holistic") properties of face recognition.

  10. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation.

  11. Effects of specimen size on limiting compressive loading for silicate, ceramic, and other materials

    SciTech Connect

    Okhrimenko, G.M.

    1995-06-01

    Published data are examined on the ultimate strength in uniaxial compression for glass, glass ceramics, porcelain, crystalline silicon, periclase - spinel - chromite material PSCM, and ferrite in relation to the specimen dimensions. Two methods are proposed for combined experimental and computational estimation of the effects from the volume on the limiting load, which are based only on the data obtained from testing specimens with one or two standard dimensions.

  12. UK catchment nutrient loads 1993-2003, a new approach using harmonised monitoring scheme data: temporal changes, geographical distribution, limiting nutrients and loads to coastal waters.

    PubMed

    Earl, Timothy J; Upton, Graham J G; Nedwell, David B

    2014-07-01

    The work provides robust estimates of nutrient loads (nitrate and phosphate) from all UK catchments: as required by the Water Framework Directive to monitor catchments' health, and to inform management of these environments. To calculate nutrient loads, data for nutrient concentrations and water flow are combined. In the UK, flow data are typically available at hourly intervals at more than 1300 gauging stations but concentration data are collected less frequently (roughly weekly) and at fewer locations (about 280). The sparseness of the concentration data limits the occasions for which load can be calculated, so a mathematical model was derived which was used to interpolate the concentrations between measurements. The model's parameters provide useful information about the annual nutrient concentration cycles within any catchment, and permitted improved estimates of both the annual loads of N and P, and of the N : P ratios, from mainland UK catchments. Data from 1993-2003 showed nitrate loads from UK catchments were generally constant, while orthophosphate loads generally declined. N : P ratios suggested that most catchments in the north and west of the UK were potentially P-limited although a few were potentially N-limited, while many in central and eastern UK oscillated seasonally between N and P limitation. Knowledge of the nutrient which is potentially limiting to biological productivity is a key factor for management of a catchment's nutrient loads. Calculations of nutrient export loads to coastal regions showed that UK catchments contributed only about 16.5% of total fluvial loads of nitrate to the North Sea, or about 3% of the total N loads when inputs from the Atlantic were included. Orthophosphate loads from the UK catchments into the North Sea were only 1.7% of the total P inputs from rivers and the Atlantic but did not include riverine inputs of P adsorbed to particles.

  13. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  14. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  15. Limiter heat loads during the first operation of the W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Wurden, Glen; Niemann, Holger; Jakubowski, Marcin; Bozhenkov, Sergey; Biedermann, Christoph; Marsen, Stefan; Effenberg, Florian; Stephey, Laurie; Schmitz, Oliver; W7-X Team

    2016-10-01

    During the first operational phase (OP1.1) of the new W7-X stellarator, five poloidal graphite limiters served as the main boundary for the plasma. There was a dedicated set of diagnostics to observe the performance of the temporary poloidal limiters and infer basic transport behavior of the 3-D helical SOL plasma. We describe IR imaging of the limiters, which resulted in observations of 1) heat flux determination as a function of time and space, 2) total energy into the limiters, 3) high-frequency helical patterns of energy bursts onto the limiters, 4) changes in surface emissivity, and 5) detection of UFO's (small-to-large dusts). These measurements were made in 2 magnetic configuration discharges (differing iota), and in ones where the power loads to the limiters were systematically modified by the use of trim coils. Observed power fractions on the limiters ranged from 40% to 20% of the 0.6 to 4 MW ECRH input powers. Acknowledgement: Funded under DOE LANS Contract DE-AC5026NA25396 and DE-SC0014210, and within the EUROfusion Consortium under Euratom Grant 633053.

  16. Masticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures.

    PubMed

    Jasarević, Eldin; Ning, Jie; Daniel, Ashley N; Menegaz, Rachel A; Johnson, Jeffrey J; Stack, M Sharon; Ravosa, Matthew J

    2010-04-01

    In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses. Rabbits exhibit a masticatory complex and feeding behaviors similar to primates, yet retain a more primitive mammalian circumorbital region. Three cohorts were obtained as weanlings and raised on different diets until adult. Following euthanasia, postorbital soft tissues were dissected away, fixed, and decalcified. These soft tissues were divided into inferior, intermediate, and superior units and then dehydrated, embedded, and sectioned. H&E staining was used to characterize overall architecture. Collagen orientation and complexity were evaluated via picrosirius-red staining. Safranin-O identified proteoglycan content with additional immunostaining performed to assess Type-II collagen expression. Surprisingly, the ligament along the lateral orbital wall was composed of elastic fibrocartilage. A more degraded organization of collagen fibers in this postorbital fibrocartilage is correlated with increased masticatory forces due to a more fracture-resistant diet. Furthermore, the lack of marked changes in the extracellular composition of the lateral orbital wall related to tissue viscoelasticity suggests it is unlikely that long-term exposure to elevated masticatory stresses underlies the development of a bony postorbital bar.

  17. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    PubMed Central

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  18. Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    PubMed Central

    Campbell, Sharon M.; Duncan, Sheelagh; Hewitson, James P.; Barr, Tom A.; Jackson-Jones, Lucy H.; Maizels, Rick M.

    2017-01-01

    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell. PMID:28334040

  19. Forming limit prediction using a self-consistent crystal plasticity framework: a case study for body-centered cubic materials

    NASA Astrophysics Data System (ADS)

    Jeong, Youngung; Pham, Minh-Son; Iadicola, Mark; Creuziger, Adam; Foecke, Timothy

    2016-06-01

    A rate-dependent self-consistent crystal plasticity model was incorporated with the Marciniak-Kuczyński model in order to study the effects of anisotropy on the forming limits of BCC materials. The computational speed of the model was improved by a factor of 24 when running the simulations for several strain paths in parallel. This speed-up enabled a comprehensive investigation of the forming limits of various BCC textures, such as γ , σ , α , η and ɛ fibers and a uniform (random) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the resulting forming limit diagrams. For example, the γ fiber texture, which is often sought through thermo-mechanical processing due to a high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among the textures under consideration. A systematic investigation based on the results produced by the current model, referred to as ‘VPSC-FLD’, suggests that the r-value does not serve as a good measure of forming limit strain. However, model predictions show a degree of correlation between the r-value and the forming limit stress.

  20. Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source

    NASA Astrophysics Data System (ADS)

    Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.

    2014-06-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA

  1. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    SciTech Connect

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator.

  2. Plasticity induced by pre-existing defects during high strain-rate loading

    NASA Astrophysics Data System (ADS)

    Bringa, Eduardo

    2014-03-01

    High strain-rate deformation of metals has been typically studied for perfect monocrystals. Computational advances now allow more realistic simulations of materials including defects, which lower the Hugoniot Elastic Limit, and lead to microstructures differing from the ones from perfect monocrystals. As pre-existing defects one can consider vacancy clusters, dislocation loops, grain boundaries, etc. New analysis tools allow analysis of dislocation densities and twin fractions, for both f.c.c. and b.c.c. metals. Recent results for defective single crystal Ta [Tramontina et al.., High Energy Den. Phys. 10, 9 (2014), and Ruestes et al., Scripta Mat. 68, 818 (2013)], and for polycrystalline b.c.c metals [Tang et al., Mat. Sci. Eng. A 580, 414 (2013), and Gunkelmann et al., Phys. Rev. B 86, 144111 (2012)] will be highlighted, alongside new results for nanocrystalline Cu, Ta, Fe, and Zr [Ruestes et al., Scripta Mat. 71, 9 (2014)]. This work has been carried out in collaboration with D. Tramontina, C. Ruestes, E. Millan, J. Rodriguez-Nieva, M.A. Meyers, Y. Tang, H. Urbassek, N. Gunkelmann, A. Stukowski, M. Ruda, G. Bertolino, D. Farkas, A. Caro, J. Hawreliak, B. Remington, R. Rudd, P. Erhart, R. Ravelo, T. Germann, N. Park, M. Suggit, S. Michalik, A. Higginbotham and J. Wark. Funding by PICT2008-1325 and SeCTyP U.N. Cuyo.

  3. [Effects of lower limit of subsurface drip irrigation on tomato growth and its yield in plastic tunnel].

    PubMed

    Zhuge, Yuping; Zhang, Yulong; Zhang, Xudong; Feng, Yongjun; Li, Jun; Huang, Yi; Mingda, Liu

    2004-05-01

    A subsurface drip irrigation experiment was conducted in a plastic tunnel to study the effects of different lower limits of subsurface drip irrigation on tomato growth and its yield. The lower limits of subsurface drip irrigation were expressed by soil water suctions detected by tensiometers placed in 30 cm soil layer. The designed values of soil water suction in this experiment were 10, 16, 25, 40 and 63 kPa, respectively. The results showed that the height and biomass of tomato plant decreased significantly with increasing lower limits of subsurface drip irrigation. Parabolic regression curves were suitable to simulate the relationships of stem diameter of tomato plant, yield, and water use efficiency (WUE) with lower limits of subsurface drip irrigation. The relationship between the ratio of stem diameter to plant height of tomato and lower limit could be simulated by three-dimensional multinomial regression curve. The growth of tomato root and shoot and their ratio R/S) varied under different lowerlimits of subsurface drip irrigation. The tomato plant grew well, RI/S was favorable, and the yield and WUE were higher when soil water suction was in the range of 25- 33 kPa. When this range was served as the criteria for subsurface drip irrigation, the soil water content at the beginning of irrigation should be lower, and the irrigation frequency should be fewer than that of conventional irrigation. This range of soil water suction was in favor of improving the WUE and decreasing labor cost for tomato cultivation in plastic tunnel.

  4. Consistency analysis of plastic samples based on similarity calculation from limited range of the Raman spectra

    NASA Astrophysics Data System (ADS)

    Lai, B. W.; Wu, Z. X.; Dong, X. P.; Lu, D.; Tao, S. C.

    2016-07-01

    We proposed a novel method to calculate the similarity between samples with only small differences at unknown and specific positions in their Raman spectra, using a moving interval window scanning across the whole Raman spectra. Two ABS plastic samples, one with and the other without flame retardant, were tested in the experiment. Unlike the traditional method in which the similarity is calculated based on the whole spectrum, we do the calculation by using a window to cut out a certain segment from Raman spectra, each at a time as the window moves across the entire spectrum range. By our method, a curve of similarity versus wave number is obtained. And the curve shows a large change where the partial spectra of the two samples is different. Thus, the new similarity calculation method identifies samples with tiny difference in their Raman spectra better.

  5. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  6. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion.

    PubMed

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.

  7. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

    PubMed Central

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation. PMID:27803661

  8. Effects of Hypotonic Saline Loading in Hydrated Dog: Evidence for a Saline-induced Limit on Distal Tubular Sodium Transport*

    PubMed Central

    Stein, Richard M.; Abramson, Ruth G.; Kahn, Thomas; Levitt, Marvin F.

    1967-01-01

    We performed studies on dogs under hydrated conditions, utilizing the rate of free water formation (CH2O) as an index of the rate of distal tubular sodium transport. Since CH2O could be progressively increased with no evidence of a maximal rate during loading with hypotonic (2.5%) mannitol, it was concluded that there is no limit on distal tubular sodium transport during mannitol loading. In contrast, during hypotonic (0.45%) saline loading CH2O rose initially, but as urine flow (V) exceeded 25% of the filtered load CH2O attained maximal levels (up to 20% of the filtered load) and remained stable as V increased to 50% of the filtered load. It was concluded that saline loading progressively inhibits proximal sodium reabsorption. Initially, the distal tubule absorbes a large fraction of the proximal rejectate and sodium excretion rises slightly. Eventually, an alteration in distal sodium transport appears which culminates in a maximal rate or transport limit. This distal transport limit provoked by saline loading could not be characterized by a classical Tm as seen with glucose and does not seem to be consequent to high rates of flow through the distal tubule. Regardless of the precise nature of this limit, the major increment in sodium excretion develops during saline loading only after saline alters the capacity of the distal tubule to transport sodium. PMID:6027084

  9. Modeling of limiter heat loads and impurity transport in Wendelstein 7-X startup plasmas

    NASA Astrophysics Data System (ADS)

    Effenberg, Florian; Feng, Y.; Frerichs, H.; Schmitz, O.; Hoelbe, H.; Koenig, R.; Krychowiak, M.; Pedersen, T. S.; Bozhenkov, S.; Reiter, D.

    2015-11-01

    The quasi-isodynamic stellarator Wendelstein 7-X starts plasma operation in a limiter configuration. The field consists of closed magnetic flux surfaces avoiding magnetic islands in the plasma boundary. Because of the small size of the limiters and the absence of wall-protecting elements in this phase, limiter heat loads and impurity generation due to plasma surface interaction become a concern. These issues are studied with the 3D fluid plasma edge and kinetic neutral transport code EMC3-Eirene. It is shown that the 3D SOL consists of three separate helical magnetic flux bundles of different field line connection lengths. A density scan at input power of 4MW reveals a strong modulation of the plasma paramters with the connection length. The limiter peak heat fluxes drop from 14 MWm-2 down to 10 MWm-2 with raising the density from 1 ×1018m-3 to 1.9 ×1019m-3, accompanied by an increase of the heat flux channel widths λq. Radiative power losses can help to avoid thermal overloads of the limiters at the upper margin of the heating power. The power removal feasibility of the intrinsic carbon and other extrinsic light impurities via active gas injection is discussed as a preparation of this method for island divertor operation. Work supported in part by start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and by the U.S. Department of Energy under grant DE-SC0013911.

  10. Behaviour of Silicon-Doped CFC Limiter under High Heat Load in TEXTOR-94

    NASA Astrophysics Data System (ADS)

    Huber, A.; Philipps, V.; Hirai, T.; Kirschner, A.; Lehnen, M.; Pospieszczyk, A.; Schweer, B.; Sergienko, G.

    In order to study the impurity production, recycling and power deposition a Si doped CFC test limiter (NS31) was used in TEXTOR-94. The release of impurities (C, Si, O, Cr, CD radicals) was measured spectroscopically. A reduced methane production was found in the Si doped graphite when compared to a pure graphite limiter. A smaller decrease of the carbon fluxes could also be observed. The limiter contained about 1%-1.5% of Si, but a relative Si flux (Si/D) from the Si doped CFC surface between 0.12% and 0.4% has been measured. A chemical erosion of Si due to formation of SiDx has not been observed. Silicon evaporated from the surface at temperatures above 1500°C. This led to an increase of Si concentration and total radiation losses from the plasma. Surface analysis shows the formation of microcracks and holes on the plasma exposed limiter surface. The released Si was deposited in the vicinity of the tangency point of the limiter. Whereas a Si depletion was observed in the area of highest power loading with values reaching in and in-between fibres values of 0.03% and 0.02% respectively.

  11. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    SciTech Connect

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2015-01-01

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.

  12. Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation

    SciTech Connect

    Hanson, Reed; Ickes, Andrew; Wallner, Thomas

    2016-04-12

    Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.

  13. Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses

    NASA Astrophysics Data System (ADS)

    Kondoh, K.; Atluri, S. N.

    1987-03-01

    Simple and economical procedures for large-deformation elasto-plastic analysis of frames, whose members can be characterized as beams, are presented. An assumed stress approach is employed to derive the tangent stiffness of the beam, subjected in general to non-conservative type distributed loading. The beam is assumed to undergo arbitrarily large rigid rotations but small axial stretch and relative (non-rigid) point-wise rotations. It is shown that if a plastic-hinge method (with allowance being made for the formation of the hinge at an arbitrary location or locations along the beam) is employed, the tangent stiffness matrix may be derived in an explicit fashion, without numerical integration. Several examples are given to illustrate the relative economy and efficiency of the method in solving large-deformation elasto-plastic problems. The method is of considerable utility in analysing off-shore structures and large structures that are likely to be deployed in outerspace.

  14. Postthaw survival of in vitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw.

    PubMed

    Ha, A-Na; Park, Han-Seul; Jin, Jong-In; Lee, Sang-Ho; Ko, Dae-Hwan; Lee, Dong-Suk; White, Kenneth L; Kong, Il-Keun

    2014-02-01

    In this study, we investigated whether vitrification of an embryo by attachment to the inner surface of a plastic straw, which requires a small volume of vitrification solution, improves the survival of thawed embryos. In vitro-produced Korean native cattle blastocysts were randomly assigned into four groups: (1) blastocysts attached to the inner surface of a plastic straw (aV); (2) blastocysts loaded into the column of a plastic straw (cV); (3) blastocysts directly dropped into liquid nitrogen (dV); and (4) nonvitrified blastocysts (control). The postthaw recovery rate did not significantly differ among the aV, dV, and cV groups (98.3% vs. 81.5% vs. 91.4%). The postthaw survival rate was greater in the control, aV, and dV groups than in the cV group (100%, 87.7%, and 81.8% vs. 26.4%, P < 0.05), but did not significantly differ among the control, aV, and dV groups. The total number of cells per blastocyst did not significantly differ among the groups (134.4 ± 38.9 in control vs. 114 ± 48.1 in aV, 105.6 ± 33.9 in dV, and 102 ± 35.1 in cV group). However, the number of apoptotic cells per blastocyst was higher in the dV and cV groups than in the control group (10.9 ± 9.6 and 14.5 ± 9.5 vs. 0.4 ± 1.4; P < 0.05), but did not significantly differ between the control and aV groups (0.4 ± 1.4 vs. 6.6 ± 9.5). In addition, the blastocoel of each blastocyst was left intact or was mechanically punctured to reduce its volume, and the blastocysts were then vitrified using the aV method. At 12 hours after thawing, the re-expansion rate did not significantly differ among the control, punctured aV, and nonpunctured aV groups (93.3% vs. 85.2% vs. 82.8%). However, at 24 hours after thawing, the hatching rate was greater in the control and punctured aV groups than in the nonpunctured aV group (75% and 62.9% vs. 37.1%; P < 0.05). The total number of cells per blastocyst was greater in the control group than in the nonpunctured aV group (143 ± 37.2 vs. 94.5 ± 18.6; P < 0

  15. Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity.

    PubMed

    Wu, Chi-Shiun; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2012-05-01

    Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles' ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.

  16. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.

    PubMed

    Suryan, Robert M; Anderson, David J; Shaffer, Scott A; Roby, Daniel D; Tremblay, Yann; Costa, Daniel P; Sievert, Paul R; Sato, Fumio; Ozaki, Kiyoaki; Balogh, Gregory R; Nakamura, Noboru

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  17. Wind, waves, and wing loading: Morphological specialization may limit range expansion of endangered albatrosses

    USGS Publications Warehouse

    Suryan, R.M.; Anderson, D.J.; Shaffer, S.A.; Roby, D.D.; Tremblay, Y.; Costa, D.P.; Sievert, P.R.; Sato, F.; Ozaki, K.; Balogh, G.R.; Nakamura, N.

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  18. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    SciTech Connect

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion

  19. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    Three six place, low wing, twin engine general aviation airplane test specimens were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. One structurally unmodified airplane was the base line specimen for the test series. The other two airplanes were structurally modified to incorporate load limiting (energy absorbing) subfloor concepts into the structure for full scale crash test evaluation and for comparison with the unmodified airplane test results. Typically, the lowest floor accelerations, the lowest anthropomorphic dummy responses, and the least seat crushing of standard and load limiting seats occurred in the airplanes modified with load limiting subfloors, wherein the greatest structural crushing of the subfloor took place. The better performing of the two load limiting subfloor concepts reduced the peak airplane floor accelerations to -25g to -30g as compared with approximately -40g to -55g for the unmodified airplane structure.

  20. Performance of two load-limiting subfloor concepts in full-scale general aviation airplane crash tests

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.

  1. Notch Signaling Limits Supporting Cell Plasticity in the Hair Cell-Damaged Early Postnatal Murine Cochlea

    PubMed Central

    Korrapati, Soumya; Roux, Isabelle; Glowatzki, Elisabeth; Doetzlhofer, Angelika

    2013-01-01

    In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin. PMID:24023676

  2. Aging attenuates vascular and metabolic plasticity but does not limit improvement in muscle VO(2) max.

    PubMed

    Lawrenson, L; Hoff, J; Richardson, R S

    2004-04-01

    The interactions between exercise, vascular and metabolic plasticity, and aging have provided insight into the prevention and restoration of declining whole body and small muscle mass exercise performance known to occur with age. Metabolic and vascular adaptations to normoxic knee-extensor exercise training (1 h 3 times a week for 8 wk) were compared between six sedentary young (20 +/- 1 yr) and six sedentary old (67 +/- 2 yr) subjects. Arterial and venous blood samples, in conjunction with a thermodilution technique facilitated the measurement of quadriceps muscle blood flow and hematologic variables during incremental knee-extensor exercise. Pretraining, young and old subjects attained a similar maximal work rate (WR(max)) (young = 27 +/- 3, old = 24 +/- 4 W) and similar maximal quadriceps O(2) consumption (muscle Vo(2 max)) (young = 0.52 +/- 0.03, old = 0.42 +/- 0.05 l/min), which increased equally in both groups posttraining (WR(max), young = 38 +/- 1, old = 36 +/- 4 W, Muscle Vo(2 max), young = 0.71 +/- 0.1, old = 0.63 +/- 0.1 l/min). Before training, muscle blood flow was approximately 500 ml lower in the old compared with the young throughout incremental knee-extensor exercise. After 8 wk of knee-extensor exercise training, the young reduced muscle blood flow approximately 700 ml/min, elevated arteriovenous O(2) difference approximately 1.3 ml/dl, and increased leg vascular resistance approximately 17 mmHg x ml(-1) x min(-1), whereas the old subjects revealed no training-induced changes in these variables. Together, these findings indicate that after 8 wk of small muscle mass exercise training, young and old subjects of equal initial metabolic capacity have a similar ability to increase quadriceps muscle WR(max) and muscle Vo(2 max), despite an attenuated vascular and/or metabolic adaptation to submaximal exercise in the old.

  3. HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Developments of a Production Intent Cam-Based VVA Engine: The Low Load Limit

    SciTech Connect

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  4. HCCI Load Expansion Opportunities using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-based VVA Engine: The Low Load Limit

    SciTech Connect

    Weall, Adam J; Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2012-01-01

    While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000rpm. Using different injection strategies, including the NVO pilot injection approach, the single-cylinder engine is operated over a load range from 160-390 kPa net IMEP at 2000 rpm. Changes to valve opening duration on the single-cylinder HVA engine illustrate opportunities for load expansion and efficiency improvement at certain conditions. For instance, the low load limit can be extended on the HVA engine by reducing breathing and operating closer to a stoichiometric air fuel ratio (AFR) by using valve deactivation. The naturally aspirated engine used here without external EGR confirmed that as operating load increases the emissions of NOx increases due to combustion temperature. NOx emissions are found to be one limitation to the maximum load limitation, the other being high pressure rise rate. It is found that the configuration of the production intent cam-based system represents a good compromise between valve lift and duration in the low to medium load region. Changing the extent of charge motion

  5. Exploring the influence of loading geometry on the plastic flow properties of geological materials: Results from combined torsion + axial compression tests on calcite rocks

    NASA Astrophysics Data System (ADS)

    Covey-Crump, S. J.; Xiao, W. F.; Mecklenburgh, J.; Rutter, E. H.; May, S. E.

    2016-07-01

    For technical reasons, virtually all plastic deformation experiments on geological materials have been performed in either pure shear or simple shear. These special case loading geometries are rather restrictive for those seeking insight into how microstructure evolves under the more general loading geometries that occur during natural deformation. Moreover, they are insufficient to establish how plastic flow properties might vary with the 3rd invariant of the deviatoric stress tensor (J3) which describes the stress configuration, and so applications that use those flow properties (e.g. glaciological and geodynamical modelling) may be correspondingly compromised. We describe an inexpensive and relatively straightforward modification to the widely used Paterson rock deformation apparatus that allows torsion experiments to be performed under simultaneously applied axial loads. We illustrate the performance of this modification with the results of combined stress experiments performed on Carrara marble and Solnhofen limestone at 500°-600 °C and confining pressures of 300 MPa. The flow stresses are best described by the Drucker yield function which includes J3-dependence. However, that J3-dependence is small. Hence for these initially approximately isotropic calcite rocks, flow stresses are adequately described by the J3-independent von Mises yield criterion that is widely used in deformation modelling. Loading geometry does, however, have a profound influence on the type and rate of development of crystallographic preferred orientation, and hence of mechanical anisotropy. The apparatus modification extends the range of loading geometries that can be used to investigate microstructural evolution, as well as providing greater scope for determining the shape of the yield surface in plastically anisotropic materials.

  6. Strength Estimation of Self-Piercing Rivets using Lower Bound Limit Load Analysis

    SciTech Connect

    Sun, Xin; Khaleel, Mohammad A.

    2005-08-01

    This paper summarizes the authors' work on strength and failure mode estimation of self-piercing rivets (SPR) for automotive applications. First, the static cross tension strength of an SPR joint is estimated using a lower bound limit load based strength estimator. Failure mode associated with the predicted failure strength can also be identified. It is shown that the cross tension strength of an SPR joint depends on the material and gage combinations, rivet design, die design and riveting direction. The analytical rivet strength estimator is then validated by experimental rivet strength measurements and failure mode observations from nine SPR joint populations with various material and gage combinations. Next, the estimator is used to optimize rivet strength. Two illustrative examples are presented in which rivet strength is improved by changing rivet length and riveting direction from the original manufacturing parameters.

  7. Load limit of a UASB fed septic tank-treated domestic wastewater.

    PubMed

    Lohani, Sunil Prasad; Bakke, Rune; Khanal, Sanjay N

    2015-01-01

    Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT≥6 h, indicating a hydraulic load design limit. The tested septic tank-UASB combined system can be a low-cost and effective on-site sanitation solution.

  8. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of... core wire rope. (f) Manila rope which is not marked by the manufacturer with a working load limit...

  9. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of... core wire rope. (f) Manila rope which is not marked by the manufacturer with a working load limit...

  10. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of... core wire rope. (f) Manila rope which is not marked by the manufacturer with a working load limit...

  11. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of... core wire rope. (f) Manila rope which is not marked by the manufacturer with a working load limit...

  12. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of... core wire rope. (f) Manila rope which is not marked by the manufacturer with a working load limit...

  13. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  14. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  15. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  16. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  17. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  18. The theoretical limits to the power output of a muscle-tendon complex with inertial and gravitational loads.

    PubMed Central

    Galantis, Apostolos; Woledge, Roger C

    2003-01-01

    When a muscle delivers power to an inertial load through a spring, the peak power can exceed the maximum that the muscle alone could produce. Using normalized differential equations relating dimensionless quantities we show, by solving the equations either analytically or numerically, that one dimensionless constant (Xi), representing the inertial load, is sufficient to specify the behaviour during shortening of a muscle-tendon complex with linear force-velocity and force-extension properties. In the presence of gravity, an additional constant (Gamma), representing the gravitational acceleration, is required. Nonlinear force-velocity and force-extension relationships each introduce an additional constant, representing their curvature. In the absence of gravity the power output delivered to an inertial load is limited to approximately 1.4 times the maximum power of the muscle alone, and when gravity is present the power delivered is limited to approximately twice the power of muscle alone. These limits are found for the purely inertial load at Xi ca. 1 and with gravity acting at XiGamma = 0.5 with Xi arbitrarily small. The effects of nonlinear muscle and tendon properties tend to cancel each other out and do not produce large deviations from these optima. A lever system of constant ratio between muscle and load does not alter these limits. Cams and catches are required to exceed these limits and attain the high power outputs sometimes observed during explosive animal movement. PMID:12965015

  19. Wheel/rail contact geometry assessment to limit rolling contact fatigue initiation at high axle loads

    NASA Astrophysics Data System (ADS)

    Fröhling, Robert; Spangenberg, Ulrich; Hettasch, Georg

    2012-01-01

    Rolling contact fatigue on any railway system has a significant impact on the safety and efficiency of the operation. This is especially true for heavy haul railways where higher axle loads and demands for higher throughput have, over the years, challenged the limits within the wheel/rail interface. The objective of this paper is to present a methodology to manage this stress state using a detailed wheel/rail contact stress analysis. Based on the results of recent wheel profile and rail profile surveys, a kinematic wheel/rail contact analysis is performed to identify and eliminate profiles that cause high stresses. The results show that the current hollow wear criterion is effective, but that an alternative or additional criterion based on the gauge side false flange gradient or the calculated peak contact stress values can further reduce the stress state. Within the wheel and rail profile combinations investigated, the contact stresses were largely independent of the transverse profile of the high rail.

  20. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits.

    PubMed

    Kern, Pippa; Cramp, Rebecca L; Seebacher, Frank; Ghanizadeh Kazerouni, Ensiyeh; Franklin, Craig E

    2015-12-01

    Temperature and ultraviolet radiation (UVR) are key environmental drivers that are linked in their effects on cellular damage. Exposure to both high temperatures and UVR can cause cellular damage that result in the up-regulation of common protective mechanisms, such as the induction of heat shock proteins (Hsps) and antioxidants. As such, the interactive effects of these stressors at the cellular level may determine physiological limits, such as thermal tolerance. Furthermore, antioxidant activity is often thermally sensitive, which may lead to temperature dependent effects of UVR exposure. Here we examined the interactive effects of temperature and UVR on upper thermal limits, Hsp70 abundance, oxidative damage and antioxidant (catalase) activity. We exposed Limnodynastes peronii tadpoles to one of three temperature treatments (constant 18°C, constant 28°C and daily fluctuations between 18 and 28°C) in the presence or absence of UVR. Tadpoles were tested for upper thermal limits (CTmax), induction of Hsp70, oxidative damage and catalase activity. Our results show that CTmax was influenced by an interactive effect between temperature and UVR treatment. For tadpoles kept in cold temperatures, exposure to UVR led to cross-tolerance to high temperatures, increasing CTmax. Plasticity in this trait was not fully explained by changes in the lower level mechanistic traits examined. These results highlight the difficulty in predicting the mechanistic basis for the interactive effects of multiple stressors on whole animal traits. Multifactorial studies may therefore be required to understand how complex mechanistic processes shape physiological tolerances, and determine responses to environmental variation.

  1. An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading

    SciTech Connect

    Saleh, Ahmed A.; Brown, Donald W.; Clausen, Bjørn; Tomé, Carlos N.; Pereloma, Elena V.; Davies, Christopher H. J.; Gazder, Azdiar A.

    2015-04-27

    In-situ neutron diffraction during cyclic tension-compression loading (∼+3.5% to −2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, α′-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the ε-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the γ→ε and/or ε→α′ transformations.

  2. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    NASA Astrophysics Data System (ADS)

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-03-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  3. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  4. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  5. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness

    PubMed Central

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893

  6. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.

    PubMed

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

  7. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...) Model G280 Airplane, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation... conditions are issued for the Gulfstream Aerospace LP (GALP) model G280 airplane. This airplane will have a...: Federal Aviation Administration, Transport Airplane Directorate, Attn: Rules Docket (ANM-113), Docket...

  8. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  9. Maternal dietary loads of α-tocopherol depress protein kinase C signaling and synaptic plasticity in rat postnatal developing hippocampus and promote permanent deficits in adult offspring.

    PubMed

    Betti, Michele; Ambrogini, Patrizia; Minelli, Andrea; Floridi, Alessandro; Lattanzi, Davide; Ciuffoli, Stefano; Bucherelli, Corrado; Prospero, Emilia; Frontini, Andrea; Santarelli, Lory; Baldi, Elisabetta; Benetti, Fernando; Galli, Francesco; Cuppini, Riccardo

    2011-01-01

    Vitamin E (α-tocopherol) supplementation has been tested as prophylaxis against gestational disorders associated with oxidative damage. However, recent evidence showing that high maternal α-tocopherol intake can adversely affect offspring development raises concerns on the safety of vitamin E extradosages during pregnancy. Besides acting as an antioxidant, α-tocopherol depresses cell proliferation and modulates cell signaling through inhibiting protein kinase C (PKC), a kinase that is deeply involved in neural maturation and plasticity. Possible effects of α-tocopherol loads in the maturing brain, where PKC dysregulation is associated to developmental dysfunctions, are poorly known. Here, supranutritional doses of α-tocopherol were fed to pregnant and lactating dams to evaluate the effects on PKC signaling and morphofunctional maturation in offspring hippocampus. Results showed that maternal supplementation potentiates hippocampal α-tocopherol incorporation in offspring and leads to marked decrease of PKC phosphorylation throughout postnatal maturation, accompanied by reduced phosphorylation of growth-associated protein-43 and myristoylated alanine-rich C kinase substrate, two PKC substrates involved in neural development and plasticity. Although processes of neuronal maturation, synapse formation and targeting appeared unaffected, offspring of supplemented mothers displayed a marked reduction of long-term synaptic plasticity in juvenile hippocampus. Interestingly, this impairment persisted in adulthood, when a deficit in hippocampus-dependent, long-lasting spatial memory was also revealed. In conclusion, maternal supplementation with elevated doses of α-tocopherol can influence cell signaling and synaptic plasticity in developing hippocampus and promotes permanent adverse effects in adult offspring. The present results emphasize the need to evaluate the safety of supranutritional maternal intake of α-tocopherol in humans.

  10. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field

    PubMed Central

    Dieckhoff, Christine; Theobald, Julian C; Wäckers, Felix L; Heimpel, George E

    2014-01-01

    Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limitation are mediated by oviposition and egg maturation rates as well as by starvation risk and other determinants of adult lifespan. Here, we assessed egg load and nutritional state in the soybean aphid parasitoid Binodoxys communis under field conditions to estimate its risk of becoming either egg- or time-limited. The majority of female B. communis showed no signs of egg limitation. Experimental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads remained constant over the course of the day at approximately 80 eggs, suggesting that egg maturation compensates for oviposition. This is the first case of such “egg load buffering” documented for a parasitoid in the field. Despite this buffering, egg loads dropped slightly with increasing host (aphid) density. This suggests that egg limitation could occur at very high host densities as experienced in outbreak years in some locations in the Midwestern USA. Biochemical analyses of sugar profiles showed that parasitoids fed upon sugar in the field at a remarkably high rate. Time limitation through starvation thus seems to be very low and aphid honeydew is most likely a source of dietary sugar for these parasitoids. This latter supposition is supported by the fact that body sugar levels increase with host (aphid) density. Together, these results suggest that fecundity of B. communis benefits from both dynamic egg maturation strategies and sugar-feeding. PMID:24963373

  11. Estimation of fatigue and extreme load distributions from limited data with application to wind energy systems.

    SciTech Connect

    Fitzwater, LeRoy M.

    2004-01-01

    An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may be obtained by separating the problem into two uncoupled parts, (1) a turbine specific portion, independent of the site and (2) a site-specific description of environmental variables. We consider contextually appropriate probability models to describe the turbine specific response for extreme loads or fatigue. The site-specific portion is described by a joint probability distribution of a vector of environmental variables, which characterize the wind process at the hub-height of the wind turbine. Several approaches are considered for combining the two portions to obtain an estimate of the extreme load, e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain accurate estimates, including various levels of epistemic uncertainty, of the turbine response.

  12. On the limits of interpreting some plastic responses through a cooperator/cheater prism. A comment on Harrison.

    PubMed

    Alizon, S

    2013-09-01

    Micro-organisms are known to exhibit phenotypic plasticity in response to changes in their environment. Recent studies have shown that a parasite strain can adjust its host exploitation strategies to the presence of unrelated strains, e.g. for Plasmodium chabaudi by adjusting its sex-ratio. J. Evol. Biol. 2013; 26: 1370-1378 claims to report a similar plastic response to the presence of unrelated strains in the case of siderophore-producing bacteria. I argue that she does not provide sufficient evidence to support the interpretation of the plastic response she observes (increasing siderophore production in the presence of cheaters) through a cooperator/cheater framework. I show that known plastic responses to physicochemical factors, such as siderophore or iron concentration, seem to offer a clearer and more parsimonious explanation. Finally, I also challenge the parallel she makes between the process she observes in siderophore-producing bacteria and compensation in bi-parental care models.

  13. Incipient plasticity in metallic thin films

    NASA Astrophysics Data System (ADS)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Syed Asif, S. A.; Warren, O. L.

    2007-04-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic instabilities as compared to pure Al. Displacement control allows for a more sensitive detection of such instabilities, as it does not require collective dislocation motion to the extent required by load-controlled indentation in order to resolve a yield event. This perception is supported by in situ transmission electron microscopy observations.

  14. Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity.

    PubMed

    Slivka, Dustin; Raue, Ulrika; Hollon, Chris; Minchev, Kiril; Trappe, Scott

    2008-07-01

    The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.

  15. Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint

    SciTech Connect

    Diakov, V.; Short, W.; Gilchrist, B.

    2012-06-01

    Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

  16. Roles of texture and latent hardening on plastic anisotropy of face-centered-cubic materials during multi-axial loading

    NASA Astrophysics Data System (ADS)

    Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.

    2017-02-01

    This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.

  17. Adsorption of xenobiotics to plastic tubing incorporated into dynamic in vitro systems used in pharmacological research--limits and progress.

    PubMed

    Unger, J K; Kuehlein, G; Schroers, A; Gerlach, J C; Rossaint, R

    2001-07-01

    Commonly used materials incorporated into dynamic culture systems typically show the feature of adsorption of lipophilic xenobiotics. Yet, this phenomenon is strongly limiting the use of dynamic culture models and ex vivo organ perfusions in pharmacological and toxicological research. The aim of the study was to characterize different materials with respect to their capacity for drug adsorption and to find methods or materials to reduce the loss of substrate by adsorption in order to improve the use of dynamic in vitro systems. The adsorption of different xenobiotics (lidocaine, midazolam, lormetazepam, phenobarbital, testosterone, ethoxyresoroufine) to tubes used in dynamic in vitro systems (polyvinyl-chloride, silicone) were investigated and compared to a new material (silicone-caoutchouc-mixture). In addition, the role of protein deposition onto the tubing was studied and it was investigated whether it was possible to reach saturation of the inner tube surface by pre-loading it with the test compound. We found that silicone tubes provided the highest comfort with respect to handling and reusability, but they also demonstrated the highest capacity for substrate adsorption. Polyvinyl-chloride was the second best in handling but also demonstrated a high complexity in its adsorption behavior. The silicone-caoutchouc-mixture reached acceptable experimental results with respect to its handling and demonstrated a very low capacity for substrate adsorption.

  18. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-03-19

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification.

  19. Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems

    PubMed Central

    Sleutels, Tom H. J. A.; Molenaar, Sam D.; Heijne, Annemiek Ter; Buisman, Cees J. N.

    2016-01-01

    A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future. PMID:27681899

  20. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...

  1. Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats.

    PubMed

    Abe, Chikara; Tanaka, Kunihiko; Awazu, Chihiro; Chen, Huayue; Morita, Hironobu

    2007-08-01

    Previous studies conducted in our laboratory have demonstrated that the vestibular system plays a significant role in controlling arterial pressure (AP) in conscious rats under conditions of transient microgravity. The vestibular system is known to be highly plastic, and on exposure to different gravitational environments, the sensitivity of the vestibular system-mediated AP response might be altered. In order to test this hypothesis, rats were maintained in a 3-G or a normal 1-G environment for 2 weeks, and the AP responses to free drop-induced microgravity were determined. In 1-G rats, the microgravity increased the AP by 37 +/- 3 mmHg; this pressor response was significantly attenuated by vestibular lesion (VL) (24 +/- 3 mmHg) or body stabilization (29 +/- 2 mmHg). Thus, the microgravity-induced pressor response was mediated by both the vestibular and nonvestibular systems; the input of the latter system was blocked by body stabilization. In the 3-G rats, the pressor responses were significantly suppressed compared to those in the corresponding 1-G rats; i.e., the AP increased by 24 +/- 2 mmHg in freely moving 3-G rats, by 10 +/- 4 mmHg in 3-G rats with VL, and by 13 +/- 4 mmHg in stabilized 3-G rats. Furthermore, there was no difference between the 1- and 3-G rats in terms of the pressor response induced by stressors such as a loud noise or an air jet. These results indicate that pre-exposure to 3-G for 2 weeks induces plasticity in both the vestibular- and nonvestibular-mediated AP responses to microgravity.

  2. [Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China].

    PubMed

    Liu, Sheng-Yao; Zhang, Li-Feng; Li, Zhi-Hong; Jia, Jian-Ming; Fan, Feng-Cui; Shi, Yu-Fang

    2014-11-01

    Four treatments, including ridge tillage with plastic mulch (RP), ridge tillage without mulch (RB), flat tillage with plastic mulch (FP) and flat tillage without mulch (FB), were carried out to examine the tillage type and mulch on the effects of soil moisture and temperature, yield and water use efficiency (WUE) of dry land spring maize in the North China. Results showed that the average soil temperature was increased by 1-3 °C and the accumulated soil temperature was increased by 155.2-280.9 °C from sowing to tasseling by plastic mulch, and the growing duration was extended by 5.9-10.7 d. The water conservation effect of plastic mulch was significant from sowing to the seedling establishment, with WUE being increased by 81.6%-136.4% under mulch as compared with that without mulch. From the seedling to jointing stage, which coincided with the dry period in the region, soil water utilization by the maize under mulch could reach the depth of 80-100 cm, and its WUE was about 17.0%-21.6% lower than the maize without mulch, since the latter was affected by dry stress. With the coming of rainy season around the trumpeting stage, soil water in each treatment was replenished and maintained at relative high level up to harvest. Yield of maize was increased by 9.5% under RP as compared with RB. However, yield was reduced by 5.0% under FP, due to the plastic film under flat tillage prevented the infiltration of rainfall and waterlogging occurred. No significant difference in yield was found between RB and FB. Higher yield of spring maize was limited because of the mismatching in water supply and demand characterized by soil water shortage before the rainy season and abundant soil water storage after the rainy season.

  3. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    PubMed

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.

  4. Hydraulic mechanism to limit torsional loads between the IUS and space transportation system orbiter

    NASA Technical Reports Server (NTRS)

    Farmer, James R.

    1986-01-01

    The Inertial Upper Stage (IUS) is a two-stage booster used by NASA and the Defense Department to insert payloads into geosynchronous orbit from low-Earth orbit. The hydraulic mechanism discussed here was designed to perform a specific dynamic and static interface function within the Space Transportation System's Orbiter. Requirements, configuration, and application of the hydraulic mechanism with emphasis on performance and methods of achieving zero external hydraulic leakage are discussed. The hydraulic load-leveler mechanism meets the established design requirements for operation in a low-Earth orbit. Considerable testing was conducted to demonstrate system performance and verification that external leakage had been reduced to zero. Following each flight use of an ASE, all hydraulic mechanism components are carefully inspected for leakage. The ASE, including the hydraulic mechanism, has performed without any anomalies during all IUS flights.

  5. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  6. Fatigue life prediction for high-heat-load components made of GlidCop by elastic-plastic analysis.

    PubMed

    Takahashi, Sunao; Sano, Mutsumi; Mochizuki, Tetsuro; Watanabe, Atsuo; Kitamura, Hideo

    2008-03-01

    A procedure to predict the fatigue fracture life of high-heat-load components made of GlidCop has been successfully established. This method is based upon the Manson-Coffin equation with a cumulative linear damage law. This prediction was achieved by consolidating the results of experiments and analyses, and considered the effects of environment and creep. A low-cycle-fatigue test for GlidCop was conducted so that environment-dependent Delta(t)-N(f) diagrams for any temperature could be prepared. A special test piece was designed to concentrate the strain in a central area locally, resulting in the low-cycle-fatigue fracture. The experiments were carried out by repeatedly irradiating a test piece with an electron beam. The results of the experiment confirmed that the observed fatigue life was within a factor of two when compared with the predicted fatigue life, yet located on the safer side.

  7. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  8. Small amplitude, free longitudinal vibrations of a load on a finitely deformed stress-softening spring with limiting extensibility

    NASA Astrophysics Data System (ADS)

    Beatty, M. F.; Bhattacharyya, R.; Sarangi, S.

    2009-09-01

    A constitutive theory for a general class of incompressible, isotropic stress-softening, limited elastic rubberlike materials is introduced. The model is applied to study the small amplitude, free longitudinal vibrational frequency of a load about a suspended static equilibrium stretch of a finitely deformed, stress-softening spring with limiting extensibility. A number of physical results, including bounds on the frequency, are reported. It is proved, for example, that the normalized vibrational frequency for the ideally elastic neo-Hookean oscillator is a lower bound for the normalized frequency of every incompressible, isotropic stress-softening, limited elastic oscillator within the general class. All results are illustrated for the special limited elastic Gent and the purely elastic Demiray biomaterial models, both with stress-softening characterized by a Zúñiga-Beatty front factor damage function. The results for both stress-softening models are compared with experimental data for several gum rubbers and thoracic aortic tissue provided by others; and, overall, it is found that the stress-softening, limited elastic Gent model best characterizes the data.

  9. Economic-impact analysis of effluent-limitations guidelines and standards for the organic chemicals, plastics, and synthetic-fibers industry

    SciTech Connect

    Not Available

    1987-09-01

    This report identifies and analyzes economic impacts that are likely to result from water-pollution-control regulations on the organic chemicals, plastics, and synthetic fibers (OCPSF) industry. The regulations included EPA effluent limitations and standards. The report supplements technical studies supporting the issuance of the OCPSF regulations by estimating the broader economic effects that might result from the application of various control methods and technologies. The primary economic-impact variables assessed include the costs of the contemplated regulations, and the potential for these regulations to cause plant closure, unemployment, reductions in profitability, shifts in the balance of trade, and anticompetitive effects on small business and new facilities.

  10. Limited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus.

    PubMed

    Pitchers, W R; Brooks, R; Jennions, M D; Tregenza, T; Dworkin, I; Hunt, J

    2013-05-01

    Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders' equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent study, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability are sparse, and largely focused on morphological traits. Here, we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit.

  11. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    SciTech Connect

    Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  12. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  13. Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings

    NASA Astrophysics Data System (ADS)

    Morin, Léo; Leblond, Jean-Baptiste; Tvergaard, Viggo

    2016-09-01

    An extension of Gurson's famous model (Gurson, 1977) of porous plastic solids, incorporating void shape effects, has recently been proposed by Madou and Leblond (Madou and Leblond, 2012a, 2012b, 2013; Madou et al., 2013). In this extension the voids are no longer modelled as spherical but ellipsoidal with three different axes, and changes of the magnitude and orientation of these axes are accounted for. The aim of this paper is to show that the new model is able to predict softening due essentially to such changes, in the absence of significant void growth. This is done in two steps. First, a numerical implementation of the model is proposed and incorporated into the SYSTUS® and ABAQUS® finite element programmes (through some freely available UMAT (Leblond, 2015) in the second case). Second, the implementation in SYSTUS® is used to simulate previous "numerical experiments" of Tvergaard and coworkers (Tvergaard, 2008, 2009, 2012, 2015a; Dahl et al., 2012; Nielsen et al., 2012) involving the shear loading of elementary porous cells, where softening due to changes of the void shape and orientation was very apparent. It is found that with a simple, heuristic modelling of the phenomenon of mesoscopic strain localization, the model is indeed able to reproduce the results of these numerical experiments, in contrast to Gurson's model disregarding void shape effects.

  14. Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians.

    PubMed

    Naushad, Shaik Mohammad; Krishnaprasad, Chintakindi; Devi, Akella Radha Rama

    2014-05-01

    Methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism shows considerable heterogeneity in its distribution in humans worldwide. The current study was conducted to investigate whether this polymorphism exhibited adaptive developmental plasticity in the control of the TT-genotype frequency. We screened 1,818 South Indian subjects (895 males and 923 females) for MTHFR C677T polymorphism using PCR-restriction fragment length polymorphism approach. MTHFR 677T-allele frequency in males and females was 9.1 and 11.0%, respectively. Compared to females, males had lower frequency of TT-genotype [odds ratio 0.31, 95% confidence interval (CI) 0.08-1.01]. The frequency of MTHFR 677T-allele was highest in the age group of 20-40 years and it gradually decreased from 40-60 to 60-80 years (P trend<0.0001). MTHFR 677TT-genotype was associated with 7.02-folds (95% CI: 2.12-25.63, P<0.0001) cumulative risk for recurrent pregnancy loss (RPL), neural tube defects (NTDs) and deep vein thrombosis (DVT). Linear regression model suggested that male gender exhibited increased homocysteine levels by 9.35 μmol/L while each MTHFR 677T-allele contributed to 4.63 μmol/L increase in homocysteine. Plasma homocysteine showed inverse correlation with dietary folate (r=-0.17, P<0.0001), B2 (r=-0.14, P<0.0001) and B6 (r=-0.07, P=0.03). Examination of the spontaneously aborted fetuses (n=35) showed no significant association of fetal genotype on its in utero viability. From the current study, it was concluded that C677T seemed to have acquired adaptive developmental plasticity among South Indians due to environmental influences thus contributing to hyperhomocysteinemia and its associated complications such as RPL, NTDs, DVT, etc.

  15. Mechanical plasticity of cells

    NASA Astrophysics Data System (ADS)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  16. Dry Blood Spots a Reliable Method for Measurement of Hepatitis B Viral Load in Resource-Limited Settings

    PubMed Central

    Stene-Johansen, Kathrine; Yaqoob, Nadeem; Overbo, Joakim; Aberra, Hanna; Desalegn, Hailemichael; Berhe, Nega; Johannessen, Asgeir

    2016-01-01

    Background & Aims Hepatitis B virus (HBV) quantification is essential in the management of chronic hepatitis B, both to determine treatment eligibility and in the monitoring of treatment effect. This test, however, is rarely available in resource-limited settings due to high costs and stringent requirements for shipment and storage of plasma. Dried Blood Spots (DBS) can be a convenient alternative to plasma, but its use for HBV monitoring has not been investigated under real-life conditions in Africa. Methods The performance of DBS in HBV quantification was investigated using a modified commercial test (Abbott RealTime HBV assay). Paired DBS and plasma samples were collected from an HBV positive cohort in Addis Ababa, Ethiopia. DBS were stored at ambient temperature for 4–39 days before shipment to the laboratory. Results Twenty-six paired samples were selected covering the total range of quantification, from 2.14 log IU/ml to >7 log IU/ml. HBV was detected in 21 of 21 (100%) DBS from patients with a corresponding plasma viral load above 2.70 log IU/ml. The mean difference between plasma and DBS was 0.59 log IU/ml, and the correlation was strong (R2 = 0.92). In stability studies there was no significant change in DBS viral load after storage at room temperature for up to 12 weeks. Conclusions This study suggests that DBS can be a feasible and reliable alternative to plasma for quantification of HBV in resource-limited settings. DBS can expand access to antiviral treatment for patients in low- and middle-income countries. PMID:27820845

  17. Flow Curve Determination at Large Plastic Strain Levels: Limitations of the Membrane Theory in the Analysis of the Hydraulic Bulge Test

    NASA Astrophysics Data System (ADS)

    Lemoine, X.; Iancu, A.; Ferron, G.

    2011-05-01

    Nowadays, an accurate determination of the true stress-strain curve is a key-element for all finite element (FE) forming predictions. Since the introduction of Advanced High Strength Steels (AHSS) for the automotive market, the standard uniaxial tension test suffers the drawback of relatively low uniform elongations. The extrapolation of the uniaxial stress-strain curve up to large strains is not without consequence in forming predictions—especially formability and springback. One of the means to solve this problem is to use experimental tests where large plastic strain levels can be reached. The hydraulic bulge test is one of these tests. The effective plastic strain levels reached in the bulge test are of about 0.7. From an experimental standpoint, the biaxial flow stress is estimated using measurement of fluid pressure, and calculation of thickness and curvature at the pole, via appropriate measurements and assumptions. The biaxial stress at the pole is determined using the membrane equilibrium equation. The analysis proposed in this paper consists of performing "virtual experiments" where the results obtained by means of FE calculations are used as input data for determining the biaxial stress-strain law in agreement with the experimental procedure. In this way, a critical discussion of the experimental procedure can be made, by comparing the "experimental" stress-strain curve (Membrane theory curve) with the "reference" one introduced in the simulations. In particular, the influences of the "(die diameter)/thickness" ratio and of the plastic anisotropy are studied, and limitations of the hydraulic bulge test analysis are discussed.

  18. SAMBA HIV semiquantitative test, a new point-of-care viral-load-monitoring assay for resource-limited settings.

    PubMed

    Ritchie, Allyson V; Ushiro-Lumb, Ines; Edemaga, Daniel; Joshi, Hrishikesh A; De Ruiter, Annemiek; Szumilin, Elisabeth; Jendrulek, Isabelle; McGuire, Megan; Goel, Neha; Sharma, Pia I; Allain, Jean-Pierre; Lee, Helen H

    2014-09-01

    Routine viral-load (VL) testing of HIV-infected individuals on antiretroviral therapy (ART) is used to monitor treatment efficacy. However, due to logistical challenges, implementation of VL has been difficult in resource-limited settings. The aim of this study was to evaluate the performance of the SAMBA semi-Q (simple amplification-based assay semiquantitative test for HIV-1) in London, Malawi, and Uganda. The SAMBA semi-Q can distinguish between patients with VLs above and below 1,000 copies/ml. The SAMBA semi-Q was validated with diluted clinical samples and blinded plasma samples collected from HIV-1-positive individuals. SAMBA semi-Q results were compared with results from the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 test, v2.0. Testing of 96 2- to 10-fold dilutions of four samples containing HIV-1 subtype C as well as 488 samples from patients in the United Kingdom, Malawi, and Uganda yielded an overall accuracy for the SAMBA semi-Q of 99% (95% confidence interval [CI], 93.8 to 99.9%) and 96.9% (95% CI 94.9 to 98.3%), respectively, compared to to the Roche test. Analysis of VL data from patients in Malawi and Uganda showed that the SAMBA cutoff of 1,000 copies/ml appropriately distinguished treated from untreated individuals. Furthermore, analysis of the viral loads of 232 patients on ART in Malawi and Uganda revealed similar patterns for virological control, defined as either <1,000 copies/ml (SAMBA cutoff) or <5,000 copies/ml (WHO 2010 criterion; WHO, Antiretroviral Therapy for HIV Infection in Adults and Adolescents: Recommendations for a Public Health Approach, 2010). This study suggests that the SAMBA semi-Q has adequate concurrency with the gold standard measurements for viral load. This test can allow VL monitoring of patients on ART at the point of care in resource-limited settings.

  19. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-10-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications.

  20. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  1. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a "minimal common brain".

    PubMed

    Ius, Tamara; Angelini, Elsa; Thiebaut de Schotten, Michel; Mandonnet, Emmanuel; Duffau, Hugues

    2011-06-01

    Despite recent advances in non-invasive brain mapping imaging, the resectability of a given area in a patient harboring a WHO grade II glioma cannot be predicted preoperatively with high reliability, due to mechanisms of functional reorganization. Therefore, intraoperative mapping by direct electrical stimulation remains the gold standard for detection and preservation of eloquent areas during glioma surgery, because it enables to perform on-line anatomo-functional correlations. To study potentials and limitations of brain plasticity, we gathered 58 postoperative MRI of patients operated on for a WHO grade II glioma under direct electrical cortico-subcortical stimulation. Postoperative images were registered on the MNI template to construct an atlas of functional resectability for which each voxel represents the probability to observe residual non-resectable tumor, that is, non-compensable area. The resulting atlas offers a rigorous framework to identify areas with high plastic potential (i.e. with probabilities of residual tumor close to 0), with low compensatory capabilities (i.e. probabilities of residual tumor close to 1) and with intermediate level of resectability (probability around 0.5). The resulting atlas highlights the utmost importance of preserving a core of connectivity through the main associative pathways, namely, it supports the existence of a "minimal common brain" among patients.

  2. Elastic-plastic analysis of annular plate problems using NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1983-01-01

    The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.

  3. Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants

    PubMed Central

    Baumhoff, Peter; Tillein, Jochen; Lomber, Stephen G.; Hubka, Peter; Kral, Andrej

    2016-01-01

    Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the “original“ inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of “deaf” higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the “unused” auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes

  4. Current Limiting and Recovery Characteristics Under Load of Transformer Type SFCL with Rewound Structure Using BSCCO Wire in Model Power System

    NASA Astrophysics Data System (ADS)

    Noda, Sho; Oda, Sayaka; Mori, Masato; Hattori, Keisuke; Baba, Jumpei; Shirai, Yasuyuki

    We have proposed new design of a transformer type SFCL with primary and secondary superconducting coils which has rewound structure. For not so large fault current, the proposed SFCL limits the current by the inductive component by the normal transition of the flux shielding coil (secondary), and for larger fault current, it can give the resistive component additively by the normal transition of the primary coil. The recovery characteristics under load condition and repetitive limiting operation were experimentally investigated in a laboratory scale power system. The SFCL limited twice repetitive faults current and recovered quickly under load condition.

  5. Plastic Surgery

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  6. Limitation of sludge biotic index application for control of a wastewater treatment plant working with shock organic and ammonium loadings.

    PubMed

    Drzewicki, Adam; Kulikowska, Dorota

    2011-11-01

    This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8-10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates.

  7. How the Impacts of N Loading on Resource Limitation, Functional Composition of Plankton, and Net Primary Production Influence Nitrate Uptake and Trophic Transfer in Lake Ecosystems

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Mellard, J.

    2015-12-01

    Nitrogen (N) loading in aquatic ecosystems can have a multitude of effects. Increased N availability often elevates primary production, but typically also alters community composition and trophic structure. How all the myriad impacts of N loading conspire to produce whole ecosystem responses to perturbation is not well understood. To characterize how whole ecosystems response to perturbation along a gradient of N loading, we added nitrate (and phosphate) to large in situ aquatic mesocosms at different rates over the course of three months and quantified biomass distributions across multiple size classes, plankton community composition (including functional traits), and N flow among size classes in both the epilimnion and the hypolimnion prior and subsequent to a one week shading perturbation. Increased N loading resulted in greater rates of light attenuation with depth, which in turn selected for species with higher tolerance to light limitation and low inorganic C availability, but also resulted in increased rates of primary production and top-down grazing pressure. Different degrees of N loading resulted in different rates of nitrate uptake and trophic transfer, as calculated from 15N pulse-chase additions, both prior and subsequent to the shading pertubation, with the loading effect diminished after the perturbation. N loading was positively associated with the rate of N transfer between the epilimnion, where the N was added, and the hypolimnion. A complex picture of whole ecosystem response to perturbation along a gradient of N loading emerges. N loading appears to simplify resource competition among phytoplankton by alleviating N limitation to an extent, and at the same time supports elevated production across trophic levels. Nitrate uptake rate is contingent on standing stock phytoplankton biomass and resource limitation status. Rates of nitrate removal from the water column depend on how N loading alters the abiotic environment (primarily light availability

  8. SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition.

    PubMed

    Hanson, Jesse E; La, Hank; Plise, Emile; Chen, Yung-Hsiang; Ding, Xiao; Hanania, Taleen; Sabath, Emily V; Alexandrov, Vadim; Brunner, Dani; Leahy, Emer; Steiner, Pascal; Liu, Lichuan; Scearce-Levie, Kimberly; Zhou, Qiang

    2013-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical

  9. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  10. One plasticity model for problems of plastic metal working

    NASA Astrophysics Data System (ADS)

    Greshnov, V. M.

    2008-11-01

    Scalar and tensor models of plastic flow of metals extending plasticity theory are considered over a wide range of temperatures and strain rates. Equations are derived using the physico-phenomenological approach based on modern concepts and methods of the physics and mechanics of plastic deformation. For hardening and viscoplastic solids, a new mathematical formulation of the boundary-value plasticity problem taking into account loading history is obtained. Results of testing of the model are given. A numerical finite-element algorithm for the solution of applied problems is described.

  11. 76 FR 10213 - Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine Torque Loads for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ..., these criteria could allow some deformation in the engine- supporting structure (ultimate load design... engine mounts, pylons and adjacent supporting airframe structure must be designed to withstand 1g level..., the power-unit mounts and adjacent supporting airframe structure must be designed to withstand...

  12. Respiratory muscle plasticity.

    PubMed

    Rowley, Katharine L; Mantilla, Carlos B; Sieck, Gary C

    2005-07-28

    Plasticity of respiratory muscles must be considered in the context of their unique physiological demands. The continuous rhythmic activation of respiratory muscles makes them among the most active in the body. Respiratory muscles, especially the diaphragm, are non-weight-bearing, and thus, in contrast to limb muscles, are not exposed to gravitational effects. Perturbations in normal activation and load known to induce plasticity in limb muscles may not cause similar adaptations in respiratory muscles. In this review, we explore the structural and functional properties of the diaphragm muscle and their response to alterations in load and activity. Overall, relatively modest changes in diaphragm structural and functional properties occur in response to perturbations in load or activity. However, disruptions in the normal influence of phrenic innervation by frank denervation, tetrodotoxin nerve block and spinal hemisection, induce profound changes in the diaphragm, indicating the substantial trophic influence of phrenic motoneurons on diaphragm muscle.

  13. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    SciTech Connect

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-15

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  14. Limits on the prediction of helicopter rotor noise using thickness and loading sources: Validation of helicopter noise prediction techniques

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1983-01-01

    The techniques of helicopter rotor noise prediction attempt to describe precisely the details of the noise field and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The Farassat noise prediction techniques was studied, and high speed helicopter noise prediction using more detailed representations of the thickness and loading noise sources was investigated. These predictions were based on the measured blade surface pressures on an AH-1G rotor and compared to the measured sound field. Although refinements in the representation of the thickness and loading noise sources improve the calculation, there are still discrepancies between the measured and predicted sound field. Analysis of the blade surface pressure data indicates shocks on the blades, which are probably responsible for these discrepancies.

  15. Research regarding to behavior on advanced plastic from rolling mills equipment

    NASA Astrophysics Data System (ADS)

    Ardelean, M.; Ardelean, E.; Popa, E.; Josan, A.; Socalici, A.

    2016-02-01

    New advanced plastic can be used in construction of different equipment's from some industries; due to mechanical properties closer to nonferrous materials. In steel industries uses of this materials are limited because working temperature is too low, related to nonferrous or ferrous material. In this paper is presented some researches related to replacement of bronze material with advanced plastic in construction of antifriction bearings. For replaces of this material with engineering plastic product, it was calculated analytical and using simulation, forces in node of braking mechanism. Using these loads, it was make simulation regarding behavior of static loads with finite element software. Based on these researches, this bearing can be made from engineering plastic product, in same qualitative and technical condition, and this is a way to reduce maintenance and exploitation cost.

  16. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  17. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  18. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  19. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  20. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  1. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  2. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  3. Identification of unknown spatial load distributions in a vibrating Euler-Bernoulli beam from limited measured data

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Kawano, Alexandre

    2016-05-01

    Two types of inverse source problems of identifying asynchronously distributed spatial loads governed by the Euler-Bernoulli beam equation ρ (x){w}{tt}+μ (x){w}t+{({EI}(x){w}{xx})}{xx}-{T}r{u}{xx}={\\sum }m=1M{g}m(t){f}m(x), (x,t)\\in {{{Ω }}}T := (0,l)× (0,T), with hinged-clamped ends (w(0,t)={w}{xx}(0,t)=0,w(l,t) = {w}x(l,t)=0,t\\in (0,T)), are studied. Here {g}m(t) are linearly independent functions, describing an asynchronous temporal loading, and {f}m(x) are the spatial load distributions. In the first identification problem the values {ν }k(t),k=\\bar{1,K}, of the deflection w(x,t), are assumed to be known, as measured output data, in a neighbourhood of the finite set of points P:= \\{{x}k\\in (0,l),k=\\bar{1,K}\\}\\subset (0,l), corresponding to the internal points of a continuous beam, for all t\\in ]0,T[. In the second identification problem the values {θ }k(t),k=\\bar{1,K}, of the slope {w}x(x,t), are assumed to be known, as measured output data in a neighbourhood of the same set of points P for all t\\in ]0,T[. These inverse source problems will be defined subsequently as the problems ISP1 and ISP2. The general purpose of this study is to develop mathematical concepts and tools that are capable of providing effective numerical algorithms for the numerical solution of the considered class of inverse problems. Note that both measured output data {ν }k(t) and {θ }k(t) contain random noise. In the first part of the study we prove that each measured output data {ν }k(t) and {θ }k(t),k=\\bar{1,K} can uniquely determine the unknown functions {f}m\\in {H}-1(]0,l[),m=\\bar{1,M}. In the second part of the study we will introduce the input-output operators {{ K }}d :{L}2(0,T)\\mapsto {L}2(0,T),({{ K }}df)(t):= w(x,t;f),x\\in P, f(x) := ({f}1(x),\\ldots ,{f}M(x)), and {{ K }}s :{L}2(0,T)\\mapsto {L}2(0,T), ({{ K }}sf)(t):= {w}x(x,t;f), x\\in P , corresponding to the problems ISP1 and ISP2, and then reformulate these problems as the operator equations: {{ K

  4. Use of recycled plastics in wood plastic composites - a review.

    PubMed

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.

  5. Strategies for maintaining fruit quality in northern highbush blueberry under water limited conditions: Deficit irrigation and reduced crop loads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many commercial blueberry (Vaccinium sp.) fields are irrigated, but mandatory water restrictions may soon limit the availability of irrigation water in several important blueberry growing regions such as California and eastern Washington. New strategies are needed to maintain fruit quality with less...

  6. Secondary Engineering Design Graphics Educator Service Load of Students with Identified Categorical Disabilities and Limited English Proficiency

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Li, Songze; Williams, Thomas O.

    2014-01-01

    The ever-changing student population of engineering design graphics students necessitates broader sets of instructor adeptness. Specifically, preparedness to educate and provide adequate educational access to content for students with identified categorical disabilities and Limited English Proficiency (LEP) is now an essential readiness skill for…

  7. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  8. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2017-02-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  9. Discussion on Applicability of Rigid Plastic Dynamic Deformation Analysis to Soil Structures

    NASA Astrophysics Data System (ADS)

    Hoshina, Takashi; Ohtsuka, Satoru; Isobe, Koichi

    This paper proposes a new analysis method to estimate a residual deformation of soil structure for external loads. It employs a rigid plastic constitutive equation for soil which needs a small number of soil constants in comparison with general elasto-plastic constitutive equations. The purpose of this method is to simulate a large amount of deformation caused by failure of soil structure based on finite deformation theory. The features of proposed method are (1) simulation for large deformation of soil structure, (2) no effect of initial stress distribution, and (3) application to dynamic load. This study expresses the formulation of rigid plastic dynamic finite element method based on finite deformation theory. It examines the applicability of proposed method by applying to Prandtl's limit bearing capacity of foundation for static monotonically increasing load. The result clearly shows the applicability of rigid plastic constitutive equation to deformation analysis. Both kinematical effect and time rate dependency on limit bearing capacity were clearly presented by employing Rigid Plastic Dynamic Deformation Analysis Method.

  10. Prevalence of low back disorders among female workers and biomechanical limits on the handling of load and patients.

    PubMed

    Gutiérrez, Manuel; Monzó, Jorge

    2012-01-01

    The purpose of this investigation was to determine the association between prevalence of low back disorders in female workers and biomechanical demands of compressive and shear forces at the lumbar spine. A descriptive, cross-sectional and correlational study was carried out in 11 groups of female workers in the Province of Concepción. An interview was performed to investigate the prevalence of low back pain. To estimate biomechanical demands on the lumbar spine, it was used the 3DSSPP software. The Pearson correlation coefficient between the prevalence of low back disorders and peak compression force at the lumbar spine was r = (p<0.005). The Spearman correlation coefficient between the prevalence of low back disorders and peak shear force was r = 0.9 (p <0.005). To protect 90% of female workers studied, the limits of compression and shear forces should be at 2.8 kN and 0.3 kN, respectively. These values differ from the recommendations currently used, 3.4 kN for peak compression force and 0.5 kN for peak shear force.

  11. Plastic Surgery Statistics

    MedlinePlus

    ... PRS GO PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the ... Plastic Surgery Statistics 2005 Plastic Surgery Statistics 2016 Plastic Surgery Statistics Stats Report 2016 National Clearinghouse of ...

  12. Plastics in the Marine Environment.

    PubMed

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  13. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  14. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    NASA Astrophysics Data System (ADS)

    Nielsen, K. L.; Niordson, C. F.

    2014-02-01

    A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory - part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic-plastic loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic-plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates is considered, and the effect of strain gradients, strain hardening and rate sensitivity is brought out. For clarity of results, a 1D model is constructed following a procedure suitable for generalization to 2D and 3D.

  15. Pressure self-multiplication and the kinetics of phase transition in plastic layer experiencing plane deformation

    NASA Astrophysics Data System (ADS)

    Boguslavskii, Yu.; Achmetshackirova, Kh.; Drabkin, S.

    1998-09-01

    Based on the deformation theory of plasticity the problem of pressure distribution in a compressed layer at phase transition experiencing a plane plastic deformation is considered. It is found that in the pressure distribution near the phase boundaries anomalies emerge in the form of a “step” or a local maximum caused by volume jumps at phase transition. It is shown that these anomalies and differences in yield limits of the phases can lead to essential change of pressure in the center of the layer in comparison with its value in absence of phase transition, but under equal external load. The maximal value of external load admitting the considered solution is found. The kinetics of possible isothermal regimes of phase transition leading to change in the time-pressure distribution in the plastic layer is investigated.

  16. Plastic collapse and bifurcation buckling analysis of bellows

    SciTech Connect

    Updike, D.P.; Kalnins, A.

    1995-11-01

    This paper presents a theoretical analysis to both plastic collapse and in-plane squirm of bellows. The bellows is modeled as a closed-ended pressure vessel or shell, which is subjected to internal pressure loading and no axial extension. It is shown that in-plane squirm results from bifurcation buckling, when the bellows deforms from an axisymmetric state to one with additional non-axisymmetric deformation. The analysis shows that axisymmetric plastic collapse occurs when plastic hinges form at four locations within a convolute: at the root, crest, and both sidewalls. The analysis shows that the hoop stress varies significantly over a convolute from its average value, which is known as S{sub 2} in the EJMA Standards. The difference is more pronounced near the limit state than in the elastic state. The results of bifurcation analyses show that, for the geometries considered, bifurcation buckling occurs well into the plastic range, and that the pressure at bifurcation is slightly less than the plastic collapse pressure. The buckling mode calculated from the bifurcation analysis agrees with that observed in experiments reported in the literature.

  17. Plastic Bronchitis.

    PubMed

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments.

  18. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  19. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  20. Endochronic Plasticity

    DTIC Science & Technology

    1987-12-01

    Axial Load Histories." CEAE Dept. University of Colorado. Boulder. Colorado (1983). I £ 1-12 2. THEORETICAL FOUNDATIONS OF THE THEORY 2.1 Basic...Gerstle and H. Y. Ko. "Stress-Strain Curves for Concrete Under Multiaxial Load Histories." CEAE Department. University of Colorado. Boulder. (1983

  1. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    SciTech Connect

    Petrovic, Bojan; Maldonado, Ivan

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  2. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  3. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  4. Plastic bronchitis

    PubMed Central

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding. PMID:26556975

  5. Respiratory muscle plasticity.

    PubMed

    Gransee, Heather M; Mantilla, Carlos B; Sieck, Gary C

    2012-04-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles.

  6. Smartphones and the plastic surgeon.

    PubMed

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care.

  7. HEAVY METAL LOADED PLASTIC SCINTILLATING COMPOSITIONS

    DOEpatents

    Hyman, M. Jr.

    1962-06-26

    Thls lnventlon relates to a plastlc sclntlllatlon composltlon havlng lncorporated ln the base plastlc a lead compound. Thls compound forms a haze- free sclntillator. The lead compound has the general formula (R/sub 4/) x from the group consisting of hydrogen, alky, and phenyl, R4 ls selected from the group conslstlng of acrylyl and methacryiyl radlcals, and x ls a number from 0,5 to 1; however, when R/sub 1/, R/sub 2/, and R/sub 3/ are all hydrogen the x ls equal to 1. The phosphor ln the sclntlllatlng compositlon and the lead compound can be dlssolved ln a polymerlc resln selected from the group conslsting of polyvinyl toluene and copolymers of vlnyl toluene and cyclohexyl methacrylate. (AEC)

  8. Straightening of a wavy strip: An elastic-plastic contact problem including snap-through

    NASA Technical Reports Server (NTRS)

    Fischer, D. F.; Rammerstorfer, F. G.

    1980-01-01

    The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.

  9. Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindention

    SciTech Connect

    Ramos, Kyle J; Hooks, David E; Bahr, David F

    2008-01-01

    Investigation of deformation beginning with elasticity and continuing through the elastic-plastic transition to incipient cracking has been conducted for (210), (021), and (001) oriented single crystals of the explosive cyclotrimethylene trinitramine, commonly known as 'RDX' Instrumented indentation was performed with a conical tip over a range of loads. The resulting load-depth data exhibited distinct, reproducible, orientation dependent load excursions demonstrating elastic-plastic transitions. Indent impressions were imaged by scanning probe microscopy. Impressions on the (210) and (001) planes showed deformation pileup features associated with zone axes of slip planes. Clearly discernable slip traces were evident on the (210) plane. The (021) indentations produced significant material pile-up surrounding the impression, but did not contain discrete features associable with specific zone axes. All of the orientations exhibited cracking thresholds at very low loads. The reduced moduli were anisotropic and the hardness's were isotropic indicating limited plasticity. Maximum shear stresses estimated from a Hertzian model, at load excursions, were within a factor of 10 of published shear moduli indicating deformation initiated near the theoretical yield strength presumably by homogeneous nucleation of dislocations. The material strength parameters and apparent deformation pathways inferred from this work are compared to historical microhardness testing and interpretation of anisotropic hardness in which ambiguity of results can be attributed to the effects of cracking and simultaneous slip on multiple systems.

  10. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  11. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane

  12. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    USGS Publications Warehouse

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  13. Single-cell mass spectrometry reveals the importance of genetic diversity and plasticity for phenotypic variation in nitrogen-limited Chlamydomonas.

    PubMed

    Krismer, Jasmin; Tamminen, Manu; Fontana, Simone; Zenobi, Renato; Narwani, Anita

    2016-12-09

    Phenotypic variation is vital for microbial populations to survive environmental perturbations. Both genetic and non-genetic factors contribute to an organism's phenotypic variation and therefore its fitness. To investigate the correlation between genetic diversity and phenotypic variation, we applied our recently developed mass spectrometry method that allows for the simultaneous measurement of more than 25 different lipids and pigments with high throughput in the unicellular microalga Chlamydomonas reinhardtii. We monitored the impact of nitrogen limitation on a genetically diverse wild-type strain CC-1690 and two isoclonal isolates from CC-1690 named ANC3 and ANC5. Measuring molecular composition of thousands of single cells at different time points of the experiment allowed us to capture a dynamic picture of the phenotypic composition and adaptation of the populations over time. Although the genetically diverse population maintained phenotypic variation over the whole time course of the experiment, the isoclonal cultures showed higher synchronicity in their phenotypic response. Furthermore, the genetically diverse population showed equal or greater phenotypic variation over the whole time range in multidimensional trait space compared with isoclonal populations. However, along individual trait axes non-genetic variance was higher in isoclonal populations.The ISME Journal advance online publication, 9 December 2016; doi:10.1038/ismej.2016.167.

  14. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    SciTech Connect

    Brannon, Rebecca Moss; Burghardt, Jeffrey A.; Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  15. Studies of HVC Plasticity in Adult Canaries Reveal Social Effects and Sex Differences as Well as Limitations of Multiple Markers Available to Assess Adult Neurogenesis

    PubMed Central

    Shevchouk, Olesya T.; Ball, Gregory F.; Cornil, Charlotte A.

    2017-01-01

    In songbirds, neurogenesis in the song control nucleus HVC is sensitive to the hormonal and social environment but the dynamics of this process is difficult to assess with a single exogenous marker of new neurons. We simultaneously used three independent markers to investigate HVC neurogenesis in male and female canaries. Males were castrated, implanted with testosterone and housed either alone (M), with a female (M-F) or with another male (M-M) while females were implanted with 17β-estradiol and housed with a male (F-M). All subjects received injections of the two thymidine analogues, BrdU and of EdU, respectively 21 and 10 days before brain collection. Cells containing BrdU or EdU or expressing doublecortin (DCX), which labels newborn neurons, were quantified. Social context and sex differentially affected total BrdU+, EdU+, BrdU+EdU- and DCX+ populations. M-M males had a higher density of BrdU+ cells in the ventricular zone adjacent to HVC and of EdU+ in HVC than M-F males. M birds had a higher ratio of BrdU+EdU- to EdU+ cells than M-F subjects suggesting higher survival of newer neurons in the former group. Total number of HVC DCX+ cells was lower in M-F than in M-M males. Sex differences were also dependent of the type of marker used. Several technical limitations associated with the use of these multiple markers were also identified. These results indicate that proliferation, recruitment and survival of new neurons can be independently affected by environmental conditions and effects can only be fully discerned through the use of multiple neurogenesis markers. PMID:28141859

  16. Plastic buckling of cylindrical shells

    SciTech Connect

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-05-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even through such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-tickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. In order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space company. The analysis was performed for various radius-to- thickness ratios and imperfection amplitudes. The analysis results are presented in this paper.

  17. Some load limits and self-lubricating properties of plain spherical bearings with molded graphite fiber reinforced polyimide liners to 320 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1978-01-01

    Plain spherical bearings with molded liners of self-lubricating graphite fiber-polyimide composite were developed and their dynamic load capacities were determined. Liners were prepared by transfer molding a prepolymer resin-fiber mix into the space between the ball and outer race, the completing polymerization under heat and pressure. Bearing dynamic load capacities were in excess of 140 MPa (20,000 psi) from room temperature to 260 C and about 70 MPa (10,000 psi) at 320 C. Friction coefficients were about 0.20 at room temperatures and light loads and tended to decrease with increasing temperatures and loads to about 0.15. Thermal expansion of the liner at uniform bearing temperatures of 200 C or higher produced a bearing preload which could be alleviated by providing an initial internal diametral clearance of 0.05 to 0.10 mm.

  18. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  19. Fabrication of plastic biochips

    SciTech Connect

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  20. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  1. Degradation of plastic carrier bags in the marine environment.

    PubMed

    O'Brine, Tim; Thompson, Richard C

    2010-12-01

    There is considerable concern about the hazards that plastic debris presents to wildlife. Use of polymers that degrade more quickly than conventional plastics presents a possible solution to this problem. Here we investigate breakdown of two oxo-biodegradable plastics, compostable plastic and standard polyethylene in the marine environment. Tensile strength of all materials decreased during exposure, but at different rates. Compostable plastic disappeared from our test rig between 16 and 24 weeks whereas approximately 98% of the other plastics remained after 40 weeks. Some plastics require UV light to degrade. Transmittance of UV through oxo-biodegradable and standard polyethylene decreased as a consequence of fouling such that these materials received ∼ 90% less UV light after 40 weeks. Our data indicate that compostable plastics may degrade relatively quickly compared to oxo-biodegradable and conventional plastics. While degradable polymers offer waste management solutions, there are limitations to their effectiveness in reducing hazards associated with plastic debris.

  2. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species.

    PubMed

    Hammer, S; Nager, R G; Johnson, P C D; Furness, R W; Provencher, J F

    2016-02-15

    Plastic is a common item in marine environments. Studies assessing seabird ingestion of plastics have focused on species that ingest plastics mistaken for prey items. Few studies have examined a scavenger and predatory species that are likely to ingest plastics indirectly through their prey items, such as the great skua (Stercorarius skua). We examined 1034 regurgitated pellets from a great skua colony in the Faroe Islands for plastics and found approximately 6% contained plastics. Pellets containing remains of Northern fulmars (Fulmarus glacialis) had the highest prevalence of plastic. Our findings support previous work showing that Northern fulmars have higher loads of plastics than other sympatric species. This study demonstrates that marine plastic debris is transferred from surface feeding seabird species to predatory great skuas. Examination of plastic ingestion in species that do not ingest plastics directly can provide insights into how plastic particles transfer vertically within the food web.

  3. The Effects of Plasticity and the Evolution of Damage Zones in Earthquake Cycle Simulations

    NASA Astrophysics Data System (ADS)

    Erickson, B. A.; Dunham, E. M.

    2015-12-01

    How does plastic response during the earthquake cycle affect nucleation and propagation during individual events and the recurrence intervals between events? How do damage zones evolve with increasing cumulative slip and how do they affect subsequent rupture? To explore these questions we are developing a robust, physics-based earthquake cycle model accounting for off-fault yielding over multiple event sequences. The method is developed for the anti-plane framework where interseismic loading is imposed at the remote boundary. Spontaneous, quasi-dynamic events nucleate at the fault governed by rate-and-state friction. The off-fault volume is discretized with finite difference methods and time-dependent boundary conditions impose the free surface, remote loading and friction law at the fault. Stresses in the domain are limited by a Drucker-Prager yield condition, with depth-dependent normal stresses that remain constant in time during antiplane shear deformation. The constitutive theory furnishes a nonlinear equilibrium equation that makes use of an elastoplastic tangent stiffness tensor. One of the difficulties arising in our application problems is that plasticity reduces the effective shear modulus to values approaching zero and the equilibrium equations undergo a loss of solvability. One possible solution to this is through the incorporation of hardening which can provide a lower bound (away from zero) of the shear modulus. We assume zero initial plastic strain prior to the first event which nucleates down dip near a locking depth of 12 km. Plastic flow ensues when stresses exceed the yield condition. The event ruptures up dip with reduced rupture speed and slip velocity compared to its elastic counterpart, generating a flowerlike plastic strain distribution corresponding to greater damage near Earth's free surface. Our preliminary exploration of parameter space show that once the first event terminates, an interseismic loading period follows during which no

  4. Neuronal plasticity: beyond the critical period.

    PubMed

    Hübener, Mark; Bonhoeffer, Tobias

    2014-11-06

    Neuronal plasticity in the brain is greatly enhanced during critical periods early in life and was long thought to be rather limited thereafter. Studies in primary sensory areas of the neocortex have revealed a substantial degree of plasticity in the mature brain, too. Often, plasticity in the adult neocortex lies dormant but can be reactivated by modifications of sensory input or sensory-motor interactions, which alter the level and pattern of activity in cortical circuits. Such interventions, potentially in combination with drugs targeting molecular brakes on plasticity present in the adult brain, might help recovery of function in the injured or diseased brain.

  5. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  6. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  7. Evolution and manipulation of parasitoid egg load.

    PubMed

    Gandon, Sylvain; Varaldi, Julien; Fleury, Frédéric; Rivero, Ana

    2009-11-01

    In proovigenic parasitoids such as Leptopilina boulardi, the female emerges with a limited egg load and no further eggs are produced during its adult life. A female thus runs the risk of exhausting this limited supply of eggs before the end of her life. Given that the production of an egg is costly, what is the evolutionarily stable egg load at emergence? This question has attracted a lot of attention in the last decade. Here, we analyze a model that allows us to track both the evolution and the population dynamics of a solitary, proovigenic parasitoid. First, we show how host-parasitoid dynamics feedbacks on the evolution of parasitoid egg load. Second, we use this model to consider the situation in which the parasitoid can be infected by a virus that manipulates the oviposition behavior of the females. In particular, we model the effect of the LbFV virus in L. boulardi, a virus that is known to enhance its horizontal transmission by increasing superparasitism (i.e., the laying of eggs in a host already parasitized). Specifically, we model (1) the effect of the virus on parasitoid egg load strategies, and (2) the evolution of egg load manipulation by the virus. This analysis yields two alternative, yet not mutually exclusive, adaptive explanations for the observation that females infected by the virus harbor higher egg loads than uninfected females. Infected females could either respond plastically to the infection status, or be manipulated by the virus. Further experimental work is required to distinguish between these two hypotheses. In a broader context, we present a general theoretical framework that allows us to study the epidemiology, the evolution, the coevolution, and the evolution of manipulation of various reproductive strategies of parasitoids.

  8. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  9. Rate and temperature dependences of the yield stress of commercial titanium under conditions of shock-wave loading

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.

    2016-05-01

    The evolution of elastic-plastic shock waves with the propagation distance has been studied in annealed titanium of commercial purity at temperatures 20 °C and 600 °C. The free surface velocity histories of the shock-loaded samples 0.25-4.0 mm in thickness have been recorded using the Velocity Interferometer System for Any Reflector. The measured decays of the elastic precursor waves have been converted into relationships between the shear stress and the initial plastic strain rate at the Hugoniot elastic limit. It has been found that the temperature practically does not influence on the resistance to high-rate plastic deformation: the plastic strain rate varies with the shear stress as γ ˙ = 2.5 × 10 6 ( τ / τ 0 ) 4.8 s-1 at 20 °C and γ ˙ = 2.9 × 10 6 ( τ / τ 0 ) 4.9 s-1 at 600 °C. An analysis of the rise times of the plastic shock waves has shown that for the same level of shear stress, the plastic strain rate after small compressive strain is more than by order of magnitude higher than the initial plastic strain rate at the wave's foot. Such acceleration of the plastic deformation seems to be a result of an intense multiplication of the mobile dislocations or twins.

  10. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  11. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  12. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  13. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  14. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  15. Limit pressure of a circumferentially reinforced SiC/Ti ring

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Pastor, M. S.

    1991-01-01

    Limit loads under plane stress and plane strain are found for a circumferentially reinforced elastoplastic ring subjected to interior pressure. These are used as bounds on an estimate of the failure pressure of a SiC/Ti test rig that is being fabricated and tested. The ring is to serve as a benchmark against which deformation and failure analysis methods can be assessed. An anisotropic perfect plasticity idealization of the SiC/Ti ring material is made and used in the limit load calculations. An estimate of the failure pressure of the NASA/PW benchmark test ring is given.

  16. Quasi-static extension of a tensile crack contained in a viscoelastic-plastic solid

    NASA Technical Reports Server (NTRS)

    Wnuk, M. P.

    1973-01-01

    Final stretch criterion of failure is applied to the problem of quasi-static extension of a crack embedded in an elastic-plastic or viscoelastic-plastic matrix. The slow growth under subcritical conditions in a rate-sensitive Tresca solid is shown to be a superposition of creep rupture and McClintock's ductile growth. This type of growth occurs at subcritical magnitude of the imposed K-factor and can be accounted for only through a recognition of inelastic properties of solids. In the subcritical range there is no unique value for K sub c independent of geometrical configuration and flaw size. Not only the produced states of stress and strain are dependent on the loading path, but also the material resistance to fracture turns out to be a function of the history of loading that precedes catastrophic failure. A nonlinear integro-differential equation of motion is derived for a crack progressing through a viscoelastic medium with some limited ability to plastic flow. Examples of numerical integration are given incorporating both monotonic and cyclic loading programs.

  17. Feasibility Study: Hollow Plastic Spheres to Increase Hydraulic Fluid Compressibility

    DTIC Science & Technology

    1982-07-01

    MICROMECHANICS FAILURE CRITERIA FOR COMPOSITES ; AUTHOR: GREESCZUK, LONCIN, B. 5. POISSON’S RATIO FOR RIGID PLASTIC FOAMS; AUTHOR: RINDE...S.A. Thuysbaert A.Stevens N4 Schwartz SPRL Schulmon Plastics SA Polytexco PVBA Polyform SA Plastiques Manufactures Plastimetal PVBA S.A...Plastics Corp. Plastiques GM Ltd. Rochevert, Inc. Polysar Limited, Kayson Plastics Div. Canlew Chemicals, Ltd. 4th Fl., 8-1, Hong Chou S. Rd., Sec. 1

  18. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  19. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  20. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  1. Plastic encapsulated parts

    SciTech Connect

    Castillo, T.

    1994-10-01

    Plastic semiconductor packages were characterized as possible alternatives for canned devices, which are susceptible to internal shorts caused by conductive particles. Highly accelerated stress testing (HAST) as well as electrical and mechanical testing were conducted on plastic technology devices.

  2. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  3. Plastic debris in the open ocean.

    PubMed

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  4. Plastic debris in the open ocean

    PubMed Central

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  5. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  6. A Variable Load Step Solution Approach for Incremental Tangent Modulus Finite Element Analysis.

    DTIC Science & Technology

    1979-09-01

    Prandtl-Reuss elastic- plastic problem . For this problem the deviatoric stress change which occurs dur- ing plastic deformation is identified as the...1 VARIABLE LOAD STEP SOLUTION ALGORITHM. .. .............. 3 CONSTRAINT CONDITION FOR ELASTIC- PLASTIC PROBLEMS . .. .. . ..... 5...cycles falls below a given tolerance 5. We have observed that the stress solution in our elastic- plastic problems is sensitive to the choice of 5

  7. Mating system plasticity promotes persistence and adaptation of colonizing populations of hermaphroditic angiosperms.

    PubMed

    Peterson, Megan L; Kay, Kathleen M

    2015-01-01

    Persistence and adaptation in novel environments are limited by small population size, strong selection, and maladaptive gene flow. Mating system plasticity is common in angiosperms and may provide both demographic and genetic benefits that promote niche evolution, including reproductive assurance and isolation from maladaptive gene flow. Yet increased self-fertilization may also cause inbreeding depression, accumulation of deleterious mutations, and reduced adaptive potential. Here we use individual-based simulations to examine the consequences of mating system plasticity for persistence and adaptation in a novel environment that imposes selection on a quantitative trait. We examine the joint evolution of local adaptation, inbreeding depression, and genetic load. We find that a plastic shift to a mixed mating system generally promotes niche evolution by decreasing the risk of extinction, providing isolation from maladaptive gene flow, and temporarily increasing genetic variance in the trait under selection, whereas obligate self-fertilization reduces adaptive potential. These effects are most pronounced under conditions of mate limitation, strong selection, or maladaptive gene flow. Our results highlight the diverse demographic and genetic consequences of self-fertilization and support the potential role for plastic shifts in mating system to promote niche evolution in flowering plants.

  8. Recovering automotive plastics

    SciTech Connect

    Not Available

    1993-10-01

    This article reports on the results of a study on increasing the recycling of plastics in automobiles. Plastics are being used in increasing amounts in vehicles and new methods of retrieving these plastics for recycling are needed to reduce the amount of automotive shredder residue that is currently being sent to residues. The study concentrated on increasing the ease of disassembly and contaminant removal.

  9. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  10. Processing of plastics

    PubMed Central

    Spaak, Albert

    1975-01-01

    An overview is given of the processing of plastic materials from the handling of polymers in the pellet and powder form to manufacturing of a plastic fabricated product. Various types of equipment used and melt processing ranges of various polymer formulations to make the myriad of plastic products that are commercially available are discussed. PMID:1175556

  11. Tomorrow's Plastic World

    ERIC Educational Resources Information Center

    Macdonald, Averil

    2005-01-01

    Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.

  12. Interface controlled plastic flow modelled by strain gradient plasticity theory

    NASA Astrophysics Data System (ADS)

    Pardoen, Thomas; Massart, Thierry J.

    The resistance to plastic flow in metals is often dominated by the presence of interfaces which interfere with dislocation nucleation and motion. Interfaces can be static such as grain and phase boundaries or dynamic such as new boundaries resulting from a phase transformation. The interface can be hard and fully impenetrable to dislocations, or soft and partly or fully transparent. The interactions between dislocations and interfaces constitute the main mechanism controlling the strength and strain hardening capacity of many metallic systems especially in very fine microstructures with a high density of interfaces. A phenomenological strain gradient plasticity theory is used to introduce, within a continuum framework, higher order boundary conditions which empirically represent the effect of interfaces on plastic flow. The strength of the interfaces can evolve during the loading in order to enrich the description of their response. The behaviour of single and dual phase steels, with possible TRIP effect, accounting for the interactions with static and dynamic boundaries, is addressed, with a specific focus on the size dependent strength and ductility balance. The size dependent response of weak precipitate free zones surrounding grain boundaries is treated as an example involving more than one microstructural length scale.

  13. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  14. Biodegradability of plastics.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  15. How quickly do albatrosses and petrels digest plastic particles?

    PubMed

    Ryan, Peter G

    2015-12-01

    Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends.

  16. Strength Analysis of Glass-Fiber-Reinforced Plastic during Buckling,

    DTIC Science & Technology

    An algorithm is developed for calculating and analyzing the stress tensor by the experimental function of deflections during the buckling of glass ... fiber -reinforced plastic shells loaded with a hydrostatic load. Malmeyster’s theory of strength is used to qualitatively establish the possible points of shell failure. (Author-PL)

  17. Computational Contour of Mixed Mode Crack-Tip Plastic Zone for Aluminum Alloy 2024T351

    NASA Astrophysics Data System (ADS)

    Do, Tien Dung; Leroy, Rene; Joly, Damien

    2013-07-01

    The studies on mixed mode crack-tip plastic zones are one of the fundamental importance in describing the process of failure and in evaluation of the material life. The approach is also applied to predict crack initiation under mixed mode loading. The objective of this work is to study the contour of mixed mode crack-tip plastic zones, the minimum plastic zone radius (MPZR) and the direction of initial crack for aluminum alloy 2024T351 in Compact tension specimen by using Matlab software. This paper computed the shape, size of plastic zone at crack-tip and the minimum plastic zone radius with reference to the loading angle and stress intensity factor in linear elastic fracture mechanics regime for plane strain condition according to Von Mises yield criteria, the study is conducted for various loading angle. We found that the mixed mode loading (β = 60°) can lead to material fracture earlier than any mode loading.

  18. On the plastic buckling paradox

    SciTech Connect

    Blachut, J.; Galletly, G.D.; James, S.

    1995-12-31

    Previous investigations, at various laboratories, have raised doubts about the accuracy of flow theory predictions in some plastic plate and shell buckling problems. The present series of buckling experiments on near-perfect, machined, mild steel, cylindrical shell models under biaxial loading (axial tension plus external pressure) was designed to provide additional data for the evaluation of (the J{sub 2}) plasticity theories. Numerical calculations were carried out with the Bosor5 shell buckling program, using the J{sub 2} deformation and flow theories, and these were compared with the test results. Thirty-one cylinders, about 0.05 m in diameter with length to diameter ratio (L/D) of 1.0, 1.5 and 2.0 and diameter to thickness ratio (D/t) of 50 were tested in the programme. The steel was BS 970 grade 070 M20 and came in the form of a 3 m long x 0.070 m dia bar. Each cylinder had an integral flange of 0.013m. A rotating probe was employed to monitor the pre-buckling and buckling deformations. The tests were similar to that of Giezen, Babcock and Singer (1991). However, the current tests were on machined models and the axial tension was applied in a different manner. The tests, by Giezen et al, were on drawn aluminum alloy tubes from stock One of our objectives was to see if reducing the initial geometric imperfections had any significant effect on results. All tests have been carried out by now and computations are near completion. The main conclusion appears to be that for this combined loading plastic buckling problem, the deformation theory predictions are confirmed by the experiment.

  19. How Plastics Work

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2013-03-01

    We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.

  20. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  1. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  2. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  3. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  4. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  5. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758).

    PubMed

    Murray, Fiona; Cowie, Phillip Rhys

    2011-06-01

    The aim of this study was to determine the extent Nephrops consumes plastics in the Clyde Sea and if this intake occurs through their diet. Plastic contamination was found to be high in Nephrops, 83% of the animals sampled contained plastics (predominately filaments) in their stomachs. Tightly tangled balls of plastic strands were found in 62% of the animals studied but were least prevalent in animals which had recently moulted. No significant difference in plastic load was observed between males and females. Raman spectroscopy indicated that some of the microfilaments identified from gut contents could be sourced to fishing waste. Nephrops fed fish seeded with strands of polypropylene rope were found to ingest but not to excrete the strands. The fishery for Norway lobster, Nephrops norvegicus, is the most valuable in Scotland and the high prevalence of plastics in Nephrops may have implications for the health of the stock.

  6. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  7. Plastics and health risks.

    PubMed

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  8. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  9. Additives in plastics.

    PubMed

    Deanin, R D

    1975-06-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products.

  10. Phenotypic plasticity and diversity in insects

    PubMed Central

    Moczek, Armin P.

    2010-01-01

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles. PMID:20083635

  11. Finite Element Prediction of Creep-Plastic Ratchetting and Low Cycle Creep-Fatigue for a Large SPF Tool

    NASA Astrophysics Data System (ADS)

    Deshpande, A. A.; Leen, S. B.; Hyde, T. H.

    2010-06-01

    Industrial experience shows that large superplastic forming (SPF) tools suffer from distortion due to thermal cycling, which apparently causes high temperature creep and plasticity. In addition to distortion, thermomechanical fatigue and fatigue-creep interaction can lead to cracking. The aim of this study is to predict the life-limiting thermomechanical behavior of a large SPF tool under realistic forming conditions using elastic-plastic-creep FE analyses. Nonlinear time-dependent, sequentially coupled FE analyses are performed using temperature-dependent monotonic and cyclic material data for a high-nickel, high-chromium tool material, XN40F (40% Ni and 20% Cr). The effect of monotonic and cyclic material data is compared vis-à-vis the anisothermal, elastic-plastic-stress response of the SPF tool. An uncoupled cyclic plasticity-creep material model is employed. Progressive deformation (ratchetting) is predicted locally, transverse to the predominant direction of the creep-fatigue cycling, but at the same spatial location, due to creep and cyclic plasticity, during the so-called minor cycles, which correspond to comparatively small-amplitude temperature changes associated with opening of the press doors during part loading and unloading operations.

  12. Prospects for microbiological solutions to environmental pollution with plastics.

    PubMed

    Krueger, Martin C; Harms, Hauke; Schlosser, Dietmar

    2015-11-01

    Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics. Laboratory studies have reported various effects of microorganisms on many types of polymers, usually by enzymatic hydrolysis or oxidation. However, most common plastics have proved to be highly recalcitrant even under conditions known to favour microbial degradation. Knowledge on environmental degradation is yet scarcer. With this review, we provide a comprehensive overview of the current knowledge on microbiological degradation of several of the most common plastic types. Furthermore, we illustrate the analytical challenges concerning the evaluation of plastic biodegradation as well as constraints likely standing against the evolution of effective biodegradation pathways.

  13. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved.

  14. Atomic simulation of cracks under mixed mode loading

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1984-01-01

    A discrete atomic model of a crack tip in iron under mixed mode loads is examined. The results indicate that the behavior of the crack at the atomic scale as a function of the ratio of mode I to mode II component of load is quite complex. In general, crack tip plasticity appears to increase as the mode II component of load increases.

  15. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To increase global market share and value the US cotton industry needs to supply cotton lint that is free of contamination. Removing plastic contamination first requires developing a means to detect plastics in seedcotton. This study was conducted to validate a custom Ion Mobility Spectrometer (IM...

  16. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  17. Biodegradation of plastics.

    PubMed

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  18. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions.

    PubMed

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-10-17

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.

  19. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  20. Lightweight porous plastic plaque. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Reid, M.

    1978-01-01

    The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.

  1. Plastics as structural materials for aircraft

    NASA Technical Reports Server (NTRS)

    Kline, G M

    1937-01-01

    The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.

  2. American Society of Plastic Surgeons

    MedlinePlus

    ... that instill confidence. Do Your Homework Patient Safety Plastic Surgery When you choose a doctor who is ... to procedure selector Why Choose A Board Certified Plastic Surgeon Choose a board-certified plastic surgeon and ...

  3. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    PubMed

    Young, Lindsay C; Vanderlip, Cynthia; Duffy, David C; Afanasyev, Vsevolod; Shaffer, Scott A

    2009-10-28

    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic

  4. Bringing Home the Trash: Do Colony-Based Differences in Foraging Distribution Lead to Increased Plastic Ingestion in Laysan Albatrosses?

    PubMed Central

    Young, Lindsay C.; Vanderlip, Cynthia; Duffy, David C.; Afanasyev, Vsevolod; Shaffer, Scott A.

    2009-01-01

    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in

  5. Plasticity-Mediated Persistence in New and Changing Environments

    PubMed Central

    Morris, Matthew R. J.

    2014-01-01

    Baldwin's synthesis of the Organicist position, first published in 1896 and elaborated in 1902, sought to rescue environmentally induced phenotypes from disrepute by showing their Darwinian significance. Of particular interest to Baldwin was plasticity's mediating role during environmental change or colonization—plastic individuals were more likely to successfully survive and reproduce in new environments than were nonplastic individuals. Once a population of plastic individuals had become established, plasticity could further mediate the future course of evolution. The evidence for plasticity-mediated persistence (PMP) is reviewed here with a particular focus on evolutionary rescue experiments, studies on invasive success, and the role of learning in survival. Many PMP studies are methodologically limited, showing that preexistent plasticity has utility in new environments (soft PMP) rather than directly demonstrating that plasticity is responsible for persistence (hard PMP). An ideal PMP study would be able to demonstrate that (1) plasticity preexisted environmental change, (2) plasticity was fortuitously beneficial in the new environment, (3) plasticity was responsible for individual persistence in the new environment, and (4) plasticity was responsible for population persistence in succeeding generations. Although PMP is not ubiquitous, Baldwin's hypotheses have been largely vindicated in theoretical and empirical studies, but much work remains. PMID:25386380

  6. The genetics of phenotypic plasticity. XIII. Interactions with developmental instability.

    PubMed

    Scheiner, Samuel M

    2014-04-01

    In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet-hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual-based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet-hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.

  7. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  8. Human Crashworthiness and Crash Load Limits

    DTIC Science & Technology

    1988-12-01

    oacaiaration wbila nia taat nava a .25 aaat triction coafficiant. In Figura II a child ii. tna aana initial position axpanancaa a .7C vahicla...Friction Coafficiant 22-9 » . Figur« 10 Two-«nd-On«-H«lf-Year-Old child Motion During .70 G Panic Braking Deceleration with .20 Seat Friction...Hybria III auoiiy neaa and nack ar« used, but« aa opposea to tb« Hybrid III aasign, tn« n«aa akin covering extenas over tb« neck aa can b« s«en

  9. Elastic-plastic response charts for nuclear overpressures. Final report

    SciTech Connect

    Guice, L.K.; Kiger, S.A.

    1984-06-01

    The single-degree-of-freedom equation of motion for an elastic-plastic system with forcing functions that are representative of nuclear weapon simulations is nondimensionalized and solved. Numerical solutions are calculated by the Newmark Beta method, and response charts incorporating nondimensionalized structural and loading parameters for the Speicher-Brode nuclear pressure history description are provided. A computer code is presented for solving the elastic-plastic problem for Speicher-Brode overpressure as well as triangular-shaped overpressures.

  10. Elasto-plastic fracture mechanics of crack growth in soil

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.; Newson, T. A.

    2003-04-01

    A predominant variable in soil structure formation and degradation is crack propagation. Empirical models exist to predict fracture but these do not describe the underlying physical processes. Theoretical fracture mechanics models have been applied to soil, but most are not applicable when soil is in a wet, plastic state. Since the onset of crack formation in soil tends to occur in this condition, physically sound elasto-plastic fracture mechanics approaches are long overdue. We address this weakness by applying a new elasto-plastic fracture mechanics approach to describe crack formation in plastic soil. Samples are fractured using a deep-notch (modified 4-point) bend test, with data on load transmission, sample bending, crack growth, and crack mouth opening collected to assess the crack opening angle (COA), the crack tip opening angle (CTOA) and the plastic energy dissipation rate (Dpl). These are all material properties that can be used directly to predict and describe crack propagation. CTOA will be used to discuss the results here, although a full description of the other parameters will be provided in the conference presentation. It provides a powerful parameter for describing soil cracking since CTOA is induced by soil shrinkage (an easily measured parameter) and can be used to describe elasto-plastic fracture in finite element modelling packages. The test variables we have studied to date are clay platelet orientation, soil texture, clay mineralogy, and pore water salinity. All samples were formed by consolidating a soil slurry with a 120 kPa vertical stress. Tests on pure kaolinite showed that platelet orientation did not affect CTOA which was 0.23 ± 0.02 for both conditions. Soil texture did have a marked influence, however, with silica sand:kaolinite mixes of 20:80 and 40:60 reducing CTOA to 0.14 ± 0.02 and 0.12 ± 0.01 respectively. These lower values of CTOA indicate that less strain is required to induce fracture when the amount of clay is lowered

  11. Questioning size effects as predicted by strain gradient plasticity

    NASA Astrophysics Data System (ADS)

    Forest, Samuel

    2013-11-01

    The analytical solution of the elastic-plastic response of a two-phase laminate microstructure subjected to periodic simple shear loading conditions is derived considering strain gradient and micromorphic plasticity models successively. One phase remains purely elastic, whereas the second one displays an isotropic elastic-plastic behavior. Although no classic hardening is introduced at the individual phase level, the laminate is shown to exhibit an overall linear hardening scaling with the inverse of the square of the cell size. The micromorphic model leads to a saturation of the hardening at small length scales in contrast to Aifantis strain gradient plasticity model displaying unlimited hardening. The models deliver qualitatively relevant size effects from the physical metallurgical point of view, but fundamental quantitative discrepancy is pointed out and discussed, thus requiring the development of more realistic nonlinear equations in strain gradient plasticity.

  12. A numerical algorithm for endochronic plasticity and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Valanis, K. C.; Fan, J.

    1985-01-01

    A numerical algorithm based on the finite element method of analysis of the boundary value problem in a continuum is presented, in the case where the plastic response of the material is given in the context of endochronic plasticity. The relevant constitutive equation is expressed in incremental form and plastic effects are accounted for by the method of an induced pseudo-force in the matrix equations. The results of the analysis are compared with observed values in the case of a plate with two symmetric notches and loaded longitudinally in its own plane. The agreement between theory and experiment is excellent.

  13. Friction and plasticity between self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Robbins, Mark; Harrison, Judith

    2006-03-01

    Simulations are used to study the contact area and adhesion between two amorphous solids with self-affine fractal surfaces, and the results are compared to continuum calculations. The friction between non-adhesive surfaces is proportional to load, but the coefficient of friction increases with roughness. The friction is much higher than expected for elasticallly deforming surfaces,^* and substantial plastic deformation is observed. Indeed, friction forces for different surface roughness collapse when plotted against the number of plastic rearrangements per unit sliding distance. Including adhesion leads to an increase in both friction and plasticity. ^* M. H. Müser, L. Wenning, and M. O. Robbins, Phys. Rev. Lett. 86, 1295 (2001).

  14. Pathogen evolution under host avoidance plasticity.

    PubMed

    McLeod, David V; Day, Troy

    2015-09-07

    Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate.

  15. Plastic Stress Intensity Factors in Steady Crack Growth,

    DTIC Science & Technology

    1986-06-01

    in the limit as a approaches zero, since it can be shown (Rice, 1982) that the stress field of the perfectly- plastic problem in plane stress is...from the solution of the perfectly- plastic problem with a centered-fan sector centered about the crack line (see Rice, 1982 and Dean, 1983) ic - 2/43

  16. Compatibility of refrigerants and lubricants with engineering plastics. Final report

    SciTech Connect

    Cavestri, R.C.

    1993-12-01

    23 plastics have been subjected to immersion studies using 7 different lubricants at 60 C and 100 C, and 10 different refrigerants at ambient and 60 C. In the first part of the study, 22 hermetic stress crack-creep rupture test chambers were used to determine dynamic effects of a constant dead weight load on plastic test bars immersed at 20 C in a 40% refrigerant 32 ISOVG branched acid polyolester lubricant. The creep modulus data of the 10 refrigerants, using a dead weight load of 25% of ultimate tensile, are compared to values for air and HCFC-22. In the second part, the plastic test bars were aged for 14 d at constant refrigerant pressure 300 psia with 17 refrigerant lubricant combinations at 150 C. Additional evaluations were conducted to elucidate the effects of temperature, refrigerant, and lubricant on the plastics. At 150 C, high acid formation (high TAN) was further examined with dehydrated plastics. These evaluations indicate that dehydrating the plastics reduced, but did not eliminate, high TAN values and that heat alone caused the lost physicals. Alternative HFC refrigerants had little impact on plastics; some polyolester lubricants caused identifiable changes.

  17. Development of a Nonlinear Cumulative Fatigue Damage Methodology for Aircraft Engine Components under Multiaxial Loadings

    DTIC Science & Technology

    2007-04-01

    fatigue damage accumulation under a variety of loading conditions. These models are, for the most part, empirical approaches that have relied little on...elastic-plastic stresses listed in this table represent the surface stresses at maximum and minimum loads as determined by an elastic-plastic finite...Torsion,Load Control • R=-1 .Torsion.Strain Control © R-0,Torsion,Strain Control ■ Proportional • R=-1 .Torsion,Load Control A Runout ■ \\ n 0 X

  18. 14 CFR 29.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Loads. 29.301 Section 29.301 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  19. 14 CFR 27.301 - Loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Loads. 27.301 Section 27.301 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  20. 14 CFR 29.301 - Loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Loads. 29.301 Section 29.301 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  1. 14 CFR 29.301 - Loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Loads. 29.301 Section 29.301 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  2. 14 CFR 27.301 - Loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Loads. 27.301 Section 27.301 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  3. 14 CFR 27.301 - Loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Loads. 27.301 Section 27.301 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  4. 14 CFR 27.301 - Loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Loads. 27.301 Section 27.301 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements General § 27.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  5. 14 CFR 29.301 - Loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Loads. 29.301 Section 29.301 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  6. 14 CFR 29.301 - Loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Loads. 29.301 Section 29.301 Aeronautics... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements General § 29.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and...

  7. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  8. A Plastic Menagerie

    ERIC Educational Resources Information Center

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  9. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  10. Dreaming in plastic

    NASA Astrophysics Data System (ADS)

    Korzhov, Marianna; Andelman, David; Shikler, Rafi

    2008-07-01

    Plastic is one of the most versatile materials available. It is cheap, flexible and easy to process, and as a result it is all around us - from our computer keyboards to the soles of our shoes. One of its most common applications is as an insulating coating for electric wires; indeed, plastic is well known for its insulating characteristics. It came as something of a surprise, therefore, when in the late 1970s a new generation of plastics was discovered that displayed exactly the opposite behaviour - the ability to conduct electricity. In fact, plastics can be made with a whole range of conductivities - there are polymer materials that behave like semiconductors and there are those that can conduct as well as metals. This discovery sparked a revolution in the electronics community, and three decades of research effort is now yielding a range of stunning new applications for this ubiquitous material.

  11. Physics in Plastics Technology.

    ERIC Educational Resources Information Center

    Thomas, Ken

    1980-01-01

    Discusses the increasing role of the physicist in plastics technology. Relationships of molecular structure to material behavior, design which is related to the material, and the practical problems of fabricating a material into an article are included. (HM)

  12. Local load shedding

    SciTech Connect

    Adibi, M.M.; Thorne, D.K. )

    1988-08-01

    Equipment overloads in an underground transmission network are caused by unscheduled outages. Repairs or replacements of damaged cables and/or transformers in urban areas are inherently difficult and time-consuming. Therefore, for overloads greatly in excess of short-time ratings, speed of load shedding is of paramount importance. Under such conditions, the system operator is faced with: recognizing the problem, determining the course of action and shedding the correct amount of load at the right locations. These tasks are difficult to perform, particularly under pressure of time. Reliance on pre-specified load shedding lists is not satisfactory since the load shedding lists do not necessarily match the amounts and locations of the required loads to be shed. Clearly, there has been a need for a local load shedding scheme, which in the first order of importance, would relieve the overloaded equipment within the time limits imposed by the equipment short-time ratings and in the second order of importance, would ''minimize'' the amount of load to be curtailed. This paper describes an approach which meets the dual objective, providing a practical solution to a difficult engineering/operating problem.

  13. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  14. The Need for Plastics Education.

    ERIC Educational Resources Information Center

    Society of Plastics Engineers, Inc., Stamford, CT.

    In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…

  15. Inelastic Deformation of Metals and Structures under Dynamic and Quasi-Static Cyclic Loading

    DTIC Science & Technology

    1984-05-01

    SECTION 3 NUMERICAL PROCEDURE Cyclic thermo-elasto- plastic problems may be solved by means of the .. method of successive elastic solutions in which...process. The thermal load is now applied incrementally and the thermo-elasto- " plastic problem is solved with the initial values of plastic strains -P

  16. Effects of dispersal plasticity on population divergence and speciation

    PubMed Central

    Arendt, J D

    2015-01-01

    Phenotypic plasticity is thought to have a role in driving population establishment, local adaptation and speciation. However, dispersal plasticity has been underappreciated in this literature. Plasticity in the decision to disperse is taxonomically widespread and I provide examples for insects, molluscs, polychaetes, vertebrates and flowering plants. Theoretical work is limited but indicates an interaction between dispersal distance and plasticity in the decision to disperse. When dispersal is confined to adjacent patches, dispersal plasticity may enhance local adaptation over unconditional (non-plastic) dispersal. However, when dispersal distances are greater, plasticity in dispersal decisions strongly reduces the potential for local adaptation and population divergence. Upon dispersal, settlement may be random, biased but genetically determined, or biased but plastically determined. Theory shows that biased settlement of either type increases population divergence over random settlement. One model suggests that plasticity further enhances chances of speciation. However, there are many strategies for deciding on where to settle such as a best-of-N strategy, sequential sampling with a threshold for acceptance or matching with natal habitat. To date, these strategies do not seem to have been compared within a single model. Although we are just beginning to explore evolutionary effects of dispersal plasticity, it clearly has the potential to enhance as well as inhibit population divergence. Additional work should pay particular attention to dispersal distance and the strategy used to decide on where to settle. PMID:25806544

  17. Laser-launched flyer plate and confined laser ablation for shock wave loading: Validation and applications

    NASA Astrophysics Data System (ADS)

    Paisley, Dennis L.; Luo, Sheng-Nian; Greenfield, Scott R.; Koskelo, Aaron C.

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7mrad (with an average of 4±1mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  18. Biaxial load effects in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Lee, J. D.; Eftis, J.

    1977-01-01

    It is found that the standard expressions for elastic stress and displacement in the crack-tip region (i.e., the so-called singular solution) cannot be considered to be approximations that are acceptable in a completely general sense. This conclusion is best illustrated by the instance of a biaxially loaded infinite sheet with a flat horizontal central crack, where the effect of load applied parallel to the plane of the crack appears entirely in the second terms of the series representations for local stresses and displacements. An elastoplastic finite-element analysis of the same biaxially loaded finite specimen geometry shows that the global energy release rate, the J-integral, the plastic stress and strain intensity factors (in the sense of Hilton and Hutchinson), and the size of the crack border region plastic yield, all have pronounced biaxial load dependence.

  19. Memory plastics for prosthetic and orthotic applications.

    PubMed

    Coombes, A G; Greenwood, C D

    1988-12-01

    Shrink forming prosthetic sockets from memory plastics offers several advantages over existing techniques. The manual skill requirement is reduced relative to drapeforming flat sheet while compared with the Rapidform process, the requirement for a purpose built vacuum forming machine is eliminated. Two methods for producing thermoplastic sockets from heat shrinkable preforms are described. One uses established heat shrink technology and crosslinked thermoplastics. The second based on blowmoulding simplifies preform manufacture relative to existing techniques by reducing it to a single stage operation. Shrink formed sockets have been produced for three application areas concerned with the lower limb namely load bearing sockets, flexible ISNY type and rigid transparent check sockets. Static testing has demonstrated the ability of shrink formed, load bearing sockets to surpass Philadelphia Static Load Levels (ISPO, 1978) while fatigue testing has indicated a capability for long service life.

  20. Constitutive Models Based on Compressible Plastic Flows

    NASA Technical Reports Server (NTRS)

    Rajendran, A. M.

    1983-01-01

    The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.

  1. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established....

  2. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established....

  3. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established....

  4. 14 CFR 25.1531 - Maneuvering flight load factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maneuvering flight load factors. 25.1531... Operating Limitations § 25.1531 Maneuvering flight load factors. Load factor limitations, not exceeding the positive limit load factors determined from the maneuvering diagram in § 25.333(b), must be established....

  5. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  6. Phenotypic plasticity and evolution by genetic assimilation.

    PubMed

    Pigliucci, Massimo; Murren, Courtney J; Schlichting, Carl D

    2006-06-01

    In addition to considerable debate in the recent evolutionary literature about the limits of the Modern Synthesis of the 1930s and 1940s, there has also been theoretical and empirical interest in a variety of new and not so new concepts such as phenotypic plasticity, genetic assimilation and phenotypic accommodation. Here we consider examples of the arguments and counter-arguments that have shaped this discussion. We suggest that much of the controversy hinges on several misunderstandings, including unwarranted fears of a general attempt at overthrowing the Modern Synthesis paradigm, and some fundamental conceptual confusion about the proper roles of phenotypic plasticity and natural selection within evolutionary theory.

  7. Effect of the determination method of the material parameters on the accuracy of forming limit analyses for 5000 series aluminum alloy

    NASA Astrophysics Data System (ADS)

    Hakoyama, Tomoyuki; Kuwabara, Toshihiko; Barlat, Frédéric

    2016-10-01

    The effect of the method used to determine the material parameters of a yield function on the accuracy of the forming limit strains predicted using the Marciniak-Kuczyński-type (M-K) forming limit analysis for a 5000 series aluminum alloy sheet is investigated. A tube subjected to tension-expansion loading under linear paths in the first quadrant of the stress space are performed to measure the multiaxial plastic deformation behavior and the forming limit strains of the test material. The anisotropic parameters and the exponent of the Yld2000-2d yield function (Barlat et al, 2003) are optimized to approximate the contours of the plastic work and/or the directions of the plastic strain rates. The M-K analyses are performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of the plastic strain rates leads to the most accurate predicted forming limit strains.

  8. The plasticity of clays

    USGS Publications Warehouse

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  9. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  10. Micromechanics of emergent patterns in plastic flows.

    PubMed

    Biswas, Santidan; Grant, Martin; Samajdar, Indradev; Haldar, Arunansu; Sain, Anirban

    2013-01-01

    Crystalline solids undergo plastic deformation and subsequently flow when subjected to stresses beyond their elastic limit. In nature most crystalline solids exist in polycrystalline form. Simulating plastic flows in polycrystalline solids has wide ranging applications, from material processing to understanding intermittency of earthquake dynamics. Using phase field crystal (PFC) model we show that in sheared polycrystalline solids the atomic displacement field shows spatio-temporal heterogeneity spanning over several orders of length and time scales, similar to that in amorphous solids. The displacement field also exhibits localized quadrupolar patterns, characteristic of two dislocations of the opposite sign approaching each other. This is a signature of crystallinity at microscopic scale. Polycrystals being halfway between single crystals and amorphous solids, in terms of the degree of structural order, descriptions of solid mechanics at two widely different scales, namely continuum plastic flow and discrete dislocation dynamics turns out to be necessary here.

  11. Enhancing contrast of fingerprints on plastic tape.

    PubMed

    Steele, Charles A; Ball, Mikki S

    2003-11-01

    Many of the currently available fingerprinting methods have limited ability to visualize fingerprints on plastic tape without expensive equipment or significant handling of the sample. This is especially true for visualizing fingerprints on black electrical tape. This study sought a hands-off method to produce easy visualization of fingerprints on different types of plastic tape, including black electrical tape, without the need for expensive equipment. The methods selected were to sublime disperse dyes into the tape, both with and without the fuming of cyanoacrylate, everywhere except for where the fingerprint was applied. The resulting color contrasts provided enough differentiation to visualize fingerprints on plastic tape under ambient light. Sequential fuming with cyanoacrylate followed by disperse dyes provided the best visualizations on all tapes, and cyanoacrylate followed by disperse yellow 211 clearly visualized fingerprints on black electrical tape.

  12. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    PubMed Central

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices. PMID:25365179

  13. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    PubMed

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  14. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.

    PubMed

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.

  15. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers.

    PubMed

    Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2016-04-15

    The level of contamination by microscopic anthropogenic litter (0.5-5mm) in terrestrial ecosystems is not well understood. After chemical digestion in 10% KOH, microscopic anthropogenic litter from the gastrointestinal tracts of 17 terrestrial birds was identified and categorized under a stereomicroscope based on its physical properties and melting tests. In total, 364 items from 16 birds were identified as microscopic anthropogenic litter, ranging in size from 0.5 to 8.5mm. No relationship between plastic load and body condition was found. Natural fibers, plastic fibers and fragmented plastics represented, respectively, 37.4% (136 items), 54.9% (200 items) and 7.7% (28 items) of total litter items. Small sample sizes limited our ability to draw strong conclusions about the metabolism of natural fibers, but the decline in the proportion of natural fibers from the esophagus to stomach to intestine suggested that they may be digestible. Particles smaller than 5mm represented more than 90% of the total number of pollutant items. Particles with colors in the mid-tones and fibrous shapes were overwhelmingly common particles. The results reflect pollution by microscopic anthropogenic litter in the terrestrial ecosystem of the study area. Microscopic natural fibers, which may disperse and adsorb chemical pollutants differently from microplastic and may pose an even greater risk, are in urgent need of further research.

  16. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs

    PubMed Central

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg−1, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material. PMID:25105506

  17. The application of plastic compression to modulate fibrin hydrogel mechanical properties.

    PubMed

    Haugh, Matthew G; Thorpe, Stephen D; Vinardell, Tatiana; Buckley, Conor T; Kelly, Daniel J

    2012-12-01

    The inherent biocompatibility of fibrin hydrogels makes them an attractive material for use in a wide range of tissue engineering applications. Despite this, their relatively low stiffness and high compliance limits their potential for certain orthopaedic applications. Enhanced mechanical properties are desirable so as to withstand surgical handling and in vivo loading after implantation and additionally, can provide important cues to cells seeded within the hydrogel. Standard methods used to enhance the mechanical properties of biological scaffolds such as chemical or thermal crosslinking cannot be used with fibrin hydrogels as cell seeding and gel formation occurs simultaneously. The objective of this study was to investigate the use of plastic compression as a means to improve the mechanical properties of chondrocyte-seeded fibrin hydrogels and to determine the influence of such compression on cell viability within these constructs. It was found that the application of 80% strain to fibrin hydrogels for 30 min (which resulted in a permanent strain of 47.4%) produced a 2.1-fold increase in the subsequent compressive modulus. Additionally, chondrocyte viability was maintained in the plastically compressed gels with significant cellular proliferation and extracellular matrix accumulation observed over 28 days of culture. In conclusion, plastic compression can be used to modulate the density and mechanical properties of cell-seeded fibrin hydrogels and represents a useful tool for both in theatre and in vitro tissue engineering applications.

  18. Speed limits of aircraft

    NASA Technical Reports Server (NTRS)

    Everling, E

    1923-01-01

    This paper is restricted to the question of attainable speed limits and attacks the problem from different angles. Theoretical limits due to air resistance are presented along with design factors which may affect speed such as wing loads, wing areas, wing section shifting, landing speeds, drag-lift ratios, and power coefficients.

  19. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  20. Consumer hazards of plastics.

    PubMed Central

    Wiberg, G S

    1976-01-01

    The modern consumer is exposed to a wide variety of plastic and rubber products in his day to day life: at home, work, school, shopping, recreation and play, and transport. A large variety of toxic sequellae have resulted from untoward exposures by many different routes: oral, dermal, inhalation, and parenteral. Toxic change may result from the plastic itself, migration of unbound components and additives, chemical decomposition or toxic pyrolysis products. The type of damage may involve acute poisoning, chronic organ damage, reproductive disorders, and carcinogenic, mutagenic and teratogenic episodes. Typical examples for all routes are cited along with the activites of Canadian regulatory agencies to reduce both the incidence and severity of plastic-induced disease. PMID:1026409

  1. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  2. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  3. Long pulse laser driven shock wave loading for dynamic materials experiments

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Greenfield, S. R.; Paisley, D. L.; Johnson, R. P.; Shimada, T.; Byler, D. D.; Loomis, E. N.; DiGiacomo, S. N.; Patterson, B. M.; McClellan, K. J.; Dickerson, R. M.; Peralta, P. D.; Koskelo, A. C.; Tonks, D. L.

    2008-05-01

    We present two laser driven shock wave loading techniques utilizing long pulse lasers, laser-launched flyer plate and confined laser ablation, and their applications to shock physics. The full width at half maximum of the drive laser pulse ranges from 100 ns to 10 μs, and its energy, from 10 J to 1000 J. The drive pulse is smoothed with a holographic optical element to achieve spatial homogeneity in loading. We characterize the flyer plate during flight and dynamically loaded target with temporally and spatially resolved diagnostics. The long duration and high energy of the drive pulse allow for shockless acceleration of thick flyer plates with 8 mm diameter and 0.1-2 mm thickness. With transient imaging displacement interferometry and line-imaging velocimetry, we demonstrate that the planarity (bow and tilt) of the loading is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible in particular when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation enables flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These dynamic loading techniques using long pulse lasers (0.1-10 μs) along with short pulse lasers (1-10 ns) can be an accurate, versatile and efficient complement to conventional shock wave loading for investigating such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples, in a wide range of strain rates and pressures at meso- and macroscopic scales.

  4. On shakedown analysis in hardening plasticity

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Son

    2003-01-01

    The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.

  5. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  6. Modelling the torsion of thin metal wires by distortion gradient plasticity

    NASA Astrophysics Data System (ADS)

    Bardella, Lorenzo; Panteghini, Andrea

    2015-05-01

    Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.

  7. Finite element investigation of thermo-elastic and thermo-plastic consolidation

    SciTech Connect

    Aboustit, B.L.

    1984-01-01

    The transient response of saturated continua due to thermal as well as mechanical loads is investigated in both elastic and plastic ranges. When the two phase saturated media are subjected to thermomechanical loading, the energy equation is coupled with the mass flow and solid deformation equations resulting in the initial boundary value problem of thermal consolidation. The solid behavior may be assumed to be either elastic or elastoplastic leading to the associated theories of thermoelastic and thermoelastoplastic consolidation. The governing equations for the quasi-static infinitesimal theory of thermoelastic consolidation are developed by using the theory of mixtures. An equivalent variational principle is developed along with associated finite element formulations. Two isoparametric elements of the composite type are employed for the spatial discretization. The formulation is extended to the plastic ranges by modeling the solid phase as an elastic work hardening material with an associated flow rule. An incremental iterative scheme is developed to solve this nonlinear transient problem. Several special purpose computer codes are developed for evaluating the isothermal, thermal, elastic and elastoplastic plane strain consolidation responses. These codes have been evaluated against limiting cases available in the literature. The effects of temporal and spatial interpolation schemes are investigated for one-dimensional thermoelastic consolidation problems. An application dealing with a plane strain underground coal gasification problem is also presented.

  8. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

    PubMed Central

    Lafourcade, Carlos; Ramírez, Juan Pablo; Luarte, Alejandro; Fernández, Anllely; Wyneken, Ursula

    2016-01-01

    Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system. PMID:27547038

  9. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications

    NASA Astrophysics Data System (ADS)

    Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.; Hunter, Abigail; Kenamond, Mark A.

    2016-05-01

    This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element-finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation.

  10. Molecular Signaling in Muscle Plasticity

    NASA Technical Reports Server (NTRS)

    Epstein, Henry F.

    1999-01-01

    Extended spaceflight under microgravity conditions leads to significant atrophy of weight-bearing muscles. Atrophy and hypertrophy are the extreme outcomes of the high degree of plasticity exhibited by skeletal muscle. Stimuli which control muscle plasticity include neuronal, hormonal, nutritional, and mechanical inputs. The mechanical stimulus for muscle is directly related to the work or exercise against a load performed. Little or no work is performed by weight-bearing muscles under microgravity conditions. A major hypothesis is that focal adhesion kinase (FAK) which is associated with integrin at the adherens junctions and costa meres of all skeletal muscles is an integral part of the major mechanism for molecular signaling upon mechanical stimulation in all muscle fibers. Additionally, we propose that myotonic protein kinase (DMPK) and dystrophin (DYSTR) also participate in distinct mechanically stimulated molecular signaling pathways that are most critical in type I and type II muscle fibers, respectively. To test these hypotheses, we will use the paradigms of hindlimb unloading and overloading in mice as models for microgravity conditions and a potential exercise countermeasure, respectively, in mice. We expect that FAK loss-of-function will impair hypertrophy and enhance atrophy in all skeletal muscle fibers whereas DYSTR and DMPK loss-of-function will have similar but more selective effects on Type IT and Type I fibers, respectively. Gene expression will be monitored by muscle-specific creatine kinase M promoter-reporter construct activity and specific MRNA and protein accumulation in the soleus (type I primarily) and plantaris (type 11 primarily) muscles. With these paradigms and assays, the following Specific Project Aims will be tested in genetically altered mice: 1) identify the roles of DYSTR and its pathway; 2) evaluate the roles of the DMPK and its pathway; 3) characterize the roles of FAK and its pathway and 4) genetically analyze the mechanisms

  11. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  12. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Gupta, Y. M.

    2017-01-01

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) - a body-centered cubic metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ˜0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within the experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ˜3.6 GPa. Numerical simulations of the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}⟨111⟩ and/or {112}⟨111⟩ slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. The numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.

  13. Structural Plasticity Denoises Responses and Improves Learning Speed

    PubMed Central

    Spiess, Robin; George, Richard; Cook, Matthew; Diehl, Peter U.

    2016-01-01

    Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e., the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasticity (STDP) and what advantages their combination offers. Here we present a fairly large-scale functional model that uses leaky integrate-and-fire neurons, STDP, homeostasis, recurrent connections, and structural plasticity to learn the input encoding, the relation between inputs, and to infer missing inputs. Using this model, we compare the error and the amount of noise in the network's responses with and without structural plasticity and the influence of structural plasticity on the learning speed of the network. Using structural plasticity during learning shows good results for learning the representation of input values, i.e., structural plasticity strongly reduces the noise of the response by preventing spikes with a high error. For inferring missing inputs we see similar results, with responses having less noise if the network was trained using structural plasticity. Additionally, using structural plasticity with pruning significantly decreased the time to learn weights suitable for inference. Presumably, this is due to the clearer signal containing less spikes that misrepresent the desired value. Therefore, this work shows that structural plasticity is not only able to improve upon the performance using STDP without structural plasticity but also speeds up learning. Additionally, it addresses the practical problem of limited resources for connectivity that is not only apparent in the mammalian neocortex but also in computer hardware or neuromorphic (brain-inspired) hardware by efficiently pruning synapses without losing performance. PMID:27660610

  14. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  15. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  16. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  17. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  18. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  19. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  20. Shuttle car loading system

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr. (Inventor)

    1985-01-01

    A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

  1. Cuticular plasticization in the tick, Amblyomma hebraeum (Acari: Ixodidae): possible roles of monoamines and cuticular pH.

    PubMed

    Kaufman, W Reuben; Flynn, Peter C; Reynolds, Stuart E

    2010-08-15

    The degree of plasticization of the alloscutal cuticle of a 'hard' (ixodid) tick, Amblyomma hebraeum, and a 'soft' (argasid) tick, Ornithodoros moubata, was assessed throughout the blood-feeding period. Cuticle viscosity was calculated from rate of creep of cuticle under constant load using a Maxwell model. Feeding-related plasticization (i.e. increased rate of extension under a constant load) occurred in A. hebraeum but not in O. moubata. Maxwell viscosity of unfed A. hebraeum cuticle was relatively high (approximately 720 GPa s) but was significantly lower in feeding ticks. Small partially fed ticks displayed a viscosity of approximately 108 GPa s. Still lower values (42 GPa s) were observed in the largest of the engorged ticks. Following cessation of feeding, there was a significant but limited reversal in viscosity back to approximately 100 GPa s. The water content of cuticle of unfed A. hebraeum (23.4% of wet mass) rose sharply after the onset of feeding and reached a plateau value of 34.0% at a fed/unfed weight ratio of 3 and beyond. Ixodid ticks lay down new endocuticle during the feeding period. The observed increase in cuticle hydration suggests that both old and new cuticles are hydrated during feeding. Monoamines may play an important role in controlling cuticle viscosity. Dopamine (DA) injected into partially fed A. hebraeum caused plasticization. 5-Hydroxytryptamine (serotonin, 5-HT), which induces plasticization in the blood-sucking insect Rhodnius prolixus, had no statistically significant effect on tick cuticle. Octopamine (OA) and tyramine both caused cuticle stiffening (i.e. opposed plasticization). This suggests a possible inhibitory effect but co-injection of OA with DA did not reduce DA-induced plasticization. The mechanism leading to plasticization of tick cuticle may involve a change in cuticular pH. The viscosity of tick cuticle loops was highest at pH 8.0 (389 GPa s) and fell precipitously in the acidic range to a low value of 2.2 GPa s at

  2. Plastics in Perspective.

    ERIC Educational Resources Information Center

    Bergandine, David R.; Holm, D. Andrew

    The materials in this curriculum supplement, developed for middle school or high school science classes, present solid waste problems related to plastics. The set of curriculum materials is divided into two units to be used together or independently. Unit I begins by comparing patterns in solid waste from 1960 to 1990 and introducing methods for…

  3. Hydrodynamic Elastic Magneto Plastic

    SciTech Connect

    Wilkins, M. L.; Levatin, J. A.

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  4. Preserving in Plastic.

    ERIC Educational Resources Information Center

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  5. Plastic evolution behavior of H340LAD_Z steel by an optical method

    NASA Astrophysics Data System (ADS)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD_Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  6. Plastics (Environmental Health Student Portal)

    MedlinePlus

    ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Plastics The Basics Plastics play a ...

  7. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): Implications for fledgling body condition and the accumulation of plastic-derived chemicals.

    PubMed

    Lavers, Jennifer L; Bond, Alexander L; Hutton, Ian

    2014-04-01

    To provide much needed quantitative data on the lethal and sublethal effects of plastic pollution on marine wildlife, we sampled breast feathers and stomach contents from Flesh-footed Shearwater (Puffinus carneipes) fledglings in eastern Australia. Birds with high levels of ingested plastic exhibited reduced body condition and increased contaminant load (p < 0.05). More than 60% of fledglings exceed international targets for plastic ingestion by seabirds, with 16% of fledglings failing these targets after a single feeding (range: 0.13-3.21 g of plastic/feeding). As top predators, seabirds are considered sentinels of the marine environment. The amount of plastic ingested and corresponding damage to Flesh-footed Shearwater fledglings is the highest reported for any marine vertebrate, suggesting the condition of the Australian marine environment is poor. These findings help explain the ongoing decline of this species and are worrying in light of increasing levels of plastic pollution in our oceans.

  8. Wood plastic composite at different urea concentrations

    NASA Astrophysics Data System (ADS)

    Husain, M. M.; Khan, Mubarak A.; Ali, K. M. Idriss; Hasan, A. J. M. Moynul

    1995-04-01

    Wood plastic composite (WPC) has been prepared with a low grade wood simul ( Salmalia malabarica) of Bangladesh under Co-60 gamma irradiation using MMA as the bulk monomer combined with methanol as the swelling solvent at different urea concentrations. Effect of a second solute such as NVP, TPGDA and TMPTA in the impregnating solution is evaluated. NVP appears to be the best co-additive/second solute among all the additives used to yield the composite with the highest polymer loading (PL) and tensile strength (TS) at 0.5% urea concentration.

  9. Use of Plastic Capillaries for Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  10. Plastics Pollution Control Technology Research

    DTIC Science & Technology

    1992-01-01

    various machines, the plastics processor, the pulper, and the compactor, being developed to address the plastics problem firsthand. The Dialogue...incinerators themselves may not be a part of the Navy’s solution to the plastics problem , the space that the incinerators occupy will be useful. It is the... plastics problem although they believe that the Navy will not be in compliance by 1993. They suggested that a change in the law which will allow them to keep

  11. Reducing Navy Marine Plastic Pollution

    DTIC Science & Technology

    1988-06-28

    pollution. Plastic debris from ships is littering beaches, and killing and debilitating fish and wildlife because they are ingesting plastic , or because...they are becoming entangled in plastic debris . While no one is purposefully causing these impacts, the effects are becoming more pronounced. In the...generate support for shipboard and service-wide activities. The recommendations in this section call for disseminating information about the plastic debris

  12. Spherical Acrylic Plastic Hulls under External Explosive Loading

    DTIC Science & Technology

    1976-03-01

    61-4l2-O0l. Rcleased by H. R. Taikington, Head, Ocean I echnology Department ACKNOWLEDGEMENTS The testing of mne-del -size and full-size NEMO-type...Thle cage itself It mas kept sus-pendted at 50 Pt dlepth by meianls of a cable attached to at large mobile crane. For tile first three Shots, thle

  13. PLASTIC DEFORMATION AND FRACTURE OF STEELS UNDER DYNAMIC BIAXIAL LOADING

    SciTech Connect

    Syn, C; Moreno, J; Goto, D M; Belak, J; Grady, D

    2004-07-08

    Dynamic equi-biaxial bulging of thin AerMet 100 alloy plates was studied. The plates were deformed using a gas-gun driven flyer plate test set-up at impact velocities between 1.0 and 2.0 km/sec. The results indicate that in addition to biaxial stretching (and thinning) of the plate, internal cavitation (spallation fracture) results from the complex wave interactions within the plate. No outward evidence of damage was observed at the lower velocities, in the range of 1.0-1.2 km/sec. Fine scale cracking of the plates was observed at impact velocity above approximately 1.4 km/sec. Complete specimen fracture, in the form of multiple petals and pie-shaped fragments, was observed at impact velocity above 1.6 km/sec. Hydrodynamic computer code simulations were performed, prior to and in conjunction with the experiments, to aid in experiment design and interpretation of the experimental data.

  14. Plastics for Elementary School Children

    ERIC Educational Resources Information Center

    Hanson, Jack

    1977-01-01

    Describes three plastics projects (which involve making a styrene fishing bobber, an acrylic salad fork and spoon set, and acetate shrink art) designed to provide elementary level students an opportunity to work with plastics and to learn about careers in plastics production and distribution. (TA)

  15. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  16. Rate of loading parameters for vertically loaded piles in clay

    SciTech Connect

    Briaud, J.L.; Felio, G.Y.; Garland, E.

    1984-05-01

    The analysis of 152 laboratory tests and 32 pile load tests confirms that for clays, the faster the rate of loading, the higher the undrained shear strength and the higher the pile capacity. The data shows that the gain in undrained shear strength due to increasing rate of loading increases with increasing water content, plasticity index, liquidity index, overconsolidation ratio but with decreasing undrained shear strength. A simple model is proposed to quantify the rate of loading effects on undrained shear strength. The viscous exponent n which is the main parameter of the model can be measured by conventional laboratory tests or possibly by cone penetrometer testing, or as a last resort by the proposed empirical correlations to index properties. This model is used to develop rate dependent t-z curves and a computer program to predict the response of a pile subjected to a certain rate of vertical loading. The model and the program are checked by comparing the predicted and measured behavior of two piles.

  17. Recycling of plastic waste by density separation: prospects for optimization.

    PubMed

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Diego, Isidro

    2009-03-01

    A review of existing industrial processing and results of alternative processing investigations for separating solid mixtures and specifically recycling plastic waste by density separation is presented. Media density separation is shown to be fundamental for separation and/or pre-concentration in the recycling of plastics. The current use of static media processes limits the capacity and size of material that can be treated commercially. Investigations have shown that the hydroscopic properties of plastics can be reduced to improve such separations. This indicates that an alternative processing method is required to increase the commercial recovery of recyclable plastics. Cylindroconical and cylindrical cyclone-type media separators, such as those used for processing coal, are reviewed and suggested as a potential substitute. Both have superior production capacities and are able to process a larger range in particle sizes treated. A summary of results of investigations with cyclone media devices for recycling plastics is presented.

  18. A QSPR for the plasticization efficiency of polyvinylchloride plasticizers.

    PubMed

    Chandola, Mridula; Marathe, Sujata

    2008-01-01

    A simple quantitative structure property relationship (QSPR) for correlating the plasticization efficiency of 25 polyvinylchloride (PVC) plasticizers was obtained using molecular modeling. The plasticizers studied were-aromatic esters (phthalate, terephthalate, benzoate, trimellitate), aliphatic esters (adipate, sebacate, azelate), citrates and a phosphate. The low temperature flex point, Tf, of plasticized polyvinylchloride resins was considered as an indicator of plasticization efficiency. Initially, we attempted to predict plasticization efficiency of PVC plasticizers from physical and structural descriptors derived from the plasticizer molecule alone. However, the correlation of these descriptors with Tf was not very good with R=0.78 and r2=0.613. This implied that the selected descriptors were unable to predict all the interactions between PVC and plasticizer. Hence, to account for these interactions, a model containing two polyvinylchloride (PVC) chain segments along with a plasticizer molecule in a simulation box was constructed, using molecular mechanics. A good QSPR equation correlating physical and structural descriptors derived from the model to Tf of the plasticized resins was obtained with R=0.954 and r2=0.909.

  19. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  20. 46 CFR 44.05-10 - Load line markings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Load line markings. 44.05-10 Section 44.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SPECIAL SERVICE LIMITED DOMESTIC VOYAGES Rules for Assigning Special Service Load Lines § 44.05-10 Load line markings. (a) The load...