Starch plastics packaging and agriculture applications
USDA-ARS?s Scientific Manuscript database
The environmental impact of petroleum-based plastics is a growing concern throughout the world. Containers and packaging comprise the largest sector of municipal solid waste and are a major component of pollution on both land and sea. Although the benefits of plastics in many consumer and industrial...
Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.
Yokel, Robert A; Unrine, Jason M
2017-01-01
Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with <200 μg/L in plastic container-packaged calcium gluconate. A concern about plastic packaging is leaching of plasticizers, including phthalates, which have the potential to cause endocrine (male reproductive system) disruption and neurotoxicity. Aluminum was quantified in samples collected periodically for more than 2 years from 3 calcium gluconate sources used to prepare parenteral nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
..., Murrieta. The facilities are used for the production of cardiovascular devices including stents, catheters... finished product) include: resins, plastic tubing, stent components, plastic packaging, plastic clips...
Kassouf, Amine; El Rakwe, Maria; Chebib, Hanna; Ducruet, Violette; Rutledge, Douglas N; Maalouly, Jacqueline
2014-08-11
Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration. Copyright © 2014 Elsevier B.V. All rights reserved.
Brouwer, Marieke T; Thoden van Velzen, Eggo U; Augustinus, Antje; Soethoudt, Han; De Meester, Steven; Ragaert, Kim
2018-01-01
The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap -1 .a -1 ). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recovery of PET from packaging plastics mixtures by wet shaking table.
Carvalho, M T; Agante, E; Durão, F
2007-01-01
Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.
García Ibarra, Verónica; Rodríguez Bernaldo de Quirós, Ana; Paseiro Losada, Perfecto; Sendón, Raquel
2018-05-07
Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g -1 . In some samples, only DBP exceeded the European SML of 0.3 mg kg -1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.
Inert Reassessment Document for Diethanolamine - CAS No. 111-42-2
Diethyl phthalate used is as a plasticizer in a wide variety of consumer products, including plastic packaging film, automotive components, toys, cosmetic formulations, toiletries, medical tubing, solid rocket propellants, and as a ingredient in aspirin
Inert Reassessment Document for Diethyl Phthalate - CAS No. 84-66-2
Diethyl phthalate used is as a plasticizer in a wide variety of consumer products, including plastic packaging film, automotive components, toys, cosmetic formulations, toiletries, medical tubing, solid rocket propellants, and as a ingredient in aspirin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr; INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy; AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris
2014-11-15
Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energymore » recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions.« less
Active packaging using regenerated cellulose and hydroxypropyl amylopectin for fresh food products
USDA-ARS?s Scientific Manuscript database
As an alternate to non-sustainable plastic packaging, polymer blends were engineered using regenerated cellulose and a hydroxypropyl functionalized starch derivative. Initially, films were cast out of solution to determine optimum blend composition, and then components were reactively extruded to in...
NASA Astrophysics Data System (ADS)
Setiawan, Achmad Hanafi; Aulia, Fauzan
2017-01-01
The commonly food packaging materials today is used a thin layer plastic or film, which is made of a synthetic polymer, such as polypropylene (PP). However, the use of these polymers has a negative impact on the environment, because the synthetic polymer is difficult to degrade naturally by the biotic components such as micro-organisms decomposers and abiotic components such as the sunshine. The use of the biodegradable polymeric material will reduce the use of synthetic polymer products, thereby reducing plastic waste pollution at relatively low cost, it is expected to produce positive effects both for the environment and in terms of economy. PLA is a biodegradable polymer that can be substituted totally or partially to synthetic polymers as far as could fulfill the main function of packaging in the protection and preservation of food. Increasing PLA content in polypropylene blend will affect to the increasing in its water absorption and also its biodegradable. 20% PLA may the optimum composition of poly-blend for food packaging.
49 CFR 178.925 - Standards for rigid plastic Large Packagings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids and...
49 CFR 178.925 - Standards for rigid plastic Large Packagings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids and...
49 CFR 178.925 - Standards for rigid plastic Large Packagings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids and...
49 CFR 178.925 - Standards for rigid plastic Large Packagings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids and...
NASA Astrophysics Data System (ADS)
B. G. Porto, Karina Meschini; Napolitano, Celia Marina; Borrely, Sueli Ivone
2018-01-01
The integrity of materials containing packaging (natural or synthetic polymers) is essential to keep the aseptic condition of commercialized products (health care products, food and pharmaceuticals). The objective of this paper was to study gamma radiation effects (25 kGy, 40 kGy and 50 kGy) on the main properties of paper and multilayer films (polyester and polyethylene). Paper and multilayer films are components of packaging (pouches) for radiation sterilization containing medical equipment or products. Paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Concerning plastic film, no pinholes were induced by radiation and the effects on the tensile strength were not significant. Although the seal strength packaging (pouches) decreased according to increasing dose, the sealing integrity was preserved.
NASA-DoD Lead-Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2009-01-01
In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder
Code of Federal Regulations, 2011 CFR
2011-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...
Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette
2014-11-01
Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied at an industrial level given that all tests presented here were performed under laboratory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for composite packagings with inner... Standards for composite packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within...
Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs
Bott, Johannes; Störmer, Angela; Franz, Roland
2014-01-01
Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg−1, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material. PMID:25105506
Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.
Bott, Johannes; Störmer, Angela; Franz, Roland
2014-01-01
Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.
49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...
49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...
49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...
49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle within a protective steel drum...
Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2017-09-01
Rice stubble is agricultural waste consisting of cellulose which can be converted to carboxymethyl cellulose from rice stubble (CMCr) as a potential biomaterial. Plasticizer types (glycerol and olive oil) and their contents were investigated to provide flexibility for use as food packaging material. Glycerol content enhanced extensibility, while olive oil content improved the moisture barrier of films. Additionally, CMCr showed potential as a replacement for up to 50% of commercial CMC without any changes in mechanical and permeability properties. A mixture of plasticizers (10% glycerol and 10% olive oil) provided blended film with good water barrier and mechanical properties comparable with 20% individual plasticizer. Principle component (PC) analysis with 2 PCs explained approximately 81% of the total variance, was a useful tool to select a suitable plasticizer ratio for blended film production. Therefore, CMCr can be used to form edible film and coating as a renewable environmentally friendly packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recycling potential of post-consumer plastic packaging waste in Finland.
Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta
2018-01-01
Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the composition study only on mixed MSW plastic fraction. In order to obtain more precise figures of the recycling potential of post-consumer plastic packaging, more studies should be performed on both the quantities and the qualities of plastic wastes. The mechanical and rheological test results indicated that even plastic wastes originating from the mixed MSW, can be useful raw materials. Recycled HDPE showed a smaller decline in the mechanical properties than recycled PP. The origin and processing method of waste plastic seemed to have less effect on the mechanical quality than the type of plastic. The applicability of a plastic waste for a product needs to be assessed case by case, due to product specific quality requirements. In addition to mechanical properties, the chemical composition of plastic wastes is of major importance, in order to be able to restrict hazardous substances from being circulated undesirably. In addition to quantity and quality of plastic wastes, the sustainability of the whole recycling chain needs to be assessed prior to launching operations so that the chain can be optimized to generate both environmental and economic benefits to society and operators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of simulant mixed waste on EPDM and butyl rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-11-01
The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less
Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton
2013-01-01
Part 1 of this three-part research series detailed the development and validation of a high-voltage leak detection test (HVLD, also known as an electrical conductivity and capacitance test) for verifying the container-closure integrity of a small-volume laminate plastic bag containing an aqueous solution formulation of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. Leak detection capability was verified using positive controls each with a single laser-drilled hole in the bag film face. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect weaknesses and/or gaps in the bag heat seal. Study 2 checked the HVLD detection of bag holes in packages stored 4 days at ambient conditions followed by 17 days at refrigeration. Study 3 examined HVLD test results for packages tested when cold. Study 4 compared HVLD test results as a function of bag plastic film lots. The final Part 3 of this series will report the impact of HVLD exposure on product visual appearance and chemical stability. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with a solution for injection of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect bag heat seal leaks. Study 2 checked HVLD's ability to detect bag holes after a total of 21 days at ambient plus refrigerated temperatures. Study 3 looked to see if HVLD results changed for packages tested when still cold. Study 4 compared HVLD results for multiple bag plastic film lots. The final Part 3 of this series will report any evidence of drug component degradation caused by HVLD exposure.
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film...
21 CFR 310.509 - Parenteral drug products in plastic containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...
21 CFR 310.509 - Parenteral drug products in plastic containers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...
21 CFR 310.509 - Parenteral drug products in plastic containers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...
21 CFR 310.509 - Parenteral drug products in plastic containers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...
21 CFR 310.509 - Parenteral drug products in plastic containers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...
Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters.
Guart, Albert; Bono-Blay, Francisco; Borrell, Antonio; Lacorte, Silvia
2014-08-01
Bottled water is packaged in either glass or, to a large extent, in plastic bottles with metallic or plastic caps of different material, shape and colour. Plastic materials are made of one or more monomers and several additives that can eventually migrate into water, either during bottle manufacturing, water filling or storage. The main objective of the present study was to carry out a comprehensive assessment of the quality of the Spanish bottled water market in terms of (i) migration of plastic components or additives during bottling and during storage and (ii) evaluation of the effect of the packaging material and bottle format on the migration potential. The compounds investigated were 5 phthalates, diethylhexyl adipate, alkylphenols and bisphenol A. A set of 362 bottled water samples corresponding to 131 natural mineral waters and spring waters sources and 3 treated waters of several commercial brands were analysed immediately after bottling and after one-year storage (a total of 724 samples). Target compounds were detected in 5.6% of the data values, with diethyl hexyl phthalate and bisphenol A being the most ubiquitous compounds detected. The total daily intake was estimated and a comparison with reference values was indicated. Copyright © 2014 Elsevier Ltd. All rights reserved.
49 CFR 178.517 - Standards for plastic boxes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic boxes. 178.517 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...
Occurrence of extractable ink residuals in packaging materials used in the Czech Republic.
Dupáková, Z; Dobiás, J; Votavová, L; Klaudisová, K; Voldrich, M
2010-01-01
Residues of printing ink components were determined in 94 samples of packaging materials commercially used in the Czech Republic for food packaging. The samples tested included printed polyethylene and polypropylene films, co-extruded and laminated films, paperboard beverages boxes, foils for thermo sealing of polystyrene cups, and polypropylene cups. Printing ink components were extracted with diethylether, then separated and determined using gas chromatography-mass spectrometry (GC/MS). Fifty compounds potentially originating from printing were isolated, identified and quantified. No acute health risk for consumers were identified, even though several findings of high levels of photo-initiators (e.g. in polyethylene terephthalate (PET) films for thermo sealing of polystyrene cups) as well as plasticizers (acetyl tributyl citrate, tributyl aconitate, 2-butoxyethyl oleate and 2-ethylhexyl diphenyl phosphate in co-extruded films) indicate that their real migration into food and/or food simulants needs to be undertaken for a proper safety evaluation.
How consumers of plastic water bottles are responding to environmental policies?
Orset, Caroline; Barret, Nicolas; Lemaire, Aurélien
2017-03-01
Although plastic induces environmental damages, almost all water bottles are made from plastic and the consumption never stops increasing. This study evaluates the consumers' willingness to pay (WTP) for different plastics used for water packaging. Successive messages emphasizing the characteristics of plastic are delivered to consumers allowing explaining the influence of information on the consumers' WTP. We find that information has a manifest effect on the WTP. We show there is a significant premium associated with recycled plastic packaging and biodegradable bioplastic packaging. As there is no consensus on the plastic which is the most or the least dangerous for the environment, we propose different policies for protecting the environment. We discuss about the impact of these policies on consumer's purchasing decisions: switching one plastic packaging for another, or leaving water plastic bottles market. We present the environmental policies that are effective according to the point of view adopted. Choosing between these policies then depends on the priorities of the regulator and pressure of lobbies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2008-01-01
Area array packages (AAPs) with 1.27 mm pitch have been the packages of choice for commercial applications; they are now starting to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic ball grid array (PBGA) and chip scale package assemblies, because of their wide usage for commercial applications, have been extensively reported on in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.However, very limited data is available for thermal cycling behavior of ceramic packages commonly used for the aerospace applications. For high reliability applications, numerous AAPs are available with an identical design pattern both in ceramic and plastic packages. This paper compares assembly reliability of ceramic and plastic packages with the identical inputs/outputs(I/Os) and pattern. The ceramic package was in the form of ceramic column grid array (CCGA) with 560 I/Os peripheral array with the identical pad design as its plastic counterpart.
NASA Technical Reports Server (NTRS)
1978-01-01
The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.
49 CFR 178.509 - Standards for plastic drums and jerricans.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for plastic drums and jerricans. 178.509... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.509 Standards for plastic drums and jerricans. (a) The following are identification codes for plastic drums and jerricans: (1) 1H1 for a non...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for woven plastic bags. 178.518 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated...
49 CFR 178.509 - Standards for plastic drums and jerricans.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for plastic drums and jerricans. 178.509... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.509 Standards for plastic drums and jerricans. (a) The following are identification codes for plastic drums and jerricans: (1) 1H1 for a non...
49 CFR 178.509 - Standards for plastic drums and jerricans.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for plastic drums and jerricans. 178.509... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.509 Standards for plastic drums and jerricans. (a) The following are identification codes for plastic drums and jerricans: (1) 1H1 for a non...
49 CFR 178.509 - Standards for plastic drums and jerricans.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for plastic drums and jerricans. 178.509... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.509 Standards for plastic drums and jerricans. (a) The following are identification codes for plastic drums and jerricans: (1) 1H1 for a non...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coţa, C.; Cioica, N., E-mail: cioica@inma.ro; Nagy, E. M.
The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by {sup 1}H NMR relaxation and {sup 13}C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimenmore » (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5)« less
NASA Astrophysics Data System (ADS)
Coťa, C.; Cioica, N.; Filip, C.; Fechete, R.; Todica, M.; Nagy, E. M.; Cozar, O.
2015-12-01
The effect of the nature and the content of the plasticizers (water, glycerol) on the corn starch based biodegradable packages properties (crystalline-amorphous) and also on their degradation process after absorption of distilled water were investigated by 1H NMR relaxation and 13C CP/MAS NMR spectroscopies. For this goal, a set of 14 samples with various starch/glycerol/water (mass %) ratios were prepared and investigated after extrusion process in order to establish their crystalline or amorphous character. The composition having starch/glycerol/water 68/17/15 mass % ratio was found to have a dominant amorphous character and very similar features with a commercial specimen (USA) used for the package. It was also found that this best package is extremely degraded after just one day under water absorption. The most resistant package was that with a large content of starch (78/19.5/2.5).
Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.
1999-01-05
Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.
Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil
1999-01-01
Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.
Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.
Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R
2017-01-01
A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.J.; Nowlen, S.P.; Anderson, D.J.
Smoke can adversely affect digital electronics; in the short term, it can lead to circuit bridging and in the long term to corrosion of metal parts. This report is a summary of the work to date and component-level tests by Sandia National Laboratories for the Nuclear Regulatory Commission to determine the impact of smoke on digital instrumentation and control equipment. The component tests focused on short-term effects such as circuit bridging in typical components and the factors that can influence how much the smoke will affect them. These factors include the component technology and packaging, physical board protection, and environmentalmore » conditions such as the amount of smoke, temperature of burn, and humidity level. The likelihood of circuit bridging was tested by measuring leakage currents and converting those currents to resistance in ohms. Hermetically sealed ceramic packages were more resistant to smoke than plastic packages. Coating the boards with an acrylic spray provided some protection against circuit bridging. The smoke generation factors that affect the resistance the most are humidity, fuel level, and burn temperature. The use of CO{sub 2} as a fire suppressant, the presence of galvanic metal, and the presence of PVC did not significantly affect the outcome of these results.« less
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki
2003-10-01
We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.
Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth
2017-02-01
Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (c), which, for test purposes, categorizes packagings according to their material characteristics... performance may be rapidly affected by moisture; plastics that may embrittle at low temperature; and other... the appropriate test. Table I—Tests Required Material of Outer packaging Fiberboard Plastics Other...
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Conditioning. Rigid plastic Large Packagings and Large Packagings with plastic inner receptacles must be... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...
Plastic-Sealed Hybrid Power Circuit Package
NASA Technical Reports Server (NTRS)
Miller, W. N.; Gray, O. E.
1983-01-01
Proposed design for hybrid high-voltage power-circuit package uses molded plastic for hermetic sealing instead of glass-to-metal seal. New package used to house high-voltage regulators and solid-state switches for applications in aircraft, electric automobiles, industrial equipment, satellites, solarcell arrays, and other equipment in extreme environments.
16 CFR 260.13 - Recycled content claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... one-half the weight of the total package. The box is 20% recycled content by weight, while the plastic... paperboard box in a shrink-wrapped plastic cover, indicates that it has recycled packaging. The paperboard box is made entirely of recycled material, but the plastic cover is not. The claim is deceptive...
16 CFR 260.13 - Recycled content claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... one-half the weight of the total package. The box is 20% recycled content by weight, while the plastic... paperboard box in a shrink-wrapped plastic cover, indicates that it has recycled packaging. The paperboard box is made entirely of recycled material, but the plastic cover is not. The claim is deceptive...
Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products
NASA Astrophysics Data System (ADS)
Reinl, S.
Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.
Soft plastic bread packaging: lead content and reuse by families.
Weisel, C; Demak, M; Marcus, S; Goldstein, B D
1991-06-01
The presence of lead in labels painted on soft plastic bread packaging was evaluated. Lead was detected on the outside of 17 of 18 soft plastic bread bags that were analyzed, with an average of 26 +/- 6 mg per bag with lead. Of 106 families questioned, 16 percent of respondents reported turning the bags inside out before reusing for food storage, thus putting food in contact with the lead paint. We estimate that a weak acid, such as vinegar, could readily leach 100 micrograms of lead from a painted plastic bag within 10 minutes. Further, lead and other metals painted on food packaging of any type becomes part of the municipal waste stream subject to incineration and to land-filling. The use of lead in packaging presents an unnecessary risk to public health.
Charron, C; De Vaugelade, S; Richard, F; Largitte, A; Pirnay, S
2018-04-25
Nowadays, plastics are ubiquitous in our daily life. Most of materials used in cosmetic packaging are plastics. It is due to their great diversity of form and colour, their low cost and their easy production. The manufacture of plastic packaging requires the use of several additives such as plasticizers. These molecules are able to migrate from the packaging to the product [1] and can change the product composition, his properties and be harmful to the consumer health. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... subject merchandise, Zibo Aifudi Plastic Packaging Co., Ltd. (``Aifudi''). We have preliminarily... of plastic film such as biaxially-oriented polypropylene (``BOPP'') or to an exterior ply of paper... Exporter (percent) PRC-Wide Entity (including Zibo Aifudi Plastic Packaging 91.73 Co., Ltd.) Public Comment...
1985-05-24
Tracor INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM DTICRt .1ECTE CDJUN07 1989 00 PHASE 3 PROPOSAL CATEGORY 1 PROJECT COUNTERMEASURES ASSEMBLY...package in bin C V_ Put-package back in bin C Put part in plastic bag 0CDV _7 _ ] Seal plastic bag with stapler CDDV _ _- 1 Mark paperwork CDV __ I Peel...part in plastic bag CDV7 Seal plastic bag with stapler C>CDV _ Mark paperwork ~CV_ _ Peel preprinted tag from sheet ~ D Put preprinted tag on plastic
Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad
2009-12-01
The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may play a critical role in the risk assessment of new food packaging technologies in the future.
Soft plastic bread packaging: lead content and reuse by families.
Weisel, C; Demak, M; Marcus, S; Goldstein, B D
1991-01-01
The presence of lead in labels painted on soft plastic bread packaging was evaluated. Lead was detected on the outside of 17 of 18 soft plastic bread bags that were analyzed, with an average of 26 +/- 6 mg per bag with lead. Of 106 families questioned, 16 percent of respondents reported turning the bags inside out before reusing for food storage, thus putting food in contact with the lead paint. We estimate that a weak acid, such as vinegar, could readily leach 100 micrograms of lead from a painted plastic bag within 10 minutes. Further, lead and other metals painted on food packaging of any type becomes part of the municipal waste stream subject to incineration and to land-filling. The use of lead in packaging presents an unnecessary risk to public health. PMID:2029047
Soft plastic bread packaging: lead content and reuse by families
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisel, C.; Demak, M.; Marcus, S.
The presence of lead in labels painted on soft plastic bread packaging was evaluated. Lead was detected on the outside of 17 of 18 soft plastic bread bags that were analyzed, with an average of 26 +/- 6 mg per bag with lead. Of 106 families questioned, 16 percent of respondents reported turning the bags inside out before reusing for food storage, thus putting food in contact with the lead paint. We estimate that a weak acid, such as vinegar, could readily leach 100 micrograms of lead from a painted plastic bag within 10 minutes. Further, lead and other metalsmore » painted on food packaging of any type becomes part of the municipal waste stream subject to incineration and to land-filling. The use of lead in packaging presents an unnecessary risk to public health.« less
Hahladakis, John N; Purnell, Phil; Iacovidou, Eleni; Velis, Costas A; Atseyinku, Maryann
2018-05-01
The European Commission (EC) recently introduced a 'Circular Economy Package', setting ambitious recycling targets and identifying waste plastics as a priority sector where major improvements are necessary. Here, the authors explain how different collection modalities affect the quantity and quality of recycling, using recent empirical data on household (HH) post-consumer plastic packaging waste (PCPP) collected for recycling in the devolved administration of England over the quarterly period July-September 2014. Three main collection schemes, as currently implemented in England, were taken into account: (i) kerbside collection (KS), (ii) household waste recycling centres (HWRCs) (also known as 'civic amenity sites'), and (iii) bring sites/banks (BSs). The results indicated that: (a) the contribution of KS collection scheme in recovering packaging plastics is higher than HWRCs and BBs, with respective percentages by weight (wt%) 90%, 9% and 1%; (b) alternate weekly collection (AWC) of plastic recyclables in wheeled bins, when collected commingled, demonstrated higher yield in KS collection; (c) only a small percentage (16%) of the total amount of post-consumer plastics collected in the examined period (141 kt) was finally sent to reprocessors (22 kt); (c) nearly a third of Local Authorities (LAs) reported insufficient or poor data; and (d) the most abundant fractions of plastics that finally reached the reprocessors were mixed plastic bottles and mixed plastics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
The demise of plastic encapsulated microcircuit myths
NASA Astrophysics Data System (ADS)
Hakim, E. B.; Agarwal, R. K.; Pecht, M.
1994-10-01
Production of microelectronic devices encapsulated in solid, molded plastic packages has rapidly increased since the early 1980's. Today, millions of plastic-encapsulated devices are produced daily. On the other hand, only a few million hermetic (cavity) packages are produced per year. Reasons for the increased use of plastic-encapsulated packages include cost, availability, size, weight, quality, and reliability. Markets taking advantage of this technology range from computers and telecommunications to automotive uses. Yet, several industries, the military in particular, will not accept such devices. One reason for this reluctance to use the best available commercial parts is a perceived risk of poor reliability, derived from antiquated military specifications, standards, and handbooks; other common justifications cite differing environments; inadequate screens; inadequate test data, and required government audits of suppliers' processes. This paper describes failure mechanisms associated with plastic encapsulation and their elimination. It provides data indicating the relative reliability of cavity and solid-encapsulated packaging, and presents possible approaches to assuring quality and reliability in the procuring and applying this successful commercial technology.
Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
2000-02-01
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Modification of in-pack conditions to extend the storage life of vacuum packaged lamb.
Gill, C O; Penney, N
1985-01-01
High pH (>5·9) lamb loins from a research abattoir were subjected to differing packaging treatments to determine whether package modification could reliably extend the storage life of chilled lamb cuts beyond that attained by cuts vacuum-packaged in film of low gas permeability, as in current commercial practice. Treatments applied were carbon dioxide flushing or addition of a citrate buffer (pH 4·8), a 5% lactic acid solution or a Lactobacillus inoculum (plastic packs only) and packaging in a plastic film of moderately low oxygen permeability (140 cc/m(2)/24 h at 25°C and 90% relative humidity) or in a foil laminate of immeasurably low oxygen permeability. After 12 weeks' storage at -0.5°C, the cuts packaged in the plastic film were spoiled by off-odours produced by enterobacteria, except for inoculated cuts, which, instead, had developed unacceptable dairy flavours. In contrast, cuts packaged in foil laminate developed floras of lactobacilli that had not caused spoilage after 12 weeks, and meat colour was much improved by the exclusion of oxygen. Loin cuts from a commercial packaging operation were packaged in a shrinkable plastic film of low oxygen permeability (30 to 40 cc/m(2)/24 h at 25°C and 90% relative humidity), in foil laminate, or in foil laminate after the addition of 5% lactic acid solution. For the first 6 weeks, cuts were stored in a commercial chiller nominally operating at 0°C; subsequently, they were held in a laboratory chiller at -0.5°C. Some cuts packaged in the shrinkable plastic were spoiled after 9 weeks' storage and all were spoiled at 12 weeks, because of off-flavours produced by enterobacteria. All cuts packaged in the foil laminate were very acceptable at 9 weeks but most were spoiled by off-flavours at 12 weeks. Most cuts treated with lactic acid and packaged in foil laminate were unspoiled after 12 weeks. The packaging requirements indicated to be necessary for reliable extension of the storage life of vacuum packaged lamb are discussed. Copyright © 1985. Published by Elsevier Ltd.
49 CFR 178.503 - Marking of packagings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Associate Administrator; (9) For metal or plastic drums or jerricans intended for reuse or...., “1.0-1.2-1.0” or “0.9-1.0-1.0”). (ii) Plastic drums or jerricans must be marked with the minimum thickness of the packaging material. Minimum thicknesses of plastic must be as determined in accordance with...
Association between Phthalate Exposure and the Use of Plastic Containers in Shanghai Adults.
Dong, Rui Hua; Zhang, Han; Zhang, Mei Ru; Chen, Jing Si; Wu, Min; Li, Shu Guang; Chen, Bo
2017-10-01
Consuming phthalates may be due to the presence of food contact materials, such as plastic containers. In this study, we investigated the association between plastic container use and phthalate exposure in 2,140 Shanghai adults. Participants completed a questionnaire on the frequency of using plastic containers in different scenarios in the previous year (e.g., daily, weekly) and on the consumption of plastic-packaged foods in the previous three days (yes or no). Urinary phthalate metabolites were used to assess the association between phthalate exposure and the use of plastic containers. The metabolites of di-(2-ethylhexyl) phthalate (DEHP) were the most frequently detected in urine. The results revealed that phthalate exposure was associated with consumption of plastic-packaged breakfast or processed food items in the previous three days. The consumption of these two food items had strong synergistic effects on increasing urinary concentrations of most phthalate metabolites. Our results of plastic-packaged breakfast and processed food may be explained by the use of flexible plastic containers, indicating the importance of risk assessment for the application of flexible plastic containers. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Pre-release plastic packaging of MEMS and IMEMS devices
Peterson, Kenneth A.; Conley, William R.
2002-01-01
A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.
MEMS packaging: state of the art and future trends
NASA Astrophysics Data System (ADS)
Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.
1998-07-01
Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.
Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi
2011-04-01
Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.
Black plastics: Linear and circular economies, hazardous additives and marine pollution.
Turner, Andrew
2018-08-01
Black products constitute about 15% of the domestic plastic waste stream, of which the majority is single-use packaging and trays for food. This material is not, however, readily recycled owing to the low sensitivity of black pigments to near infrared radiation used in conventional plastic sorting facilities. Accordingly, there is mounting evidence that the demand for black plastics in consumer products is partly met by sourcing material from the plastic housings of end-of-life waste electronic and electrical equipment (WEEE). Inefficiently sorted WEEE plastic has the potential to introduce restricted and hazardous substances into the recyclate, including brominated flame retardants (BFRs), Sb, a flame retardant synergist, and the heavy metals, Cd, Cr, Hg and Pb. The current paper examines the life cycles of single-use black food packaging and black plastic WEEE in the context of current international regulations and directives and best practices for sorting, disposal and recycling. The discussion is supported by published and unpublished measurements of restricted substances (including Br as a proxy for BFRs) in food packaging, EEE plastic goods and non-EEE plastic products. Specifically, measurements confirm the linear economy of plastic food packaging and demonstrate a complex quasi-circular economy for WEEE plastic that results in significant and widespread contamination of black consumer goods ranging from thermos cups and cutlery to tool handles and grips, and from toys and games to spectacle frames and jewellery. The environmental impacts and human exposure routes arising from WEEE plastic recycling and contamination of consumer goods are described, including those associated with marine pollution. Regarding the latter, a compilation of elemental data on black plastic litter collected from beaches of southwest England reveals a similar chemical signature to that of contaminated consumer goods and blended plastic WEEE recyclate, exemplifying the pervasiveness of the problem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of Thermo-Mechanical Measurements of Plastic Packages for Reliability Evaluation of PEMS
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovsky, Alexander
2004-01-01
Thermo-mechanical analysis (TMA) is typically employed for measurements of the glass transition temperature (Tg) and coefficients of thermal expansion (CTE) in molding compounds used in plastic encapsulated microcircuits (PEMs). Application of TMA measurements directly to PEMs allows anomalies to be revealed in deformation of packages with temperature, and thus indicates possible reliability concerns related to thermo-mechanical integrity and stability of the devices. In this work, temperature dependencies of package deformation were measured in several types of PEMs that failed environmental stress testing including temperature cycling, highly accelerated stress testing (HAST) in humid environments, and bum-in (BI) testing. Comparison of thermo-mechanical characteristics of packages and molding compounds in the failed parts allowed for explanation of the observed failures. The results indicate that TMA of plastic packages might be used for quality evaluation of PEMs intended for high-reliability applications.
NASA Astrophysics Data System (ADS)
Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim
2017-08-01
Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
49 CFR 173.36 - Hazardous materials in Large Packagings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced...) The Large Packaging is free from corrosion, contamination, cracks, cuts, or other damage which would...
49 CFR 173.36 - Hazardous materials in Large Packagings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced...) The Large Packaging is free from corrosion, contamination, cracks, cuts, or other damage which would...
NASA Astrophysics Data System (ADS)
Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.
2004-06-01
Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.
Plastic flexible films waste management - A state of art review.
Horodytska, O; Valdés, F J; Fullana, A
2018-04-21
Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste management systems was identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Weidian
2005-03-01
Plastic film packaging is widely used these days, especially in the convenience food industry due to its flexibility, boilability, and microwavability. Almost every package is printed with ink. The adhesion of ink on plastic films merits increasing attention to ensure quality packaging. However, inks and plastic films are polymeric materials with complicated molecular structures. The thickness of the jelly-like ink is only 500nm or less, and the thickness of the soft and flexible film is no more than 50μm, which make the quantitative measurement of their adhesion very challenging. Up to now, no scientific quantitative measurement method for the adhesion of ink on plastic films has been documented. We have tried a technique, in which a Nano-Indenter and a Scanning Probe Microscope were used to evaluate the adhesion strength of ink deposited on plastic films, quantitatively, as well as examine the configurations of adhesion failure. It was helpful in better understanding the adhesion mechanism, thus giving direction as to how to improve the adhesion.
Food nanotechnology – an overview
Sekhon, Bhupinder S
2010-01-01
Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity. PMID:24198465
Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J
2016-01-01
In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.
Van Dooren, A A
1991-06-21
In this report the state of the art with respect to PVC as pharmaceutical packaging material is described. A general introduction into the applications of PVC is followed by a description of its production process. The metabolic effects of the monomer of PVC, vinyl chloride and of the most commonly used plasticizer diethylhexylphthalate are mentioned. Special attention is given to the pharmaceutical properties of plasticized PVC bags in comparison to other plastics and the environmental aspects of waste PVC disposal. Although there are emotional and political queries regarding the future use of PVC as a (pharmaceutical) packaging material, we conclude that there is no scientific justification for a total or partial ban of PVC. PVC will remain a fact of life as a cheap, versatile, high-performance and well-investigated plastic material for medical and pharmaceutical applications, to be replaced by newer plastics only for certain well-defined indications where the requirements of the plastic to be used are so specific that it will economically and technically be justified to use another polymer. Community and hospital pharmacists have to be prepared for a role in intake of waste plastic disposables, probably against deposit money, in order to fulfil the logistics needed for recycling.
Aznar, Margarita; Alfaro, Pilar; Nerín, Cristina; Jones, Emrys; Riches, Eleanor
2016-07-01
In most cases, food packaging materials contain inks whose components can migrate to food by diffusion through the material as well as by set-off phenomena. In this work, different mass spectrometry approaches had been used in order to identify and confirm the presence of ink components in ethanol (95%) and Tenax(®) as food simulants. Three different sets of materials, manufactured with different printing technologies and with different structures, were analyzed. Sample analysis by ultra performance liquid chromatography mass spectrometry (UPLC-MS), using a quadrupole-time of flight (Q-TOF) as a mass analyser proved to be an excellent tool for identification purposes while ion mobility mass spectrometry (IM-MS) shown to be very useful for the confirmation of the candidates proposed. The results showed the presence of different non-volatile ink components in migration such as colorants (Solvent Red 49), plasticizers (dimethyl sebacate, tributyl o-acetyl citrate) or surfactants (SchercodineM, triethylene glycol caprilate). An oxidation product of an ink additive (triphenyl phosphine oxide) was also detected. In addition, a surface analysis technique, desorption electrospray mass spectrometry (DESI-MS), was used for analyzing the distribution of some ink components (tributyl o-acetyl citrate Schercodine L, phthalates) in the material. The detection of some of these compounds in the back-printed side confirmed the transference of this compound from the non-food to the food contact side. The results also showed that concentration of ink migrants decreased when an aluminum or polypropylene layer covered the ink. When aluminum was used, concentration of most of ink migrants decreased, and for 5 out of the 9 even disappeared. Copyright © 2016 Elsevier B.V. All rights reserved.
Driscoll, David F; Silvestri, Anthony P; Bistrian, Bruce R; Mikrut, Bernard A
2007-02-15
The physical stability of two emulsions compounded as part of a total nutrient admixture (TNA) was studied in lipids packaged in either glass or plastic containers. Five weight-based adult TNA formulations that were designed to meet the full nutritional needs of adults with body weights between 40 and 80 kg were studied. Triplicate preparations of each TNA were assessed over 30 hours at room temperature by applying currently proposed United States Pharmacopeia (USP) criteria for mean droplet diameter, large-diameter tail, and globule-size distribution (GSD) for lipid injectable emulsions. In accordance with conditions set forth in USP chapter 729, the higher levels of volume-weighted percent of fat exceeding 5 microm (PFAT(5)) should not exceed 0.05% of the total lipid concentration. Significant differences were noted among TNA admixtures based on whether the lipid emulsion product was manufactured in glass or plastic. The plastic-contained TNAs failed the proposed USP methods for large-diameter fat globules in all formulations from the outset, and 60% had significant growth in large-diameter fat globules over time. In contrast, glass-contained TNAs were stable throughout and in all cases would have passed proposed USP limits. Certain lipid injectable emulsions packaged in plastic containers have baseline abnormal GSD profiles compared with those packaged in glass containers. When used to compound TNAs, the abnormal profile worsens and produces less stable TNAs than those compounded with lipid injectable emulsions packaged in glass containers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
[Impact of storage conditions and time on herb of Lonicera macranthoides].
Ma, Peng; Li, Long-Yun; Zhang, Ying
2014-03-01
To study the effect of different storage conditions and storage time on herb quality of Lonicera macranthoides, different packaging materials including vacuum plastic bags, plastic bags, woven bags, sealed with endometrial bags, paper bags, sack bags were selected for the study under different storage conditions including room temperature, 5 degrees C refrigerator, low temperature of - 20 degrees C refrigerator and desiccator. Twenty-four batches of samples were used for the study, and active ingredients were determined. The experimental results showed that the ingredients in each storage group changed with the storage time, storage conditions (storage environment, packaging). Under the same storage time, the storage environment (temperature, humidity) had effect on the stability of herb quality. Low temperature had less effect on herb quality. The effect of packaging on herb quality was as following: plastic vacuum packaging > woven with endometrial sealed packaging > plastic bag > woven bag > sack bags > paper bags. Under the same storage conditions, with the increase of storage time, caffeic acid content increased slowly, and other five ingredients content decreased gradually. Storage time affected significantly on the intrinsic quality (chemical composition) and appearance of herb. It is suggested that low temperature (5 degrees C), dark and sealed storage are suitable for storage of L. macranthoides herb, the storage time should be not more than 24 months.
Plastic packaged microcircuits: Quality, reliability, and cost issues
NASA Astrophysics Data System (ADS)
Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan
1993-12-01
Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.
The existing situation and challenges regarding the use of plastic carrier bags in Europe.
Kasidoni, Maria; Moustakas, Konstantinos; Malamis, Dimitris
2015-05-01
Since day one, retailers and consumers have favoured plastic carrier bags. However, owing to the numerous environmental disadvantages, lightweight plastic carrier bags have been drawing the attention of the European Union competent authorities. Therefore, many European Union member states have taken action so as to reduce the use of plastic carrier bags. Based on the existing legislation and voluntary initiatives for the reduction of lightweight plastic carrier bags, the challenges and achieved outcomes from the implemented policy options in the various European Union member states are discussed and commented regarding the forthcoming transposition of the 'Directive 94/62/EC on packaging and packaging waste to reduce the consumption of lightweight plastic carrier bags' into the European Union member states' national law. © The Author(s) 2015.
Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials
Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Chiavari, Cristiana; Benevelli, Marzia; Grazia, Luigi; Lanciotti, Rosalba
2017-01-01
The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM). The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on packaging. PMID:29312271
Practical fundamentals of glass, rubber, and plastic sterile packaging systems.
Sacha, Gregory A; Saffell-Clemmer, Wendy; Abram, Karen; Akers, Michael J
2010-01-01
Sterile product packaging systems consist of glass, rubber, and plastic materials that are in intimate contact with the formulation. These materials can significantly affect the stability of the formulation. The interaction between the packaging materials and the formulation can also affect the appropriate delivery of the product. Therefore, a parenteral formulation actually consists of the packaging system as well as the product that it contains. However, the majority of formulation development time only considers the product that is contained in the packaging system. Little time is spent studying the interaction of the packaging materials with the contents. Interaction between the packaging and the contents only becomes a concern when problems are encountered. For this reason, there are few scientific publications that describe the available packaging materials, their advantages and disadvantages, and their important product attributes. This article was created as a reference for product development and describes some of the packaging materials and systems that are available for parenteral products.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... packaged in plastic bags. Crepe paper may or may not be bleached, dye colored, surface-colored, surface decorated or printed, glazed, sequined, embossed, die-cut, and/or flame retardant. Subject crepe paper may... plastic bags, and/or by placing in boxes for distribution and use by the ultimate consumer. Packages of...
Containers and Packaging: Product-Specific Data
This web page provide numbers on the different containers and packaging products in our municipal solid waste. These include containers of all types, such as glass, steel, plastic, aluminum, wood, and other types of packaging
Effect of packaging material on enological parameters and volatile compounds of dry white wine.
Revi, M; Badeka, A; Kontakos, S; Kontominas, M G
2014-01-01
The enological parameters and volatile compounds of white wine packaged in dark coloured glass and two commercial bag-in-box (BIB) pouches (low density polyethylene - LDPE and ethylene vinyl acetate - EVA lined) were determined for a period of 6 months at 20 °C. Parameters monitored included: titratable acidity, volatile acidity, pH, total SO2, free SO2, colour, volatile compounds and sensory attributes. The BIB packaging materials affected the titratable acidity, total and free SO2 and colour of wine. A substantial portion of the wine aroma compounds was adsorbed by the plastic materials or lost to the environment through leakage of the valve fitment. Between the two plastics, the LDPE lined pouch showed a considerably higher aroma sorption as compared to EVA. Wine packaged in glass retained the largest portion of its aroma compounds. Sensory evaluation showed that white wine packaged in both plastics was of acceptable quality for 3 months vs. at least 6 months for that in glass bottles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging.
Muller, Justine; González-Martínez, Chelo; Chiralt, Amparo
2017-08-15
The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films.
Redesigning the continuous vacuum sealer packaging machine to improve the processing speed
NASA Astrophysics Data System (ADS)
Belo, J. B.; Widyanto, S. A.; Jamari, J.
2017-01-01
Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.
49 CFR 173.62 - Specific packaging requirements for explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... steel, removable head (1A2).plastics, removable head (1H2) 110(b) Bags Dividing partitions Boxes..., waterproofed plastics textile, rubberized Sheets plastics textile, rubberized Not necessary Boxes.steel (4A... wood (4F). fibreboard (4G). plastics, expanded (4H1). plastics, solid (4H2). Drums steel, removable...
49 CFR 178.517 - Standards for plastic boxes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for plastic boxes. 178.517 Section 178...-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
49 CFR 178.517 - Standards for plastic boxes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for plastic boxes. 178.517 Section 178...-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...
49 CFR 178.517 - Standards for plastic boxes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for plastic boxes. 178.517 Section 178...-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
49 CFR 178.517 - Standards for plastic boxes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for plastic boxes. 178.517 Section 178...-bulk Performance-Oriented Packaging Standards § 178.517 Standards for plastic boxes. (a) The following are identification codes for plastic boxes: (1) 4H1 for an expanded plastic box; and (2) 4H2 for a...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
49 CFR 178.519 - Standards for plastic film bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for plastic film bags. 178.519 Section...-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film bags are as...
Kontominas, M G; Goulas, A E; Badeka, A V; Nerantzaki, A
2006-06-01
Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds' profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l(-1), well below the upper limit (60 mg l(-1)) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l(-1), both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100 degrees C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds' profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1'-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.
SUSTAINABLE PACKAGING SOLUTIONS BASED ON BIODEGRADABLE PLASTICS
Packaging is one of the largest market segments for the polymer industry. Food packaging industry is currently dominated by crude oil-derived, non-biodegradable polyolefin and polyesters. Due to their environmental persistence (non-biodegradability) leading to accumulatio...
ERIC Educational Resources Information Center
Macdonald, Averil
2005-01-01
Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.
Code of Federal Regulations, 2010 CFR
2010-10-01
... drums, Plastic drums and Jerricans, Composite packagings which are in the shape of a drum Six—(three for... of natural wood, Plywood boxes, Reconstituted wood boxes, Fiberboard boxes, Plastic boxes, Steel or... Administrator. (c) Special preparation of test samples for the drop test. (1) Testing of plastic drums, plastic...
Franz, R
2002-01-01
Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.
Circular economy of plastic packaging: Current practice and perspectives in Austria.
Van Eygen, Emile; Laner, David; Fellner, Johann
2018-02-01
Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Davis, Nathan; Danes, Jeffrey E; Vorst, Keith
2017-10-01
Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted organic and inorganic contaminants. These contaminants can migrate into food packaging made from these recycled plastic materials. The purpose of this research was to identify economically viable real-time monitoring technologies that can be used during the conversion of virgin and recycled resin feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline analysis (validation) of real-time technologies was conducted using industry-standard practices for polymer analysis. The data yielded supervised predictive models developed by training sessions completed in a controlled laboratory setting. This technology can be employed to evaluate compliance and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, this technology allowed for real-time decision and diversion strategies during the conversion of resin and flake to final articles or products to minimise the negative impact on human health and environmental exposure.
Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun
2014-04-01
The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.
49 CFR 173.36 - Hazardous materials in Large Packagings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced... the transportation of liquids with a flash point of 60.5 °C (141 °F) (closed cup) or lower, or powders...
49 CFR 173.36 - Hazardous materials in Large Packagings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced... the transportation of liquids with a flash point of 60.5 °C (141 °F) (closed cup) or lower, or powders...
Opportunities for cellulose nanomaterials in packaging films: a review and future trends
Nicole M. Stark
2016-01-01
Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be...
Code of Federal Regulations, 2011 CFR
2011-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2013 CFR
2013-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2014 CFR
2014-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2012 CFR
2012-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
Code of Federal Regulations, 2010 CFR
2010-10-01
... material must be placed in a tightly closed glass, plastic or metal inner packaging with a maximum capacity... placed in a hermetically sealed barrier bag which is impervious to the lading. (v) The intermediate... hazardous material must be placed in a tightly closed glass, plastic or metal inner packaging. The net...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
Stored product mites (Acari: Astigmata) infesting food in various types of packaging.
Hubert, Jan; Nesvorna, Marta; Volek, Vlado
2015-02-01
From 2008 to 2014, stored product mites have been reported from prepackaged dried food on the market in the Czech Republic. The infestation was by Carpoglyphus lactis (L.) in dried fruits and Tyrophagus putrescentiae (Schrank) in dog feed. The infestation is presumably caused by poor protection of the packages. We compared various packaging methods for their resistance to mites using dried apricots and dog feed in laboratory experiments. The trial packages included nine different plastic films, monofilm, duplex and triplex, and one type of plastic cup (ten replicates per packaging type). All packaging materials are available on the Czech market for dried food products. The samples of dried food were professionally packed in a factory and packaged dried apricots were exposed to C. lactis and dog food to T. putrescentiae. After 3 months of exposure, the infestation and mite density of the prepackaged food was assessed. Mites were found to infest six types of packages. Of the packaging types with mites, 1-5 samples were infested and the maximum abundance was 1,900 mites g(-1) of dried food. Mites entered the prepackaged food by faulty sealing. Inadequate sealing is suggested to be the major cause of the emerged infestation of dried food.
Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging
González-Martínez, Chelo; Chiralt, Amparo
2017-01-01
The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films. PMID:28809808
NASA Astrophysics Data System (ADS)
Putri, Rr. Dewi Artanti; Setiawan, Aji; Anggraini, Puji D.
2017-03-01
The use of synthetic plastic should be limited because it causes the plastic waste that can not be decomposed quickly, triggering environmental problems. The solution of the plastic usage is the use of biodegradable plastic as packaging which is environmentally friendly. Synthesis of edible film can be done with a variety of components. The component mixture of starch and cellulose derivative products are one of the methods for making edible film. Sorghum is a species of cereal crops containing starch amounted to 80.42%, where the use of sorghum in Indonesia merely fodder. Therefore, sorghum is a potential material to be used as a source of starch synthesis edible film. This research aims to study the characteristics of edible starch films Sorghum and assess the effect of CMC (Carboxymethyl Cellulose) as additional materials on the characteristics of biopolymers edible film produced sorghum starch. This study is started with the production of sorghum starch, then the film synthesizing with addition of CMC (5, 10, 15, 20, and 25% w/w starch), and finally the hydrophobicity characteristics test (water uptake test and water solubility test). The addition of CMC will decrease the percentage of water absorption to the film with lowest level of 65.8% in the degree of CMC in 25% (w/w starch). The addition of CMC also influences the water solubility of film, where in the degree of 25% CMC (w/w starch) the solubility of water was the lowest, which was 28.2% TSM.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other..., App. B Appendix B to Part 173—Procedure for Testing Chemical Compatibility and Rate of Permeation in... °C. (64 °F.) b. Test Method 2: 28 days at a temperature no lower than 50 °C. (122 °F.) c. Test Method...
Stability of color in Spanish-style green table olives pasteurized and stored in plastic containers.
Sánchez, Antonio Higinio; López-López, Antonio; Beato, Víctor Manuel; de Castro, Antonio; Montaño, Alfredo
2017-08-01
There is an increasing interest in the use of pasteurizable plastic packaging by the olive industry. In order to investigate the change from traditional glass or varnished can containers to plastic packaging, the proper plastic material that is compatible with fermented olives while maintaining color quality during pasteurization treatment and storage must be selected. This work is focused on color stability in two distinct pasteurizable plastic containers with different oxygen permeability. In PET + MDPE/EVOH (polyethylene terephthalate + medium-density polyethylene/ethylene vinyl alcohol) pouches, pasteurization provoked severe browning which drastically decreased their color shelf life (<6 weeks). However, this browning did not occur in the unpasteurized product without preservatives owing to the presence of microorganisms. In AlOx-coated PET + MDPE (aluminum oxide coating on polyethylene terephthalate + medium-density polyethylene) pouches, color changes were small or negligible throughout storage, especially if ascorbic acid was added to the packing solution (shelf life > 6.5 months). The plastic material had a significant effect on the retention of color of the pasteurized product. The use of AlOx-coated PET + MDPE pouches could be an alternative to traditional packaging for the pasteurization and storage of Spanish-style green olives from a color quality standpoint. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna
2016-10-01
The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
HALT to qualify electronic packages: a proof of concept
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2014-03-01
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
NASA Astrophysics Data System (ADS)
Meekum, Utai; Khiansanoi, Apichart
2018-06-01
The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.
Optimizing biomass blends for manufacturing molded packaging materials using mycelium
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...
Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging
Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola
2017-01-01
Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin. PMID:28561775
Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging.
Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola
2017-05-31
Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei
2015-07-01
An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bisphenol A exposure assessment from olive oil consumption.
Abou Omar, Tarek F; Sukhn, Carol; Fares, Souha A; Abiad, Mohamad G; Habib, Rima R; Dhaini, Hassan R
2017-07-01
The use of bisphenol A (BPA) in packaging has grown over the past 50 years despite concerns of its migration into packaged food and beverages, resulting in human exposure. Many studies have reported tumorigenic effects and endocrine alterations associated with BPA in animal models. This study aims at assessing human exposure to BPA from olive oil. A total of 27 olive oil samples were collected from mills and local villagers in the Hasbaya District, a major olive oil harvesting region in Lebanon. Information on storage conditions was also collected. BPA was extracted and quantified by HPLC. Results showed significantly higher BPA levels in olive oil samples stored in plastic vs. non-plastic packaging (mean = 333 vs. 150 μg/kg, p value = 0.006), samples with a plastic storage duration of >1 year compared to those with a storage duration of <1 year (mean = 452 vs. 288 μg/kg, p value = 0.008), and oil samples sourced from locals compared to oil mills (mean = 376 vs. 228 μg/kg, p value = 0.022). Statistically significant higher BPA levels remained for samples stored in plastic vs. non-plastic packaging in the bootstrap multivariable linear regression (B = 121.56, 95% CI 53.44-194.39, p value = 0.009). This is the first report on BPA levels in Mediterranean olive oil. The estimated exposure was 1.38% of the EFSA tolerable daily intake, hence there are no concerns about potential health risks from olive oil consumption.
NASA DOD Lead Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2008-01-01
The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.
Figueiredo, T C; Assis, D C S; Menezes, L D M; Oliveira, D D; Lima, A L; Souza, M R; Heneine, L G D; Cançado, S V
2014-12-01
This study was carried out with the aim of evaluating the effects of mineral oil application on eggshells and the use of plastic packages with lids on the physical-chemical and microbiological quality and biogenic amine contents of eggs stored under refrigeration for up to 125 d. A total of 1,920 eggs from 46-wk-old Hyline W36 laying hens were randomly distributed into 4 groups soon after classification: (i) 480 eggs were stored in pulp carton tray packages; (ii) 480 eggs were stored in plastic packages with lids; (iii) 480 eggs were stored in carton packages after the application of mineral oil; and (iv) 480 eggs were stored in plastic packages with lids after the application of mineral oil. The internal quality was measured by Haugh units, by the counts of mesophilic and psychrotrophic microorganisms, by the most probable number of total and thermal-tolerant coliforms, by the counts of molds and yeasts, by the analysis of Salmonella spp. and Staphylococcus spp., and by the levels of biogenic amines in the egg yolk and albumen. The application of mineral oil to the eggshell resulted in higher Haugh unit values throughout storage, and the use of plastic packages altered the internal quality. The application of mineral oil and the use of packaging had no effects on the microbiological and biogenic amine results. Microbiological analyses showed the absence of Salmonella spp., Staphylococcus aureus, thermal-tolerant coliforms, and fungi. However, the highest counts of mesophilic (1.1 × 10(7) cfu/g) and psychrotrophic (6.7 × 10(7) cfu/g) microorganisms were recorded. The highest values of biogenic amines detected and quantified were putrescine (2.38 mg/kg) and cadaverine (7.27 mg/kg) in the egg yolk and putrescine (1.95 mg/kg), cadaverine (2.83 mg/kg), and phenylethylamine (2.57 mg/kg) in the albumen. Despite these results, the biogenic amine levels recorded were considered low and would not be harmful to consumer health. ©2014 Poultry Science Association Inc.
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics in the manufacture of packaging materials. Extruded polystyrene foam is commonly sold under the trademark name of StyrofoamTM. Polystyrene packaging is a multibillion dollar a year industry. Since polystyrene is non-biodegradable, a biodegradable m...
49 CFR 173.63 - Packaging exceptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... unless the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or... plastic sheaths, or blasting caps with empty plastic tubing 12 feet long or longer may be packed as...
ERIC Educational Resources Information Center
Sias, Jim
1990-01-01
A project in which students designed environmentally responsible food packaging is described. The problem definition; research on topics such as waste paper, plastic, metal, glass, incineration, recycling, and consumer preferences; and the presentation design are provided. (KR)
Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials
NASA Astrophysics Data System (ADS)
Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim
1994-05-01
Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).
Biodegradation of plastics: current scenario and future prospects for environmental safety.
Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher
2018-03-01
Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.
NASA-DoD Lead-Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2009-01-01
The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.
Chemical compatibility screening results of plastic packaging to mixed waste simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1995-12-01
We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less
Tacker, M; Hametner, C; Wepner, B
2002-01-01
Packaging materials are often considered a critical control point in HACCP systems of food companies. Methods for the determination of the microbial contamination rate of plastic cups, especially for dairy products, must reliably detect single moulds, yeasts or coliforms. In this study, a comparison of a specially adapted coating method, impedance method, direct inoculation and membrane filter technique was carried out to determine contamination with yeasts, moulds, coliforms and total bacterial counts using the appropriate agar in each case. The coating method is recommended for determining yeasts, moulds and coliforms as it allows the localization of the microorganisms as well as the determination of single microorganisms. For total bacterial count, a direct inoculation technique is proposed. The employing of simple measures in the production and during transport of packaging materials, such as dust-prevention or tight sealing in polyethylene bags, heavily reduces microbial contamination rates of packaging material. To reduce contamination rates further, electron beam irradiation was applied: plastic cups sealed in polyethylene bags were treated with 4-5 kGy, a dose that already leads to sterile polystyrene and polypropylene cups without influencing mechanical characteristics of the packaging material.
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; and 3) Extruded p...
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...
49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Packaging and stowage of cotton and vegetable... REGULATIONS CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.900 Packaging and stowage of cotton and vegetable...
49 CFR 176.900 - Packaging and stowage of cotton and vegetable fibers; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Packaging and stowage of cotton and vegetable... REGULATIONS CARRIAGE BY VESSEL Subpart O-Detailed Requirements for Cotton and Vegetable Fibers, Motor Vehicles, Polymeric Beads, and Plastic Molding Compounds § 176.900 Packaging and stowage of cotton and vegetable...
USDA-ARS?s Scientific Manuscript database
Plastic liners are used inside boxes of table grapes to retard moisture loss from the grapes and to contain sulfur dioxide gas released inside the packages to control postharvest decay. However, to control organisms of quarantine concern, regulators specify exported packages must be fumigated with m...
Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa
2016-06-01
The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Barua, Bipul; Soppet, William K.
This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less
Vitrac, Olivier; Challe, Blandine; Leblanc, Jean-Charles; Feigenbaum, Alexandre
2007-01-01
The contamination risk in 12 packaged foods by substances released from the plastic contact layer has been evaluated using a novel modeling technique, which predicts the migration that accounts for (i) possible variations in the time of contact between foodstuffs and packaging and (ii) uncertainty in physico-chemical parameters used to predict migration. Contamination data, which are subject to variability and uncertainty, are derived through a stochastic resolution of transport equations, which control the migration into food. Distributions of contact times between packaging materials and foodstuffs were reconstructed from the volumes and frequencies of purchases of a given panel of 6422 households, making assumptions about household storage behaviour. The risk of contamination of the packaged foods was estimated for styrene (a monomer found in polystyrene yogurt pots) and 2,6-di-tert-butyl-4-hydroxytoluene (a representative of the widely used phenolic antioxidants). The results are analysed and discussed regarding sensitivity of the model to the set parameters and chosen assumptions.
Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons.
Goldie, Belinda J; Dun, Matthew D; Lin, Minjie; Smith, Nathan D; Verrills, Nicole M; Dayas, Christopher V; Cairns, Murray J
2014-08-01
Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
[Components of plastic disrupt the function of the nervous system].
Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna
2013-05-27
Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.
Industrial plastics waste: Identification and segregation
NASA Technical Reports Server (NTRS)
Widener, Edward L.
1990-01-01
Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.
Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria
2014-10-15
Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.
Development of bio based plastic materials for packaging from soybeans waste
NASA Astrophysics Data System (ADS)
Muhammad, A.; Rashidi, A. R.; Roslan, A.; Idris, S. A.
2017-09-01
Demands of plastic material which increase with the increasing of human population encourage researchers to find alternative solution to replace petro based plastic. Thus, in the present study, a novel "green bioplastic" packaging was developed using soybean waste which is a major waste in soy sauce food industry. The evaluation of the effect of ratio of starch, soy waste and plasticizer in this bioplastic production was studied and their characteristics were compared with available bioplastics. Characteristics study was done in terms of burning test, water absorption capacity, thermal and tensile strength measurement and the result obtained were analyzed. The glass transition temperature (Tg) for soy waste bioplastic is 117˚C. The water absorption test shows that an increase in mass up to 114.17% which show large amount of water uptake capacity of this bioplastics. And about 38% of percentage loss was observed when compared with other novel bioplastics. The results clearly show that the amount of glycerol as a plasticizer had an inversely proportional relationship with the Glass Transition Temperature (Tg). The average maximum force value for tensile strength test is 6.71 N. The burning test show that the soy wastes bioplastic release a very faint smell of soy and glue-like substance. The flame ignited a Yellowish-Orange colour and released some sparks. Based on the overall results, soy-based have been proven to become an excellent bio-based packaging materials.
Damgaard, Rasmus; Rasmussen, Mats; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton
2013-01-01
In Part 1 of this three-part research series, a leak test performed using high-voltage leak detection (HVLD) technology, also referred to as an electrical conductivity and capacitance leak test, was developed and validated for container-closure integrity verification of a small-volume laminate plastic bag containing an aqueous solution for injection. The sterile parenteral product is the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®, by Novo Nordisk A/S, Bagsværd, Denmark). The aseptically filled and sealed package is designed to preserve product sterility through expiry. Method development and validation work incorporated positive control packages with a single hole laser-drilled through the laminate film of each bag. A unique HVLD method characterized by specific high-voltage and potentiometer set points was established for testing bags positioned in each of three possible orientations as they are conveyed through the instrument's test zone in each of two possible directions-resulting in a total of six different test method options. Validation study results successfully demonstrated the ability of all six methods to accurately and reliably detect those packages with laser-drilled holes from 2.5-11.2 μm in nominal diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product physico-chemical stability. In this Part 1 of a three-part research series, a leak test method based on electrical conductivity and capacitance, called high voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with an insulin pharmaceutical solution for human injection by Novo Nordisk A/S (Bagsværd, Denmark). To perform the test, the package is electrically grounded while being conveyed past an electrode linked to a high-voltage, low-amperage transformer. The instrument measures the current that passes from the transformer to the electrode, through the packaged product and along the package walls, to the ground. Plastic packages without defect are relatively nonconductive and yield a low voltage reading; a leaking package with electrically conductive solution located in or near the leak triggers a spike in voltage reading. Test methods were optimized and validated, enabling the detection of leaking packages with holes as small as 2.5 μm in diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product stability.
Sealing Mustard Jars with Plastic Linerless Closures
1985-10-01
Recommendations 15 Literature cited 16 Appendices: A . Levels of Packaging 19 B. Value Engineering Correspondence 2 3 V ILLUSTRATIVE DATA Page...Analytical Progress Total Dietary Fiber Another Look, 1984, Vol 2,■No. 1, Minneapolis, MN 16 APPENDIXES A : Levels of Packaging B: Value...Engineering Correspondence 17 APPENDIX A : Levels of Packaging 19 APPENDIX A : Levels of Packaging Excerpt from: AR 700-15/NAVSUPINST 4030.28B/AFR 71~6
Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Guazzo, Dana Morton
2013-01-01
This Part 3 of this three-part research series reports the impact of high-voltage leak detection (HVLD) exposure on the physico-chemical stability of the packaged product. The product, intended for human administration by injection, is an aqueous solution formulation of the rapid acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. The package is a small-volume form-fill-seal plastic laminate bag. Product-packages exposed to HVLD were compared to unexposed product after storage for 9 months at recommended storage conditions of 5 ± 3 °C. No differences in active ingredient or degradation products assays were noted. No changes in any other stability indicating parameter results were observed. This report concludes this three-part series. Part 1 documented HVLD method development and validation work. Part 2 explored the impact of various package material, package temperature, and package storage conditions on HVLD test results. Detection of leaks in the bag seal area was investigated. In conclusion, HVLD is reported to be a validatable leak test method suitable for rapid, nondestructive container-closure integrity evaluation of the subject product-package. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was proven to find hole leaks in small plastic bags filled with a solution of insulin aspart intended for human injection (NovoRapid®/NovoLog® by Novo Nordisk A/S, Bagsværd, Denmark). In Part 2, the ability of the HVLD method to find other types of package leaks was tested, and the impact of package material and product storage temperature on HVLD results was explored. This final Part 3 checked how well the packaged protein drug solution maintained its potency after HVLD exposure over 9 months of storage under long-term stability conditions. Results showed that HVLD caused no harm to the product.
Prospects for application of post-consumer used plastics in food packaging.
Miltz, J; Ram, A; Nir, M M
1997-01-01
The two most widely used polymers in packaging in recent years are polyethylene terephthalate (PET) and polyethylene (PE). The biggest fractions of these polymers are not re-utilized, in spite of the fact that they possess excellent properties even after their first application. The ban on using recycled polymers in food packaging applications and the lack of good value outlets for these materials causes them to end up in landfills. The high cost nylon, used in packaging primarily as high gas barrier laminates with PE, also finds its way to landfills. In this case, the reason is the difficulty of recycling different polymers that are incompatible. Thus, the Municipal Solid Waste (MSW) stream transferred to landfills contains many plastic packages. These packages are being blamed as a major pollutant of the environment in spite of the fact that all plastics contribute only a small percentage to the weight of the garbage in landfills. If proper and cost effective applications for the recycled polymers could be developed, the waste related to their disposal could be limited. In addition, the contribution of plastic packages to the environmental problem could be diminished. In the present paper, the possibility of sandwiching a contaminated PET layer between two layers of the virgin material was studied. The aim of the study was to determine whether such an operation could lower the migration level of contaminants from a multilayer structure (containing a recycled layer of PET) to values below the limits required by regulatory agencies. The diffusion coefficients (required to determine migration) of four organic liquids in PET were determined. As a result of the sandwiching operation, the amount of pollutant (toluene) migrating into the food simulant was reduced by two orders of magnitude. The properties of PE/nylon blends were also studied. It was found that the high gas barrier properties of nylon are preserved in the blend when proper processing conditions are used. Therefore, the recycled material could be used as a centre layer in a multilayer structure providing good gas barrier properties to this structure.
Assessment and quantification of plastics waste generation in major 60 cities of India.
Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K
2013-04-01
Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.
3D packaging of a microfluidic system with sensory applications
NASA Astrophysics Data System (ADS)
Morrissey, Anthony; Kelly, Gerard; Alderman, John C.
1997-09-01
Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.
The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces.
Cutter, C N
1999-05-01
Triclosan is a nonionic, broad-spectrum, antimicrobial agent that has been incorporated into a variety of personal hygiene products, including hand soaps, deodorants, shower gels, mouthwashes, and toothpastes. In this study, plastic containing 1,500 ppm of triclosan was evaluated in plate overlay assays and meat experiments as a means of reducing populations of bacteria. Plate overlay assays indicated that the triclosan-incorporated plastic (TIP) inhibited the following organisms: Brochothrix thermosphacta ATCC 11509, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 12598, Bacillus subtilis ATCC 6051, Shigella flexneri ATCC 12022, Escherichia coli ATCC 25922, and several strains of E. coli O157:H7. In meat experiment 1, irradiated, lean beef surfaces inoculated with B. thermosphacta, Salmonella Typhimurium, E. coli O157:H7, or B. subtilis were covered with TIP, vacuum packaged, and stored for 24 h at 4 degrees C. Of the organisms tested, only populations of B. thermosphacta were slightly reduced. In meat experiment 2, prerigor beef surfaces were inoculated with E. coli O157: H7, Salmonella Typhimurium, or B. thermosphacta incubated at 4 degrees C for 24 h, wrapped in TIP or control plastic, vacuum packaged, and stored at 4 degrees C for up to 14 days. There was a slight reduction in the population of the organisms after initial application with TIP. However, bacterial populations following long-term, refrigerated (4 degrees C), vacuum-packaged storage up to 14 days were not statistically (P< or =0.05) or numerically different than controls. In meat experiment 3, even TIP-wrapped, vacuum-packaged beef samples that were temperature abused at 12 degrees C did not exhibit significant (P< or =0.05) or sustainable reductions after 14 days of 4 degrees C storage. Another study indicated that populations of E. coli O157:H7 or B. thermosphacta added directly to TIP were not affected after 2 h of refrigerated storage or that the antimicrobial activity could be extracted from the plastic. Additional experiments suggest that presence of fatty acids or adipose may diminish the antimicrobial activity of TIP on meat surfaces. This study demonstrates that while antimicrobial activity is detected against bacterial cultures in antimicrobial plate assays, plastic containing 1,500 ppm of triclosan does not effectively reduce bacterial populations on refrigerated, vacuum-packaged meat surfaces.
Don't ban PVC: incinerate and recycle it instead!
Menke, Doris; Fiedler, Hiltrud; Zwahr, Heiner
2003-04-01
Plastics are making a growing contribution to sustainable development. For example, over an expected lifetime of 50 years, the use of window frames and insulating materials made of plastic in buildings save many times the energy required to manufacture them. Plastics for packaging purposes provide protection against damage and dirt contamination, thereby saving considerable amounts of material and energy. Choosing appropriate disposal strategies for plastic waste also helps to protect the environment (Mark 2000).
Hage, Olle; Söderholm, Patrik
2008-01-01
The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.
Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko
2009-10-01
Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hage, Olle; Soederholm, Patrik
2008-07-01
The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. Themore » impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.« less
Functions of Nano-Materials in Food Packaging
NASA Astrophysics Data System (ADS)
Yap, Ray Chin Chong; Kwablah, Amegadze Paul Seyram; He, Jiating; Li, Xu
Food packaging has been changing from bulky and rigid form in the past to different variation of lights and plastic packagings. Regardless of the changes, the packaging must be able to uphold its original function which is to serve as food containment as well as to protect the food from the external environment. Coupled with the increasing consumer’s awareness on food waste, higher standard of living, technological developments are underway to enhance the shelf-life of packed food as well as methods to provide indications of food packaging environment. There are many different indicators for food spoilage, but two commonly found gases in food packaging are oxygen and carbon dioxide. Oxygen is the main mechanism for food spoilage, while carbon dioxide is often used in modified-atmosphere-packaging. There are also different methods of gas scavenging and/or sensing techniques based on different concepts in the literature. In this review, the focus will be on nano-materials, namely titanium dioxide, silica, zeolites and metal organic frameworks. This review is structured in a manner to highlight how each material can be used in both gas scavenging and/or indicators applications. The last part of the review focuses on the approach and some key considerations when integrating nano-materials into the plastic film.
Challenges and opportunities of biodegradable plastics: A mini review.
Rujnić-Sokele, Maja; Pilipović, Ana
2017-02-01
The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.
Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A
2012-05-01
Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Lin; Bi, Pengyu; Li, Xiaochen; Wei, Yun
2015-06-15
A novel trace analytical method based on solvent sublation (SS) and gas chromatography-mass spectrometry (GC-MS) was developed for the trace determination of twenty-two phthalate esters (PAEs) from plastic beverage packaging. In the solvent sublation section, the effects of solution pH, NaCl concentration, nitrogen flow rate, and sublation time on the sublation efficiency were investigated in detail, and the optimal conditions were obtained. The trace PAEs migrated from plastic beverage packaging to food simulants were separated and concentrated by solvent sublation, and then the trace target compounds in the concentrated solution were analyzed by GC-MS. According to the European Union Regulation, the food simulants including distilled water for the normal beverages and acetic acid solution (3%) for the acetic beverage of yogurt were prepared for migration tests. The trace analysis method showed good linearity, low limits of detection (LODs) of 1.6-183.5 ng/L, and satisfied recoveries (67.3-113.7%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Public health impact of plastics: An overview
Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh
2011-01-01
Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286
Plastics and Environmental Health: The Road Ahead
North, Emily J.; Halden, Rolf U.
2013-01-01
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043
Plastics and environmental health: the road ahead.
North, Emily J; Halden, Rolf U
2013-01-01
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect
NASA Astrophysics Data System (ADS)
Kamaruddin, M. A.; Abdullah, M. M. A.; Zawawi, M. H.; Zainol, M. R. R. A.
2017-11-01
Plastic associates products based have been considered as the world most consumer packaging solution. However, substantial quantities of plastic consumption have led to exponential increase of plastic derived waste. Recycling of plastic waste as valued added product such as concrete appears as one of promising solution for alternative use of plastic waste. This paper summarized recent progress on the development of concrete mixture which incorporates plastic wastes as partial aggregate replacement during concrete manufacturing. A collection of data from previous studies that have been researched which employed plastic waste in concrete mixtures were evaluated and conclusions are drawn based on the laboratory results of all the mentioned research papers studied.
The effect of packaging materials on the stability of sunscreen emulsions.
Santoro, Maria Inês R M; Da Costa E Oliveira, Daniella Almança Gonçalves; Kedor-Hackmann, Erika R M; Singh, Anil K
2005-06-13
The purpose of this research was to study the stability of a emulsion containing UVA, UVB and infrared sunscreens after storage in different types of packaging materials (glass and plastic flasks; plastic and metallic tubes). The samples, emulsions containing benzophenone-3 (B-3), octyl methoxycinnamate (OM) and Phycocorail, were stored at 10, 25, 35 and 45 degrees C and representative samples were analyzed after 2, 7, 30, 60 and 90 days period. The stability studies were conducted by analyzing samples at pre-determined intervals by high performance liquid chromatography (HPLC) along with periodic rheological measurements.
Hassan, Muhammad Waqar; Gulraize; Ali, Usman; Ur Rehman, Fazal; Najeeb, Hafsa; Sohail, Maryam; Irsa, Bakhtawar; Muzaffar, Zubaria; Chaudhry, Muhammad Shafiq
2016-01-01
Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects. PMID:27638958
Cwiek-Ludwicka, Kazimiera; Pawlicka, Marzena; Starski, Andrzej; Półtorak, Hanna; Karłowski, Kazimierz
2011-01-01
The aim of this study was to identify of primary aromatic amines (PAAs) and to determine their migration from plastic food packaging. The magnitude of the migration of these substances from plastic food packaging consists a base for the evaluation of their compliance with the requirements of EU legislation and hazard for human health taking into account their migration into food. The unprinted and printed multi-layer plastic packaging (laminates), domestic and imported, were examined in these studies. PAAs migration tests from the laminates into food simulant (3% acetic acid) was performed according to the appropriate procedures recommended in the EU for testing migration from food contact articles under standard conditions reflecting the real use of laminates (10 days, 40 degrees C) and under ,, worst case scenario" conditions (2 h, 70 degrees C). PAAs present in migration solutions were concentrated on SPE columns and then seven PAAs (aniline, 1,3-phenylenediamine, 2, 6-toluenediamine, 2,4-toluenediamine, 4,4'-oxydianiline, 4,4'-methylenedianiline and 3,3 '-dimethylbenzidyne) were identified and determined by previously validated HPLC-DAD method. Depending on the migration conditions the PAAs content was different. When the "worst case scenario" conditions were applied the migration of 4,4 '-methylenedianiline (4,4 '-MDA) ranged from below detection limit (LOD = 0.51 microg/kg) up to 9.86 microg/kg, and aniline was released in the range from below detection limit (LOD = 0,98 microg/kg) up to 7.04 microg/kg. In two laminate samples of eight examined, the sum of PAAs (aniline and 4,4'-MDA) was 13.32 microg/kg and 14.72 microg/kg showing that the permitted limit (10 microg/kg) was exceeded. In the standard conditions, the migration of aniline and 4,4'-MDA was significantly lower Regarding the carcinogenic potential of PAAs, the laminates causing the amines migration above the permitted limit should not be used as food packaging.
Recyclability assessment of nano-reinforced plastic packaging.
Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A
2014-12-01
Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products). Copyright © 2014 Elsevier Ltd. All rights reserved.
Pilot Fullerton uses water dispenser kit gun to rehydrate food package
1982-03-30
STS003-26-254 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), inserts the JSC water dispenser kit water gun in rehydratable plastic food (cereal) package to fill it with hot water. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius
2017-11-01
In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging films.
Application of dual-energy x-ray techniques for automated food container inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.; Veselitza, D.
2016-02-01
Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.
75 FR 60333 - Hazardous Material; Miscellaneous Packaging Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... minimum thickness requirements for remanufactured steel and plastic drums; (2) reinstate the previous... communication problem for emergency responders in that it may interfere with them discovering a large amount of... prescribed in Sec. 178.2(c). D. Minimum Thickness Requirement for Remanufactured Steel and Plastic Drums...
49 CFR 178.955 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... construction, but does not include: (i) A packaging which differs in surface treatment; (ii) A rigid plastic... (glass, plastic, metal, etc.) offers resistance to impact and stacking forces equal to or greater than... photograph(s); (7) Maximum capacity; (8) Characteristics of test contents, e.g., viscosity and relative...
Feedstock recycling program gets go ahead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layman, P.
1994-03-28
Feedstock recycling--recycling mixed plastics wastes back into chemical feedstocks such as olefins and naphtha--has received a commercial go ahead in Germany. DKR--Deutsche Kunstsoff recycling, a subsidiary of a commercial company, Duales System Deutschland, responsible for recycling packaging wastes in Germany--has issued three contracts to companies with feedstock recycling technology to convert to liquid feedstocks a total of some 500,000 metric tons per year of mixed plastics packaging wastes by 1996. DKR has also pledged to discontinue exports of used plastics packaging to foreign countries by that date. The three contracts go to a consortium between BASF and OTTO Kunststoff service,more » of Dossenheim; the oil and chemical producer Veba; and the electric power utilities company RWE. DKR's current processing costs are about $1,765 per ton of wastes. That total includes all costs for collecting, sorting, cleaning, and transporting the wastes. In its bid, the BASF-OTTO consortium envisioned a fee of about $190 per ton. That fee, says Niess, was determined by looking at BASF's and OTTO's costs, offset by the savings in raw materials BASF would be making as its technology converts mixed plastics wastes to a mixture of naphtha, aromatics, and oils, all of which can be used in BASF's processes in Ludwigshafen. And because BASF's technology requires no presorting or cleaning before it gets the wastes, the process will trim DKR's costs significantly.« less
Optimization and characterization of a cemented ultimate-storage product
NASA Astrophysics Data System (ADS)
Brunner, H.
1981-12-01
The U- and Pu-containing packaging wastes can be homogeneously cemented after a washing and fragmentation process. Both finely crushed and coarsely fragmented raw wastes yield products with sufficient mechanical stability. The processability limit of the coarsely fragmented raw waste using cement paste or mortar is largely determined by the cellulose content, which is not to exceed 1.3% by weight in the end waste. Of 9 binders studied, the most corrosion-resistant products were obtained with blast-furnace slag cement, whereas poured concrete and Maxit are much less resistant in five-component brine. In the cemented product, hydrolysis of plasticizers (DOP) from plastics (PVC) occurs, leading to release of 2-ethyl-hexanol. This reaction occurs to a much lower degree with blast-furnace slag cement than with all other binders studied. The binder chosen for further tests consists of blast-furnace slag cement, concrete fluidizer and a stabilizer, and is processed at a W/C ratio of 0.43.
Plasticizer contamination in edible vegetable oil in a U.S. retail market.
Bi, Xiaolong; Pan, Xiaojun; Yuan, Shoujun; Wang, Qiquan
2013-10-02
With the wide application of plastics, the contamination of plasticizers migrating from plastic materials in the environment is becoming ubiquitous. The presence of phthalates, the major group of plasticizers, in edible items has gained increasingly more concern due to their endocrine disrupting property. In this study, 15 plasticizers in 21 edible vegetable oils purchased from a U.S. retail market were analyzed using gas chromatograph-mass spectrometry. Di(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were detected in all oil samples. Benzylbutyl phthalate (BzBP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) were detected at a rate of 95.2, 90.5, and 90.5%, respectively. The detection rates for all other plasticizers ranged from 0 to 57.1%. The content of total plasticizers in oil samples was determined to be 210-7558 μg/kg, which was comparable to the content range in oil marketed in Italy. Although no significant difference (p = 0.05) in the total content of plasticizer was observed among oil species (soybean, canola, corn, and olive), the wider range and higher average of total content of plasticizers in olive oil than other oil species indicated the inconsistence of plasticizer contamination in olive oil and a possible priority for quality monitoring. No significant difference (p = 0.05) in the total content of plasticizers was found among glass-bottle (n = 4), plastic-bottle (n = 14), and metal-can (n = 3) packaging, implying that oil packaging is not the major cause of plasticizer contamination. The daily intake amount of plasticizers contained in edible oil on this U.S. retail market constituted only a minimum percentage of reference dose established by US EPA, thus no obvious toxicological effect might be caused. However, the fact that DEHP content in two olive oils exceeded relevant special migration limits (SMLs) of Europe and China might need attention.
From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags.
Steensgaard, Ida M; Syberg, Kristian; Rist, Sinja; Hartmann, Nanna B; Boldrin, Alessio; Hansen, Steffen Foss
2017-05-01
Plastic pollution and its environmental effects has received global attention the recent years. However, limited attention has so far been directed towards how plastics are regulated in a life cycle perspective and how regulatory gaps can be addressed in order to limit and prevent environmental exposure and hazards of macro- and microplastics. In this paper, we map European regulation taking outset in the life cycle perspective of plastic carrier bags: from plastic bag production to when it enters the environment. Relevant regulatory frameworks, directives and authorities along the life cycle are identified and their role in regulation of plastics is discussed. Most important regulations were identified as: the EU chemical Regulation, the Packaging and Packaging Waste Directive including the amending Directive regarding regulation of the consumption of lightweight plastic carrier bags, the Waste Framework Directive and the Directive on the Landfill of Waste. The main gaps identified relate to lack of clear definitions of categories of polymers, unambitious recycling rates and lack of consideration of macro- and microplastics in key pieces of legislation. We recommend that polymers are categorized according to whether they are polymers with the same monomer constituents (homopolymers) or with different monomer constituents (copolymers) and that polymers are no longer exempt from registration and evaluation under REACH. Plastics should furthermore have the same high level of monitoring and reporting requirements as hazardous waste involving stricter requirements to labelling, recordkeeping, monitoring and control over the whole lifecycle. Finally, we recommend that more ambitious recycle and recovery targets are set across the EU. Regulation of the consumption of lightweight plastic carrier bags should also apply to heavyweight plastic carrier bags. Last, the Marine and Water Framework Directives should specifically address plastic waste affecting water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
49 CFR 173.4a - Excepted quantities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ice), and lithium batteries and cells. (c) Inner packaging limits. The maximum quantity of hazardous materials in each inner packaging is limited to: (1) For toxic material with a Division 6.1 primary or... excepted quantities must meet the following: (1) Each inner receptacle must be constructed of plastic, or...
16 CFR 260.16 - Renewable materials claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... substantiating all remaining express and reasonably implied claims. Example 2: A marketer's packaging states that “Our packaging is made from 50% plant-based renewable materials. Because we turn fast-growing plants into bio-plastics, only half of our product is made from petroleum-based materials.” By identifying the...
16 CFR 260.16 - Renewable materials claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... substantiating all remaining express and reasonably implied claims. Example 2: A marketer's packaging states that “Our packaging is made from 50% plant-based renewable materials. Because we turn fast-growing plants into bio-plastics, only half of our product is made from petroleum-based materials.” By identifying the...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Testing of Non-bulk Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification of all metal, plastic, and composite...
USDA-ARS?s Scientific Manuscript database
The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...
Management of packaging waste in Poland--development agenda and accession to the EU.
Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam
2004-06-01
In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.
Postharvest conservation of the tuberous roots of Pachyrhizus Ahipa (Wedd) Parodi.
Mussury, Rosilda M; Scalon, Silvana P Q; Silva, Magaiver A; Silva, Tatiane F; Gomes, Hellen; Gassi, Rosimeire
2013-01-01
This paper aimed to evaluate the effects of storage periods on the conservation of Pachyrhizus ahipa roots at different temperatures and packaging materials. The roots were harvested, washed, packed in PVC, plastic bags, without wrappings (control) and stored in polystyrene trays in refrigerators, or cold chambers, or at room temperature. Total titratable acidity (TTA), total soluble solids (TSS), pH, as well as their ash, lipid, total carbohydrate and protein (dry basis) contents were analyzed. The lowest loss of root fresh weight was observed in the cold chamber and plastic bags. The TTA remained higher among roots stored in the cold chamber and in PVC packaging. The lowest TSS contents were observed for roots stored in the cold chamber, and these did not vary among the packing materials. The average carbohydrate content percentage for all treatments was 84.9%. The percentage of lipids was highest in roots stored at room temperature while protein and ash contents were highest in roots under refrigeration. The best storage conditions for roots are plastic bags packaging in a cold chamber, with the roots retaining appropriate quality for commercialization for up to 30 days.
Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, E.
Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhancedmore » by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.« less
Void-Free Lid for Food Packaging
NASA Technical Reports Server (NTRS)
Watson, C. D.; Farris, W. P.
1986-01-01
Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.
Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.
2013-03-21
Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less
Sensory impacts of food-packaging interactions.
Duncan, Susan E; Webster, Janet B
2009-01-01
Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.
NASA Astrophysics Data System (ADS)
Yagoubi, N.; Baillet, A.; Pellerin, F.; Ferrier, D.
1995-11-01
The combined chromatographic technics and thermal analysis constitute an informative methodology for studying the modifications which could occur following a radiotreatment of plastic material at different doses (25 to 100 kGy). Several plastic materials used as packagings (PVC, PE, PS) were investigated. SEC method coupled with UV and DDL detections was applied to document any changes in molecular weight distribution. Reticulation and scission were the main observed degradation phenomena. These structural modifications were supported by TGA data, while the DSC provided information on modifications in crystallinity. In addition, RP-HPLC was carried out for the evaluation of the radiochemical behaviour of the additives and monomers. Firstly we demonstrated the degradation of high molecular weight phenolic antioxidants in BHT within the PEVA. Secondly, the modifications of amino 6 caproic acid and ɛ caprolactam, present in polyamid 6, depend on the irradiation doses.
Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M
2015-05-05
Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preliminary results of accelerated exposure testing of solar cell system components
NASA Technical Reports Server (NTRS)
Anagnostou, E.; Forestieri, A. F.
1977-01-01
Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.
Steinka, Izabela
2007-01-01
The study aimed at assessing changes of physical properties of package lactic acid cheese and the PA/PE and Cryovac laminates after storage of this products. The fluctuation of water in the product and swelling of packaging caused changes in their mass. The changes in the packaging mass could also result from the interactions between micro-organisms present in product. It was found that staphylococci, enterococci and Escherichia coli were the micro-organisms that had contributed to changes of packaging mass to a highest degree. Changes were described with the help of response surface models.
Contamination in food from packaging material.
Lau, O W; Wong, S K
2000-06-16
Packaging has become an indispensible element in the food manufacturing process, and different types of additives, such as antioxidants, stabilizers, lubricants, anti-static and anti-blocking agents, have also been developed to improve the performance of polymeric packaging materials. Recently the packaging has been found to represent a source of contamination itself through the migration of substances from the packaging into food. Various analytical methods have been developed to analyze the migrants in the foodstuff, and migration evaluation procedures based on theoretical prediction of migration from plastic food contact material were also introduced recently. In this paper, the regulatory control, analytical methodology, factors affecting the migration and migration evaluation are reviewed.
USDA-ARS?s Scientific Manuscript database
The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and montmorillo...
NASA Astrophysics Data System (ADS)
Mehyar, G. F.; Bawab, A. Al
2015-10-01
Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs (<50%), WPI films had 2-3 times lower elongation at break (E or stretchability) than PS and LDPE. Increasing RH to 90% significantly (P<0.01) increased the elongation of PS but not WPI and LDPE films. LDPE and WPI films kept significantly (P<0.01) higher tensile strength (TS) than PS films at high RH (90%). Oxygen permeability (OP) of all films was very low (<0.5 cm3 μm m-2 d-1 kPa-1) below 40% RH but increased for PS films and became significantly (P<0.01) different than that of LDPE and WPI at > 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.
Proper Accounting for Surface Area to Solution Volume Ratios in Exaggerated Extractions.
Jenke, Dennis R; Rabinow, Barrett E
2017-01-01
When drug products contact plastic manufacturing components, packaging systems, and/or delivery devices, leachables from the plastics can accumulate in the drug product, potentially affecting its key quality attributes. Given practical issues associated with screening drug products for leachables, potential leachables are frequently surfaced as extractables revealed in extraction studies. To facilitate extractables discovery and identification and to shorten extraction times, extraction studies can be exaggerated and/or accelerated. One means of exaggerating an extraction is to increase the test article's extracted surface area to extraction solution volume ratio (SA/V), as it is generally accepted that an extractable's concentration in an extract is proportional to SA/V in a 1 to 1 manner. However, as the relationship between an extractable's concentration and SA/V depends on the extractable's plastic/solvent partition coefficient (k p/l ), the effect of SA/V on the extractable's concentrations can be either under- or over-estimated if a 1 to 1 proportion is used. This article presents the theoretical relationship between SA/V, concentration, and k p/l ; illustrates theory with a case study; and suggests proper exaggeration strategies. LAY ABSTRACT: When drug products are manufactured, stored, or delivered in systems that contain plastics, substances can be leached from the plastics and remain in the drug product, where they might affect the product's key quality attributes. To discover and identify these leached substances, the plastics are extracted under laboratory conditions and the extracts are appropriately tested. To facilitate this process, extracts may be generated under laboratory conditions that exaggerate or accelerate the drug product's clinical conditions of manufacturing or use. The proper use of the ratio of the extracted item's surface area to the volume of the extracting solution as an exaggeration parameter is discussed in this paper. © PDA, Inc. 2017.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2015-12-15
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2016-05-17
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
49 CFR 178.925 - Standards for rigid plastic Large Packagings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... manufacture of the tested design type, retesting may be omitted if changes in the carbon black content, the... or chemical properties of the material of construction. (3) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastic...
21 CFR 501.105 - Declaration of net quantity of contents when exempt.
Code of Federal Regulations, 2010 CFR
2010-04-01
... molding) to other matter on the package; except that a declaration of net quantity blown, embossed, or molded on a glass or plastic surface is permissible when all label information is so formed on the... glass or plastic surface rather than by printing, typing, or coloring, the lettering sizes specified in...
21 CFR 701.13 - Declaration of net quantity of contents.
Code of Federal Regulations, 2010 CFR
2010-04-01
... typography, layout, color, embossing, or molding) to other matter on the package; except that a declaration of net quantity blown, embossed, or molded on a glass or plastic surface is permissible when all... inches. Where the declaration is blown, embossed, or molded on a glass or plastic surface rather than by...
21 CFR 801.62 - Declaration of net quantity of contents.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., embossing, or molding) to other matter on the package; except that a declaration of net quantity blown, embossed, or molded on a glass or plastic surface is permissible when all label information is so formed on.... Where the declaration is blown, embossed, or molded on a glass or plastic surface rather than by...
46 CFR 160.021-4 - Approval and production tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by the manufacturer to correct the problem. Samples from the rejected lot must be retested in order...-resistant coating on the signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will be conducted while the signal is in the sealed plastic waterproof bag and will...
46 CFR 160.021-4 - Approval and production tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... by the manufacturer to correct the problem. Samples from the rejected lot must be retested in order...-resistant coating on the signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will be conducted while the signal is in the sealed plastic waterproof bag and will...
46 CFR 160.037-4 - Approval and production tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by the manufacturer to correct the problem. Samples from the rejected lot must be retested in order... signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will be conducted while the signal is in the sealed plastic waterproof bag and will be followed by an...
46 CFR 160.037-4 - Approval and production tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... by the manufacturer to correct the problem. Samples from the rejected lot must be retested in order... signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will be conducted while the signal is in the sealed plastic waterproof bag and will be followed by an...
Effects of various plasticizers and nanoclays on the mechanical properties of red algae film.
Jang, S A; Shin, Y J; Seo, Y B; Song, K B
2011-04-01
To manufacture red algae (RA) film, we used various plasticizers such as glycerol, sorbitol, sucrose, fructose, and polypropylene glycol (PPG), and then determined the mechanical properties of the RA films. The tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of the films containing various plasticizers ranged between 0.43 to 9.10 MPa, 10.93% to 47.17%, and 1.28 to 1.42 ng m/m2sPa, respectively. RA films containing fructose as a plasticizer had the best mechanical properties of all the films evaluated. Incorporation of nanoclay (Cloisite Na+ and 30B) improved the mechanical properties of the films. RA film with 3% Cloisite Na+ had a TS of 10.89, while RA film with 30B had a TS of 10.85 MPa; these films also had better E and WVP values than the other RA films evaluated. These results suggest that RA/nanoclay composite films are suitable for use as food packaging materials. Edible RE/nanoclay composite films prepared in the present investigation can be applied in food packaging.
Jenke, Dennis
2007-01-01
Leaching of plastic materials, packaging, or containment systems by finished drug products and/or their related solutions can happen when contact occurs between such materials, systems, and products. While the drug product vendor has the regulatory/legal responsibility to demonstrate that such leaching does not affect the safety, efficacy, and/or compliance of the finished drug product, the plastic's supplier can facilitate that demonstration by providing the drug product vendor with appropriate and relevant information. Although it is a reasonable expectation that suppliers would possess and share such facilitating information, it is not reasonable for vendors to expect suppliers to (1) reveal confidential information without appropriate safeguards and (2) possess information specific to the vendor's finished drug product. Any potential conflict between the vendor's desire for information and the supplier's willingness to either generate or supply such information can be mitigated if the roles and responsibilities of these two stakeholders are established up front. The vendor of the finished drug product is responsible for supplying regulators with a full and complete leachables assessment for its finished drug product. To facilitate (but not take the place of) the vendor's leachables assessment, suppliers of the materials, components, or systems can provide the vendor with a full and complete extractables assessment for their material/system. The vendor and supplier share the responsibility for reconciling or correlating the extractables and leachables data. While this document establishes the components of a full and complete extractables assessment, specifying the detailed process by which a full and complete extractables assessment is performed is beyond its scope.
[Analysis of phthalates in plastic food-packaging bags by thin layer chromatography].
Chen, Hui; Wang, Yuan; Zhu, Ruohua
2006-01-01
The method for simultaneous determination of four phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) in plastic food-packaging bags by thin layer chromatography (TLC) was developed. The plastic food-packaging bags were extracted with ethanol by ultrasonication, then the mixture was filtrated through membrane (0.45 microm). The mixture of ethyl acetate-anhydrous ether-isooctane (1 : 4 : 15, v/v) was used as developing agent on the TLC silica gel plate for development. The filtered liquid was spotted on the TLC plate dealt by acetone, and detected with scanning wavelength of 275 nm and reference wavelength of 340 nm. The qualitative analysis of the phthalates was performed using the R(f) values of the chromatogram. The quantitative analysis was performed with external standard method. Good linearities were obtained for DMP, DEP, DBP and DEHP. The detection limits were 2.1 ng for DMP, 2.4 ng for DEP, 3.4 ng for DBP and 4.0 ng for DEHP. The relative standard deviations (RSDs) of the four phthalates were 2.8% - 3.5%. The recoveries of the four phthalate standards in real sample were 78.58% - 111.04%. The method presented has the advantages of high precision, high sensitivity, small sample size, and simple pretreatment . The method was used to detect the four phthalates in the food-packaging bags. The contents in real samples were close to the results by gas chromatography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González Pericot, N., E-mail: natalia.gpericot@upm.es; Villoria Sáez, P., E-mail: paola.villoria@upm.es; Del Río Merino, M., E-mail: mercedes.delrio@upm.es
2014-11-15
Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste hasmore » been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.« less
Plastics recycling: challenges and opportunities.
Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward
2009-07-27
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.
Plastics recycling: challenges and opportunities
Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward
2009-01-01
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades. PMID:19528059
Advancements in meat packaging.
McMillin, Kenneth W
2017-10-01
Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation treatment for sterilization of packaging materials
NASA Astrophysics Data System (ADS)
Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.
2007-08-01
Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.
Plasticizers effect on native biodegradable package materials
NASA Astrophysics Data System (ADS)
Cozar, Onuc; Cioica, Nicolae; Coţa, Constantin; Nagy, Elena Mihaela; Fechete, Radu
2017-01-01
Changes in intensity of some IR and Raman bands suggest the plasticizing - antiplasticizing effects of water and glycerol contents and a small increase of amorphous/crystalline ratio, too. The nuclear magnetic relaxation data show that the amorphous/crystalline ratio depends on amylose/amylopectin mobility and also by the place of their polymer chain segments. Thus the distributions of spin-spin (T2) relaxation times and the shift toward higher values of some T2 characteristic peaks show that the increasing of water and glycerol content in the starch package materials lead to the more mobile amylose and amylopectin polymer chain segments and the prevalence of amorphous regions in the prepared native corn starch samples.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...
A robust return-map algorithm for general multisurface plasticity
Adhikary, Deepak P.; Jayasundara, Chandana T.; Podgorney, Robert K.; ...
2016-06-16
Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples alsomore » illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Since it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. Furthermore, the main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting.« less
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novosel'tseva, N. A.
2017-05-01
A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.
The optimization of phthalate analysis from plastic matrices by using GC/MS related techniques
NASA Astrophysics Data System (ADS)
Pusfitasari, Eka Dian; Hendarsyah, Hendris; Athaillah, Zatil Afrah
2017-11-01
Indication of malicious acts conducted by food vendors has been reported in many places in Indonesia and has been worrying the population. One of the issues is the indication that frying oil used by the vendors has been added with food packaging plastic to impart more crispy texture of the fried foods. One of the challenges for the monitoring process is to find suitable analytical method to identify this type of food adulteration. Because some food packaging, particularly from polyethylene group, contains plasticizer diethylhexylphthalate (DEHP), we intended to investigate the adulteration by detecting the phthalate compound. In this preliminary study, we focused on the optimization of GC equipment as well as the optimization of plastic extraction process with various types of solvents (hexane, dichloromethane, and acetonitrile) and extraction time (24, 48, and 72 hours). For 72-hour duration, treatment with solvent refreshment was also conducted to minimize solvent saturation effect. Our findings suggested that LOD and LOQ of the GC/MS instrument used for the DEHP analysis were 19.6 ng and 65.5 ng, respectively. In addition, it could be concluded that the process of plastic extraction through sonication for five minutes with n-hexane as a solvent resulted in the optimal value.
REVIEW OF CLEANING SOLUTIONS FOR USE ON COMPONENTS OF THE 9975 SHIPPING PACKAGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
2013-09-30
Several candidate cleaning products have been reviewed for use as a disinfectant on 9975 shipping package components which contain or have contacted mold. Following review of the compatibility of these products with each component, ammonia (ammonium hydroxide diluted to 1.5 wt% concentration) appears compatible with all package components that it might contact. Each of the other candidate products is incompatible with one or more package components. Accordingly, ammonia is recommended for this purpose. It is further recommended that all components which are disinfected be subsequently rinsed with di-ionized or distilled water.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... coils using materials such as plastic, paper, or wire. Certain steel nails subject to this investigation... plastic or steel washers (``caps'') already assembled to the nail, having a bright or galvanized finish, a... Initiation Notice,\\2\\ by removing the language referring to the packaging characteristics of certain nails...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
Opara, Umezuruike Linus; Caleb, Oluwafemi J; Uchechukwu-Agua, Amarachi D
2016-02-01
The influence of packaging materials (plastic bucket, low density polyethylene [LDPE] bags and paper bags) on quality attributes of the flour of 2 cassava cultivars (TME 419 and UMUCASS 36) stored at 23 ± 2 °C and 60% relative humidity (RH) were investigated for 12 wk. Cassava flour from each package type was evaluated for proximate composition, physicochemical properties and microbial growth at 4-wk intervals. Total color difference (∆E) of both cassava flour cultivars increased with storage duration. Flour packed in plastic bucket had the lowest change in color (3.2 ± 0.42) for cv. "TME 419ˮ and (4.1 ± 0.87) for cv. "UMUCASS 36ˮ at the end of week 12. Total carotenoid decreased across all treatment, and after the 12 wk storage, the highest total carotenoid retention (1.7 ± 0.02 and 2.0 ± 0.05 μg/mL) was observed in flour packed in plastic bucket. However, cassava flour in paper bag had the lowest microbial count of 3.4 ± 0.03 and 3.4 ± 0.08 log cfu/g for total aerobic mesophilic bacteria and fungi, respectively. © 2015 Institute of Food Technologists®
Processing and characteristics of canola protein-based biodegradable packaging: A review.
Zhang, Yachuan; Liu, Qiang; Rempel, Curtis
2018-02-11
Interest increased recently in manufacturing food packaging, such as films and coatings, from protein-based biopolymers. Among various protein sources, canola protein is a novel source for manufacturing polymer films. It can be concentrated or isolated by aqueous extraction technology followed by protein precipitation. Using this procedure, it was claimed that more than 99% of protein was extracted from the defatted canola meal, and protein recovery was 87.5%. Canola protein exhibits thermoplastic properties when plasticizers are present, including water, glycerol, polyethylene glycol, and sorbitol. Addition of these plasticizers allows the canola protein to undergo glass transition and facilitates deformation and processability. Normally, canola protein-based bioplastics showed low mechanical properties, which had tensile strength (TS) of 1.19 to 4.31 MPa. So, various factors were explored to improve it, including blending with synthetic polymers, modifying protein functionality through controlled denaturation, and adding cross-linking agents. Canola protein-based bioplastics were reported to have glass transition temperature, T g , below -50°C but it highly depends on the plasticizer content. Canola protein-based bioplastics have demonstrated comparable mechanical and moisture barrier properties compared with other plant protein-based bioplastics. They have great potential in food packaging applications, including their use as wraps, sacks, sachets, or pouches.
Plastics, the environment and human health: current consensus and future trends
Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.
2009-01-01
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded. PMID:19528062
Plastics, the environment and human health: current consensus and future trends.
Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H
2009-07-27
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded.
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia
2015-03-01
Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.
Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)
NASA Technical Reports Server (NTRS)
Ghaffaroam. Reza
2014-01-01
Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.
Production of Methane and Water from Crew Plastic Waste
NASA Technical Reports Server (NTRS)
Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.
2008-01-01
Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.
The empowerment of sustainable design in food packaging as designer responsibilities
NASA Astrophysics Data System (ADS)
Setiadi, V.
2018-01-01
The purpose of this paper is emphasized on the empowerment of sustainable design in providing the dual function of a food packaging. Which can extend the life of paper, cardboard, plastic, aluminum foil so as to reduce the contribution of waste on earth. The methodology used in this research is using qualitative research. With the main approach taken on the layout of the packaging design, the approach that relies heavily on the data in the form of packaging design. For the process of observation, the authors should compare with the forms of food packaging designs that are contained in the diversity of food packaging types from products outside Indonesia. The purpose of this study is also intended as a recommendation through observation of data interviews and survey related products. Conclusion through material exploration, packaging structure exploration, efficient exploration of ink usage and packaging usage patterns.
Legislation, control and research in the Nordic countries on plastics for packaging food.
Svensson, K
1994-01-01
The present legislation in the Nordic countries for food contact materials is expressed in general terms and contains few detailed requirements. At present Finland is implementing the EEC legislation, Sweden and Norway will probably do so shortly and Denmark has been a member of the EEC since 1973. Current food legislation in Sweden only covers materials or articles intended to come into contact with foodstuffs during processing or packaging in the food industry or by retailers. It does not apply to food packaging materials purchased for use at home or to household utensils. Upon request, the Toxicology Division at the Swedish National Food Administration (NFA) carries out evaluations of materials intended to come into contact with food. In addition, a voluntary organization--Normpack--is currently operating in Sweden. Normpack consists of manufacturers, dealers and users of food packaging materials, who have agreed to abide by certain common standards. In Norway, the Packaging Convention (Emballasjekonvensjonen--on safety of food packaging material from the health point view) serves a similar purpose. Research in this field is conducted at the National Food Agency of Denmark, The Danish Packaging and Transportation Research Institute (ETi) of the Danish Technological Institute (DTI), the Food Research Laboratory at the Technical Research Centre of Finland, MATFORSK, Norconserv and Statoil in Norway and the NFA, PackForsk and the Swedish Institute for Food Research (SIK) in Sweden. Previous studies have concerned plasticizers in PVC (polyvinyl chloride) cling film, overall migration studies on cling film, specific migration of vinyl chloride, styrene and acrylonitrile and off-flavours.(ABSTRACT TRUNCATED AT 250 WORDS)
Lopez de Dicastillo, Carol; Nerin, Cristina; Alfaro, Pilar; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar
2011-07-27
Ethylene vinyl alcohol copolymer (EVOH) films containing green tea extract were successfully produced by extrusion. The films were brown and translucent, and the addition of the extract increased the water and oxygen barrier at low relative humidity but increased the water sensitivity, the glass transition temperature, and the crystallinity of the films and improved their thermal resistance. An analysis by HPLC revealed that the antioxidant components of the extract suffered partial degradation during extrusion, reducing the content of catechin gallates and increasing the concentration of free gallic acid. Exposure of the films to various food simulants showed that the liquid simulants increased their capacity to reduce DPPH(•) and ABTS(•+) radicals. The release of green tea extract components into the simulant monitored by HPLC showed that all compounds present in the green tea extract were partially released, although the extent and kinetics of release were dependent on the type of food. In aqueous food simulants, gallic acid was the main antioxidant component released with partition coefficient values ca. 200. In 95% ethanol (fatty food simulant) the K value for gallic acid decreased to 8 and there was a substantial contribution of catechins (K in the 1000 range) to a greatly increased antioxidant efficiency. Kinetically, gallic acid was released more quickly than catechins, owing to its faster diffusivity in the polymer matrix as a consequence of its smaller molecular size, although the most relevant effect is the plasticization of the matrix by alcohol, increasing the diffusion coefficient >10-fold. Therefore, the materials here developed with the combination of antioxidant substances that constitute the green tea extract could be used in the design of antioxidant active packaging for all type of foods, from aqueous to fatty products, the compounds responsible for the protection being those with the higher compatibility with the packaged product.
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
Effect of Packaging Materials on Orthosiphon Stamineus Dried-Leaf Quality During Storage
NASA Astrophysics Data System (ADS)
Norawanis, A. R.; Shaari, A. R.; Leng, L. Y.
2018-03-01
The experiment was conducted to determine the effects on the total phenolic content, antioxidant capacity, moisture content and total different color (ΔE) when the O. stamineus dried whole-leaf were packed in different packaging materials (plastic bag, paper bag and glass container) and stored under room temperature (±25 °C) and relative humidity (±65 %RH) for 8 weeks. The total phenolic compounds and antioxidant activity were measured using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay respectively, and analyzed using UV/VIS Spectrophotometer. The moisture content changes were examined using a moisture analyzer and the color changes were analyzed using colorimeter. The results showed that packing O. stamineus dried whole-leaf in different packaging materials significantly affected the herbal leaves quality. After 8 weeks of storage period, the total phenolic content and antioxidant capacity exhibited the increase values during storage. Meanwhile, the moisture content of the samples decreased by storage period for the samples packed in plastic bag and glass container. The moisture content of the samples packed in the paper bag fluctuated along the 8 weeks of storage period. The total different color (ΔE) of the O. stamineus dried whole-leaf increased by storage period. The highest changes of ΔE belonged to the samples packed in the glass container, followed by paper and plastic bags. The selection of the packaging materials can be considered as an important element to control the quality of raw herbal materials for further processing and the herbal finished products.
Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E
2010-06-01
The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.
USDA-ARS?s Scientific Manuscript database
The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified mo...
49 CFR 176.907 - Polymeric Beads and Plastic Molding Compounds.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: (1) Packed in hermetically sealed packagings or IBC's which conform to packing group II performance level for liquid dangerous goods with a total pressure in the packaging (i.e., the vapor pressure of the material plus the partial pressure of air or other inert gases, less 100kPa (15 psia)) at 55 °C (131 °F...
49 CFR 176.907 - Polymeric Beads and Plastic Molding Compounds.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: (1) Packed in hermetically sealed packagings or IBC's which conform to packing group II performance level for liquid dangerous goods with a total pressure in the packaging (i.e., the vapor pressure of the material plus the partial pressure of air or other inert gases, less 100kPa (15 psia)) at 55 °C (131 °F...
USDA-ARS?s Scientific Manuscript database
The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4 degrees C for 7 days. Effects ...
NASA Technical Reports Server (NTRS)
Vu, Duc; Sandor, Michael; Agarwal, Shri
2005-01-01
CSAM Metrology Software Tool (CMeST) is a computer program for analysis of false-color CSAM images of plastic-encapsulated microcircuits. (CSAM signifies C-mode scanning acoustic microscopy.) The colors in the images indicate areas of delamination within the plastic packages. Heretofore, the images have been interpreted by human examiners. Hence, interpretations have not been entirely consistent and objective. CMeST processes the color information in image-data files to detect areas of delamination without incurring inconsistencies of subjective judgement. CMeST can be used to create a database of baseline images of packages acquired at given times for comparison with images of the same packages acquired at later times. Any area within an image can be selected for analysis, which can include examination of different delamination types by location. CMeST can also be used to perform statistical analyses of image data. Results of analyses are available in a spreadsheet format for further processing. The results can be exported to any data-base-processing software.
Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.
Woranuch, Sarekha; Yoksan, Rangrong
2013-07-25
The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikmatin, Siti; Rudwiyanti, Jerry R.; Prasetyo, Kurnia W.; Yedi, Dwi A.
2015-01-01
The utilization of Bio-nanocomposite material that was derived from pineapple leaf fiber as filler and tapioca starch with plasticizer glycerol as a matrix for food packaging can reduce the use of plastic that usually was made from petroleum materials. It is important to develop and producethis environmental friendly plastic because of limited availability of petroleum nowadays. The process of synthesize and characterization tapioca starch with the plasticizer glycerol bionanocomposites using print method had been conducted. There were 3 samples with different filler concentration variation; 3%, 4% and 5%.The results of mechanical test from each sample showed that bio-nanocomposite with 5% filler concentration was the optimum sample with 4.6320 MPa for tensile strength test and 24.87% for the elongation test. Based on the result of optical test for each sample was gained that along with the increasing of concentration filler would make the absorbance value of the sample became decreased, bio-nanocomposite with 5% filler concentration had several peaks with low absorbance values. The first peak was in 253 nm of wavelength regionwith absorbance of 0.131%, and the second peak was in 343 nmwavelength region and absorbance was 0.087%.
NASA Astrophysics Data System (ADS)
Zemljič, Lidija Fras; Tkavc, Tina; Vesel, Alenka; Šauperl, Olivera
2013-01-01
In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.
A novel analytical technique suitable for the identification of plastics.
Nečemer, Marijan; Kump, Peter; Sket, Primož; Plavec, Janez; Grdadolnik, Jože; Zvanut, Maja
2013-01-01
The enormous development and production of plastic materials in the last century resulted in increasing numbers of such kinds of objects. Development of a simple and fast technique to classify different types of plastics could be used in many activities dealing with plastic materials such as packaging of food, sorting of used plastic materials, and also, if technique would be non-destructive, for conservation of plastic artifacts in museum collections, a relatively new field of interest since 1990. In our previous paper we introduced a non-destructive technique for fast identification of unknown plastics based on EDXRF spectrometry,1 using as a case study some plastic artifacts archived in the Museum in order to show the advantages of the nondestructive identification of plastic material. In order to validate our technique it was necessary to apply for this purpose the comparison of analyses with some of the analytical techniques, which are more suitable and so far rather widely applied in identifying some most common sorts of plastic materials.
NASA Technical Reports Server (NTRS)
Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.
2000-01-01
Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.
NASA Astrophysics Data System (ADS)
Lestari Widaningrum, Dyah
2014-03-01
This research aims to investigate the importance of take-out food packaging attributes, using conjoint analysis and QFD approach among consumers of take-out food products in Jakarta, Indonesia. The conjoint results indicate that perception about packaging material (such as paper, plastic, and polystyrene foam) plays the most important role overall in consumer perception. The clustering results that there is strong segmentation in which take-out food packaging material consumer consider most important. Some consumers are mostly oriented toward the colour of packaging, while another segment of customers concerns on packaging shape and packaging information. Segmentation variables based on packaging response can provide very useful information to maximize image of products through the package's impact. The results of House of Quality development described that Conjoint Analysis - QFD is a useful combination of the two methodologies in product development, market segmentation, and the trade off between customers' requirements in the early stages of HOQ process
Natural biopolymer-based nanocomposite films for packaging applications.
Rhim, Jong-Whan; Ng, Perry K W
2007-01-01
Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.
Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules
NASA Astrophysics Data System (ADS)
O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon
2016-01-01
Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.
Cleanup Verification Package for the 118-F-6 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. M. Sulloway
2008-10-02
This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.
NASA Technical Reports Server (NTRS)
Phillips, G. B.; Pace, V. A., Jr.
1972-01-01
The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.
A new classification scheme of plastic wastes based upon recycling labels.
Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil
2015-01-01
Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella.
Bombelli, Paolo; Howe, Christopher J; Bertocchini, Federica
2017-04-24
Plastics are synthetic polymers derived from fossil oil and largely resistant to biodegradation. Polyethylene (PE) and polypropylene (PP) represent ∼92% of total plastic production. PE is largely utilized in packaging, representing ∼40% of total demand for plastic products (www.plasticseurope.org) with over a trillion plastic bags used every year [1]. Plastic production has increased exponentially in the past 50 years (Figure S1A in Supplemental Information, published with this article online). In the 27 EU countries plus Norway and Switzerland up to 38% of plastic is discarded in landfills, with the rest utilized for recycling (26%) and energy recovery (36%) via combustion (www.plasticseurope.org), carrying a heavy environmental impact. Therefore, new solutions for plastic degradation are urgently needed. We report the fast bio-degradation of PE by larvae of the wax moth Galleria mellonella, producing ethylene glycol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recyclability assessment of nano-reinforced plastic packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez, C., E-mail: csanchez@itene.com; Hortal, M., E-mail: mhortal@itene.com; Aliaga, C., E-mail: caliaga@itene.com
2014-12-15
Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market,more » there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products)« less
49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transportation of hazardous materials in commerce and to pre-transportation and transportation functions. (a..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked...
Shakerardekani, Ahmad; Karim, Roselina
2013-04-01
Pistachio nut (Pistacia vera L.) is one of the popular tree nuts in the world. Proper selection of packaging materials is necessary to prevent absorption of moisture and aflatoxin formation which will influence the overall product quality and safety. This research is undertaken to study the effect of different type of flexible packaging films on the moisture and aflatoxin contents of whole pistachio nuts during storage at ambient temperature (22-28 °C) and relative humidity of 85-100%. Five types of plastic films tested were low density polyethylene (LDPE) which serves as the control, food-grade polyvinyl chloride (PVC), nylon (LDPE/PA), polyamide/polypropylene (PA/PP) and polyethylene terephthalate (PET). The moisture content and aflatoxin content of pistachio nuts were measured using oven drying method and HPLC, respectively. Sample were analysed at 0, 2, 4, 6, 8 and 10 months during the storage period. Results showed that there was an increase in moisture content with the increase in storage time of pistachio nuts. The increase in moisture content was associated with the aflatoxin level of pistachio nuts during storage time. All the packaging materials except LDPE delayed the moisture absorption and aflatoxin formation of the product. The most suitable packaging materials for maintaining the quality and safety of pistachio nuts is PET films followed by nylon, PA/PP and PVC. The shelf-life of pistachio can be extended from 2 months (Control) to 5 months when PET is used as the packaging material.
A common surfactant used in food packaging found to be toxic for reproduction in mammals.
Nerin, Cristina; Canellas, Elena; Vera, Paula; Garcia-Calvo, Estefanía; Luque-Garcia, José Luis; Cámara, Carmen; Ausejo, Raquel; Miguel, Joaquín; Mendoza, Noelia
2018-03-01
Migration from a multilayer plastic material intended for food contact showed that 2,4,7,9-tetramethyl-5-decyne-4,7-diol mixture (surfynol), used as a surfactant in the adhesive employed to build the multilayer, was transferred to water and other food simulants in contact with the plastic. When these multilayer plastics were used for containing seminal doses for artificial insemination, it was found that fertility was seriously damaged in terms of motility, acrosome integrity, mitochondrial activity and penetration capacity in the cells, thus affecting male fertility. Quantitative proteomic analysis of exposed germinal cells demonstrated the inhibition of key proteins involved in the fertilization capacity by affecting the cytoskeleton, sperm motility, the energy machinery and sperm defense mechanisms against oxidation, therefore confirming the surfactant-induced male infertility. These results open up new and interesting perspectives for the study of reprotoxicity caused by different chemicals common in our daily lives. This paper demonstrates the toxicity for reproduction of a common surfactant used in food packaging and the scientific reasons why the sperm loses reproductive capacity in presence of this chemical. So, the surfactant affects the male fertility. The surfactant is present in many adhesives used either for building multilayer materials or to glue paper and plastic in food packaging. This is the first time that reprotoxicity is demonstrated for this compound. According to the theoretical approach Threshold of Toxicological Concern (TTC) the compound is highly toxic but experimental data did not exist so far. The study described in this paper and the results obtained open a door to further research in which male infertility caused by chemicals could be demonstrated. Copyright © 2018. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
49 CFR 178.801 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: (i) A packaging which differs in surface treatment; (ii) A rigid plastic IBC or composite IBC which... equipment, etc.); maximum IBC capacity; characteristics of test contents; test descriptions and results...
Preparation and mechanical properties of edible rapeseed protein films.
Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin
2011-03-01
Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.
NASA Technical Reports Server (NTRS)
Reitz, G.
1995-01-01
Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLD's). Evaluation of these detectors yields data on absorbed dose and particle and LET spectra. Preliminary results of absorbed dose measurements in the EURECA dosimeter packages are reported and compared to results of the LDEF experiments. The highest dose rate measured on EURECA is 63.3 plus or minus 0.4 mGy d(exp -1) behind a shielding thickness of 0.09 g cm(exp -2) in front of the detector package.
Life and stability testing of packaged low-cost energy storage materials
NASA Astrophysics Data System (ADS)
Frysinger, G. R.
1980-07-01
A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.
Components of Adenovirus Genome Packaging
Ahi, Yadvinder S.; Mittal, Suresh K.
2016-01-01
Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Test Plan Development for Plastic Ammunition Containers. Volume 1
1989-03-15
1850 Black Canyon Stage¶I Packaging division (SMCAR-AEP) Picatinny Phoenix, Arizona 85027 Arsenal, New Jersey 07806-5000 86. NAME OF FUNDING...packaging containers. The report is presented in two separate volumes. Volume I contains the Final Technical Report and includes the analysis of... Division of the U.S. Army Armament Research, Development and Engineering Center. Mr. Jasper C. Griggs and Mr. D. E. Jones served as technical consultants
Dynamic rupture models of subduction zone earthquakes with off-fault plasticity
NASA Astrophysics Data System (ADS)
Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.
2017-12-01
Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeleveld, J.J.
1985-01-01
This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less
Effect of storage conditions on microbiological and physicochemical quality of shea butter.
Honfo, Fernande; Hell, Kerstin; Akissoé, Noël; Coulibaly, Ousmane; Fandohan, Pascal; Hounhouigan, Joseph
2011-06-01
Storage conditions are key constraints for quality assurance of the shea (Vitellaria paradoxa Gaertner) butter. In the Sudan savannah Africa, storage conditions of butter produced by women vary across and among processors, traders and consumers. These conditions could impact the quality of the products and reduced their access to international market. The present study attempted to investigate the effect of storage duration and packaging materials on microbiological and physicochemical characteristics of shea butter under tropical climatic conditions. Five packaging materials traditionally used in shea butter value chain were tested for their efficacy in storing shea butter freshly produced. Total germs, yeasts and mould varied with packaging materials and storage duration. After 2 months of storage, moisture content of butter remained constant (5%) whereas acid value increased from 3.3 to 5.4 mg KOH/g, peroxide value from 8.1 to 10.1 meq O2/kg and iodine value dropped from 48.8 to 46.2 mg I2/100 g in shea butter irrespectively to the storage materials used. The basket papered with jute bag was the less effective in ensuring the quality of butter during storage while plastic containers and plastic bags seemed to be the best packaging materials.
Presidential Green Chemistry Challenge: 2002 Greener Reaction Conditions Award
Presidential Green Chemistry Challenge 2002 award winner, Cargill Dow, developed the NatureWorks process to make biobased, compostable, and recyclable polylactic acid polymers for fibers and plastic packaging.
A new classification scheme of plastic wastes based upon recycling labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr
Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less
NASA Astrophysics Data System (ADS)
Pusfitasari, Eka Dian; Hendarsyah, Hendris; Salahuddin, Ariani, Novita
2017-01-01
Di(ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in plastics. Physically DEHP has a low vapor pressure. DEHP can seep into the liquid in direct contact with the plastic wrapping materials, and typically can occur rapidly if extractable into food or non-polar solvents, such as oil, once the food is packaged in PVC packaging materials. DEHP has been analyzed by using gas chromatography which has a high sensitivity level. If the equipment used for the analysis is made from plastic containing DEHP, then it may be possible that DEHP can be extracted and appear on the outcome of the injection. It can interfere with the process of analysis, especially for the analysis of food samples. This study has identified the present of DEHP in the blank injection performed by Gas Chromatography tandem Mass Spectrometry with Selected Ion Monitoring mode (SIM). Researchers are required to verify whether the gas chromatographic system used is ready for the analysis process. In addition, the comparison and calculation of the intensity of the ion fragmentation spectra generated by mass spectrometry detector can be used for the qualitative determination to ensure the presence of the target compound. In this study is also discussed the differences between the high-intensity fragmentation of DEHP and dioctyl phthalate (DOP).
Tian, Huafeng; Liu, Di; Yao, Yuanyuan; Ma, Songbai; Zhang, Xing; Xiang, Aimin
2017-12-01
Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials. © 2017 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin
2014-09-20
This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the Department of Energy LWRS program for developing tools to understand the aging/failure mechanism and to predictmore » the remaining life of LWR components for anticipated 60-80 year operation.« less
NASA Astrophysics Data System (ADS)
George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.
2007-07-01
Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.
Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S
2013-01-01
Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.
Jenke, Dennis
2010-01-01
The concept of quality by design (QbD) reflects the current global regulatory thinking related to pharmaceutical products. A cornerstone of the QbD paradigm is the concept of a design space, where the design space is a multidimensional combination of input variables and process parameters that have been demonstrated to provide the assurance of product quality. If a design space can be established for a pharmaceutical process or product, then operation within the design space confirms that the product or process output possesses the required quality attributes. This concept of design space can be applied to the safety (leachables) assessment of drug products manufactured and stored in packaging systems. Critical variables in such a design space would include those variables that affect the interaction of the drug product and its packaging, including (a) composition of the drug product, (b) composition of the packaging system, (c) configuration of the packaging system, and (d) the conditions of contact. This paper proposes and justifies such a leachables design space for aqueous drug products packaged in a specific plastic packaging system. Such a design space has the following boundaries:Aqueous drug products with a pH in the range of 2 to 8 and that contain no polarity-impacting agents such as organic solubilizers and stabilizers (addressing variable a). Packaging systems manufactured from materials that meet the system's existing material specifications (addressing variable b). Nominal fill volumes from 50 to 1000 mL (addressing variable c). Products subjected to terminal sterilization and then stored at room temperature for a period of up to 24 months (addressing variable d). The ramification of such a design space is that any drug product that falls within these boundaries is deemed to be compatible with the packaging system, from the perspective of safety, without the requirement of supporting drug product testing. When drug products are packaged in plastic container systems, substances may leach from the container and accumulate in the product. It is necessary that the drug product's vendor demonstrate that any such leaching does not occur to the extent that the leached substances adversely affect the product's safety and/or efficacy. One method for accomplishing this objective is via analysis of the drug product to identify and quantify the leached substances. When a particular packaging system is utilized for multiple drug products, one reaches the point, after testing numerous drug products, where the leaching properties of the packaging system are well known and readily predictable. In such a case, testing of additional products in the same packaging system produces no new information and thus becomes redundant and unnecessary. The quality by design (QbD) principle can be simply stated as follows: once a system has been tested to the extent that the test results are predictable, further testing can be replaced by establishing that the system was operating within a defined design space. The purpose of this paper is to demonstrate the application of QbD principles to a packaging system that has been utilized with over 12 parenteral drug products. The paper concludes that the leachables profile of all drug products that fit a certain description (the design space) is known and predicable.
Wagner, Martin; Oehlmann, Jörg
2009-05-01
Food consumption is an important route of human exposure to endocrine-disrupting chemicals. So far, this has been demonstrated by exposure modeling or analytical identification of single substances in foodstuff (e.g., phthalates) and human body fluids (e.g., urine and blood). Since the research in this field is focused on few chemicals (and thus missing mixture effects), the overall contamination of edibles with xenohormones is largely unknown. The aim of this study was to assess the integrated estrogenic burden of bottled mineral water as model foodstuff and to characterize the potential sources of the estrogenic contamination. In the present study, we analyzed commercially available mineral water in an in vitro system with the human estrogen receptor alpha and detected estrogenic contamination in 60% of all samples with a maximum activity equivalent to 75.2 ng/l of the natural sex hormone 17beta-estradiol. Furthermore, breeding of the molluskan model Potamopyrgus antipodarum in water bottles made of glass and plastic [polyethylene terephthalate (PET)] resulted in an increased reproductive output of snails cultured in PET bottles. This provides first evidence that substances leaching from plastic food packaging materials act as functional estrogens in vivo. Our results demonstrate a widespread contamination of mineral water with xenoestrogens that partly originates from compounds leaching from the plastic packaging material. These substances possess potent estrogenic activity in vivo in a molluskan sentinel. Overall, the results indicate that a broader range of foodstuff may be contaminated with endocrine disruptors when packed in plastics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, R.L.; Shaneyfelt, M.; Winokur, P.
The ionizing radiation response of several semiconductor process technologies has been shown to be enhanced by plastic packaging and/or pre-conditioning (burn-in). Potential mechanisms for this effect are discussed and data on bipolar linear circuits are presented.
Panseri, S; Martino, P A; Cagnardi, P; Celano, G; Tedesco, D; Castrica, M; Balzaretti, C; Chiesa, L M
2018-05-30
This study was designated to ascertain the effectiveness of polylactic acid (PLA) based packaging solution to store red fresh meat during its refrigerated shelf-life. Recently the attention in the packaging industry regarding the use of bioplastics has been shifting from compostable/biodegradable materials toward biobased materials. Steaks obtained from semimembranous muscle of Piemontese beef were packaged in PLA trays closed with a lid made of PLA film and for comparison purposed in a conventional reference package consisting of a amorphous polyethylene terephthalate/polyethylene (APET/PET) trays and wrapped in plastic film of polyvinyl chloride (PVC). The packaging under modified atmosphere MAP was carried out by using a gas mixture of 66% O 2 , 25% CO 2 and 9%N 2 . By using PLA packaging combination it was possible to maintain an optimum red colour together with a reduced content of volatile compounds associated to off-flavours of meat samples particularly related to the oxidation phenomena. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment
NASA Astrophysics Data System (ADS)
Strayer, Richard; Garland, Jay; Janine, Captain
A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low density polyethylene (packaging, bags), high density polyethylene (bottles, containers, pipes), polystyrene (tanks, containers), polypropylene (tanks, containers), and polyvinylchloride (pipes, containers). Thermoset plastics are formed by the condensation of alcohols or amines to form polyesters or polyamides, and are typically solidified after heating. As opposed to the linear structure of thermoplastic, thermoset plastics have a cross-linked structure which results in higher strength. The most common thermoset plastic is polyurethane which is used for coatings, insulation, paints, and packing. Given both the concerns over pollution reduction and energy conservation, significant efforts are underway on Earth to evaluate biodegradable plastics made from renewable feedstocks; the following summarizes the current state of these efforts. Production of biodegradable plastics involves either the introduction of biodegradable or photo-oxidizable components into the polymer chain or the use of biodegradable polymers themselves. The first approach is based on the observation that polyolefins of low molecular weight (<500 Da) are biodegradable. Insertion of structures susceptible to either photoor chemical degradation within the overall polyolefins chain (which are of 4 - 28 kDa molecular weight), can produce segments sufficiently small to be assimilated and degraded by microorganisms. Biodegradable polymers based strictly on nonpetroleum, biologically-based material have been developed, including some which are used to make currently marketed products. Polyhydroxyalkanoates (PHAs) are polyesters which are accumulated as carbon storage materials by microorganisms under nutrient limiting conditions. MirelTM , a "bioplastic" based on stocktickerPHA produced from microbial fermentation of sugars or oils from vegetables crops, is being produced by TellesTM . The company markets MirelTM bioplastics for use in molding, coatings, films, adhesives, and fibers. Another type of bioplastic is based on polylactic acid, or stocktickerPLA. Starch, typically from corn, is fermented by bacteria to yield lactic acid which is then used to synthesize the stocktickerPLA polymer. stocktickerPLA can be degraded via a combination of abiotic hydrolysis and microbial degradation. NatureWorks LLC markets stocktickerPLA-based plastics (NatureWorks R , IngeoTM ) for a variety of applications, including high-value films, rigid thermoformed food and beverage containers, coated papers and boards and other packaging applications. This review suggests that biodegradable plastics may be feasible for use on near-term lunar missions. Biodegradable plastics products are commercially available, and cost, the main limitation to terrestrial use, is not an issue for the small-scale, specialty use by NASA. If the plastic content of the lunar mission solid waste stream is biodegradable, then a potential yield of methane from the waste can be estimated. Investigators at the placePlaceTypeUniversity of PlaceNameFlorida have reported on a three-stage anaerobic composting system for treatment of solid wastes expected in an Advanced Life Support System for space surface habitation. Their system, a sequential batch anaerobic composter (SEBAC) has been demonstrated for a variety of terrestrial solid wastes. Results for methane production rate from a simulated stocktickerALS solid waste of inedible rice crop debris, paper, and simulated feces averaged 0.30 L CH4 per gdw volatile solids (VS, i.e., organic matter) added. If we extrapolate from their results and assume that the VS in space mission solid waste is 100% biodegradable, then a potential for 620 LCH4 crew-1 d-1 might be obtained with a comparable SEBAC. For a crew of four, 2480 LCH4 d-1 (or 110.7 molesCH4 d-1 , 1772 gCH4 d-1 , or 3.90 lbCH4 d-1 )., would be produced. Over a 180 day surface habitation, this generation rate would yield a total of 446,000 LCH4 (319 kgCH4 , 702 lbCH4 ). The next step in this effort is to estimate the costs of biological processing system required to convert the solid waste steam to methane. We will employ equivalent system mass (ESM) analysis to define the costs of the system in terms of energy, mass, and manpower required for processing, allowing for a better estimation of the net benefit of this in situ resource utilization approach.
Total Ionizing Dose Test Report BFR92A NPN 5 GHz Wide Band Transistor from NXP
NASA Technical Reports Server (NTRS)
Phan, Anthony M.; Oldham, Timothy R.
2011-01-01
The purpose of this test was to characterize the Philips/NXP BFR92A NPN 5 gigahertz wide band silicon transistor for total dose response. This test shall serves as the radiation lot acceptance test (RLAT) for the lot date code (LDC) 1027. The BFR92A is packaged in a 3-pin plastic SOT23 package. Low dose rate (LDR/ELDRS) irradiations was performed.
16 CFR 500.20 - Conspicuousness.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., color, embossing, or molding) to other matter on the package; except that a statement of net quantity blown, embossed, or molded on a glass or plastic surface is permissible when all label information is so...
16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift... gloves (household). Safety flares. Safety pins. School supplies. Sewing accessories. Silverware...
16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift... gloves (household). Safety flares. Safety pins. School supplies. Sewing accessories. Silverware...
46 CFR 160.037-3 - Materials, workmanship, construction, and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... preclude variations of density which may adversely affect uniformity of its smoke emitting characteristics... the signal plus packaging in a sealed plastic waterproof bag satisfactory to the Commandant. (d...
Polysaccharide-Based Membranes in Food Packaging Applications.
Ferreira, Ana R V; Alves, Vítor D; Coelhoso, Isabel M
2016-04-13
Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.
Recent innovations in edible and/or biodegradable packaging materials.
Guilbert, S; Cuq, B; Gontard, N
1997-01-01
Certain newly discovered characteristics of natural biopolymers should make them a choice material to be used for different types of wrappings and films. Edible and/or biodegradable packagings produced from agricultural origin macromolecules provide a supplementary and sometimes essential means to control physiological, microbiological, and physicochemical changes in food products. This is accomplished (i) by controlling mass transfers between food product and ambient atmosphere or between components in heterogeneous food product, and (iii) by modifying and controlling food surface conditions (pH, level of specific functional agents, slow release of flavour compounds), it should be stressed that the material characteristics (polysaccharide, protein, or lipid, plasticized or not, chemically modified or not, used alone or in combination) and the fabrication procedures (casting of a film-forming solution, thermoforming) must be adapted to each specific food product and usage condition (relative humidity, temperature). Some potential uses of these materials (e.g. wrapping of various fabricated foods; protection of fruits and vegetables by control of maturation; protection of meat and fish; control of internal moisture transfer in pizzas), which are hinged on film properties (e.g. organoleptic, mechanical, gas and solute barrier) are described with examples.
Globule-size distribution in injectable 20% lipid emulsions: Compliance with USP requirements.
Driscoll, David F
2007-10-01
The compliance of injectable 20% lipid emulsions with the globule-size limits in chapter 729 of the U.S. Pharmacopeia (USP) was examined. As established in chapter 729, dynamic light scattering was applied to determine mean droplet diameter (MDD), with an upper limit of 500 nm. Light obscuration was used to determine the size of fat globules found in the large-diameter tail, expressed as the volume-weighted percent fat exceeding 5 microm (PFAT(5)), with an upper limit of 0.05%. Compliance of seven different emulsions, six of which were stored in plastic bags, with USP limits was assessed. To avoid reaching coincidence limits during the application of method II from overly concentrated emulsion samples, a variable dilution scheme was used to optimize the globule-size measurements for each emulsion. One-way analysis of variance of globule-size distribution (GSD) data was conducted if any results of method I or II exceeded the respective upper limits. Most injectable lipid emulsions complied with limits established by USP chapter 729, with the exception of those of one manufacturer, which failed limits as proposed for to meet the PFAT(5) three of the emulsions tested. In contrast, all others studied (one packaged in glass and three packaged in plastic) met both criteria. Among seven injectable lipid emulsions tested for GSD, all met USP chapter 729 MDD requirements and three, all from the same manufacturer and packaged in plastic, did not meet PFAT(5) requirements.
Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G
2009-05-15
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).
Security seal. [Patent application
Gobeli, G.W.
1981-11-17
Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to fingerprints are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.
Gobeli, Garth W.
1985-01-01
Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to "fingerprints" are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.
Development of Optimization Procedure for Design of Package Cushioning
1975-01-01
Sheller-Globe Corp, Polyurethane None GAF Corp. Felt Not uaeful National Bureau of Standards Anything available None Plastics Tech- nical...000517 ■’■■ LIABLE ASSIGNMENTS HEMP I OSOSJJCG! S?c " ÜSJ0 Ic ■ nooooicoi IITM - oooooacoi *’ : EF §■ : ES S...absorb.relatively small amounts of energy and recover most of the cushion thickness in a short time. An example is a lightweight open-celled plastic
Gray, Janet M.; Engel, Connie L.; Rawsthorne, Teresa W.; Dodson, Robin E.; Ackerman, Janet M.; Rizzo, Jeanne; Nudelman, Janet L.; Brody, Julia Green
2011-01-01
Background: Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) are high-production-volume chemicals used in plastics and resins for food packaging. They have been associated with endocrine disruption in animals and in some human studies. Human exposure sources have been estimated, but the relative contribution of dietary exposure to total intake has not been studied empirically. Objectives: To evaluate the contribution of food packaging to exposure, we measured urinary BPA and phthalate metabolites before, during, and after a “fresh foods” dietary intervention. Methods: We selected 20 participants in five families based on self-reported use of canned and packaged foods. Participants ate their usual diet, followed by 3 days of “fresh foods” that were not canned or packaged in plastic, and then returned to their usual diet. We collected evening urine samples over 8 days in January 2010 and composited them into preintervention, during intervention, and postintervention samples. We used mixed-effects models for repeated measures and Wilcoxon signed-rank tests to assess change in urinary levels across time. Results: Urine levels of BPA and DEHP metabolites decreased significantly during the fresh foods intervention [e.g., BPA geometric mean (GM), 3.7 ng/mL preintervention vs. 1.2 ng/mL during intervention; mono-(2-ethyl-5-hydroxy hexyl) phthalate GM, 57 ng/mL vs. 25 ng/mL]. The intervention reduced GM concentrations of BPA by 66% and DEHP metabolites by 53–56%. Maxima were reduced by 76% for BPA and 93–96% for DEHP metabolites. Conclusions: BPA and DEHP exposures were substantially reduced when participants’ diets were restricted to food with limited packaging. PMID:21450549
Impact comparative study of phone carcasses behavior by FEM
NASA Astrophysics Data System (ADS)
Constantin, Cărăuşu; Plăvănescu, Simona; Dumitru, Nedelcu
2015-07-01
A constant concern of scientific research is based on plastics replace with biodegradable materials that reduce the adverse impact of waste on the environment. A biodegradable material that arouses interest lately is Arboform which is made of lignin, a component of wood and woody plants. Replacing plastic with Arboform in carrying components of products requires technical and economic studies on the implications of such replacement. Numerical simulation methods are a fast and economical way of analyzing the behavior of a product in various mechanical, thermal, electromagnetic and so on. The paper presents comparative results of numerical simulation using the software package SolidWorks impact behavior through the “Drop Test” of half shells made of High Density Polyethylene (HDPE) and of the Arboform LV3 Nature. Simulation watched the half-carcass behavior in three cases of accidental impact, “head”, “corner” and the “back side”. We analyzed the size and location of the maximum voltage and maximum deformation resulting from impact. Simulations have shown for all three cases a maximum voltage increase when using Arboform to use PEDH 93% for impact “forward” and “corner” and only 48.77% “back side” impact. If the maximum displacement, it increasing from carcasses of Arboform 4% for impact “head” and 6% for impact “corner”, but fell by 2.7% for the “back side” impact. The significant increase of stress can be attributed to the higher density of Arboform to PEDH, which led to different weights of the two half-carcasses.
Development of pea protein-based bioplastics with antimicrobial properties.
Perez-Puyana, Víctor; Felix, Manuel; Romero, Alberto; Guerrero, Antonio
2017-06-01
In the present work, bioplastics from renewable polymers were studied in order to reduce the huge generation of plastic wastes, causing an environmental problem that continues owing to the increasing demand for plastic products. Bioplastics with much better antimicrobial properties, in particular against Gram-positive bacteria, were obtained with the addition of nisin to the initial protein/plasticizer mixture. However, the addition of nisin produces more rigid but less deformable bioplastics (higher Young's modulus but lower strain at break). The results obtained are useful to demonstrate the antimicrobial properties of pea protein-based bioplastics by adding nisin and make them suitable as potential candidates to replace conventional plastics in food packaging. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Reddy, Mallampati Srinivasa; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa
2011-08-01
Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0g/cm(3). This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films. In ozonation process mixing of artificial films up to 10min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molding apparatus. [for thermosetting plastic compositions
NASA Technical Reports Server (NTRS)
Heier, W. C. (Inventor)
1974-01-01
Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.
16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.
Code of Federal Regulations, 2013 CFR
2013-01-01
...” within the meaning of the Act. Antifreeze. Artificial flowers and parts. Automotive accessories... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift...
16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.
Code of Federal Regulations, 2014 CFR
2014-01-01
...” within the meaning of the Act. Antifreeze. Artificial flowers and parts. Automotive accessories... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift...
16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.
Code of Federal Regulations, 2012 CFR
2012-01-01
...” within the meaning of the Act. Antifreeze. Artificial flowers and parts. Automotive accessories... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., dietary supplements, packaging, and labels? 111.455 Section 111.455 Food and Drugs FOOD AND DRUG... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Holding and Distributing § 111.455 What requirements apply to holding components, dietary supplements...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., dietary supplements, packaging, and labels? 111.455 Section 111.455 Food and Drugs FOOD AND DRUG... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Holding and Distributing § 111.455 What requirements apply to holding components, dietary supplements...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., dietary supplements, packaging, and labels? 111.455 Section 111.455 Food and Drugs FOOD AND DRUG... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Holding and Distributing § 111.455 What requirements apply to holding components, dietary supplements...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., dietary supplements, packaging, and labels? 111.455 Section 111.455 Food and Drugs FOOD AND DRUG... MANUFACTURING PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Holding and Distributing § 111.455 What requirements apply to holding components, dietary supplements...
Development of high performance scientific components for interoperability of computing packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulabani, Teena Pratap
2008-01-01
Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less
A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.
Won, Keehoon; Jang, Nan Young; Jeon, Junsu
2016-12-28
Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.
Reliability of CCGA and PBGA assemblies
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2005-01-01
Area Array Packages (AAPs) with 1.27 mm pitch have been the packages of the choice for commercial applications; they are now started to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic BGA (PBGA) and CSP assemblies, because of their wide usage for commercial applications, have been extensively reported in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.
The Application of Strain Range Partitioning Method to Torsional Creep-Fatigue Interaction
NASA Technical Reports Server (NTRS)
Zamrik, S. Y.
1975-01-01
The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F. Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain, plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The plastic shear strain component showed the least detrimental factor when compared to creep strain reversed by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.
Re-design of apple pia packaging using quality function deployment method
NASA Astrophysics Data System (ADS)
Pulungan, M. H.; Nadira, N.; Dewi, I. A.
2018-03-01
This study was aimed to identify the attributes for premium apple pia packaging, to determine the technical response to be carried out by Permata Agro Mandiri Small and Medium Enterprise (SME) and to design a new apple pie packaging acceptable by the SME. The Quality Function Deployment (QFD) method was employed to improve the apple pia packaging design, which consisted of seven stages in data analysis. The results indicated that whats attribute required by the costumers include graphic design, dimensions, capacity, shape, strength, and resistance of packaging. While, the technical responses to be conducted by the SMEs were as follows: attractive visual packaging designs, attractive colors, clear images and information, packaging size dimensions, a larger capacity packaging (more product content), ergonomic premium packaging, not easily torn, and impact resistant packaging materials. The findings further confirmed that the design of premium apple pia packaging accepted by the SMES was the one with the capacity of ten apple pia or 200 g weight, and with rectangular or beam shape form. The packaging material used was a duplex carton with 400 grammage (g/m2), the outer part of the packaging was coated with plastic and the inside was added with duplex carton. The acceptable packaging dimension was 30 cm x 5 cm x 3 cm (L x W x H) with a mix of black and yellow color in the graphical design.
Extending The Shelf Life Of Blood Platelets
NASA Technical Reports Server (NTRS)
Surgenor, Douglas M.
1988-01-01
New method of storing human blood platelets extends vitality for transfusions. Packaged as suspension in sterile liquid in plastic blood bags. Each bag placed between pair of plastic grids, and rubberbands placed around sandwich thus formed to hold together. Stored upright in open air or in container through which air pumped at rate of at least 45 L/min. Ensures that platelets receive ample oxygen and expiratory carbon dioxide form platelets removed before pH drops to harmful levels.
Material flow analysis for an industry - A case study in packaging
Amey, E.B.; Sandgren, K.
1996-01-01
The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semi-rigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used. ?? 1996 International Association for Mathematical Geology.
Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate
NASA Astrophysics Data System (ADS)
Nowak, Zdzisław; Nowak, Marcin; Widłaszewski, Jacek; Kurp, Piotr
2018-01-01
The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate.
Temperature environment for 9975 packages stored in KAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. Themore » long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.« less
Use of optical technique for inspection of warpage of IC packages
NASA Astrophysics Data System (ADS)
Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng
2001-06-01
The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Special report: the truth about condoms. Restrictive label could impede plastic condom sales.
1995-01-01
You walk into a drugstore to buy a package of plastic condoms. You happen to notice the label says that no one's sure how well they protect you from pregnancy or sexually transmitted diseases (STDs) like AIDS. Then, the label indirectly points you in the direction of latex condoms. What would you do? Some observers familiar with the condom industry speculate that the restrictive labeling carried on each package of the new plastic condoms for men will not interfere with consumers' purchasing decisions. Other predict an instant replay of the situation faced by makers of the polyurethane Reality female condom: A lack of data on pregnancy rates and STD rates resulted in a label touting latex as a superior product, which in turn caused an onslaught of negative press about the first plastic condom. The US Food and Drug Administration, finding itself in a similar position with approving plastic condoms for men, recently released interim labeling to be followed by all manufacturers who want to sell the new male condoms. Essentially, the manufacturers must point out on the front of the condom box that the product is "for latex-sensitive condom users," and on the back of the box must tell a potential buyer that risks for pregnancy and STDs are not known for the product. Upon reading this disclaimer, the consumer then reads that "latex condoms for men, if used correctly with every act of vaginal intercourse, are highly effective at preventing pregnancy, as well as STDs, including AIDS (HIV infection)." full text
Materials identification using a small-scale pixellated x-ray diffraction system
NASA Astrophysics Data System (ADS)
O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.
2016-05-01
A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.
Polysaccharide-Based Membranes in Food Packaging Applications
Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.
2016-01-01
Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372
Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.
Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P
2012-01-01
Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
NASA Astrophysics Data System (ADS)
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-01-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037
Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-23
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
Influence of shape and size of the particles on jigging separation of plastics mixture.
Pita, Fernando; Castilho, Ana
2016-02-01
Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hermetically sealable package for hybrid solid-state electronic devices and the like
NASA Technical Reports Server (NTRS)
Miller, Wilson N. (Inventor); Gray, Ormal E. (Inventor)
1988-01-01
A light-weight, inexpensively fabricated, hermetically sealable, repairable package for small electronic or electromechanical units, having multiple connections, is described. A molded ring frame of polyamide-imide plastic (Torlon) is attached along one edge to a base plate formed of a highly heat conducting material, such as aluminum or copper. Bores are placed through a base plate within the area of the edge surface of ring frame which result in an attachment of the ring frame to the base plate during molding. Electrical leads are molded into the ring frame. The leads are L-shaped gold-plated copper wires imbedded within widened portions of the side wall of the ring frame. Within the plastic ring frame wall the leads are bent (typically, though not necessarily at 90 deg) so that they project into the interior volume of the ring frame for connection to the solid state devices.
Lee, Dong Kyu; Park, Hyun Jung; Cha, Yu-Jung; Kim, Hyeong Jin; Kwak, Joon Seop
2018-03-01
The junction temperature of high-power LED lighting was reduced effectively using a lens plate made from a thermally-conductive plastics (TCP). TCP has an excellent thermal conductivity, approximately 5 times that of polymethylmethacrylate (PMMA). Two sets of high-power LED lighting were designed using a multi array LED package with a lens plate for thermal simulation. The difference between two models was the materials of the lens plate. The lens plates of first and second models were fabricated by PMMA (PMMA lighting) and TCP (TCP lighting), respectively. At the lens plate, the simulated temperature of the TCP lighting was higher than that of the PMMA lighting. Near the LED package, the temperature of the TCP lighting was 2 °C lower than that of the PMMA lighting. This was well matched with the measured temperature of the fabricated lighting with TCP and PMMA.
15 CFR Appendix A to Part 946 - National Weather Service Modernization Criteria
Code of Federal Regulations, 2010 CFR
2010-01-01
... specifically in Addendum I, Appendix D of the ASOS Site Component Commissioning Evaluation Package (the ASOS Package). Criteria: a. ASOS Acceptance Test: The site component acceptance test, which includes objective..., has been successfully completed in accordance with item 1a, p. D-2 of Appendix D of the ASOS Package...
15 CFR Appendix A to Part 946 - National Weather Service Modernization Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
... specifically in Addendum I, Appendix D of the ASOS Site Component Commissioning Evaluation Package (the ASOS Package). Criteria: a. ASOS Acceptance Test: The site component acceptance test, which includes objective..., has been successfully completed in accordance with item 1a, p. D-2 of Appendix D of the ASOS Package...
15 CFR Appendix A to Part 946 - National Weather Service Modernization Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
... specifically in Addendum I, Appendix D of the ASOS Site Component Commissioning Evaluation Package (the ASOS Package). Criteria: a. ASOS Acceptance Test: The site component acceptance test, which includes objective..., has been successfully completed in accordance with item 1a, p. D-2 of Appendix D of the ASOS Package...
15 CFR Appendix A to Part 946 - National Weather Service Modernization Criteria
Code of Federal Regulations, 2011 CFR
2011-01-01
... specifically in Addendum I, Appendix D of the ASOS Site Component Commissioning Evaluation Package (the ASOS Package). Criteria: a. ASOS Acceptance Test: The site component acceptance test, which includes objective..., has been successfully completed in accordance with item 1a, p. D-2 of Appendix D of the ASOS Package...
Creating Methane from Plastic: Recycling at a Lunar Outpost
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo; Captain, Janine; Devor, Robert; Gleaton, Jeremy
2010-01-01
The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste into fuel. This process thermally degrades plastic in the presence of oxygen producing CO2 and CO. The CO2 and CO are then reacted with hydrogen over catalyst (Sabatier reaction) producing methane. An end-to-end laboratory-scale system has been designed and built to produce methane from plastic, in this case polyethylene. This first generation system yields 12-16% CH4 by weight of plastic used.
Investigation of Air-Liquid Interface Rings in Buffer Preparation Vessels: the Role of Slip Agents.
Shi, Ting; Ding, Wei; Kessler, Donald W; De Mas, Nuria; Weaver, Douglas G; Pathirana, Charles; Martin, Russell D; Mackin, Nancy A; Casati, Michael; Miller, Scott A; Pla, Itzcoatl A
2016-01-01
Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. Those rings were resistant to regular cleaning-in-place procedures but could be removed by manual means. To investigate the root cause of this issue, multiple analytical techniques, including liquid chromatography with tandem mass spectrometry detection (LC-MS/MS), high-resolution accurate mass liquid chromatography with mass spectrometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy have been employed to characterize the chemical composition of air-liquid interface rings. The main component of air-liquid interface rings was determined to be slip agents, and the origin of the slip agents can be traced back to their presence on raw material packaging liners. Slip agents are commonly used in plastic industry as additives to reduce the coefficient of friction during the manufacturing process of thin films. To mitigate this air-liquid interface ring issue, an alternate liner with low slip agent was identified and implemented with minimal additional cost. We have also proactively tested the packaging liners of other raw materials currently used in our downstream buffer preparation to ensure slip agent levels are appropriate. Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. To investigate the root cause of this issue, multiple analytical techniques have been employed to characterize the chemical composition of air-liquid interface rings. The main components of air-liquid interface rings were determined to be slip agents, which are common additives used in the manufacturing process of thin films. The origin of the slip agents can be traced back to their presence on certain raw material packaging liners. To mitigate this air-liquid interface ring issue, an alternate liner with low slip agent was identified and implemented. © PDA, Inc. 2016.
Hidden costs of HIV treatment in Spain: inefficiency of the antiretroviral drug packaging.
Llibre-Codina, Josep M; Andreu-Crespo, Angels; Cardona-Peitx, Gloria; Sala-Piñol, Ferran; Clotet-Sala, Bonaventura; Bonafont-Pujol, Xavier
2014-01-01
Antiretroviral drugs in Spain are delivered by law only in hospital pharmacies. Commercial packages meet variable quality standards when dispensed drugs are returned due to treatment changes or adherence problems Nearly 20-25% of the initial regimens will be changed at 48 weeks for different reasons. We evaluated the economic impact on public health system of the inability of using returned drugs due to inefficient packaging. We defined socially efficient packaging as the best adapted one to being delivered in unit dose to outpatients and classified: Class A - Drug packed in unit doses with complete info (name of drug, dosage in mg, lot, and expiring date) in each unit, maintaining complete information of the drug if returned when the external package is opened. Class B - packed in blisters with complete info in the blister, but not in unit doses, without special conservation conditions (should be re-packed in unit doses in the pharmacy before its dispensation to assure a class A excellence). Class C - packed in plastic containers with complete info written only on a label over the container, would allow repackaging only before its initial delivery, but not when returned. Class D - drug packed in plastic containers with manufacturer's warning that the product cannot be placed outside of the original package due to special conditions of conservation (fridge, humidity) that doesn't allow a unit dose repackaging or reusing an opened container. We analysed a 12-month period (July 2011-June 2012) in a hospital-based HIV outpatient pharmacy that serves 2413 treated individuals. Patients generated 23,574 visits to pharmacy, and received 48,325 drug packages, with 2.529.137 pills delivered. The patients suffered 1051 treatment changes for any reason. A total amount of 122.945€ in treatment were returned to pharmacy in opened packages during the study period. 47.139.91€ would be totally lost, mainly due to being packaged in class C and D boxes, the equivalent of treating 78 patients with rilpivirine/TDF/FTC during 1 month. Class A and B packages in bad condition represented only 1.1% of the cost. However, 75.805€ came from returned packages in good condition that could potentially be reused. Most of the treatment changes were not foreseeable. A significant economic budget is lost through socially inefficient antiretroviral packages. Newer treatments are packaged in C and D categories, therefore maintaining these hidden costs in the near future. Any improvement in the excellence of packaging by the manufacturer, and favouring the choice of drugs supplied through efficient packages (when efficacy, toxicity and convenience are similar) should minimize the treatment expenditures paid by national health budgets.
Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas
2015-12-01
The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2013-01-01
The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.
Mayas, Julia; Parmentier, Fabrice B R; Andrés, Pilar; Ballesteros, Soledad
2014-01-01
A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. ClinicalTrials.gov NCT02007616.
Impacts of plastic ingestion on post-hatchling loggerhead turtles off South Africa.
Ryan, Peter G; Cole, Georgina; Spiby, Kevin; Nel, Ronel; Osborne, Alexis; Perold, Vonica
2016-06-15
Twenty-four of 40 (60%) loggerhead turtle Caretta caretta post-hatchlings (carapace<9cm) that died within 2months of stranding on southern Cape beaches in April 2015 contained ingested anthropogenic debris. Plastic comprised of 99% of debris: 77% hard plastic fragments, 10% flexible packaging and 8% fibres; industrial pellets comprised only 3%, compared to ~70% in 1968-1973, when 12% of stranded post-hatchlings contained plastics. Turtles selected for white (38%) and blue (19%) items, but translucent items (23%) were under-represented compared to beach mesodebris. Ingested loads did not decrease up to 52days in captivity, indicating long retention times. Plastic killed 11 turtles by blocking their digestive tracts or bladders, and contributed to the deaths of five other turtles. Our results indicate that the amount and diversity of plastic ingested by post-hatchling loggerhead turtles off South Africa have increased over the last four decades, and now kill some turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separate collection of plastic waste, better than technical sorting from municipal solid waste?
Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U
2017-02-01
The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.
Identification of irradiated strawberries (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deschreider, A.R.; Vigneron, J.M.
1973-01-01
From international colloquium: the identification of irradiated foodstuffs; Karlsruhe, Germany (24 0ct 1973). Packaged strawberries were irradiated with doses of 100, 200, and 500 krad of /sup 60/Co gamma rays. The irradiation of the fruit at these levels could not be detected either by measuring of the coloration of the anthocyanin extraction or the radioactivity of the phenylalanine-ammonia-lyase. If there is any plastic in the packaging material, examination under close infrared light reveals spectral modification when the dose level reaches 200 krad. (GE)
Gallardo, A; Carlos, M; Colomer, F J; Edo-Alcón, N
2018-01-01
There are several factors which have an influence in the selective collection of the municipal waste. To define a selective collection system, the waste generation pattern should be firstly determined and these factors should be analyzed in depth. This paper tries to analyze the economic income level and the seasonal variation on the collection and the purity of light-packaging waste to determine actions to improve the waste management plan of a town. In the first stage of the work, waste samples of the light-packaging containers were collected in two zones of the town with different economic characteristics in different seasons during one year. In the second stage, the samples were characterized to analyze the composition and purity of the waste. They were firstly separated into four fractions: metals; plastic; beverage cartons; and misplaced materials. The misplaced fraction was in its turn separated into cardboard, rubber and leather, inert waste, organic matter, paper, hazardous waste, clothes and shoes, glass and others. The plastic fraction was separated into five types of plastics and the metal fraction into three. In the third stage, the data have been analyzed and conclusions have been extracted. The main result is that the quality of the light-packaging fraction collected in these zones during both seasons were similar. This methodology can be extrapolated to towns with similar characteristics. It will be useful when implementing a system to collect the waste selectively and to develop actions to achieve a good participation in the selective collection of the waste.
Simulation of finite-strain inelastic phenomena governed by creep and plasticity
NASA Astrophysics Data System (ADS)
Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.
2017-11-01
Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.
Computational modelling of a thermoforming process for thermoplastic starch
NASA Astrophysics Data System (ADS)
Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.
2007-05-01
Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its finite element discretisation. This model depends on material parameters of the thermoplastic and details of tests undertaken to determine these and the results produced are given. Finally the computational model is applied for a thin sheet of commercially available thermoplastic starch material which is thermoformed into a specific mould. Numerical results of thickness and shape for this problem are given.
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
46 CFR 160.021-3 - Materials, workmanship, construction and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... affect uniformity of its burning characteristics. The cap shall have a lap fit of not less than 25 mm (1... a water-resistant coating on the signal plus packaging in a sealed plastic waterproof bag...
49 CFR 173.165 - Polyester resin kits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.165... Group II or III) and an activator component (Type D, E, or F organic peroxide that does not require temperature control)— (1) The organic peroxide component must be packed in inner packagings not over 125 mL (4...
Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices
NASA Astrophysics Data System (ADS)
Uehara, Masato; Yashiro, Wataru; Momose, Atsushi
2013-10-01
It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.
Combination HIV prevention among MSM in South Africa: results from agent-based modeling.
Brookmeyer, Ron; Boren, David; Baral, Stefan D; Bekker, Linda-Gail; Phaswana-Mafuya, Nancy; Beyrer, Chris; Sullivan, Patrick S
2014-01-01
HIV prevention trials have demonstrated the effectiveness of a number of behavioral and biomedical interventions. HIV prevention packages are combinations of interventions and offer potential to significantly increase the effectiveness of any single intervention. Estimates of the effectiveness of prevention packages are important for guiding the development of prevention strategies and for characterizing effect sizes before embarking on large scale trials. Unfortunately, most research to date has focused on testing single interventions rather than HIV prevention packages. Here we report the results from agent-based modeling of the effectiveness of HIV prevention packages for men who have sex with men (MSM) in South Africa. We consider packages consisting of four components: antiretroviral therapy for HIV infected persons with CD4 count <350; PrEP for high risk uninfected persons; behavioral interventions to reduce rates of unprotected anal intercourse (UAI); and campaigns to increase HIV testing. We considered 163 HIV prevention packages corresponding to different intensity levels of the four components. We performed 2252 simulation runs of our agent-based model to evaluate those packages. We found that a four component package consisting of a 15% reduction in the rate of UAI, 50% PrEP coverage of high risk uninfected persons, 50% reduction in persons who never test for HIV, and 50% ART coverage over and above persons already receiving ART at baseline, could prevent 33.9% of infections over 5 years (95% confidence interval, 31.5, 36.3). The package components with the largest incremental prevention effects were UAI reduction and PrEP coverage. The impact of increased HIV testing was magnified in the presence of PrEP. We find that HIV prevention packages that include both behavioral and biomedical components can in combination prevent significant numbers of infections with levels of coverage, acceptance and adherence that are potentially achievable among MSM in South Africa.
Migration and sorption phenomena in packaged foods.
Gnanasekharan, V; Floros, J D
1997-10-01
Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.
Plastic consumption and diet of Glaucous-winged Gulls (Larus glaucescens).
Lindborg, Valerie A; Ledbetter, Julia F; Walat, Jean M; Moffett, Cinamon
2012-11-01
We analyzed dietary habits and presence of plastic in 589 boluses of Glaucous-winged Gulls (Larus glaucescens) as one of two studies on the impact of plastics on marine life in the US Salish Sea. Volunteers dissected boluses collected (2007-2010) from Protection Island, Washington. Components were separated into 23 food and non-food categories. Plastic was found in 12.2% of boluses, with plastic film being the most common plastic form. No diet specialization was observed. Vegetation was the most abundant component, found in 91.3% of boluses. No relationship was observed between any dietary items and occurrence or type of plastic found. Load and potential ecological impact in the marine environment can be expected to increase concurrently with increasing plastic use and number and variety of plastic sources. Future studies are necessary to understand the impacts of plastic ingestion on this species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Torri, Luisa; Piochi, Maria
2016-07-01
Despite the key role of the sensory quality for food acceptance, the aroma transfer properties of food packaging materials have not yet been studied using sensory approaches. This research investigated the suitability of sensory and electronic nose methods to evaluate the aroma transfer properties of plastic materials that come in contact with food. Four (W, X, Y, and Z) commercial freezer bags (polyethylene) for domestic uses were compared. The degree of the aroma transfer through the materials was estimated as the sensory contamination of an odor absorber food (bread) by an odor releaser food (onion), separated by the bags and stored under frozen conditions. Bread samples were analyzed by means of an electronic nose, and 42 assessors used three different sensory methods (triangle, scoring, and partial sorted Napping tests). From the triangle test, none of the plastic bags acted as a complete aroma barrier, showing a sensory contamination of bread stored in all four materials. Partial sorting Napping results clearly described the sensory contamination of bread as "onion flavor", due to the aroma transfer from the odor releaser food to the odor absorber food through the plastic bag. Scoring tests showed significant (p<0.0001) differences of aroma transfer properties among the plastic bags, revealing the highest aroma permeation for W (3.1±0.1), the lowest aroma transfer for X and Y (2.0±0.1), and intermediate aroma transfer properties for Z (2.6±0.1). Electronic nose data were in good agreement with the sensory responses, and a high correlation with the scoring data was observed (R 2 =0.988). The presented approaches had suitable results to provide meaningful information on the aroma transfer properties of freezer plastic bags, and could advantageously be applied in the future for analyzing other finished food containers (e.g. plastic trays, boxes, etc.) or packaging materials of a different nature (multilayer plastic films, biodegradable materials, composites, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated circuit package with lead structure and method of preparing the same
NASA Technical Reports Server (NTRS)
Kennedy, B. W. (Inventor)
1973-01-01
A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.
Consumer preferences for reduced packaging under economic instruments and recycling policy.
Yamaguchi, Keiko; Takeuchi, Kenji
2016-02-01
This study was conducted using a web-based survey and bidding game in contingent valuation method to evaluate consumer preferences for packaging with less material. Results revealed that people who live in a municipality implementing unit-based pricing of waste have a higher willingness-to-pay (WTP) for a product. Economic instruments can affect the purchase of products with reduced packaging because a higher disposal cost increases the attractiveness of source reduction. However, unit-based pricing combined with plastic separation for recycling reduces WTP. This result suggests that recycling policy weakens the effect of economic instruments on source reduction of waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Chinese import ban and its impact on global plastic waste trade
Wang, Shunli
2018-01-01
The rapid growth of the use and disposal of plastic materials has proved to be a challenge for solid waste management systems with impacts on our environment and ocean. While recycling and the circular economy have been touted as potential solutions, upward of half of the plastic waste intended for recycling has been exported to hundreds of countries around the world. China, which has imported a cumulative 45% of plastic waste since 1992, recently implemented a new policy banning the importation of most plastic waste, begging the question of where the plastic waste will go now. We use commodity trade data for mass and value, region, and income level to illustrate that higher-income countries in the Organization for Economic Cooperation have been exporting plastic waste (70% in 2016) to lower-income countries in the East Asia and Pacific for decades. An estimated 111 million metric tons of plastic waste will be displaced with the new Chinese policy by 2030. As 89% of historical exports consist of polymer groups often used in single-use plastic food packaging (polyethylene, polypropylene, and polyethylene terephthalate), bold global ideas and actions for reducing quantities of nonrecyclable materials, redesigning products, and funding domestic plastic waste management are needed. PMID:29938223
Bacterial contamination monitor
NASA Technical Reports Server (NTRS)
Rich, E.; Macleod, N. H.
1973-01-01
Economical, simple, and fast method uses apparatus which detects bacteria by photography. Apparatus contains camera, film assembly, calibrated light bulb, opaque plastic plate with built-in reflecting surface and transparent window section, opaque slide, plate with chemical packages, and cover containing roller attached to handle.
Adrenaline in cardiac arrest: Prefilled syringes are faster.
Helm, Claire; Gillett, Mark
2015-08-01
Standard ampoules and prefilled syringes of adrenaline are widely available in Australasian EDs for use in cardiac arrest. We hypothesise that prefilled syringes can be administered more rapidly and accurately when compared with the two available standard ampoules. This is a triple arm superiority study comparing the time to i.v. administration and accuracy of dosing of three currently available preparations of adrenaline. In their standard packaging, prefilled syringes were on average more than 12 s faster to administer than the 1 mL 1:1000 ampoules and more than 16 s faster than the 10 mL 1:10,000 ampoules (P < 0.01 in both comparisons). With packaging removed, the time to administration was equal for the 1 mL (1:1000) ampoule and the prefilled syringe. Accuracy of dosing was excellent with both the 10 mL (1:10 000) ampoules and prefilled syringes. The 1 mL (1:1000) ampoules delivered a small number of markedly inaccurate doses, but these did not reach statistical significance. The speed of administration of adrenaline utilising a Minijet (CSL Limited, Parkville, Victoria, Australia) is faster than using adrenaline in glass ampoules presented in their plastic packaging. Removing the plastic packaging from the 1 mL (1 mg) ampoule might result in more rapid administration similar to the Minijet. Resuscitation personnel requiring rapid access to adrenaline should consider storing it as either Minijets or ampoules devoid of packaging. These results might be extrapolatable to other clinical scenarios, including pre-hospital and anaesthesia, where other drugs are required for rapid use. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Nano selenium as antioxidant agent in a multilayer food packaging material.
Vera, Paula; Echegoyen, Yolanda; Canellas, Elena; Nerín, Cristina; Palomo, María; Madrid, Yolanda; Cámara, Carmen
2016-09-01
Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 μm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.
Gravity packaging final waste recovery based on gravity separation and chemical imaging control.
Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco
2017-02-01
Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Lung-Tai; Chang, Jin-Sheng; Hsu, Chung-Yi; Cheng, Wood-Hi
2009-01-01
A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors. PMID:22454580
Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates
NASA Astrophysics Data System (ADS)
Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.
2015-12-01
Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (
49 CFR 571.205 - Standard No. 205, Glazing materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... providing shelter for persons. Glass-plastic glazing material means a laminate of one or more layers of glass and one or more layers of plastic in which a plastic surface of the glazing faces inward when the... component of any specific motor vehicle or camper; or (b) To be cut into components for use in motor...
Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials
NASA Astrophysics Data System (ADS)
Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi
2015-02-01
We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.
Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank
2013-01-01
Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.
From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea.
Katija, Kakani; Choy, C Anela; Sherlock, Rob E; Sherman, Alana D; Robison, Bruce H
2017-08-01
Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column.
From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea
Katija, Kakani; Choy, C. Anela; Sherlock, Rob E.; Sherman, Alana D.; Robison, Bruce H.
2017-01-01
Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus “houses” to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column. PMID:28835922
Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian
2011-09-01
Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less
Starch as a feedstock for bioproducts and packaging
USDA-ARS?s Scientific Manuscript database
Much progress has been achieved in developing starch-based feedstocks as a partial replacement for petroleum-based feedstocks. Although starch remains a poor direct substitute for plastics, composite starch-based materials have useful functional properties and are in commercial production as a repla...
46 CFR 160.037-4 - Approval and production tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will... discontinued production line. (2) Inspections and tests by the manufacturer. The manufacturer's quality control...: (i) Conditioning of test specimens—water resistance. Immerse specimen horizontally with uppermost...
46 CFR 160.037-4 - Approval and production tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will... discontinued production line. (2) Inspections and tests by the manufacturer. The manufacturer's quality control...: (i) Conditioning of test specimens—water resistance. Immerse specimen horizontally with uppermost...
46 CFR 160.037-4 - Approval and production tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... signal plus packaging in a sealed plastic waterproof bag, the 24-hour water immersion conditioning will... discontinued production line. (2) Inspections and tests by the manufacturer. The manufacturer's quality control...: (i) Conditioning of test specimens—water resistance. Immerse specimen horizontally with uppermost...
Sugar Ester Compounds for Arthropod Control
USDA-ARS?s Scientific Manuscript database
Sugar esters, also known as acyl sugars or polyol esters, are a class of compounds that are internationally recognized as food additives. They are commonly used in bakery goods, drugs, cosmetics, food packaging plastics, and in other applications because of their surfactant and emulsifying properti...
Code of Federal Regulations, 2013 CFR
2013-04-01
... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for... labels before use in the manufacture of a dietary supplement? Quality control operations for components...
Code of Federal Regulations, 2014 CFR
2014-04-01
... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for... labels before use in the manufacture of a dietary supplement? Quality control operations for components...
Code of Federal Regulations, 2012 CFR
2012-04-01
... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for... labels before use in the manufacture of a dietary supplement? Quality control operations for components...
Code of Federal Regulations, 2011 CFR
2011-04-01
... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for... labels before use in the manufacture of a dietary supplement? Quality control operations for components...
Code of Federal Regulations, 2010 CFR
2010-04-01
... components, packaging, and labels before use in the manufacture of a dietary supplement? 111.120 Section 111..., OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for... labels before use in the manufacture of a dietary supplement? Quality control operations for components...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... INTERNATIONAL TRADE COMMISSION [DN 2886] Certain Food Waste Disposers and Components and Packaging...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Food Waste Disposers and Components and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-838] Certain Food Waste Disposers and Components... States after importation of certain food waste disposers and components and packaging thereof by reason... an industry in the United States exists as required by subsections (a)(1)(A) and (a)(2) of section...
Erythropel, Hanno C; Maric, Milan; Nicell, Jim A; Leask, Richard L; Yargeau, Viviane
2014-12-01
Di(2-ethylhexyl)phthalate (DEHP) is a widely used plasticizer to render poly(vinyl chloride) (PVC) soft and malleable. Plasticized PVC is used in hospital equipment, food wrapping, and numerous other commercial and industrial products. Unfortunately, plasticizers can migrate within the material and leach out of it over time, ending up in the environment and, frequently, the human body. DEHP has come under increased scrutiny as its breakdown products are believed to be endocrine disruptors and more toxic than DEHP itself. DEHP and its breakdown products have been identified as ubiquitous environmental contaminants, and daily human exposure is estimated to be in the microgram per kilogram level. The objective of this review is to summarize and comment on published sources of DEHP exposure and to give an overview of its environmental fate. Exposure through bottled water was examined specifically, as this concern is raised frequently, yet only little exposure to DEHP occurs through bottled water, and DEHP exposure is unlikely to stem from the packaging material itself. Packaged food was also examined and showed higher levels of DEHP contamination compared to bottled water. Exposure to DEHP also occurs in hospital environments, where DEHP leaches directly into liquids that passed through PVC/DEHP tubing and equipment. The latter exposure is at considerably higher levels compared to food and bottled water, specifically putting patients with chronic illnesses at risk. Overall, levels of DEHP in food and bottled water were below current tolerable daily intake (TDI) values. However, our understanding of the risks of DEHP exposure is still evolving. Given the prevalence of DEHP in our atmosphere and environment, and the uncertainty revolving around it, the precautionary principle would suggest its phaseout and replacement. Increased efforts to develop viable replacement compounds, which necessarily includes rigorous leaching, toxicity, and impact assessment studies, are needed before alternative plasticizers can be adopted as viable replacements.
1968-01-01
Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly mandrel. The condom is then ready for packaging, either on automatic equipment or manually into small envelopes of highly polished paper. Although their present design is based on a heat-sealed blank, it may be possible shortly to manufacture plastic condoms on the same principle as rubber ones. A dipping process would be used, but with less sophisticated technology and with higher outputs per increment of capital investment. The present equipment used to make plastic condoms cost about 3,000 for one stamping machine and 22 assembly and testing machines. On a three shift per day, 300-day working year, it is possible, with experienced workers, to make 100,000 gross of plastic condoms for each manufacturing unit annually. As the technology is refined, the output should improve significantly.
Effectiveness of some recent antimicrobial packaging concepts.
Vermeiren, L; Devlieghere, F; Debevere, J
2002-01-01
A new type of active packaging is the combination of food-packaging materials with antimicrobial substances to control microbial surface contamination of foods. For both migrating and non-migrating antimicrobial materials, intensive contact between the food product and packaging material is required and therefore potential food applications include especially vacuum or skin-packaged products, e.g. vacuum-packaged meat, fish, poultry or cheese. Several antimicrobial compounds have been combined with different types of carriers (plastic and rubber articles, paper-based materials, textile fibrils and food-packaging materials). Until now, however, few antimicrobial concepts have found applications as a food-packaging material. Antimicrobial packaging materials cannot legally be used in the EU at the moment. The potential use would require amendments of several different legal texts involving areas such as food additives, food packaging, hygiene, etc. The main objective of this paper is to provide a state of the art about the different types of antimicrobial concepts, their experimental development and commercialization, and to present a case study summarizing the results of investigations on the feasibility of a low-density polyethylene (LDPE)-film containing triclosan to inhibit microbial growth on food surfaces and consequently prolong shelf-life or improve microbial food safety. In contrast with the strong antimicrobial effect in in-vitro simulated vacuum-packaged conditions against the psychrotrophic food pathogen L. monocytogenes, the 1000 mg kg(-1) containing triclosan film did not effectively reduce spoilage bacteria and growth of L. monocytogenes on refrigerated vacuum-packaged chicken breasts stored at 7 degrees C.
Lochner, J. E.; Spangler, E.; Chavarha, M.; Jacobs, C.; McAllister, K.; Schuttner, L. C.; Scalettar, B. A.
2009-01-01
Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are co-packaged and co-transported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively co-packaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo co-transport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF co-localize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy. PMID:18563704
Extending the shelf life of kohlrabi stems by modified atmosphere packaging.
Escalona, V H; Aguayo, E; Artés, F
2007-06-01
Kohlrabi stems (without leaves) were stored under modified atmosphere packaging (MAP) for 60 d at 0 degrees C. An additional retail sale period of 3 d at 12 degrees C after each cold storage evaluation (30 and 60 d) was applied. Under high relative humidity (RH) and 0 degrees C, the stems showed low metabolic activity, as no changes in sugars and organic acids were found. From day 21 at 0 degrees C, air-stored stems showed a yellowing of stalks and later they fell down. This disorder severely affected the appearance of stems. A gas composition of 4.5 to 5.5 kPa O(2) plus 11 to 12 kPa CO(2) was reached using antimist oriented polypropylene plastic bags of 20-mum thicknesses. The stems in MAP conditions kept a high sensorial quality. It was enough for commercial purpose of 2 mo. The storage of kohlrabi stems in plastic bags, either MA or in perforated (control) packages, provided an additional protection reducing physical damage. The MAP conditions delayed the weight loss and development of bacterial soft and black rot, extending the shelf life of kohlrabi stems to 60 d at 0 degrees C plus 3 d at 12 degrees C. Stems are not chilling injury sensitive.
Zhang, Juzhou; Ji, Shuilin; Cai, Huimei; Li, Jing; Wang, Yongxin; Wang, Jingqiu
2017-11-08
A novel analytical method was developed for the simultaneous determination of six fluorescent whitening agents (FWAs:FWA 135, FWA 184, FWA 185, FWA 199, FWA 378 and FWA 393) in paper and plastic food packaging materials by high performance liquid chromatography with fluorescence detection (HPLC-FLD). The sample was extracted with mixed solution of chloroform and acetonitrile (3:7, v/v), then cleaned up by HLB solid phase extraction column. Qualitative and quantitative analyses were carried out by HPLC. The sample was separated on a Phenomenex C18 column using acetonitrile and 5 mmol/L ammonium acetate aqueous solution as mobile phases. The results indicated that the linear range of FWA393 was 15-1500 μg/L and the linear ranges of the other five FWAs were 5-500 μg/L with correlation coefficients greater than 0.999. The recoveries in spiked samples were between 80.4% and 125.0% with RSDs ( n =6) of 1%-13%. Furthermore, this method was applied to analyze 12 samples in the market to verify the practicality of the method. The method showed the advantages of simplicity, high recovery and good precision, and is suitable for the detection of the six fluorescent whitening agents in food packaging materials.
Software packager user's guide
NASA Technical Reports Server (NTRS)
Callahan, John R.
1995-01-01
Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.
Mayas, Julia; Parmentier, Fabrice B. R.; Andrés, Pilar; Ballesteros, Soledad
2014-01-01
A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. Trial Registration ClinicalTrials.gov NCT02007616 PMID:24647551
Creating Methane from Plastics: Recycling at a Lunar Outpost
NASA Technical Reports Server (NTRS)
Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde
2010-01-01
The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.
Natural biopolimers in organic food packaging
NASA Astrophysics Data System (ADS)
Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio
2014-05-01
Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology
Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B
2016-09-20
Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.
1994-07-31
everything that is received in ESD protective packaging materials treated as ESDS? YES/NO 40.1.13 Is the use of personal hygiene products , food, drinks...Does the training explain why food, drinks, smoking, personal hygiene products or common plastics are not to be used in ESD protective work areas? YES...trays? YES/NO 40.5.13 Are drinking, eating, smoking, the use of personal hygiene products and common plastics prohibited in the ESD protected work area
Profiles in garbage: Polyethylene terephthalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C.
1997-11-01
Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks -- along with salad dressing, fruit juices, peanut butter, and other household and consumer products -- use PET bottles. PET also is used for film, sheeting for cups and food trays, oven-safe trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early 1970s. Because it is an ``engineered`` resin, PET is more expensive than commodity resins such as high-density polyethylene (HDPE) and, for the same reason, it is usually the highest valued plastic recyclable.
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
Component-based integration of chemistry and optimization software.
Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L
2004-11-15
Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.
Sáiz, Jorge; Gómara, Belén
2017-08-09
Plasticizers and plastic monomers are commonly used in packaging. Most of them act as endocrine disrupters and are susceptible to migrate from the packaging to the food. We evaluated the migration of endocrine disrupting compounds from three different household food containers to four food simulants under different domestic treatments and for different periods of time, with the aim of reproducing real domestic conditions. The results showed that the migration to the simulants increased with the storage time, up to more than 50 times in certain cases. The heating power seemed to increase the migration processes (up to more than 30 times), and reusing containers produced an increase or decrease of the concentrations depending on the container type and the simulant. The concentrations found were lower than other concentrations reported (always less than 4000 pg/mL, down to less than 20 pg/mL), which might be a consequence of the domestic conditions used.
Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.
Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen
2017-01-01
Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.
Separation of packaging plastics by froth flotation in a continuous pilot plant.
Carvalho, Teresa; Durão, Fernando; Ferreira, Célia
2010-11-01
The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit. Copyright © 2010 Elsevier Ltd. All rights reserved.
Supercritical Water Process for the Chemical Recycling of Waste Plastics
NASA Astrophysics Data System (ADS)
Goto, Motonobu
2010-11-01
The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.
Research highlights: impacts of microplastics on plankton.
Lin, Vivian S
2016-02-01
Each year, millions of metric tons of the plastic produced for food packaging, personal care products, fishing gear, and other human activities end up in lakes, rivers, and the ocean. The breakdown of these primary plastics in the environment results in microplastics, small fragments of plastic typically less than 1-5 mm in size. These synthetic particles have been detected in all of the world's oceans and also in many freshwater systems, accumulating in sediment, on shorelines, suspended in surface waters, and being ingested by plankton, fish, birds, and marine mammals. While the occurrence of plastics in surface waters has been surveyed in a number of studies, the impacts of microplastics on marine organisms are still being elucidated. This highlight features three recent publications that explore the interactions of microplastics with planktonic organisms to clarify the effects of these pollutants on some of the ocean's smallest and most important inhabitants.
Does size and buoyancy affect the long-distance transport of floating debris?
NASA Astrophysics Data System (ADS)
Ryan, Peter G.
2015-08-01
Floating persistent debris, primarily made from plastic, disperses long distances from source areas and accumulates in oceanic gyres. However, biofouling can increase the density of debris items to the point where they sink. Buoyancy is related to item volume, whereas fouling is related to surface area, so small items (which have high surface area to volume ratios) should start to sink sooner than large items. Empirical observations off South Africa support this prediction: moving offshore from coastal source areas there is an increase in the size of floating debris, an increase in the proportion of highly buoyant items (e.g. sealed bottles, floats and foamed plastics), and a decrease in the proportion of thin items such as plastic bags and flexible packaging which have high surface area to volume ratios. Size-specific sedimentation rates may be one reason for the apparent paucity of small plastic items floating in the world’s oceans.
To the Die Smartly: Heavy Ion Testing of PEMs on COTS Boards Through the Plastic
NASA Technical Reports Server (NTRS)
Wert, J. L.; Normand, E.; Oberg, D. L.; Stevens, L.; Blumer, J.; Fisher, E.; Wode, G.
1999-01-01
Seven commercial off the shelf (COTS) boards containing electronic devices (all in plastic packages, PEMS), under consideration for use in a spacecraft subsystem, were exposed to beams of very high energy ions at the National Superconducting Cyclotron Laboratory (MSU). The ion energies were high enough that an entire board could be exposed in air, and it could still penetrate through the plastic and reach the silicon die. A total of about 300 runs were made, and for each, the LET of the ion entering the silicon die had to be determined, based on the thickness of the plastic lid and the thickness of overlaying materials (e.g., aluminum degraders). Single event latchup (SEL) and functional interrupt (SEFI) were determined during each run, the SEFI by means of simple programs being continuously written to and read from the boards to monitor functionality, while each part was being exposed to the heavy ions.
49 CFR 192.191 - Design pressure of plastic fittings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...
49 CFR 192.191 - Design pressure of plastic fittings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...
49 CFR 192.191 - Design pressure of plastic fittings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for plastic...
Packaging of electronic modules
NASA Technical Reports Server (NTRS)
Katzin, L.
1966-01-01
Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
InterFace: A software package for face image warping, averaging, and principal components analysis.
Kramer, Robin S S; Jenkins, Rob; Burton, A Mike
2017-12-01
We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.
Polymer dispensing and embossing technology for the lens type LED packaging
NASA Astrophysics Data System (ADS)
Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun
2013-06-01
This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.
Packaging material for thin film lithium batteries
Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.
1996-01-01
A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.
Leelaphiwat, Pattarin; Auras, Rafael A; Burgess, Gary J; Harte, Janice B; Chonhenchob, Vanee
2018-03-01
Aroma permeation through packaging material is an important factor when designing a package for food products. The masses of aroma compounds permeating through films over time were measured at 25 °C using a quasi-isostatic system. A model was proposed for estimating the permeability coefficients (P) of key aroma compounds present in fresh herbs (i.e. eucalyptol, estragole, linalool and citral) through major plastic films used by the food industry [i.e. low-density polyethylene (LDPE), polypropylene (PP), nylon (Nylon), polyethylene terephthalate (PET), metalised-polyethylene terephthalate (MPET) and poly(lactic acid) (PLA)]. Solubility coefficients (S) were estimated from the amount of aroma compound sorbed in the films. Diffusion coefficients (D) were estimated following from the relation P = D*S. P and D for all four aroma compounds were highest in LDPE, except for eucalyptol, which P was slightly higher in PLA. The solubility coefficients and contact angles were highest in PLA suggesting the highest affinity of PLA to these aroma compounds. The theoretical solubility parameters were correlated with the solubility coefficients for estragole and citral, but not for eucalyptol and linalool. The preliminary P, D and S of eucalyptol, estragole, linalool and citral through LDPE, PP, Nylon, PET, MPET and PLA can be useful in selecting the proper packaging material for preserving these specific aroma compounds in food products and can potentially be used for estimating the shelf life of food products based on aroma loss. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Biodegradable and compostable alternatives to conventional plastics.
Song, J H; Murphy, R J; Narayan, R; Davies, G B H
2009-07-27
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.
NASA Astrophysics Data System (ADS)
Abdussalam, Ragba Mohamed
Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical predictions.
ERIC Educational Resources Information Center
Crane, Diane, Ed.
1982-01-01
Five different art activities, using different media, are described: (1) "mystery molds," using plaster and discarded packaging materials; (2) "calico cottages," using boxes and fabric; (3) "foam friends," using plastic foam packing pieces; (4) "bauble boxes," using spray can tops and papier mache; and (5) "soft stuff," using old clothing. (CJ)
Effects of Prenatal Exposure to Phthalates
ERIC Educational Resources Information Center
Johnson, Laurie A.
2012-01-01
The purpose of this review of literature is to examine the association of phthalate exposure with development. Phthalates are chemical compounds used in poly-vinyl chloride, PVC; vinyl flooring, cosmetics, shampoo, air fresheners, soft plastic items, intravenous tubing, food packaging and wraps, textiles, paints, cleaning products and detergents.…
NASA Astrophysics Data System (ADS)
Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.
2011-08-01
The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha
2012-10-19
The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less
Knee-deep and rising: America's recycling crisis.
Lodge, G C; Rayport, J F
1991-01-01
Every year, Americans generate 180 million tons of solid waste, 70% of which goes into landfills. Since 1979, the United States has exhausted more than two-thirds of its landfills; another one-fifth will close over the next five years. Solving the problem will require a new understanding between industry and government--an understanding that combines industry competence and government authority. But the two sides are mired in an unfortunate combination of good intentions and failed systems. A classic example that epitomizes the problem is the recycling of plastics. Two stories capture the sense of chaos that pervades the recycling of plastics. The first is a comedy of errors played out in Minneapolis, Minnesota, where the city council passed a measure that would have banned all plastic packaging from the city. In this case, the government acted without the competence of industry. The second story involves McDonald's decision to abandon its polystyrene packaging and switch to plastic-coated paper. In this case, a single business's approach to recycling proved fruitless because of the lack of government authority. According to the authors, five principles provide the underpinnings to a new solid-waste management infrastructure: business and government are partners; the infrastructure is a system and must operate in balance; economics and politics must act as partners; all levels of government have roles to play; and generating less trash and recycling more depends on a workable system. Setting up the system will require an infrastructure that balances supply and demand, an advisory committee to manage the infrastructure, and a management system that uses incentives and disincentives to balance the system.
Packaging-induced failure of semiconductor lasers and optical telecommunications components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharps, J.A.
1996-12-31
Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with highmore » intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.« less
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
Features of plastic strain localization at the yield plateau in Hadfield steel single crystals
NASA Astrophysics Data System (ADS)
Barannikova, S. A.; Zuev, L. B.
2008-07-01
Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.
49 CFR 192.193 - Valve installation in plastic pipe.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...
49 CFR 192.193 - Valve installation in plastic pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...
49 CFR 192.193 - Valve installation in plastic pipe.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...
49 CFR 192.193 - Valve installation in plastic pipe.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...
49 CFR 192.193 - Valve installation in plastic pipe.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...
Track recording plastic compositions
NASA Technical Reports Server (NTRS)
Tarle, Gregory (Inventor)
1983-01-01
Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.
Using an architectural approach to integrate heterogeneous, distributed software components
NASA Technical Reports Server (NTRS)
Callahan, John R.; Purtilo, James M.
1995-01-01
Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.
10 CFR 71.43 - General standards for all packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken of the... that there will be no significant chemical, galvanic, or other reaction among the packaging components... packaging. (g) A package must be designed, constructed, and prepared for transport so that in still air at...
10 CFR 71.43 - General standards for all packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken of the... that there will be no significant chemical, galvanic, or other reaction among the packaging components... packaging. (g) A package must be designed, constructed, and prepared for transport so that in still air at...
Khadilkar, Mihir R; Escobedo, Fernando A
2014-10-17
Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.
Design and Production of the Injection Mould with a Cax Assistance
NASA Astrophysics Data System (ADS)
Likavčan, Lukáš; Frnčík, Martin; Zaujec, Rudolf; Satin, Lukáš; Martinkovič, Maroš
2016-09-01
This paper is focused on the process of designing the desired plastic component and injection mould by using the 3D CAD systems. The subsequent FEM analysis of the injection mould process was carried out in order to define shrinkage and deformation of the plastic material by CAE system. The dimensions of the mould were then modified to compensate the shrinkage effect. Machining process (milling and the laser texturing) of the mould was performed by using CAM systems. Finally, after the production of the plastic components by the injection mould technology, the inspection of the plastic component dimensions was carried out by CAQ in order to define the accuracy of the whole CAx chain. It was also demonstrated that CAx systems are an integral part of pre-production and production process.
Biodegradable baked foam made with chayotextle starch mixed with plantain flour and wood fiber
USDA-ARS?s Scientific Manuscript database
New renewable materials are needed to reduce petroleum-based plastic packaging. The effect of plantain flour (PF) and wood fiber (WF) on the properties of starch-based foams (SBFs) were investigated. The SBFs were characterized using physical, thermal, and mechanical methods to better understand the...
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... state and local air pollution control authorities information that should assist them in determining...; plastic asceptic packaging; and carbon paper and inked ribbons. VOC emissions from paper, film, or foil... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by...
Code of Federal Regulations, 2011 CFR
2011-04-01
... (Japan). PCB's are highly stable, heat resistant, and nonflammable chemicals. Industrial uses of PCB's include, or did include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids, hydraulic fluids, and plasticizers, and in formulations of lubricants, coatings, and inks...
Code of Federal Regulations, 2011 CFR
2011-04-01
... (Japan). PCB's are highly stable, heat resistant, and nonflammable chemicals. Industrial uses of PCB's include, or did include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids, hydraulic fluids, and plasticizers, and in formulations of lubricants, coatings, and inks...
Miniaturization of dielectric liquid microlens in package
Yang, Chih-Cheng; Tsai, C. Gary; Yeh, J. Andrew
2010-01-01
This study presents packaged microscale liquid lenses actuated with liquid droplets of 300–700 μm in diameter using the dielectric force manipulation. The liquid microlens demonstrated function focal length tunability in a plastic package. The focal length of the liquid lens with a lens droplet of 500 μm in diameter is shortened from 4.4 to 2.2 mm when voltages applied change from 0 to 79 Vrms. Dynamic responses that are analyzed using 2000 frames∕s high speed motion cameras show that the advancing and receding times are measured to be 90 and 60 ms, respectively. The size effect of dielectric liquid microlens is characterized for a lens droplet of 300–700 μm in diameter in an aspect of focal length. PMID:21267438
Schymanski, Darena; Goldbeck, Christophe; Humpf, Hans-Ulrich; Fürst, Peter
2018-02-01
Microplastics are anthropogenic contaminants which have been found in oceans, lakes and rivers. Investigations focusing on drinking water are rare and studies have mainly been using micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR). A major limitation of this technique is its inability to detect particles smaller than 20 μm. However, micro-Raman spectroscopy is capable of detecting even smaller particle sizes. Therefore, we show that this technique, which was used in this study, is particularly useful in detecting microplastics in drinking water where particle sizes are in the low micrometer range. In our study, we compared the results from drinking water distributed in plastic bottles, glass bottles and beverage cartons. We tested the microplastic content of water from 22 different returnable and single-use plastic bottles, 3 beverage cartons and 9 glass bottles obtained from grocery stores in Germany. Small (-50-500 μm) and very small (1-50 μm) microplastic fragments were found in every type of water. Interestingly, almost 80% of all microplastic particles found had a particle size between 5 and 20 μm and were therefore not detectable by the analytical techniques used in previous studies. The average microplastics content was 118 ± 88 particles/l in returnable, but only 14 ± 14 particles/l in single-use plastic bottles. The microplastics content in the beverage cartons was only 11 ± 8 particles/l. Contrary to our assumptions we found high amounts of plastic particles in some of the glass bottled waters (range 0-253 particles/l, mean 50 ± 52 particles/l). A statistically significant difference from the blank value (14 ± 13) to the investigated packaging types could only be shown comparing to the returnable bottles (p < 0.05). Most of the particles in water from returnable plastic bottles were identified as consisting of polyester (primary polyethylene terephthalate PET, 84%) and polypropylene (PP; 7%). This is not surprising since the bottles are made of PET and the caps are made of PP. In water from single-use plastic bottles only a few micro-PET-particles have been found. In the water from beverage cartons and also from glass bottles, microplastic particles other than PET were found, for example polyethylene or polyolefins. This can be explained by the fact that beverage cartons are coated with polyethylene foils and caps are treated with lubricants. Therefore, these findings indicate that the packaging itself may release microparticles. The main fraction of the microplastic particles identified are of very small size with dimensions less than 20 μm, which is not detectable with the μ-FT-IR technique used in previous studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ackerman, L K; Noonan, G O; Begley, T H
2009-12-01
The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-838] Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate the Investigation and To Withdraw the...
Cognitive Foundry v. 3.0 (OSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basilico, Justin; Dixon, Kevin; McClain, Jonathan
2009-11-18
The Cognitive Foundry is a unified collection of tools designed for research and applications that use cognitive modeling, machine learning, or pattern recognition. The software library contains design patterns, interface definitions, and default implementations of reusable software components and algorithms designed to support a wide variety of research and development needs. The library contains three main software packages: the Common package that contains basic utilities and linear algebraic methods, the Cognitive Framework package that contains tools to assist in implementing and analyzing theories of cognition, and the Machine Learning package that provides general algorithms and methods for populating Cognitive Frameworkmore » components from domain-relevant data.« less
Lacroix, Fréderic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A Sam; Beaulieu, Luc
2008-08-01
A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (+/-0.8%) in-field and good accuracy (+/-1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.
Clarke, David; Tyuftin, Andrey A; Cruz-Romero, Malco C; Bolton, Declan; Fanning, Seamus; Pankaj, Shashi K; Bueno-Ferrer, Carmen; Cullen, Patrick J; Kerry, Joe P
2017-04-01
Two antimicrobial coatings, namely Sodium octanoate and Auranta FV (a commercial antimicrobial composed of bioflavonoids, citric, malic, lactic, and caprylic acids) were used. These two antimicrobials were surface coated onto the inner polyethylene layer of cold plasma treated polyamide films using beef gelatin as a carrier and coating polymer. This packaging material was then used to vacuum pack beef sub-primal cuts and stored at 4 °C. A control was prepared using the non-coated commercial laminate and the same vacuum packaged sub-primal beef cuts. During storage, microbial and quality assessments were carried out. Sodium octanoate treated packages significantly (p < 0.05) reduced microbial counts for all bacteria tested with an increase of 7 and 14 days, respectively compared to control samples. No significant effect on pH was observed with any treatment. The results suggested that these food grade antimicrobials have the potential to be used in antimicrobial active packaging applications for beef products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure-property relation in HPMC polymer films plasticized with Sorbitol
NASA Astrophysics Data System (ADS)
Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.
2013-06-01
A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
28 CFR 549.50 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Plastic Surgery § 549.50 Purpose and scope. The Bureau of Prisons does not ordinarily perform plastic... circumstances where plastic surgery is a component of a presently medically necessary standard of treatment (for...
Application of FTIR microscopy in the study of pharmaceutical packaging materials and formulations
NASA Astrophysics Data System (ADS)
Hu, John J.; Johnson, James B.
1992-08-01
Fourier transform infrared microscopy offers many unique advantages in studying pharmaceutical packaging materials and formulations because of its sensitivity and variety of measurement modes with precise control of the area to the analyzed. This report discusses the application of FTIR microscopy in studying commonly encountered pharmaceutical packaging components such as multi-layer laminate films, disposable syringes and rubber stoppers. The use of the instrument to study pharmaceutical formulation parameters such as polymorphism and component identification is also presented.
Components of the Early Apollo Scientific Experiments Package (EASEP)
1969-07-20
AS11-37-5551 (20 July 1969) --- Two components of the Early Apollo Scientific Experiments Package (EASEP) are seen deployed on the lunar surface in this view photographed from inside the Lunar Module (LM). In the far background is the Passive Seismic Experiment Package (PSEP); and to the right and closer to the camera is the Laser Ranging Retro-Reflector (LR-3). The footprints of Apollo 11 astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. are very distinct in the lunar soil.
González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O
2014-11-01
The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.
The use of reverse logistics for waste management in a Brazilian grocery retailer.
Dias, Karina T S; Braga Junior, Sergio S
2016-01-01
Retail growth is a result of the diversification of departments with the intention to look to consumer's needs and level of demand. Pressed by consumers and by the law, the adoption of environmental preservation practices is becoming stronger among grocery retailers. The objective of this research was to analyse the practices of reverse logistics performed by a retailer and measure the amount of waste generated by each department. To reach the proposed goal, a field research study was conducted to directly observe a grocery retailer in the state of Sao Paulo, Brazil, for a period of 6 months and monitor the amounts of cardboard and plastic discarded by each department. Using the Wuppertal method, the first result observed was that the retailer stopped its monthly production of approximately 20 tonne of biotic and abiotic material, which influence global warming and degradation of the ozone layer. Another result observed with the implementation of reverse logistics, was that the general grocery department mostly used cardboard and plastic. This sector includes products such as food cupboard, drinks, household, health and beauty, and pet articles. The fresh fruit and vegetable department and the meat, chicken and frozen department were increasingly using less plastic and cardboard packaging, increasing the use of returnable and durable packaging and thus promoting sustainability. © The Author(s) 2015.
Microscale synthesis and characterization of polystyrene: NSF-POLYED scholars project
NASA Technical Reports Server (NTRS)
Quaal, Karen S.; Wu, Chang-Ning
1994-01-01
Polystyrene is a familiar polymer with many commercial uses. Its applications range from the clear, high index of refraction, brittle plastic used to form audio cassette and CD cases to the foamed material used in insulated drink cups and packaging material. Polystyrene constitutes 11 percent of the plastics used in packaging with only High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) contributing a larger share: so much polystyrene is used today, it is one of six common plastics that manufacturers have assigned an identification code. The code helps recycling efforts. Polystyrene's code is (PS code 6). During the summer and fall of 1992 several new polymeric experiments were developed by the NSF POLYED Scholars for introduction into the chemistry core curriculum. In this presentation, one such project will be discussed. This laboratory project is recommended for a first or second year laboratory course allowing the introduction of polymeric science to undergraduates at the earliest opportunity. The reliability of the experiments which make up this project and the recognition factor of polystyrene, a material we come in contact with everyday, makes the synthesis and characterization of polystyrene a good choice for the introduction of polymerization to undergraduates. This laboratory project appeals to the varied interests of students enrolled in the typical first year chemistry course and becomes an ideal way to introduce polymers to a wide variety of science and engineering students.
Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways
Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha
2013-01-01
Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments (“microplastics”, median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km−2, and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km−2. These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton. PMID:24312224
Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways.
Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha
2013-01-01
Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km(-2), and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2). These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton.
Face recognition via edge-based Gabor feature representation for plastic surgery-altered images
NASA Astrophysics Data System (ADS)
Chude-Olisah, Chollette C.; Sulong, Ghazali; Chude-Okonkwo, Uche A. K.; Hashim, Siti Z. M.
2014-12-01
Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature.
Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C.
2003-09-01
Flexible displays fabricated using plastic substrates have a potential for being very thin, light weight, highly rugged with greatly minimized propensity for breakage, roll-to-roll manufacturing and lower cost. The emerging OLED display media offers the advantage of being a solid state and rugged structure for flexible displays in addition to the many potential advantages of an AM OLED over the currently dominant AM LCD. The current high level of interest in flexible displays is facilitating the development of the required enabling technologies which include development of plastic substrates, low temperature active matrix device and backplane fabrication, and display packaging. In the following we will first discuss our development efforts in the PEN based plastic substrates, active matrix backplane technology, low temperature (150°C) a-Si TFT devices and an AM OLED test chip used for evaluating various candidate designs. We will then describe the design, fabrication and successful evaluation and demonstration of a 64x64 pixel AM OLED test display using a-Si TFT backplane fabricated at 150°C on the flexible plastic substrate.
Omori, Y
1976-01-01
Recent experimental studies in Japan on the evaluation of potential health hazards from phthalate esters used in manufacturing poly (vinyl chloride) as well as several plastics for medical devices and for food containers and packages were introduced. Development of pulmonary granuloma formation after intravenous injection of diethylhexyl phthalate was assumed to be dependent on the particle size of the phthalate in vehicle used. Dietary administration of large amount of diethylhexyl phthalate and dibutyl phthalate produced renal cysts in mothers and in descendants in reproduction studies in mice. Cytotoxicity and mutagenicity of the phthalates and several plastics and resins were also examined by in vivo and in vitro studies. Hematological parameters examined in rabbits after repeated intravenous injection of diethylhexyl phthalate and after implantation of plastics in aorta for 3--6 months did not show any significant change. A slow decrease of radioactivity was observed in adipose tissue of rats following oral administration of 14C-labeled diethylhexyl phthalate. tthe administrative action on phthalates by the Japanese Ministry of Health and Welfare is briefly reviewed. PMID:1026406
Packaging of structural health monitoring components
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.
2004-07-01
Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Wang, Jin
2012-12-01
Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA and EMTA-NLA in the Autodesk® Moldflow® packages. This report summarizes the recent results from Autodesk Simulation Moldlow Insight (ASMI) analyses using the EMTA models and EMTA-NLA/ABAQUS® analyses for further assessment of the EMTA-NLA models to support their implementation in Autodesk Moldflow Structural Alliance (AMSA). PNNL’s technical support to Autodesk, Inc. included (i) providing the theoretical property prediction models as described in published journal articles and reports, (ii) providing explanations of these models and computational procedure, (iii) providing the necessary LFT data for process simulations and property predictions, and (iv) performing ABAQUS/EMTA-NLA analyses to further assess and illustrate the models for selected LFT materials.« less
Mgaya-Kilima, Beatrice; Remberg, Siv Fagertun; Chove, Bernard Elias; Wicklund, Trude
2015-01-01
A study was conducted to determine the effects of packaging materials, seasonality, storage temperature and time on physiochemical and antioxidant properties of roselle-mango juice blends. Roselle extract (20%, 40%, 60%, and 80%) was mixed with mango juice and stored in glass and plastic bottles at 4°C and 28°C. Total soluble solids, pH, titratable acidity, reducing sugar, color, vitamin C, total monomeric anthocyanins, total phenols, and antioxidant activity (FRAP) were evaluated in freshly prepared juice, and after, 2, 4, and 6 months of storage. The results showed that total soluble solids, reducing sugars, and pH increased with storage times under different storage time, irrespective of packaging materials. The acidity, color, total monomeric anthocyanin, vitamin C, total phenols, and antioxidant activity decreased during storage irrespective of storage temperature and packaging material. Loss of anthocyanins, total phenols, and vitamin C content were higher in blends stored at 28°C than 4°C. PMID:25838888
Moudache, M; Nerín, C; Colon, M; Zaidi, F
2017-08-15
An antioxidant food packaging material was developed and applied to fresh minced pork meat. The material consists of a multilayer polyethylene film in which 4 different concentrations (2%, 5%, 10%, and 15%) of olive leaves (OL) extract were immobilized in an adhesive formula used to build the multilayer. The antioxidants were not in direct contact with the meat. The packaged meat was kept at 4°C during 16days and finally analyzed by two methods: Raman spectroscopy and thiobarbituric acid reactive substances (TBARS). Raman demonstrated a higher sensitivity for antioxidant evaluation than TBARS. Color of fresh meat packaged with the active film was also measured to evaluate the shelf life of packaged meat. The results showed that active film containing natural antioxidants efficiently enhanced the stability of fresh meat against oxidation processes, thus being a promising way to extend the shelf life of fresh minced meat for about two days. Copyright © 2017. Published by Elsevier Ltd.
Use of recycling stations in Borlänge, Sweden--volume weights and attitudes.
Petersen, Cecilia H Mattsson; Berg, Per E O
2004-01-01
This paper presents a study of recycling stations in the municipality of Borlänge, Sweden. The main objectives were to measure volume weights of recyclables, to facilitate future planning of collection intervals and bin/container volume, and to investigate the general attitudes among the public towards waste management in general and recycling stations in particular. Volume weights measured in bins/containers were: paper/newsprint: 297 kg/m3, glass packaging: 297 kg/m3, metal packaging: 81.7 kg/m3, paper packaging: 27.8 kg/m3, plastic packaging: 28.1 kg/m3. The recycling stations have been in use since 1994. Most visitors (90%) arrived by car but said the visit to the recycling station was not the main purpose of the trip. The results from the interviews indicated that the people who use the recycling stations have found ways to incorporate waste sorting into their everyday lives, with the help of information, design of the collection system and environmental concerns.
Biodegradable and compostable alternatives to conventional plastics
Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.
2009-01-01
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060
Endothelial protection: avoiding air bubble formation at the phacoemulsification tip.
Kim, Eung Kweon; Cristol, Stephen M; Kang, Shin J; Edelhauser, Henry F; Yeon, Dong-Soo; Lee, Jae Bum
2002-03-01
To investigate the conditions under which bubbles form during phacoemulsification. Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. In the first part of the study, the partial pressure of oxygen (pO(2)) was used as a surrogate measure for the partial pressure of air. Irrigation solutions packaged in glass and plastic containers were studied. A directly vented glass bottle was also tested. The pO(2) of the various irrigation solutions was measured as the containers were emptied. In the second part, phacoemulsification procedures were performed in rabbit eyes with different power settings and different irrigation solutions. Intracameral bubble formation during the procedure was recorded. Following the phacoemulsification procedures, the corneas were stained for F-actin and examined for endothelial injury. The initial pO(2) in irrigation solutions packaged in glass bottles was about half that at atmospheric levels; in solutions packaged in plastic, it was at atmospheric levels. As irrigation solutions were drained from the container, the pO(2) of the solution tended to rise toward atmospheric levels. The rate of pO(2) increase was markedly reduced by using a directly vented glass bottle. In the phacoemulsification procedures, bubble formation was most likely to occur with higher pO(2) and higher power settings. Observation of bubbles by the surgeon was highly correlated with endothelial damage. Keeping the pO(2) low reduced the risk of endothelial damage, especially at higher phacoemulsification powers. The packaging of irrigation solutions was the most important factor in controlling the initial pO(2) of the solution. The pO(2) can be minimized throughout a phacoemulsification procedure by using a directly vented glass bottle.
Safety analysis report for packaging (onsite) steel drum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, W.A.
This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.
Frequency of use controls chemical leaching from drinking-water containers subject to disinfection.
Andra, Syam S; Makris, Konstantinos C; Shine, James P
2011-12-15
Microbial-, and chemical-based burden of disease associated with lack of access to safe water continues to primarily impact developing countries. Cost-effective health risk-mitigating measures, such as of solar disinfection applied to microbial-contaminated water stored in plastic bottles have been increasingly tested in developing countries adversely impacted by epidemic water-borne diseases. Public health concerns associated with chemical leaching from water packaging materials led us to investigate the magnitude and variability of antimony (Sb) and bromine (Br) leaching from reused plastic containers (polyethylene terephthalate, PET; and polycarbonate, PC) subject to UV and/or temperature-driven disinfection. The overall objective of this study was to determine the main and interactive effects of temperature, UV exposure duration, and frequency of bottle reuse on the extent of leaching of Sb and Br from plastic bottles into water. Regardless of UV exposure duration, frequency of reuse (up to 27 times) was the major factor that linearly increased Sb leaching from PET bottles at all temperatures tested (13-47 °C). Leached Sb concentrations (∼360 ng L(-1)) from the highly reused (27 times) PET bottles (minimal Sb leaching from PC bottles, <15 ng L(-1)) did not pose a serious risk to human health according to current daily Sb acceptable intake estimates. Leached Br concentrations from both PET and PC containers (up to ∼15 μg L(-1)) did not pose a consumer health risk either, however, no acceptable daily dose estimates exist for oral ingestion of organo-brominated, or other plasticizers/additives compounds if they were to be found in bottled water at much lower concentrations. Additional research on potential leaching of organic chemicals from water packaging materials is deemed necessary under relevant environmental conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Survey of bottled drinking water sold in Canada. Part 2. Selected volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, B.D.; Conacher, H.B.S.; Salminen, J.
Selected volatile organic compound (VOC) contaminants were determined in 182 samples of retail bottled waters purchased in Canada. Samples included spring water (86) packaged in containers of polyethylene or in smaller containers of transparent plastic or glass, mineral water (61) packaged only in transparent plastic or glass, and miscellaneous bottled waters (35). Analyses were performed by 3 laboratories, each using headspace sampling and capillary gas chromatography with either mass spectrometric (1 laboratory) or flame ionization detection with mass spectrometric confirmation, if required (2 laboratories). Benzene, the contaminant of primary interest, was detected in only 1 of the 182 samples atmore » 2 {mu}g/kg. Other VOC contaminants detected (number of positive samples, average, and range of positives in {mu}g/kg) included toluene (20, 6.92, 0.5-63), cyclohexane (23, 39.2, 3-108), chloroform (12, 25.8, 3.7-70), and dichloromethane (4, 59, 22-97). Cyclohexane was found in the plastic and as a migrant from the plastic in 20 samples of spring water, but it was found in only 1 of 61 mineral water samples analyzed at only 3 {mu}g/kg/. Chloroform was found almost exclusively in samples that could have been obtained from public water supplies. It was not found in mineral water samples, but it was found in 1 spring water sample at 3.7 {mu}g/kg. The source of the toluene contamination was not known. Other VOCs detected include ethanol and limonene, associated with added flavoring; pentane, as a migrant from a foamed polystyrene cap liner; and 1,1,2,2-tetra-chloroethylene in a sample of demineralized water. 10 refs., 6 tabs.« less
75 FR 57770 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... identification, pass through a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X-ray machine and subject to search. Visitors will be provided an EPA/DC badge that must be...- different substrates oil fatty acid, like plastics, alkyl diacid and metals, wood, alkyldiamines packaging...
Environmental Education [30 Instructional Mini-units for K-6].
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul.
These 30 self-contained instructional units, for K-6, are structured to promote learning exercises outside the classroom; from the playground, local factory, or city hall to pond, farm, or woodland, places where students may touch the pulse of community life. Attractively packaged in plastic folders, each "mini-unit" provides a teacher's guide…
USDA-ARS?s Scientific Manuscript database
Nisin is a naturally occurring antimicrobial polypeptide, and is popularly used in foods and food packaging industries. Nisin is deactivated at temperatures higher than 120 deg C, and therefore can not be directly incorporated into poly(L-lactic acid) (PLA), a biomass-derived biodegradable polymer, ...
USDA-ARS?s Scientific Manuscript database
Introduction: The number of outbreaks of foodborne illnesses associated with the consumption of fresh tomatoes has increased. Little research has been conducted on the effects of direct treatment of cold plasma (CP) on the microbial decontamination and preservation of bulk tomatoes packaged in comme...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... Allegheny County Health Department (ACHD) Rules and Regulations, Article XXI, Air Pollution Control, and... and prior to the area's date of attainment. CTGs are intended to provide State and local air pollution...; plastic asceptic packaging; and carbon paper and inked ribbons. VOC emissions from large appliance, metal...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... 31, 2008, with respect to Zibo Aifudi Plastic Packaging Co., Ltd. (Zibo Aifudi). Since Zibo Aifudi..., 2009), as amended. Changshu Xinsheng Bags Producing Company Ltd. (Changshu) and Zibo Aifudi timely... Organization Agreement on Subsidies and Countervailing Measures, entries of this merchandise made on or after...
In-package inhibition of E.coli 0157:H7 on bulk romaine lettuce using cold plasma
USDA-ARS?s Scientific Manuscript database
Dielectric barrier discharge atmospheric cold plasma (DACP) treatment was evaluated for the inactivation of Escherichia coli O157:H7, surface morphology, color, carbon dioxide generation, and weight loss of bulk Romaine lettuce in a commercial plastic clamshell container. The lettuce samples were pa...