Science.gov

Sample records for plastic pipe

  1. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  2. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  3. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  4. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  5. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  6. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  7. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  8. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  9. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  10. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  11. Plastic pipe insertion

    SciTech Connect

    Diskin, J.

    1987-05-01

    In March 1987 KPL changed all that when the utility inserted 1,000 ft of 16-in. SDR 15.5 Phillips Driscopipe 8000 pipe with a wall thickness of 1.032-in., into an abandoned 24-in. cast-iron line in downtown Kansas City. This is believed to be the largest diameter insert removal job ever done for gas distribution in the U.S. For KPL it was a natural progression from the smaller sizes used earlier. The procedure is the same, and the operation was quick and comparatively simple. Lower construction costs were the bottom line because with insert renewal there is no need to cut up the streets, a major expense in any urban pipeline work. There are other significant costs savings as well because the insert renewal construction process is faster than other techniques.

  12. Practical aspects of acoustic plastic pipe location

    SciTech Connect

    Huebler, J.E.; Campbell, B.K.; Ching, G.K.

    1993-12-31

    Many gas distribution company operation and maintenance activities require precise knowledge of the location of buried plastic piping. Plastic pipe cannot be located if the tracer wire is gone or was never installed. Under sponsorship of the Southern California Gas Company, IGT successfully demonstrated an acoustic plastic pipe location technique and is developing the technique into a practical field instrument an acoustic signal is injected directly into the gas at a service. The acoustic signal travels in the gas in the pipes, not in the pipe wall. As the acoustic wave travels along the pipe, some of the sound radiates from the pipe through the soil to the surface of the ground. An array of sensors on the surface of the ground perpendicular to the pipe detects the acoustic signal, thereby locating the Pipe. Two different acoustic measurements are used. The first measurement locates the pipe to within {plus_minus} 3-ft. Then the second technique determines the location of the pipe to within {plus_minus} 6-in.

  13. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  14. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  15. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  16. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  17. 49 CFR 192.321 - Installation of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that...

  18. Radiation crosslinked plasticized PVC - pipes

    NASA Astrophysics Data System (ADS)

    Hell, Z.; Ravlić, M.; Bogdanović, Lj.; Maleš, J.; Dvornik, I.; Ranogajec, F.; Ranogajec, M.; Tudorić-Ghemo, J.

    The efficiency of polyfunctional monomers triallyl cyanurate, allyl methacrylate, diallyl phtalate, 2-ethyl-2(hydroxy-methyl)-propanediol-(1,3) trimethacrylate, divinyl benzene and ethylene glycol dimethacrylate in radiation crosslinking of PVC was investigated. Patterns of pipes were produced and irradiated with gamma rays. The resistance to internal pressure of crosslinked PVC pipes was measured at 80°C and compared with resistance of unirradiated PVC pipes.

  19. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  20. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  1. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  2. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  3. 49 CFR 192.121 - Design of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of...

  4. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  5. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  6. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  7. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  8. 49 CFR 192.193 - Valve installation in plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the...

  9. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  10. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  11. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  12. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  13. 49 CFR 192.311 - Repair of plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed. [Amdt. 192-93, 68 FR 53900, Sept. 15, 2003]...

  14. 49 CFR 192.311 - Repair of plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed....

  15. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  16. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  17. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  18. 49 CFR 192.311 - Repair of plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed....

  19. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  20. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  1. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  2. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  3. 49 CFR 192.287 - Plastic pipe: Inspection of joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe: Inspection of joints. 192.287... Than by Welding § 192.287 Plastic pipe: Inspection of joints. No person may carry out the inspection of joints in plastic pipes required by §§ 192.273(c) and 192.285(b) unless that person has been qualified...

  4. 49 CFR 192.311 - Repair of plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed....

  5. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  6. 49 CFR 192.283 - Plastic pipe: Qualifying joining procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe: Qualifying joining procedures. 192... Materials Other Than by Welding § 192.283 Plastic pipe: Qualifying joining procedures. (a) Heat fusion... for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the...

  7. 49 CFR 192.123 - Design limitations for plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design limitations for plastic pipe. 192.123... Design limitations for plastic pipe. (a) Except as provided in paragraph (e) and paragraph (f) of this section, the design pressure may not exceed a gauge pressure of 100 psig (689 kPa) for plastic pipe...

  8. 49 CFR 192.311 - Repair of plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Repair of plastic pipe. 192.311 Section 192.311... Lines and Mains § 192.311 Repair of plastic pipe. Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed....

  9. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  10. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  11. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  12. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  13. Electrostatic hazards with underground plastic pipes at petrol stations

    NASA Astrophysics Data System (ADS)

    Walmsley, H. L.

    2011-06-01

    The paper analyses some ignition incidents that have been reported with insulating, (non-conductive) underground plastic pipes in retail petrol stations. The occurrence of the incidents is compared with voltage measurements, observations of the typical spread of streaming currents recorded in gasoline handling and theoretical estimates of the voltages on the pipes. The comparisons suggest that neither incendive sparks from unbonded conductors nor incendive brush discharges from insulating pipe surfaces can be ruled out although both are expected to be rare. The hazards can be prevented by using pipes with earthed conductive or dissipative inner linings.

  14. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-12-30

    The objective of this program was to develop and test a system that would detect and image buried plastic and ceramic pipe. The system is designed to detect variations in the electric permeability of soil corresponding to the presence of a buried plastic pipe. The Gas Technology Institute (GTI) proposed to develop a compact and inexpensive capacitive tomography-imaging sensor that can be placed on the ground to image objects embedded in the soil. The system provides a coarse image, which allows the operator to identify a buried object's location both horizontally and vertically.

  15. Workshop on plastic-pipe location, Westin Chicago Hotel, Chicago, Illinois, May 1-2, 1990. Topical report

    SciTech Connect

    Not Available

    1990-05-01

    Preprints of papers presented to the May 1990 GRI Workshop on Plastic Pipe Location are provided. Topics include an historical overview of plastic pipe location, the location of non-metallic utilities, radar applications, the Terrascan system, plastic pipe location in Japan, subsurface pipe mapping, and non-contact acoustic buried plastic pipe location.

  16. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  17. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  18. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  19. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  20. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  1. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-04-30

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  2. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-10-30

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  3. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-01-31

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  4. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect

    Hauck, J. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Stich, D. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Heidemeyer, P. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Bastian, M. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Hochrein, T. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  5. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  6. An estimation of critical buckling strain for pipe subjected plastic bending

    NASA Astrophysics Data System (ADS)

    Ji, L. K.; Zheng, M.; Chen, H. Y.; Zhao, Y.; Yu, L. J.; Hu, J.; Teng, H. P.

    2014-09-01

    An approach for estimating critical buckling strain of pipe subjected plastic bending is established in the present paper. A rigid — perfectly plastic material model and cross section ovalization of pipe during bending are employed for the approach. The energy rates of the ovalised pipe bending and the cross section ovalising are proposed firstly. Furthermore, these energy rates are combined to perform the buckling analysis of pipe bending, an estimation formula of critical buckling strain for pipe subjected plastic bending is proposed. The predicting result of the new critical buckling strain formula is compared with the available experimental data, it shows that the formula is valid.

  7. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOEpatents

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  8. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-07-29

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  9. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-07-15

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  10. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-04-29

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  11. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber; Christopher J. Ziolkowski

    2002-01-25

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain better resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  12. Analysis of Deformation Behavior of Plastic during Lining on Steel Pipe with an FEM

    NASA Astrophysics Data System (ADS)

    Yamada, Toshiro; Mikawa, Toshihide; Kushizaki, Yoshiyuki

    2007-05-01

    There exist serious issues on the poor adhesion and residual stress of plastics on the steel pipe lined with plastics such as polyvinyl chloride (PVC), polyethylene (PE) and polypropylene (PP), which cause the interface delamination and crack of plastics. In order to prevent the failure during lining, the optimum lining conditions such as temperature pattern and the length of plastic pipe are not determined by the theoretical analysis but by trial and error because of the following reasons: As a plastic pipe is longitudinally stretched in advance, it has the strong anisotropy that it shrinks in the longitudinal direction and expands in the circumferential direction while sliding and adhesion of plastics at the contact point with steel during lining. Moreover, plastics are usually a viscoelastic material; the dynamic behavior is remarkably dependent on temperature and time. In this work, the authors have tried to analyze the deformation behavior of polyvinyl chloride (PVC) lining a steel pipe during lining. Mechanical and viscoelastic properties of stretched PVC pipe have been measured in the longitudinal and circumferential directions. The deformation behavior of PVC pipe has been numerically predicted by a finite element analysis (FEA) under the assumption of anisotropic and viscoelastic material during lining. It has been confirmed that the calculated results by an FEA can give the good agreement with experimental ones.

  13. Field Tests of Plastic Pipe for Airport Drainage Systems.

    DTIC Science & Technology

    1979-12-01

    over the pipe were generally less than 3 percent. The one exception was the case of the 10-in. PE pipe with a cover depth of 15 in. which had a...diameters. All pipe installations except No. 18 were laid out with an average distance of 7 ft between pipes at the center of the pipe length. Pipe 18 was...within the trench so that gages (in the case of Test Site No. 1) were in the proper location, and several elevation mea- surements were made along the top

  14. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    PubMed

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  15. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  16. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOEpatents

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  17. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  18. Field fabrication and installation of flangeless connections for plastic-lined piping

    SciTech Connect

    Kalnins, J.M.

    1996-07-01

    The chemical process industries have relied on Plastic-Lined Piping (PLP) to solve complex corrosion problems for over forty years. The Fugitive Emissions Regulations of the 1990 Clean Air Act Amendments have created concerns about the large number of flanged connections traditionally associated with PLP. In the past several years, new joint reduction technologies have been introduced to minimize the number of flanged connections in a PLP system. These technologies incorporate new piping and bending technology and flangeless joints to create fabricated PLP assemblies. Until recently, the flangeless joints were limited to factory-fabricated assemblies. New technology permits the flangeless joints to be created in the field using a novel mechanical connection. This novel mechanical connection, field-fabrication and installation aspects of the flangeless connection are discussed.

  19. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    SciTech Connect

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-12-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes.

  20. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  1. On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: an experimental investigation.

    PubMed

    Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo

    2014-03-20

    Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.

  2. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    PubMed

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  3. Fatique testing of OTEC (ocean thermal energy conversion) cold water pipe glass-reinforced plastic materials. Technical report

    SciTech Connect

    Sirian, C.R.; Conn, A.F.

    1983-09-01

    Specimens of a GFRP (glass fiber reinforced plastic) composite laminate - a candidate material for use in an OTEC cold water pipe (CWP) - were subjected to cyclic bending while immersed in a synthetic sea water solution. The loss of stiffness, i.e., decrease in bending modulus, for this GFRP was determined as a function of cycles of loading.

  4. Evaluating quality of adhesive joints in glass-fiber plastic piping by using active thermal NDT

    NASA Astrophysics Data System (ADS)

    Grosso, M.; Marinho, C. A.; Nesteruk, D. A.; Rebello, J. M.; Soares, S. D.; Vavilov, V. P.

    2013-05-01

    GRP-type composites (Glass-fibre Reinforced Plastics) have been continuously employed in the oil industry in recent years, often on platforms, especially in pipes for water or oil under moderate temperatures. In this case, the pipes are usually connected through adhesive joints and, consequently, the detection of defects in these joints, as areas without adhesive or adhesive failure (disbonding), gains great importance. One-sided inspection on the joint surface (front side) is a challenging task because the material thickness easily exceeds 10 mm that is far beyond the limits of the capacity of thermography applied to GRP inspection, as confirmed by the experience. Detection limits have been evaluated both theoretically and experimentally as a function of outer wall thickness and defect lateral size. The 3D modeling was accomplished by using the ThermoCalc-6L software. The experimental unit consisted of a FLIR SC640 and NEC TH- 9100 IR imagers and some home-made heaters with the power from 1,5 to 30 kW. The results obtained by applying pulsed heating have demonstrated that the inspection efficiency is strongly dependent on the outer wall thickness with a value of about 8 mm being a detection limit.

  5. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation

    PubMed Central

    Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo

    2014-01-01

    Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors. PMID:24658622

  6. For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J. Clyde

    1964-01-01

    Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…

  7. Assimilable organic carbon release, chemical migration, and drinking water impacts of multiple brands of plastic pipes available in the USA

    NASA Astrophysics Data System (ADS)

    Connell, Matthew

    Increased installation of polymer potable water pipes in United States plumbing systems has created a need to thoroughly evaluate their water quality impacts. Eleven brands of new polymer drinking water pipe were evaluated for assimilable organic carbon (AOC) release at room temperature for 28 days. They included polyvinyl chloride (PVC), high-density polyethylene (HDPE), polypropylene (PP), and cross-linked polyethylene (PEX) pipes. Three of eight PEX pipe brands exceeded a 100 microg/L AOC threshold for microbial regrowth for the first exposure period and no brands exceeded this value on day 28. No detectable increase in AOC was found for PP and PEX-a1 pipes; the remaining pipe brands contributed marginal AOC levels. Water quality impacts were more fully evaluated for two brands of PEX-b and one brand of PP pipe. PEX pipes released more total organic carbon (TOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) and caused greater odor than the PP pipe. All three materials showed reductions in these water quality parameters over 30 days. Three PEX pipe field studies revealed that aged systems did not display more intense odors than distribution systems. However, the organic releases from polymer pipes may still alter water quality and contribute to rapid microbial growth, even though the aesthetic impacts are temporary.

  8. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  9. Choice by rats for enriched versus standard home cages: Plastic pipes, wood platforms, wood chips, and paper towels as enrichment items.

    PubMed

    Bradshaw, A L; Poling, A

    1991-03-01

    The purpose of the present study was to determine whether simple additions to the home cages of rats made those cages preferable to standard housing arrangements. Results indicated that most rats preferred cages with wood platforms, wood chips, and paper towels to otherwise identical cages without these items. Wood chips were not, however, practical with the cages used in the present study. Plastic pipes caused no problems but were not preferred by most animals. Both wood platforms and paper towels created no problems and appeared to be useful as enrichment items. The latter were preferred to the former in a direct comparison.

  10. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  11. Elasto-Plastic FEM Stress Analysis and Mechanical Characteristics of Pipe Flange Connections with Non-Asbestos Gaskets under Internal Pressure

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshio; Omiya, Yuya; Kobayashi, Takashi; Sawa, Toshiyuki

    The effects of the nominal diameter of pipe flange connections with non-asbestos spiral wound gaskets(SWG) under internal pressure on the mechanical characteristics such as the contact gasket stress distribution which governs the sealing performance, the load factor and the hub stress of the connections were evaluated. The stresses in the connections with the nominal diameters from 3” to 24” under internal pressure are analyzed using the elasto-plastic(EP) FEM analysis taking account the hysteresis and non-linearity of deformation behavior of the non-asbestos SWG. As a result, it is found that the variations in the contact gasket stress distributions are substantial due to the flange rotation in the connections with the larger nominal diameter. Leakage tests were conducted to measure the axial bolt forces (the load factor) and the hub stress. The results obtained from the EP-FEM analyses are fairly consistent with the experimental results concerning the variation in the axial bolt forces (the load factor) and the hub stress. Using the obtained contact gasket stress distributions and the fundamental relationship between the amount of leakage and the contact gasket stress, the amount of the leakage of the connections is estimated. It is observed that the sealing performance of the connections with larger nominal diameter is worse than that of the connection with smaller nominal diameter because of the flange rotation. The estimated results are in a fairly good agreement with the measured results. The difference in the hub stress between the EP-FEM and ASME code is demonstrated and the differences in the load factor and the sealing performance of the connections are shown between the asbestos and non-asbestos gaskets.

  12. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  13. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  14. Heat Pipe Technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  15. Towards an in-situ measurement of wave velocity in buried plastic water distribution pipes for the purposes of leak location

    NASA Astrophysics Data System (ADS)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Dray, Simon; Whitfield, Stuart; Paschoalini, Amarildo T.

    2015-12-01

    Water companies are under constant pressure to ensure that water leakage is kept to a minimum. Leak noise correlators are often used to help find and locate leaks. These devices correlate acoustic or vibration signals from sensors which are placed either side the location of a suspected leak. The peak in the cross-correlation function of the measured signals gives the time difference between the arrival times of the leak noise at the sensors. To convert the time delay into a distance, the speed at which the leak noise propagates along the pipe (wave-speed) needs to be known. Often, this is estimated from historical wave-speed data measured on other pipes obtained at various times and under various conditions, or it is estimated from tables which are calculated using simple formula. Usually, the wave-speed is not measured directly at the time of the correlation measurement and is therefore potentially a source of significant error in the localisation of the leak. In this paper, a new method of measuring the wave-speed in-situ in the presence of a leak, that is robust and simple, is explored. Experiments were conducted on a bespoke large scale buried pipe test-rig, in which a leak was also induced in the pipe between the measurement positions to simulate a condition that is likely to occur in practice. It is shown that even in conditions where the signal to noise ratio is very poor, the wave-speed estimate calculated using the new method is less than 5% different from the best estimate of 387 m s-1.

  16. Boomwhackers and End-Pipe Corrections

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2014-01-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meter-stick. This article describes a lab activity in which students model data from…

  17. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  18. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  19. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  20. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  1. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  2. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  3. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  4. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  5. Static analysis of a piping system with elbows

    SciTech Connect

    Bryan, B.J.

    1994-03-01

    Vibration tests of elbows to failure were performed in Japan in the early 1970s. The piping system included two elbows and an eccentric mass. Tests were run both pressurized and unpressurized. This report documents a static analysis of the piping system in which the elbows are subjected to out of plane bending. The effects of internal pressure and material plasticity are investigated.

  6. Consumer Exposure to Bisphenol A from Plastic Bottles

    ERIC Educational Resources Information Center

    Bidabadi, Fatemeh

    2013-01-01

    Bisphenol A (BPA) is a plastic monomer and plasticizer and is a chemical that has one of the highest volume production worldwide, with more than six billion pounds each year. Its primary use is the production of polycarbonate plastics, epoxy resins used to line metal cans in a host of plastic consumer products such as toys, water pipes, drinking…

  7. Sink or swim pipe

    SciTech Connect

    Dubois, B.C.; Rhines, J.A.

    1985-07-01

    The development of a six-inch ID flexible pipe system for use as a rapidly deployable offshore fuel delivery system is described. Pipe design data, pipe construction, and advantages of the offshore petroleum delivery system are discussed.

  8. Microstructural characterization of pipe bomb fragments

    SciTech Connect

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  9. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  10. Design procedure prevents PE pipe rupture

    SciTech Connect

    Grigory, S.C.

    1995-12-01

    A rupture prevention design procedure for plastic gas distribution pipe is nearing completion at Southwest Research Institute (SWRI). Given the pipe size, polyethylene (PE) resin, and minimum operating temperature, the maximum safe operating pressure can be determined for which rapid crack propagation (RCP) cannot occur. A computer program, called PFRAC, has been developed for this purpose and uses Charpy energy as the measurement of fracture toughness of PE. Present efforts, however, involve replacing Charpy energy with a dynamic toughness measurement obtained from the Small Scale Steady State (S4) test that is required in ISO 4437. The program is being financed by the Gas Research Institute, Chicago. RCP events in PE pipe have been rare primarily because operating pressures are low and pipe diameters are small in most gas distribution systems. However, controlled RCP experiments in the US and other countries clearly demonstrate that as the gas industry moves toward higher line pressures and larger diameters, the likelihood of an RCP event increases. Recognizing this, ISO includes a requirement for RCP in its ISO 4437 standard for pipe greater than 10 inches in diameter or operating pressures greater than 58 psig. The S4 test may be used on all pipe diameters. A full scale test or the S4 test can be used on pipe greater than 10 inches diameter.

  11. Common causes of material degradation in buried piping

    SciTech Connect

    Jenkins, C.F.

    1997-01-20

    Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

  12. Biplastic pipes for high-pressure oil pipeline systems

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Tashkinov, A. A.; Larionov, A. F.; Pospelov, A. B.

    2000-05-01

    A high-performance, corrosion-resistant biplastic pipe for high-pressure oil pipeline systems is presented. The pipe combines an outer load-carrying layer formed from unidirectionally glass-reinforced plastic (GRP) sublayers by wet multi-circuit winding and an inner sealing layer of high-density polyethylene. Both demountable and permanent joints, tees, and other parts are constructed for these pipes. The biplastic pipes ensure reliable operation of oil pipeline systems under a pressure of up to 200 bar. The experimental results and calculated estimates of the strength of biplastic pipes are presented. The results of using these pipes in oil pipeline systems in the Perm' region are discussed.

  13. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  14. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  15. 49 CFR 192.191 - Design pressure of plastic fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  16. 49 CFR 192.191 - Design pressure of plastic fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  17. 49 CFR 192.191 - Design pressure of plastic fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  18. 49 CFR 192.191 - Design pressure of plastic fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  19. 49 CFR 192.191 - Design pressure of plastic fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design pressure of plastic fittings. 192.191... Components § 192.191 Design pressure of plastic fittings. (a) Thermosetting fittings for plastic pipe must conform to ASTM D 2517, (incorporated by reference, see § 192.7). (b) Thermoplastic fittings for...

  20. Pipe-to-pipe impact program

    SciTech Connect

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984.

  1. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  2. Pipe protection bibliography

    SciTech Connect

    Guy, N.G.

    1987-01-01

    Pipes and pipelines are being used for an ever widening range of materials, for increasing flows and in harsher applications. There is also more legal and social pressure to reduce the hazards associated with handling materials in pipes. All of this increases the demand for improved pipe reliability. Two of the major preventable causes of pipe failure are corrosion and wear. These may result from the pipe surroundings, or from the material which is carried and it is often impossible to prevent failure by the choice of pipe materials and design. However, additional pipe protection measures are available and it is these measures which are considered in this bibliography. The most common pipe protection methods are the application of coatings and the use of cathodic protection. Accordingly, much of this bibliography is devoted to these techniques. Articles dealing with other means of protecting pipes have also been included. The bibliography covers the protection of oil pipes, (both offshore and on land); water supply systems; gas distribution systems; sewer pipes; pipes for hydraulic and pneumatic transport of solids; power plant pipework; process plant pipework.

  3. Plastic Surgery

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  4. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  5. Pipe Line Control

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The array of tanks, pipes and valves in the photo below is a petroleum tank farm in Georgia, part of a petrochemical pipe line system that moves refined petroleum products from Texas and Louisiana to the mid-Eastern seaboard. The same pipes handle a number of different products, such as gasoline, kerosene, jet fuel or fuel oil. The fluids are temporarily stored in tanks, pumped into the pipes in turn and routed to other way stations along the pipe line. The complex job of controlling, measuring and monitoring fuel flow is accomplished automatically by a computerized control and communications system which incorporates multiple space technologies.

  6. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  8. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  9. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    PubMed

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  10. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  11. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  12. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  13. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  14. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  15. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  16. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  17. The interaction of surfactants with plastic and copper plumbing materials during decontamination.

    PubMed

    Casteloes, Karen S; Mendis, Gamini P; Avins, Holly K; Howarter, John A; Whelton, Andrew J

    2017-03-05

    The study goal was to examine the effectiveness of surfactants to decontaminate plastic and copper potable water plumbing components. Several common potable water pipe and gasket plastics were examined as well as Alconox(®) detergent, Dawn(®) soap, and MAGIT-DG 100 surfactants. Results showed that the MAGIT-DG 100 solutions permeated all plastics within 3days, effectively compromising tensile strength (-82%), physical dimension (+43% volume, +45% weight), and oxidative resistance (-15%). A variety of MAGIT-DG 100 solution compounds permeated plastic samples, not just the declared major ingredient. PVC and cPVC pipes sorbed the least amount of this solution's components of all the plastic pipes tested. Alconox(®) and Dawn(®) solutions caused minimal changes to the physical and mechanical properties of all plastics examined. Crosslinked polyethylene type A (PEX-a) pipe was more susceptible to crude oil contamination than copper pipe. Flushing with a pure water Alconox(®) solution mixture removed all benzene, toluene, ethylbenzene, and total xylenes (BTEX) from copper pipe. No decontamination method affected BTEX removal from PEX pipe. Under certain conditions surfactant solutions have the potential to alter material integrity and may not be a viable option in removing hydrophobic organic compounds from plastic pipe.

  18. Fracture propagation, pipe deformation study

    SciTech Connect

    Aloe, A.; Di Candia, A.; Bramante, M.

    1983-04-15

    Shear fracture propagation has become an important research subject connected with design aspects of gas pipelines. Difficulties involved in predicting safe service conditions from pure theoretical studies require 1:1 scale experiments. Through these tests, semiempirical design criteria was formulated where the minimum level of material quality, indicated by Charpy V energy in the ductile range, is determined as a function of pipe geometry and hoop stress. Disagreements exist among these criteria. Different arrest energy predictions at high hoop stresses and different effects ascribed to the thickness have called for further research in the field. Some interesting indications were obtained about shape and size of the plastic zone ahead of the propagating crack. Burst tests have been conducted and are discussed.

  19. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  20. Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Inaba, K.

    2013-01-01

    The effects of elastic anisotropy in piping materials on fluid-structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress-strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.

  1. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  2. Splayed mirror light pipes

    SciTech Connect

    Swift, P.D.

    2010-02-15

    An expression is given for the transmission of the rectangular-section mirror light pipe. The expression is used to model throughputs for simulated solar conditions over a calender year. It is found that the splaying of a mirror light pipe results in a significant increase in throughputs particularly in winter months. (author)

  3. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  4. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  5. The monster sound pipe

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2017-03-01

    Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be a semitone lower than a non-corrugated smooth pipe of the same length. A video (https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its pitch a semitone.

  6. J-integral of circumferential crack in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chao, Yuh J.; Sutton, M. A.; Lam, P. S.; Mertz, G. E.

    Large diameter thin-walled pipes are encountered in a low pressure nuclear power piping system. Fracture parameters such as K and J, associated with postulated cracks, are needed to assess the safety of the structure, for example, prediction of the onset of tile crack growth and the stability of the crack. The Electric Power Research Institute (EPRI) has completed a comprehensive study of cracks in pipes and handbook-type data is available. However, for some large diameter, thin-walled pipes the needed information is not included in the handbook. This paper reports our study of circumferential cracks in large diameter, thin-walled pipes (R/t=30 to 40) under remote bending or tension loads. Elastic-Plastic analyses using the finite element method were performed to determine the elastic and fully plastic J values for various pipe/crack geometries. A non-linear Ramberg-Osgood material model is used with strain hardening exponents (n) that range from 3 to 10. A number of circumferential, through thickness cracks were studied with half crack angles ranging from 0.063(pi) to 0.5(pi). Results are tabulated for use with the EPRI estimation scheme.

  7. Cracking resistance in steam pipe fittings having various microdamage levels

    SciTech Connect

    Mints, I.I.; Googe, S.Yu.; Shul`gina, N.G.

    1995-05-01

    Cracking resistance and metal damage are considered in relation to structural state for steam-pipe fittings during use. An approximate scheme is given for estimating the maximum permissible operating time in the plastic state in relation to the depth of an observed crack-type defect.

  8. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  9. Experimenting with a "Pipe" Whistle

    ERIC Educational Resources Information Center

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  10. An electrohydrodynamic heat pipe.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  11. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  12. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  13. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  14. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  15. An electrohydrodynamic heat pipe

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  16. The pipes of pan.

    PubMed

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  17. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  18. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  19. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  20. Liquid Explosive in Pipes

    DTIC Science & Technology

    1994-01-01

    ETH - ethanolamine, ED - ethylenediamine, HMT - hexamethylenetetramine , MOR - morpholine. NM - nitromethane, PYR - pyridine, TETA...ror a detonable mixture in 16-mm ID pipe: diethylamine, diethylenetetramine, ethanolamine, ethylenediamine, hexamethylenetetramine , morpholine

  1. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  2. Freezable heat pipe

    DOEpatents

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  3. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  4. Concentrated and piped sunlight for indoor illumination.

    PubMed

    Fraas, L M; Pyle, W R; Ryason, P R

    1983-02-15

    A concept for indoor illumination of buildings using sunlight is described. For this system, a tracking concentrator on the building roof follows the sun and focuses sunlight into a lightguide. A system of transparent lightguides distributes the sunlight to interior rooms. Recent advances in the transparency of acrylic plastic optical fibers suggest that acrylic lightguides could be successfully used for piping sunlight. The proposed system displaces electricity currently used for indoor lighting. It is argued that using sunlight directly for indoor illumination would be about twenty-five times more cost-effective than using sunlight to generate electricity with solar cells for powering electric lamps for indoor lighting.

  5. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  6. Microbial diversity in biofilms on water distribution pipes of different materials.

    PubMed

    Yu, J; Kim, D; Lee, T

    2010-01-01

    The effects of pipe materials on biofilm formation potential (BFP) and microbial communities in biofilms were analyzed. Pipe coupons made of six different materials (CU, copper; CP, chlorinated poly vinyl chloride; PB, polybutylene; PE, polyethylene; SS, stainless steel; ST, steel coated with zinc) were incubated in drinking water, mixed water (inoculated with 10% (v/v) of river water) and drinking water inoculated with Escherichia coli JM109 (E. coli), respectively. The highest BFPs were observed from steel pipes, SS and ST, while CU showed the lowest BFP values. Of the plastic materials, the BFP of CP in drinking water (96 pg ATP/cm(2)) and mixed water (183 pg ATP/cm(2)) were comparable to those of CU, but the other plastic materials, PB and PE, displayed relatively high BFP. The Number of E. coli in the drinking water inoculated with cultures of E. coli strain showed similar trends with BFP values of the pipe coupons incubated in drinking water and mixed water. Molecular analysis of microbial communities indicated the presence of alpha- and beta-proteobacteria, actinobacteria and bacteroidetes in biofilm on the pipe materials. However, the DGGE profile of bacterial 16S rDNA fragments showed significant differences among different materials, suggesting that the pipe materials affect not only BFP but also microbial diversity. Some plastic materials, such as CP, would be suitable for plumbing, particularly for drinking water distribution pipes, due to its low BFP and little microbial diversity in biofilm.

  7. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  8. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City).

    PubMed

    Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan

    2015-10-01

    Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes.

  9. Fracture behavior of short circumferentially surface-cracked pipe

    SciTech Connect

    Krishnaswamy, P.; Scott, P.; Mohan, R.

    1995-11-01

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC`s PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria.

  10. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    SciTech Connect

    Varley, Robert; Halkyard, John; Johnson, Peter; Shi, Shan; Marinho, Thiago

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  11. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    PubMed

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  12. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  13. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  14. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  15. Composite drill pipe

    SciTech Connect

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem , Josephson; Marvin , Neubert; Hans

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  16. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  17. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  18. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  19. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  20. Determination of leakage areas in nuclear piping

    SciTech Connect

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  1. Heat Pipe With Interrupted Slot

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Kosson, Robert L.; Edelstein, Fred

    1994-01-01

    Newer version of heat pipe slot interrupted by plug or, if heat pipe is cast, by bridge of heat-pipe material cast integrally across groove. Small barrier assists in priming heat pipe. Vapor and noncondensible gas still accumulates in liquid channel at evaporator before or during startup, but barrier keeps liquid out of small part of slot at bubble. Dry part of slot allows bubble to escape into vapor channel, making room for liquid to move in during startup.

  2. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  3. Plastic Surgery Statistics

    MedlinePlus

    ... PRS GO PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the ... Plastic Surgery Statistics 2005 Plastic Surgery Statistics 2016 Plastic Surgery Statistics Stats Report 2016 National Clearinghouse of ...

  4. Use of glass fiber-reinforced plastic as an absorber in limestone wet flue gas desulfurization.

    PubMed

    Lin, Haibo

    2008-10-01

    The choice of materials for the spraying and oxidation of pipes directly affect the operation in limestone wet flue gas desulfurization (FGD). There is reason to consider using glass fiber-reinforced plastic (FRP) instead of expensive high nickel alloy for the spraying and oxidation of pipes.

  5. Numerical Modeling for Impact-resistant Pipes Buried at Shallow Depth

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Jong; Hsu, Jung-Fu

    2010-05-01

    The plastic pipes buried at shallow depth are popular for underground telecommunication lines. To assess their impact-worthiness under loads from heavy traffics, the study establishes a numerical model to correlate with field data. Field impact tests were carried out where a 50-kg mass free-falling at 2.2 m height was dropped onto the soil backfill directly above a buried pipe. A contact-impact model incorporating finite elements of disjoined material regions is developed to simulate the phenomena of mass-soil-pipe interaction and soil dent. Plastic soil deformations are accounted for. Also implemented is a new erosion scheme for dealing with numerical instability caused by crumpled elements during heavy impact. Reasonable agreements can be observed between the analyzed and measured soil dent. This model is versatile in making design evaluations for buried pipes to withstand impact loads. It has potential applications to cemented soil fills and blast loads.

  6. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  7. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM.

    SciTech Connect

    DEGRASSI,G.; HOFMAYER,C.; MURPHY,C.; SUZUKI,K.; NAMITA,Y.

    2003-08-17

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper.

  8. Wavenumber Prediction of Waves in Buried Pipes for Water Leak Detection

    NASA Astrophysics Data System (ADS)

    MUGGLETON, J. M.; BRENNAN, M. J.; PINNINGTON, R. J.

    2002-01-01

    Water leaks are a topic of great concern in Britain and many other countries, because of decreasing water supplies and the deterioration of old pipework. Correlation techniques are widely used in leak detection, but for these to be effective, the propagation wavespeeds and wave attenuation must be known. Relatively predictable for metal pipes, these are largely unknown for the newer plastic pipes, being highly dependent on the pipe wall properties and the surrounding medium. In this paper, pipe equations for n=0 axisymmetric wave motion are derived for a fluid-filled pipe, surrounded by an infinite elastic medium which can support both longitudinal and shear waves. These equations are solved for two wave types,s =1,2, which correspond to a fluid dominated wave and an axial shell wave, and expressions for a complex wavenumber for each wave are given.

  9. Plastic Bronchitis.

    PubMed

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments.

  10. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  11. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  12. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  13. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  14. Investigation of transient cavitating flow in viscoelastic pipes

    NASA Astrophysics Data System (ADS)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  15. Quantitative prediction of reduction in large pipe setting round process

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Zhan, Peipei; Ma, Rui; Zhai, Ruixue

    2013-07-01

    The control manner during the process to ensure the quality of pipe products mainly relies on the operator's experience, so it is very necessary to study the setting round process and obtain its spring-back law. The setting round process is shaping an oval section pipe into circular section, so it is difficult to provide a quantificational analysis for its spring-back process because of the curvature inequality of pipe section neutral layer. However, the spring-back law of the circle-oval process can be easily predicted. The experimental method is firstly used to establish the equivalent effect between the setting round process and the circle-oval process. The setting round process can be converted into the circle-oval process. There are two difficulties in the theoretical analysis for the circle-oval process: elastic-plastic bending problem of curved beam; statically indeterminate problem. A quantitative analytic method for the circle-oval process is presented on the basis of combination of the spring-back law of plane curved beam with the element dividing idea in finite element method. The ovality after unloading versus the relative reduction is plotted with analytical and experimental results respectively, which shows a fair agreement. Finally, the method of quantitative prediction of reduction for large pipe setting round is given based on the equivalent effect and the analytical results. Five pipes, which are needed to be set round, are used to carry out experiment so as to verify this method. The results of verification experiment indicates that, in the experimental range, the residual ovality are all under 0.35% after the once only setting round with the theoretical prediction reductions. It is much less than the 1% requirement of pipe standard. Applying the established theoretical analysis is able to correct the pipe ovality with sufficient accuracy, which provides theoretical direction to plant use.

  16. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  17. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  18. Experimenting with a ``Pipe'' Whistle

    NASA Astrophysics Data System (ADS)

    Stafford, Olga

    2012-04-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here allows students in a physics of music or introductory physics course to study an example of an "edge tone" device that produces discrete sound frequencies. From their textbooks, students likely know about standing waves produced by pipes or strings, as well as the resonant frequencies for open and closed pipes. To go a bit further, they can also learn how the frequency of the sound wave depends on the orifice-to-edge distance of the wind instrument.

  19. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  20. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  1. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  2. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  3. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    SciTech Connect

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  4. Simplified dispersion relationships for fluid-dominated axisymmetric wave motion in buried fluid-filled pipes

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Sui, Fusheng; Muggleton, Jennifer M.; Yang, Jun

    2016-08-01

    The dispersion characteristics of axisymmetric (n=0) waves offer a way to gain physical insight into the low-frequency vibrational behaviour of underground pipe systems. Whilst these can be found in the literature, they are generally calculated numerically. Coupled equations of motion for the n=0 waves that propagate in a buried fluid-filled pipe are presented in this paper and, from this, an analytical solution is developed for the fluid-dominated (s=1) wavenumber. The effect of the frictional stress at the pipe-soil interface on the dispersion behaviour of the s=1 wave is characterised by adopting a soil loading matrix. Overall, the fluid loading has a greater effect on the propagation wavespeed compared with the soil loading: for metal pipes, the effect of soil loading is negligible; for plastic pipes, however, simply neglecting the effect of soil loading can lead to a considerable underestimation in the calculation of the wavespeed. The wave attenuation increases significantly at higher frequencies regardless of pipe material resulting from the added damping due to radiation into the soil. Theoretical predictions of the s=1 wavenumber are compared with experimental data measured on an MDPE water pipe. The degree of agreement between prediction and experiment makes clear that, although the wavespeed is only slightly affected by the presence of the frictional stress, the frictional stress at the pipe-soil interface needs to be appropriately taken into account for attenuation predictions.

  5. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  6. Plastic bronchitis

    PubMed Central

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding. PMID:26556975

  7. DEVELOPMENT OF PERMANENT MECHANICAL REPAIR SLEEVE FOR PLASTIC PIPE

    SciTech Connect

    Hitesh Patadia

    2005-04-29

    The report presents a comprehensive summary of the prototype development process utilized towards the development of a permanent mechanical repair fitting intended to be installed on damaged PE mains under blowing gas conditions. Specifically, the step by step construction approach is presented and the experimental data to support the mitigation of ensuing slow crack growth (SCG) of the damage area.

  8. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  9. Deployable Pipe-Z

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi

    2016-10-01

    This paper presents a concept of deployable Pipe-Z (dPZ): a modular structural system which takes advantage of the robustness of rigid-panel mechanism and allows to create free-form links which are also reconfigurable and deployable. The concept presented can be applied for building habitats and infrastructures for human exploration of oceans and outer space. dPZ structures can adapt to changing requirements e.g. mission objectives, crew condition and technological developments. Furthermore, such lightweight and adaptable structural concept can assist in sustainable exploration development. After brief introduction, the concept of Pipe-Z (PZ) is presented. Next, the reconfigurability of PZ is explained and illustrated with continuous and collision-free transition from a PZ forming a Trefoil knot to a Figure-eight knot. The following sections introduce, explain and illustrate the folding mechanism of a single foldable Pipe-Z module (fPZM) and entire dPZ structure. The latter is illustrated with asynchronous (delayed) unfolding of a relatively complex Unknot. Several applications of PZ are suggested, namely for underwater and deep-space and surface habitats, for permanent, but in particular, temporary or emergency passages. As an example, a scenario of a failure of one of the modules of the International Space Station is presented where a rigid structure of 40 fPZMs bypasses the "dead link". A low-fidelity prototype of a 6-module octagonal dPZ is presented; several folding schemes including concentric toric rings are demonstrated. Practical issues of pressurization and packing are briefly discussed.

  10. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  11. Polymeric heat pipe wick

    NASA Astrophysics Data System (ADS)

    Seidenberg, Benjamin

    1988-08-01

    A wick for use in a capillary loop pump heat pipe is described. The wick material is an essentially uniformly porous, permeable, open-cell, polyethylene thermoplastic foam having an ultrahigh average molecular weight of from approximately 1 to 5 million, and an average pore size of about 10 to 12 microns. A representative material having these characteristics is POREX UF, which has an average molecular weight of about 3 million. This material is fully compatible with the FREONs and anhydrous ammonia and allows for the use of these very efficient working fluids in capillary loops.

  12. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  13. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The development, fabrication, and evaluation of heat pipe thermal conditioning panels are discussed. The panels were designed and fabricated to be compatible with several planned NASA space vehicles, in terms of panel size, capacity, temperature gradients, and integration with various heat exchangers and electronic components. It was satisfactorily demonstrated that the heat pipe thermal conditioning panel meets the thermal efficiency and heat transport requirements.

  14. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  15. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  16. High temperature loop heat pipes

    SciTech Connect

    Anderson, W.G.; Bland, J.J.; Fershtater, Y.; Goncharov, K.A.; Nikitkin, M.; Juhasz, A.

    1995-12-31

    Advantages of loop heat pipes over conventional heat pipes include self-priming during start-up, improved tolerance for noncondensible gas, and ability for ground testing in any orientation. The applications for high temperature, alkali-metal working fluid loop heat pipes include space radiators, and bimodal systems. A high temperature loop heat pipe was fabricated and tested at 850 K, using cesium as the working fluid. Previous loop heat pipes were tested with ambient temperature working fluids at temperatures below about 450 K. The loop heat pipe had a titanium envelope, and a titanium aluminide wick. The maximum cesium loop heat pipe power was only about 600 watts, which was lower the predicted 1,000 W power. The power limitation may be due to a wettability problem with the cesium not completely wetting the titanium aluminide wick. This would reduce the pumping capability of the wick, and the maximum power that the heat pipe could carry. This problem could be solved by using a refractory metal powder wick, since the alkali metals are known to wet refractory metal wicks.

  17. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  18. Demonstrating Sound Impulses in Pipes.

    ERIC Educational Resources Information Center

    Raymer, M. G.; Micklavzina, Stan

    1995-01-01

    Describes a simple, direct method to demonstrate the effects of the boundary conditions on sound impulse reflections in pipes. A graphical display of the results can be made using a pipe, cork, small hammer, microphone, and fast recording electronics. Explains the principles involved. (LZ)

  19. Water flows from slotted pipes

    SciTech Connect

    Olson, D.A.

    1981-04-01

    Results of experiments and analyses that determine jet flow distribution from slotted pipes of dimensions typical for OC-OTEC evaporators or condensers are described. For a pipe with a 6.3-cm inside diameter and 0.64-cm wide slot, the measured and predicted jet flow was low and nearly parallel to the pipe at the entrance, and high and perpendicular to the pipe only near the closed end. Slot lengths ranged from 1.5 m to 4.6 m, and inlet flow rates varied from 6 kg/s to 17 kg/s. Friction reduces the pressure in the entrance and intermediate portions of the pipe, while the rapidly decelerating flow produces high pressure recovery as it approaches the closed end. In the region of high flow next to the closed end, the ratio of slot area (slot length times width) to pipe cross-sectional area is less than two. To use a slotted pipe for generating falling jets in an OC-OTEC plant, the slot length should be 1 m or less (for a pipe with a 6.3-cm inside diameter and a 0.64-cm wide slot).

  20. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  1. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  2. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  3. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  4. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  5. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  6. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  7. Wall thinning criteria for low temperature-low pressure piping

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA's), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 [open quotes]Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion[close quotes]. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  8. Predicting the Migration Rate of Dialkyl Organotins from PVC Pipe into Water

    EPA Science Inventory

    Organotins (OTs) are additives widely used as thermal and light stabilizers in polyvinyl chloride (PVC) plastics. OTs can leach into water flowing through PVC pipes. This work examines the leaching rates of two neurotoxic OTs, dimethyl tin (DMT) and dibutyl tin (DBT), from PVC pi...

  9. Analysis of piping response to thermal and operational transients

    SciTech Connect

    Wang, C.Y.

    1987-01-01

    The reactor piping system is an extremely complex three-dimensional structure. Maintaining its structural integrity is essential to the safe operation of the reactor and the steam-supply system. In the safety analysis, various transient loads can be imposed on the piping which may cause plastic deformation and possible damage to the system, including those generated from hydrodynamic wave propagations, thermal and operational transients, as well as the seismic events. At Argonne National Laboratory (ANL), a three-dimensional (3-D) piping code, SHAPS, aimed for short-duration transients due to wave propagation, has been developed. Since 1984, the development work has been shifted to the long-duration accidents originating from the thermal and operational transient. As a result, a new version of the code, SHAPS-2, is being established. This paper describes many features related to this later development. To analyze piping response generated from thermal and operational transients, a 3-D implicit finite element algorithm has been developed for calculating the hoop, flexural, axial, and torsional deformations induced by the thermomechanical loads. The analysis appropriately accounts for stresses arising from the temperature dependence of the elastic material properties, the thermal expansion of the materials, and the changes in the temperature-dependent yield surface. Thermal softening, failure, strain rate, creep, and stress ratching can also be considered.

  10. Mixing in Helical Pipes

    NASA Astrophysics Data System (ADS)

    Gratton, Michael B.; Bernoff, Andrew J.

    2001-11-01

    We consider advection and diffusion of a passive scalar in a helical pipe. By assuming that the curvature and torsion are small (equivalent to small Dean number) and the Reynolds number is moderate, we can use a closed form approximation, due to Dean (1927) and Germano (1982), for the induced recirculation. We investigate the problem numerically using a split-step particle method for a variety of localized initial conditions. The problem is governed by two parameters: a nondimensional diffusion constant D (typically small), and the scaled ratio of torsion to curvature λ. At small times, the longitudinal width of the particle distribution, σ, is governed by diffusive effects (σ ∝ √Dt). At large times, Taylor diffusion dominates (σ ∝ √t/D). However, at intermediate times, a ballistic region exists where the width spreads linearly, as postulated by Mezic & Wiggins (1994). We also discuss how these various behaviors scale with the parameters D and λ.

  11. Heat pipe technology: A biblography with abstracts

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe research and development projects conducted during April through June 1972, is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) test and operation, (6) subject and author index, and (7) heat pipe related patents.

  12. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-11-18

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility.

  13. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  14. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  15. 46 CFR 76.23-20 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... System, Details § 76.23-20 Piping. (a) All piping, valves, and fittings shall meet the applicable requirements of subchapter F (Marine Engineering) of this chapter. (b) All piping, valves, and fittings of... the Commandant. (c) All piping, valves, fittings, and sprinkler heads shall be securely supported,...

  16. Determination of Secondary Encasement Pipe Design Pressure

    SciTech Connect

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  17. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  18. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  19. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  20. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  1. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  2. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  3. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.

  4. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  5. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  6. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  7. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  8. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  9. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  10. Hydrological connectivity of soil pipes

    NASA Astrophysics Data System (ADS)

    Holden, J.

    2003-04-01

    Natural soil pipes are common in many parts of the world and particularly in blanket peat uplands yet there are problems in finding and defining soil pipe networks which are often located deep within the peat. Pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yield. Ground penetrating radar (GPR) technology has recently been developed for non-destructive identification and mapping of soil pipes in peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This poster presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Tracers such as sodium chloride were injected at a constant rate into an open pipe cavity. The GPR was moved across the test area downslope. The resultant radargrams were analysed and significantly increased reflectance was observed from a selection of cavities downslope. It was thus possible to determine hydrological connectivity of soil pipes within a dense pipe network across a hillslope without ground disturbance. In addition, tracers were added to the peat surface upslope of known pipe networks. It was possible to then trace the movement of water across and through the hillslope by using GPR to establish the connectivity of a range of flowpaths. Often pipe networks were supplied with water from overland flow entering through cracks and openings where the soil pipe was near the peat surface. Downslope, pipeflow contributed not only directly to streamflow but also to overland flow and near-surface throughflow on the hillslope. The same water that was within a pipe network at four metres depth could become near-surface throughflow outside of the pipe network a few metres down slope. These data allow the first three-dimensional picture of subsurface

  11. Asymmetric Collapse of LOS Pipe.

    DTIC Science & Technology

    1980-05-26

    models that were used to simulate a LOS pipe . Still, the jet was eliminated in a Pinex model with a helical ribbon of polyolefin on the inside surface of...Target from the Pinex Model 71 with Poly Spiral in Experiment LS-3 .41 b l [ SECTION 1 *. INTRODUCTION 1.1 BACKGROUND Line-of-sight (LOS) pipes are...distance. 3.5.7 Simulation of Pinex Pipe . As shown in the photo- graphs provided in Figures 37 and 38, the Pinex-Standard Model and Pinex-Polyolefin Spiral

  12. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  13. Light pipe - design for efficiency

    SciTech Connect

    Hockey, S.N.

    1985-08-01

    The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

  14. Heat pipe transient response approximation.

    SciTech Connect

    Reid, R. S.

    2001-01-01

    A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.

  15. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  16. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect

    Mallon, B.J.; Blake, R.G.

    1994-05-01

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  17. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  18. B Plant process piping replacement feasibility study

    SciTech Connect

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  19. Fiberglass Reinforced Piping for Shipboard Systems

    DTIC Science & Technology

    1976-07-01

    B16.5 far flanges. Piping is gal- vanized. Thickness corresponds to standard weight. Diameters are 8" and 10”. Joininq. The piping system is welded ...critical, standard elbows are used in place of bends. Supports. Pipe hangers are made of U-bolts through angle iron supports welded directly to the ship...and 30" . Joining. The piping system is welded wherever possible, including at bulkhead penetrations. Spuds are welded into the pipe to form tee

  20. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  1. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  2. OTEC (Ocean Thermal Energy Conversion) Cold Water Pipe At-Sea Test Program. Phase 2: Suspended pipe test

    NASA Astrophysics Data System (ADS)

    McHale, F. A.

    1984-08-01

    An important step in the development of technology for Ocean Thermal Energy Conversion (OTEC) cold water pipes (CWP) is the at-sea testing and subsequent evaluation of a large diameter fiberglass reinforced plastic (FRP) pipe. Focus was on the CWP since it is the most critical element in any OTEC design. The results of the second phase of the CWP At-Sea Test Program are given. During this phase an 8 foot diameter, 400 foot long sandwich wall FRP syntactic foam configuration CWP test article was developed, constructed, deployed and used for data acquisition in the open ocean near Honolulu, Hawaii. This instrumented CWP as suspended from a moored platform for a three week experiment in April-May, 1983. The CWP represented a scaled version of a 40 megawatt size structure, nominally 30 feet in diameter and 3000 feet long.

  3. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  4. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  5. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  6. Heat pipe radiators for space

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.

  7. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  8. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  9. Light pipes for LED measurements

    NASA Technical Reports Server (NTRS)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  10. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  11. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  12. Piping Inelastic Fracture Mechanics Analysis.

    DTIC Science & Technology

    1980-06-30

    DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 12. GOVT ACCESSION NO. S. RECIPIENT’S CATALOG NUMBER NUREG /CR 1119 4259 NRL Memorandum Report _4259...Steel Piping of Boiling Water Reactor Plants," US Nuclear Regulatory Commission, NUREG -75/067, October, 1975. 2. "Investigation and Evaluation of...Stress-Corrosion Cracking in Piping of Light-Water Reactor Plants," US Nuclear Regulatory Commission, NUREG -0531, February, 1979. 3. F.J. Witt, W.H

  13. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  14. Pipe weld crown removal device

    SciTech Connect

    Sword, C.K.; Sette, P.J.

    1992-11-24

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels. 2 figs.

  15. Pipe weld crown removal device

    SciTech Connect

    Sword, C.K.; Sette, P.J.

    1991-12-31

    This invention is comprised of a device that provides for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  16. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  17. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  18. Automated internal pipe cutting device

    DOEpatents

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  19. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  20. Piping inspection round robin

    SciTech Connect

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  1. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  2. Experimental and Simulation Studies on Cold Welding Sealing Process of Heat Pipes

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Shengle; Huang, Jinlong; Yan, Yuying; Zeng, Zhixin

    2017-03-01

    Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (A 1 B 3 C 1 D 3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.

  3. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  4. Crack instability analysis methods for leak-before-break program in piping systems

    SciTech Connect

    Mattar Neto, M.; Nobrega, P.G.B. da

    1995-11-01

    The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing prior to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.

  5. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  6. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  7. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  8. J-Integral Solutions for Surface Crack Inside Pipe under Bending Load

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    In order to provide J-integral solutions for assessing the structural integrity of cracked pipes of nuclear power plants, finite element analyses were performed for circumferential surface cracks of uniform depth in pipes under bending load. Elastic and fully plastic solutions were obtained for a wide range of geometrical and material conditions. Based on the solutions obtained, a procedure for estimating J-integrals of Ramberg-Osgood materials was proposed. Through analyses under various conditions, it was shown that the estimation procedure gives reasonable solutions regardless of material and geometrical conditions and the magnitude of load. The average error in the estimated J-integrals was almost zero.

  9. Volatile pipe prices ahead

    SciTech Connect

    Perkins, C.

    1988-01-01

    Over the last 10 years, prices for oilfield casing and tubing have shot up and down like a roller coaster. Average pipe prices went up 80 percent in the 1979-81 drilling boom. They dropped 50 percent in the 1982-83 period, only to recover 20 percent in 1984-85. The collapse of crude prices caused another 30 percent drop in 1986. Since they bottomed out in August of that year, prices have come up by 60 percent. The key question: ''What lies ahead.'' The short answer: ''Probably more of the same''. This article looks at what has caused price fluctuations of such magnitude and volatility over the past several years to assess the outlook for 1988 and beyond. The author says we are not on the brink of a severe OCTG shortage of any sort, though there may be some very localized spot shortages in terms of deliverability and price. There is likely to be some build up of tubular inventory among supply houses wary of losing regular customers to those with adequate inventories. The characteristic first-of-the-year dip in the active rig count will supplement a slight inventory building, as will an expected increase in imports. The bottomline impact for the wellsite is there is little chance for substantial price increases until the third or fourth quarter of this year. Even then, a considerable jump in utilization would be needed and most analysts are predicting the rig count to slowly rise to about the 1500-plus range for the fourth quarter.

  10. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  11. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  12. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  13. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  14. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  15. U. S. plastics demand drops sharply

    SciTech Connect

    Not Available

    1980-07-28

    According to the Society of the Plastics Industry, plastics demand dropped sharply in the U.S. during second-quarter 1980. U.S. exports of themoplastics are down slightly from year-ago levels, and PVC and low-density polyethylene (LDPE) exports are increasing strongly, but strong exports can not offset a weak domestic market. The weakness in domestic PVC sales is due mostly to large drops in contruction pipe (-49%) and automotive uses, its leading markets, in the last year. LDPE sales have dropped 3% over the year, and 8% in film, LPDE's largest market. Polypropylene's two largest U.S. markets, molding and fibers, have also dropped sharply. Epoxy resin showed a May 1979 to May 1980 gain of 28% in exports, but three other thermosets, polyesters, urea-melamine, and phenolics, have dropped sharply since May 1979.

  16. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  17. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fittings shall have a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in... by blowing out the piping with air at a pressure of at least 100 pounds per square inch....

  18. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fittings shall have a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in... by blowing out the piping with air at a pressure of at least 100 pounds per square inch....

  19. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fittings shall have a bursting pressure of not less than 6,000 pounds per square inch. (b) All piping, in... by blowing out the piping with air at a pressure of at least 100 pounds per square inch....

  20. Laboratory exercises on oscillation modes of pipes

    NASA Astrophysics Data System (ADS)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  1. Pipe flow of pumping wet shotcrete based on lubrication layer.

    PubMed

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    Wet shotcrete can reduce dust and improve supporting strength, however, safe and efficient pipage is a key technical part of wet shotcrete process. The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests. The experimental results show there was a linear relationship between pressure loss and flow rate. Combined with the Buckingham rheological equation, the computing equations of the yield shear stress and plastic viscosity were deduced through linear regression. A simple analytical method allowing for a rough estimation of the pumping pressure was proposed and used when considering the lubrication layer of wet shotcrete in pipes. In addition, two kinds of particulate distributive models were established along the time axial to analyze the formation of lubrication layer which is related with particles migration. By computational fluid dynamics simulation, the lubrication layer thickness of different mix proportions was estimated. A new method for measuring the thickness of lubrication layer was proposed to verify it by binarization processing. Finally, according to the comparative analysis of experiments, simulation and computed value, it can be seen that the lubrication layer plays a key role in the process of wet shotcrete flow and with the increase of lubrication layer thickness pipe pressure declines gradually.

  2. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  3. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  4. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  5. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  6. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  7. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  8. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  9. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  10. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  11. Analysis of Municipal Pipe Network Franchise Institution

    NASA Astrophysics Data System (ADS)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  12. Ratchetting in pressurized pipes

    NASA Astrophysics Data System (ADS)

    Rider, R. J.; Harvey, S. J.; Charles, I. D.

    1994-04-01

    The plastic deformation of thin-walled cylinders has been experimentally examined for the loading conditions of +/- 1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low-carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5S(sub m), where S(sub m) is a stress value defined for each material. The results indicate that the limit of 1.5S(sub m) is excessively low for both materials and that in particular, the stainless steel could tolerate 5S(sub m). Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of +/- 1% axial strain range, for any value of internal pressure.

  13. DETECTION OF SUBSURFACE FACILITIES INCLUDING NON-METALLIC PIPE

    SciTech Connect

    Mr. Herb Duvoisin

    2003-05-26

    CyTerra has leveraged our unique, shallow buried plastic target detection technology developed under US Army contracts into deeper buried subsurface facilities and including nonmetallic pipe detection. This Final Report describes a portable, low-cost, real-time, and user-friendly subsurface plastic pipe detector (LULU- Low Cost Utility Location Unit) that relates to the goal of maintaining the integrity and reliability of the nation's natural gas transmission and distribution network by preventing third party damage, by detecting potential infringements. Except for frequency band and antenna size, the LULU unit is almost identical to those developed for the US Army. CyTerra designed, fabricated, and tested two frequency stepped GPR systems, spanning the frequencies of importance (200 to 1600 MHz), one low and one high frequency system. Data collection and testing was done at a variety of locations (selected for soil type variations) on both targets of opportunity and selected buried targets. We developed algorithms and signal processing techniques that provide for the automatic detection of the buried utility lines. The real time output produces a sound as the radar passes over the utility line alerting the operator to the presence of a buried object. Our unique, low noise/high performance RF hardware, combined with our field tested detection algorithms, represents an important advancement toward achieving the DOE potential infringement goal.

  14. Thermal Performance of High Temperature Titanium - Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Astrophysics Data System (ADS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity aided, in the horizontal position and elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  15. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  16. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  17. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  18. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  19. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  20. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  1. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  2. 46 CFR 108.447 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 108.447 Section 108.447 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.447 Piping. (a) Each pipe,...

  3. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  4. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  5. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  6. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  7. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  8. 46 CFR 182.455 - Fuel piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fuel piping. 182.455 Section 182.455 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with...

  9. 46 CFR 182.455 - Fuel piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fuel piping. 182.455 Section 182.455 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with...

  10. 46 CFR 182.455 - Fuel piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fuel piping. 182.455 Section 182.455 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with...

  11. 46 CFR 182.455 - Fuel piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fuel piping. 182.455 Section 182.455 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with...

  12. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  13. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  14. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  15. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  16. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  17. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-10-05

    This report contains schematic drawings for the pipe fittings for the Hanford waste tanks. Included are the modifications to the W-025 trench {number_sign}31 leachate loadout piping, and also the modifications to the tanker trailers. The piping was modified to prevent spillage to the environment. The tankers were modified for loading and unloading purposes.

  18. 33 CFR 127.1101 - Piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Piping systems. 127.1101 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems. Each piping system within the marine transfer area for LHG used for the transfer of LHG must meet...

  19. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  20. 46 CFR 76.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.17-15 Section 76.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 76.17-15 Piping. (a) All piping, valves, and fittings shall meet the...

  1. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  2. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  3. Stability of cracked pipe under inertial stresses. Subtask 1.1 final report

    SciTech Connect

    Scott, P.; Wilson, M.; Olson, R.; Marschall, C.; Schmidt, R.; Wilkowski, G.

    1994-08-01

    This report presents the results of the pipe fracture experiments, analyses, and material characterization efforts performed within Subtask 1.1 of the IPIRG Program. The objective of Subtask 1.1 was to experimentally verify the analysis methodologies for circumferentially cracked pipe subjected primarily to inertial stresses. Eight cracked-pipe experiments were conducted on 6-inch nominal diameter TP304 and A106B pipe. The experimental procedure was developed using nonlinear time-history finite element analyses which included the nonlinear behavior due to the crack. The model did an excellent job of predicting the displacements, forces, and times to maximum moment. The comparison of the experimental loads to the predicted loads by the Net-Section-Collapse (NSC), Dimensionless Plastic-Zone Parameter, J-estimation schemes, R6, and ASME Section XI in-service flaw assessment criteria tended to underpredict the measured bending moments except for the NSC analysis of the A106B pipe. The effects of flaw geometry and loading history on toughness were evaluated by calculating the toughness from the pipe tests and comparing these results to C(l) values. These effects were found to be variable. The surface-crack geometry tended to increase the toughness (relative to CM results), whereas a negative load-ratio significantly decreased the TP304 stainless steel surface-cracked pipe apparent toughness. The inertial experiments tended to achieve complete failure within a few cycles after reaching maximum load in these relatively small diameter pipe experiments. Hence, a load-controlled fracture mechanics analysis may be more appropriate than a displacement-controlled analysis for these tests.

  4. Stress Indices and Flexibility Factors for 90-Degree Piping Elbows with Straight Pipe Extensions.

    DTIC Science & Technology

    1982-02-01

    FACTORS FOR 90-DEGREE PIPING ELBOWS WITH STRAIGHT PIPE EXTENS IONS cn by oA. J. Quezon and G. C. Everstine a% APPROVED FOR PUBLIC RELEASE: DISTRIBUTION...FLEXIBILITY FACTORS FOR 90-DEGREE PIPING ELBOWS WITH STRAIGHT PIPE EXTENSIONS 6. PERFORMING OrG. REPORT NUMBER = 7. AUTHOR(e S. CONTRACT OR GRANT NUMBER(e...NOTES 19. KEY WORDS (Continue on reverse elde If neceeeary and Identify by bloc, number) Piping Finite Element Flexibility Factor Elbow NASTRAN Bend

  5. Release of accumulated arsenic from distribution pipes into tap water after arsenic treatment of source water- presentation

    EPA Science Inventory

    Toxic arsenic (As) is known to incorporate from source well water onto the scales of distribution system pipes such as iron, copper, galvanized steel and even plastic containing internal buildup of iron coatings (Lytle et al., 2010, 2004; Schock, 2015; Reiber and Dostal, 2000). W...

  6. Pipe Leak Detection Technology Development

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  7. Pipe inspection and repair system

    NASA Technical Reports Server (NTRS)

    Schempf, Hagen (Inventor); Mutschler, Edward (Inventor); Chemel, Brian (Inventor); Boehmke, Scott (Inventor); Crowley, William (Inventor)

    2004-01-01

    A multi-module pipe inspection and repair device. The device includes a base module, a camera module, a sensor module, an MFL module, a brush module, a patch set/test module, and a marker module. Each of the modules may be interconnected to construct one of an inspection device, a preparation device, a marking device, and a repair device.

  8. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect

    David Cist; Alan Schutz

    2005-03-30

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  9. Implicit finite element structural dynamic formulation for long-duration accidents in reactor piping systems

    SciTech Connect

    Wang, C.Y.

    1985-01-01

    This taper describes an implicit three-dimensional finite-element formulation for the structural analysis of reactor piping system. The numerical algorithm considers hoop, flexural, axial, and torsion modes of the piping structures. It is unconditionally stable and can be used for calculation of piping response under static or long duration dynamic loads. The method uses a predictor-corrector, successive iterative scheme which satisfies the equilibrium equations. A set of stiffness equations representing the discretized equations of motion are derived to predict the displacement increments. The calculated displacement increments are then used to correct the element nodal forces. The algorithm is fairly general, and is capable of treating large displacements and elastic-plastic materials with thermal and strain-rate effects. 7 refs., 7 figs.

  10. Pipe Axial Flaw Failure Criteria (PAFFC): Version 1.0 user`s manual and software

    SciTech Connect

    Leis, B.N.; Ghadiali, N.D.

    1994-05-04

    This topical report is the technical manual and basis for delivery of the software tided Pipe Axial Flaw Failure Criterion. This criterion was developed under SI Task 1. 13 for the Line Pipe Research Supervisory Committee of the Pipeline Research Committee. This software has been given the acronym PAFFC, which follows from the underlined letters in the title for this code. The purpose of PAFFC is to determine the failure conditions associated with a single external axial flaw in a gas transmission pipeline. Failure is determined concurrently in terms of two independent failure processes - fracture and/or net-section (plastic) collapse of the ligament between the flaw and the inside surface of the pipe.

  11. Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.

    PubMed

    Zhang, Yan; Griffin, Allian; Edwards, Marc

    2008-06-15

    Nitrification in PVC premise plumbing is a weak function of pH over the range 6.5--8.5 and is insensitive to phosphate concentrations 5--1000 ppb. Lead pipe enhanced nitrification relative to PVC, consistent with expectations that nitrifiers could benefit from ammonia recycled from nitrate via lead corrosion. Relatively new copper pipe (< 1.5-years-old) did not allow nitrifiers to establish, but nitrifiers gradually colonized over a period of months in brass pipes when copper concentrations were reduced by pH adjustment or orthophosphate. Nitrifiers were inhibited by trace copper, but not by lead levels up to 8000 ppb. In some systems using chloramines, brass in plastic plumbing systems might be more susceptible to lead/copper leaching, and accelerated dezincification, due to lower pH values resulting from nitrification.

  12. Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems.

    PubMed

    Walter, Ryan K; Lin, Po-Hsun; Edwards, Marc; Richardson, Ruth E

    2011-04-01

    Plastic piping made of polyvinyl chloride (PVC), and chlorinated PVC (CPVC), is being increasingly used for drinking water distribution lines. Given the formulation of the material from vinyl chloride (VC), there has been concern that the VC (a confirmed human carcinogen) can leach from the plastic piping into drinking water. PVC/CPVC pipe reactors in the laboratory and tap samples collected from consumers homes (n = 15) revealed vinyl chloride accumulation in the tens of ng/L range after a few days and hundreds of ng/L after two years. While these levels did not exceed the EPA's maximum contaminant level (MCL) of 2 μg/L, many readings that simulated stagnation times in homes (overnight) exceeded the MCL-Goal of 0 μg/L. Considerable differences in VC levels were seen across different manufacturers, while aging and biofilm effects were generally small. Preliminary evidence suggests that VC may accumulate not only via chemical leaching from the plastic piping, but also as a disinfection byproduct (DBP) via a chlorine-dependent reaction. This is supported from studies with CPVC pipe reactors where chlorinated reactors accumulated more VC than dechlorinated reactors, copper pipe reactors that accumulated VC in chlorinated reactors and not in dechlorinated reactors, and field samples where VC levels were the same before and after flushing the lines where PVC/CPVC fittings were contributing. Free chlorine residual tests suggest that VC may be formed as a secondary, rather than primary, DBP. Further research and additional studies need to be conducted in order to elucidate reaction mechanisms and tease apart relative contributions of VC accumulation from PVC/CPVC piping and chlorine-dependent reactions.

  13. Heat pipes in space and on earth

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1978-01-01

    The performance of heat pipes used in the thermal control system of spacecraft such as OAO-III and ATS-6 is discussed, and applications of heat pipes to permafrost stabilization on the Alaska Pipeline and to heat recovery systems are described. Particular attention is given to the ATS-6, launched in 1974, which employs 55 heat pipes to carry solar and internal power loads to radiator surfaces. In addition, experiments involving radiative cooling based on cryogenic heat pipes have been planned for the Long Duration Exposure Facility spacecraft and for Spacelab. The role of heat pipes in Space Shuttle heat rejection services is also mentioned.

  14. Plastic encapsulated parts

    SciTech Connect

    Castillo, T.

    1994-10-01

    Plastic semiconductor packages were characterized as possible alternatives for canned devices, which are susceptible to internal shorts caused by conductive particles. Highly accelerated stress testing (HAST) as well as electrical and mechanical testing were conducted on plastic technology devices.

  15. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  16. Monitoring pipes for residual alpha contamination

    SciTech Connect

    MacArthur, D.; Rawool-Sullivan, M.; Dockray, T.

    1996-09-01

    The sensitivity and application of traditional alpha monitors is limited by the short range of alpha particles in air and in solid materials. Detecting small amounts of alpha-emitting contamination inside pipes presents particular problems. The alpha particle cannot penetrate the walls of the pipe. Associated gamma-ray detection and active neutron interrogation is often used to detect large amounts of radioactive material in pipes, but these methods are of limited use for detecting small amounts of contamination. Insertion of a traditional alpha probes works well in large diameter straight pipes, but is increasingly difficult as the pipe network becomes smaller in diameter and more complex. Monitors based on long-range alpha detection (LRAD) detect ionization of the ambient air rather than the alpha particles themselves. A small fan draws the ions into an externally mounted ion detector. Thus, the air in the pipe serves as both the detector gas and the mechanism for transporting the alpha-induced ions to a detection grid outside the pipe. All of the ions created by all of the contamination in the pipe can be measured in a single detector. Since ambient air serves as the probe, crushed or twisted sections of pipe can be monitored almost as effectively as straight sections. The pipe monitoring system described in the paper was tested both at LANL and BNFL`s Sellafield reprocessing facility in the UK. In this paper, we report on the first field tests of the pipe monitoring system.

  17. Underground pipe inspection device and method

    DOEpatents

    Germata, Daniel Thomas

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  18. Recovering automotive plastics

    SciTech Connect

    Not Available

    1993-10-01

    This article reports on the results of a study on increasing the recycling of plastics in automobiles. Plastics are being used in increasing amounts in vehicles and new methods of retrieving these plastics for recycling are needed to reduce the amount of automotive shredder residue that is currently being sent to residues. The study concentrated on increasing the ease of disassembly and contaminant removal.

  19. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  20. Processing of plastics

    PubMed Central

    Spaak, Albert

    1975-01-01

    An overview is given of the processing of plastic materials from the handling of polymers in the pellet and powder form to manufacturing of a plastic fabricated product. Various types of equipment used and melt processing ranges of various polymer formulations to make the myriad of plastic products that are commercially available are discussed. PMID:1175556

  1. Tomorrow's Plastic World

    ERIC Educational Resources Information Center

    Macdonald, Averil

    2005-01-01

    Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.

  2. Plastic resin hardener poisoning

    MedlinePlus

    ... pipe (esophagus) Blood in the stool Skin Irritation Burns Holes in the skin or tissues under the skin ... lungs) Endoscopy (camera down the throat to see burns to the ... burned skin (debridement) Tube through the nose into the stomach ...

  3. Physical characterization and recovery of corroded fingerprint impressions from postblast copper pipe bomb fragments.

    PubMed

    Bond, John W; Brady, Thomas F

    2013-05-01

    Pipe bombs made from 1 mm thick copper pipe were detonated with a low explosive power powder. Analysis of the physical characteristics of fragments revealed that the copper had undergone work hardening with an increased Vickers Hardness of 107HV1 compared with 80HV1 for unexploded copper pipe. Mean plastic strain prior to fracture was calculated at 0.28 showing evidence of both plastic deformation and wall thinning. An examination of the external surface showed microfractures running parallel with the length of the pipe at approximately 100 μm intervals and 1-2 μm in width. Many larger fragments had folded "inside out" making the original outside surface inaccessible and difficult to fold back through work hardening. A visual examination for fingerprint corrosion revealed ridge details on several fragments that were enhanced by selective digital mapping of colors reflected from the surface of the copper. One of these fingerprints was identified partially to the original donor.

  4. System for Testing Thermal Insulation of Pipes

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.; Nagy, Zoltan F.

    2003-01-01

    An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems. The basic measurement principle is straightforward: The outer surface of the pipe insulation is maintained at a fixed warmer temperature. The interior of the pipe is maintained in a narrow fixed lower-temperature range by means of a regular liquid (e.g., water) that is pumped through the pipe at a known flow rate or a cryogenic liquid (e.g., nitrogen) that is saturated at atmospheric pressure and replenished until steady-state conditions are achieved. In the case of water or another liquid pumped through, the inlet and outlet temperatures are measured and heat-leak power is calculated as the mass flow rate of the liquid multiplied by the specific heat of the liquid multiplied by the inlet-to-outlet temperature rise of the liquid. In the case of liquid nitrogen or another low-temperature boiling liquid, the heat-leak power is calculated as the rate of boil-off multiplied by the latent heat of vaporization of the liquid. Then the thermal-insulation performance of the pipe system can be calculated as a function of the measured heat-leak power, the inner and outer boundary temperatures, and the dimensions of the pipe. The apparatus can test as many as three pipes simultaneously. The pipes can have inner diameters up to .15 cm and outer diameters up to .20 cm. The lengths of the pipes may vary; typical lengths are of the order of 18 m. Two thermal guard boxes . one for each end of the pipe(s) under test . are used to make the inlet and outlet fluid connections to the pipe(s) (see figure). The connections include bellows that accommodate thermal expansion and contraction

  5. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  6. Biodegradability of plastics.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  7. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  8. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  9. Variable-Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.

    1986-01-01

    In response to need to accurately and efficiently predict performance of variable-conductance heat pipes (VCHP's) incorporated in spacecraft thermalcontrol systems, computer code VCHPDA developed to interact with thermal analyzer programs such as SINDA (Systems Improved Numerical Differencing Analyzer). Calculates length of gas-blocked region and vapor temperature in active portion. Advantages of VCHPDA over prior programs improved accuracy, unconditional stability, and increased efficiency of solution resulting from novel approach and use of state-of-the-art numerical techniques for solving VCHP mathematical model. Code valuable tool in design and evaluation of advanced thermal-control systems using variable-conductance heat pipes. Written in FORTRAN IV for use on CDC 600 computers.

  10. Inspecting an ethylene pipe line

    SciTech Connect

    Ramsvig, D.M. ); Duncan, J.; Zillinger, L. )

    1991-07-01

    This paper reports on the Alberta Gas Ethylene Co. (AGEC), completion of intensive internal cleaning and inspection program on their 112-mi ethylene pipe line. AGEC operates two ethylene manufacturing facilities in central Alberta, Canada. The ethylene plants are located 12.4 mi east of Red Deer, Alta., at Joffre, and supply two customers in Joffre. The remaining ethylene is shipped by the 112-mi, 12-in. line to a storage cavern near Edmonton.

  11. Entrainment in electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1972-01-01

    A theoretical analysis for predicting the onset of the Kelvin-Helmholtz instability is reported. The model for the analysis is described, and the derived stability criterion are given. It is concluded that surface tension plays a role in the entrainment limit of electro hydrodynamic heat pipes. The surface of the liquid in an EHD flow structure is open, with no restriction placed on the wavenumbers of perturbations.

  12. Hot Leg Piping Materials Issues

    SciTech Connect

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  13. 46 CFR 154.310 - Cargo piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo piping systems. 154.310 Section 154.310 Shipping... Arrangements § 154.310 Cargo piping systems. Cargo liquid or vapor piping must: (a) Be separated from other piping systems, except where an interconnection to inert gas or purge piping is required by §...

  14. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  15. 46 CFR 154.522 - Materials for piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Materials for piping. 154.522 Section 154.522 Shipping... Process Piping Systems § 154.522 Materials for piping. (a) The materials for piping systems must meet § 154.625 for the minimum design temperature of the piping, except the material for open ended...

  16. How Plastics Work

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2013-03-01

    We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.

  17. Lightweight Heat Pipes Made from Magnesium

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  18. Extended Development of Variable Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Edwards, D. K.; Luedke, E. E.

    1978-01-01

    A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode.

  19. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  20. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  1. Pipe lifting hook having clamp assembly

    SciTech Connect

    Codner, J.A.

    1984-06-12

    A pipe lifting hook is provided having a generally ''C'' shaped hook member having an elongated lower portion being insertable within the end of a joint of pipe and having an upper portion positionable above the pipe and provided with lifting connection means. The hook member is frictionally clamped to the pipe by grip shoe means that is movably supported by the upper portion of the hook member and is selectably movable from a released position out of contact with said pipe to a locked position in frictional locking engagement with the outer surface of the pipe. A ratchet mechanism couples said grip shoe means to the upper portion of the hook member and is manually positionable to lock said grip shoe means at said locked position or release said grip shoe means for movement toward said released position thereof.

  2. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cause stresses that exceed the design stresses, the piping and piping system components and cargo tanks... including: (1) Bellows; (2) Slip joints; (3) Ball joints; or (e) Other means specially approved by...

  3. Bending loss of terahertz pipe waveguides.

    PubMed

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  4. Transverse flat plate heat pipe experiment

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1978-01-01

    This paper describes a Shuttle-launched flight experiment to evaluate the performance of a transverse flat plate heat pipe that serves as an integral temperature control/mounting panel for electronic equipment. A transverse heat pipe is a gas-controlled variable conductance heat pipe that can handle relatively large thermal loads. An experiment designed to flight test the concept over a 6-9 month period is self-sufficient with respect to electrical power, timing sequences, and data storage.

  5. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  6. Simulated Heat-Pipe Vapor Dynamics

    DTIC Science & Technology

    1987-05-01

    129 - viii - Notation A pipe area A porous pipe property (Eq 2.12) AR aspect ratio (Eq 6.27) B porous pipe property (Eq 2.12) C coefficient of...laminar flow, in circular porous tubes. He assumed a constant -5- - -t- -- - - - -- 5-- - - ’C -W property fluid and uniform wall mass transfer. He...two gas models studied by Levy. They found that assuming thermodynamic equilibrium of the two phase flow was valid -9- when compared with unpublished

  7. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  8. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, Douglas S.

    1995-01-01

    A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

  9. Isentropic fluid dynamics in a curved pipe

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Holden, Helge

    2016-10-01

    In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].

  10. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  11. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, G. T.; Hartley, J. G.

    1985-01-01

    The overall goal is to gain a better understanding of the transient behavior of heat pipes operating under both normal and adverse conditions. Normal operation refers to cases where the capillary structure remains fully wetted. Adverse operation occurs when drying, re-wetting, choking, noncontinuum flow, freezing, thawing etc., occur within the heat pipe. The work was redirected towards developing the capability to predict operational behavior of liquid metal heat pipes used for cooling aerodynamic structures. Of particular interest is the startup of such heat pipes from an initially frozen state such as might occur during re-entry of a space vehicle into the Earth's atmosphere or during flight of hypersonic aircraft.

  12. Development of an in pipe inspection minirobot

    NASA Astrophysics Data System (ADS)

    Tătar, M. O.; Pop, A.

    2016-08-01

    In the first part of the paper, authors present a new in pipe inspection minirobot with wheeled adaptable structure for pipe diameters ranging from 220 to 380 mm. The mechanical structure is composed of three adaptable mechanisms placed at 120 degrees around the central axes. For adapting to the interior surface of the pipe, a passive method is used which utilizes elastic elements. In the second part of the paper, authors present the simulation of in pipe minirobot locomotion, components of driving and control systems, user interface, conclusions and future development areas.

  13. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  14. Plastics and health risks.

    PubMed

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  15. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  16. Additives in plastics.

    PubMed

    Deanin, R D

    1975-06-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products.

  17. LARGE DIAMETER WATER TEST MACHINE, TEST FINISHED, PIPE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LARGE DIAMETER - WATER TEST MACHINE, TEST FINISHED, PIPE ON CAR. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  18. Literature review and experimental investigation of heat pipes

    NASA Technical Reports Server (NTRS)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  19. INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE FILLING A PONT A MOUSSON PIPE CASTING MACHINE (EITHER NO. 2 OR NO. 3) FOR PRODUCTION OF AN 8 INCH FASTTITE PIPE USED FOR GAS AND WATER TRANSMISSION. THIS FRENCH-MADE CASTING MACHINE MAKES 4, 6, 8, 10, AND 12 INCH PIPE. THE MACHINE CAN MAKE 48 EIGHT INCH PIPE AN HOUR AND UP TO 60 FOUR INCH PIPE PER HOUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL

  20. Heat Pipe with Axial Wick

    NASA Technical Reports Server (NTRS)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  1. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    PubMed

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.

  2. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To increase global market share and value the US cotton industry needs to supply cotton lint that is free of contamination. Removing plastic contamination first requires developing a means to detect plastics in seedcotton. This study was conducted to validate a custom Ion Mobility Spectrometer (IM...

  3. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  4. Biodegradation of plastics.

    PubMed

    Shimao, M

    2001-06-01

    Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. Recent work has included studies of the distribution of synthetic polymer-degrading microorganisms in the environment, the isolation of new microorganisms for biodegradation, the discovery of new degradation enzymes, and the cloning of genes for synthetic polymer-degrading enzymes.

  5. 46 CFR 132.110 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.110 Piping. (a) Except as provided for liftboats by § 134.180 of this subchapter, each fitting, flange, valve, and run of piping must meet the applicable requirements of part 128...

  6. 46 CFR 132.110 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Fire Main § 132..., valve, and run of piping must meet the applicable requirements of part 128 of this subchapter. Piping...-resistant material. (b) Each distribution cut-off valve must be marked in compliance with § 131.820 of...

  7. 46 CFR 132.110 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.110 Piping. (a) Except as provided for liftboats by § 134.180 of this subchapter, each fitting, flange, valve, and run of piping must meet the applicable requirements of part 128...

  8. 46 CFR 132.110 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT General Provisions; Fire Main § 132.110 Piping. (a) Except as provided for liftboats by § 134.180 of this subchapter, each fitting, flange, valve, and run of piping must meet the applicable requirements of part 128...

  9. 46 CFR 132.110 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Fire Main § 132..., valve, and run of piping must meet the applicable requirements of part 128 of this subchapter. Piping...-resistant material. (b) Each distribution cut-off valve must be marked in compliance with § 131.820 of...

  10. The feasibility of electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1971-01-01

    The effect of a nonuniform electrostatic field on insulating dielectric liquids in heat pipes was studied. Topics discussed include the theory of operation, design criteria, and evaluation of optimal design features. It is concluded that the electrodynamic heat pipes offer advantages that must be weighed against the disadvantages in order to arrive at a proper assessment of their value in solving heat transfer problems.

  11. 46 CFR 95.15-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are connected, a pressure test shall be applied as set forth in this paragraph. Only carbon dioxide or..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-15 Piping. (a) The piping, valves, and fittings shall...

  12. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are connected, a pressure test shall be applied as set forth in this paragraph. Only carbon dioxide or..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves, and fittings shall...

  13. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests....

  14. Jacketed cryogenic piping is stress relieved

    NASA Technical Reports Server (NTRS)

    Bowers, W. M.

    1967-01-01

    Jacketed design of piping used to transfer cryogenic fluids, relieves severe stresses associated with the temperature gradients that occur during transfer cycles and ambient periods. The inner /transfer/ pipe is preloaded in such a way that stress relief takes place automatically as cycling occurs.

  15. Vapor-Resistant Heat-Pipe Artery

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Shaubach, Robert M.; Buchko, Matt

    1991-01-01

    Vapor lock in heat pipe delayed or prevented. Modifications of wick prevent flow of vapor into, or formation of vapor in, liquid-return artery. Small pores of fine-grained sintered wick help to prevent formation of large bubbles. Slotted tube offers few nucleation sites for bubbles. Improves return of liquid in heat pipe.

  16. Solving FRP piping and ducting problems

    SciTech Connect

    Britt, F.

    1997-12-01

    This paper presents an analytical approach to the design and installation of FRP piping and duct systems that can be used by piping designers and engineers to prevent failures. Design, installation, testing, and start up procedures will be presented that have proven to provide safe and long lasting service. Procedures offered will insure the most cost effective system based on operational requirements.

  17. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests. (a) Each test prescribed in (b), (c), and (d) of this section must be performed upon completion of...

  18. 46 CFR 95.15-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... are connected, a pressure test shall be applied as set forth in this paragraph. Only carbon dioxide or..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-15 Piping. (a) The piping, valves, and fittings shall...

  19. 46 CFR 193.15-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... are connected, a pressure test shall be applied as set forth in this paragraph. Only carbon dioxide or..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-15 Piping. (a) The piping, valves, and fittings shall...

  20. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests....

  1. 46 CFR 95.15-15 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... are connected, a pressure test shall be applied as set forth in this paragraph. Only carbon dioxide or..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-15 Piping. (a) The piping, valves, and fittings shall...

  2. 46 CFR 108.447 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and fitting in a CO2 system must have a bursting pressure of at least 420 kilograms per square centimeter (6,000 pounds per square inch). (b) All piping for a CO2 system of nominal size of 19.05... heavy). (c) Each pipe, valve, and fitting made of ferrous materials in a CO2 system must be...

  3. Heat pipe technology. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 55 publications on the theory, design, development, fabrication, and testing of heat pipes. Applications covered include solar, nuclear, and thermoelectric energy conversion. A book (in Russian) on low temperature heat pipes is included as well as abstracts when available. Indexes provided list authors, titles/keywords (permuted) and patents.

  4. 46 CFR 108.449 - Piping tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Piping tests. 108.449 Section 108.449 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.449 Piping tests. (a) Each test prescribed in (b), (c), and (d) of this section must be performed upon completion of...

  5. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide... installed. [Amdt. 195-22, 46 FR 38360, July 27, 1981, as amended by Amdt. 195-52, 59 FR 33396, June 28, 1994; Amdt. 195-63, 63 FR 37506, July 13, 1998]...

  6. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  7. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  8. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  9. 49 CFR 230.62 - Dry pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Dry pipe. 230.62 Section 230.62 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes §...

  10. Water driven turbine/brush pipe cleaner

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  11. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  12. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  13. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  14. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  15. Digital X-ray Pipe Inspector Software

    SciTech Connect

    Gibbs, Kenneth M.

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes to evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the analysis

  16. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  17. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  18. Ultrasonic guided waves in eccentric annular pipes

    SciTech Connect

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

  19. IPIRG programs - advances in pipe fracture technology

    SciTech Connect

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  20. Interfacial thermodynamics of micro heat pipes

    SciTech Connect

    Swanson, L.W. ); Peterson, G.P. )

    1995-02-01

    Successful analysis and modeling of micro heat pipes requires a complete understanding of the vapor-liquid interface. A thermodynamic model of the vapor-liquid interface in micro heat pipes has been formulated that includes axial pressure and temperature differences, changes in local interfacial curvature, Marangoni effects, and the disjoining pressure. Relationships were developed for the interfacial mass flux in an extended meniscus, the heat transfer rate in the intrinsic meniscus, the 'thermocapillary' heat-pipe limitation, as well as the nonevaporating superheated liquid film thickness that exists between adjacent menisci and occurs during liquid dry out in the evaporator. These relationships can be used to define quantitative restrictions and/or requirements necessary for proper operation of micro heat pipes. They also provide fundamental insight into the critical mechanisms required for proper heat pipe operation. 29 refs., 6 figs.

  1. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  2. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  3. Wall thinning criteria for low temperature-low pressure piping. Task 91-030-1

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA`s), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 {open_quotes}Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion{close_quotes}. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  4. Development of Rapid Pipe Moulding Process for Carbon Fiber Reinforced Thermoplastics by Direct Resistance Heating

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuto; Harada, Ryuki; Uemura, Toshiki; Katayama, Tsutao; Kuwahara, Hideyuki

    To deal with environmental issues, the gasoline mileage of passenger cars can be improved by reduction of the car weight. The use of car components made of Carbon Fiber Reinforced Plastics (CFRP) is increasing because of its superior mechanical properties and relatively low density. Many vehicle structural parts are pipe-shaped, such as suspension arms, torsion beams, door guard bars and impact beams. A reduction of the car weight is expected by using CFRP for these parts. Especially, when considering the recyclability and ease of production, Carbon Fiber Reinforced Thermoplastics are a prime candidate. On the other hand, the moulding process of CFRTP pipes for mass production has not been well established yet. For this pipe moulding process an induction heating method has been investigated already, however, this method requires a complicated coil system. To reduce the production cost, another system without such complicated equipment is to be developed. In this study, the pipe moulding process of CFRTP using direct resistance heating was developed. This heating method heats up the mould by Joule heating using skin effect of high-frequency current. The direct resistance heating method is desirable from a cost perspective, because this method can heat the mould directly without using any coils. Formerly developed Non-woven Stitched Multi-axial Cloth (NSMC) was used as semi-product material. NSMC is very suitable for the lamination process due to the fact that non-crimp stitched carbon fiber of [0°/+45°/90°/-45°] and polyamide 6 non-woven fabric are stitched to one sheet, resulting in a short production cycle time. The use of the pipe moulding process with the direct resistance heating method in combination with the NSMC, has resulted in the successful moulding of a CFRTP pipe of 300 mm in length, 40 mm in diameter and 2 mm in thickness.

  5. American Society of Plastic Surgeons

    MedlinePlus

    ... that instill confidence. Do Your Homework Patient Safety Plastic Surgery When you choose a doctor who is ... to procedure selector Why Choose A Board Certified Plastic Surgeon Choose a board-certified plastic surgeon and ...

  6. Chemical laser exhaust pipe design research

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  7. Numerical Analysis of JNES Seismic Tests on Degraded Combined Piping System

    SciTech Connect

    Zhang T.; Nie J.; Brust, F.; Wilkowski, G.; Hofmayer, C.; Ali, S.; Shim, D-J.

    2012-02-02

    Nuclear power plant safety under seismic conditions is an important consideration. The piping systems may have some defects caused by fatigue, stress corrosion cracking, etc., in aged plants. These cracks may not only affect the seismic response but also grow and break through causing loss of coolant. Therefore, an evaluation method needs to be developed to predict crack growth behavior under seismic excitation. This paper describes efforts conducted to analyze and better understand a series of degraded pipe tests under seismic loading that was conducted by Japan Nuclear Energy Safety Organization (JNES). A special 'cracked-pipe element' (CPE) concept, where the element represented the global moment-rotation response due to the crack, was developed. This approach was developed to significantly simplify the dynamic finite element analysis in fracture mechanics fields. In this paper, model validation was conducted by comparisons with a series of pipe tests with circumferential through-wall and surface cracks under different excitation conditions. These analyses showed that reasonably accurate predictions could be made using the abaqus connector element to model the complete transition of a circumferential surface crack to a through-wall crack under cyclic dynamic loading. The JNES primary loop recirculation piping test was analyzed in detail. This combined-component test had three crack locations and multiple applied simulated seismic block loadings. Comparisons were also made between the ABAQUS finite element (FE) analyses results to the measured displacements in the experiment. Good agreement was obtained, and it was confirmed that the simplified modeling is applicable to a seismic analysis for a cracked pipe on the basis of fracture mechanics. Pipe system leakage did occur in the JNES tests. The analytical predictions using the CPE approach did not predict leakage, suggesting that cyclic ductile tearing with large-scale plasticity was not the crack growth mode for

  8. Plastic bottle oscillator: Rhythmicity and mode bifurcation of fluid flow

    NASA Astrophysics Data System (ADS)

    Kohira, Masahiro I.; Magome, Nobuyuki; Kitahata, Hiroyuki; Yoshikawa, Kenichi

    2007-10-01

    The oscillatory flow of water draining from an upside-down plastic bottle with a thin pipe attached to its head is studied as an example of a dissipative structure generated under far-from-equilibrium conditions. Mode bifurcation was observed in the water/air flow: no flow, oscillatory flow, and counter flow were found when the inner diameter of the thin pipe was changed. The modes are stable against perturbations. A coupled two-bottle system exhibits either in-phase or anti-phase self-synchronization. These characteristic behaviors imply that the essential features of the oscillatory flow in a single bottle system can be described as a limit-cycle oscillation.

  9. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  10. Some design aspects of plastics gas distribution pipeline systems

    SciTech Connect

    Wolters, M.

    1988-01-01

    Plastics gas distribution systems are in use in the Netherlands for more than 25 years. Three different plastics pipe materials have been used, i.e. polyethylene (PE), rigid PVC and impact modified PVC (PVC/CPE). The gas authority must consider the many and varied factors which will influence the choice of a particular material. Each material has its characteristic properties which will determine its field of application and the design concepts of the system. Since this will be a compromise between material properties and design, the advantages and disadvantages of the system must be examined for each specific area of application. Factors which will influence the choice are a.o.: external loading conditions (soil and traffic loads, third party damage, etc.); internal loading (max. allowable internal pressure, gas composition); the material properties like long-term strength, ductility, stiffness, resistance to rapid crack propagation; jointing methods; materials costs and laying costs. These above mentioned factors are discussed for the plastics pipe materials in operation in the Netherlands.

  11. Predicting the migration rate of dialkyl organotins from PVC pipe into water.

    PubMed

    Adams, William A; Xu, Ying; Little, John C; Fristachi, Anthony F; Rice, Glenn E; Impellitteri, Christopher A

    2011-08-15

    Organotins (OTs) are additives widely used as thermal and light stabilizers in polyvinyl chloride (PVC) plastics. OTs can leach into water flowing through PVC pipes. This work examines the leaching rates of two potentially neurotoxic OTs, dimethyl tin (DMT) and dibutyl tin (DBT), from PVC pipe. Water was circulated in a closed loop laboratory PVC pipe system. Using a gas chromatograph-pulsed flame photometric detector (GC-PFPD), the change in concentrations of DMT and DBT in the water in the system was monitored over time and allowed to reach equilibrium. OT concentration as a function of time was analyzed using a mechanistic leaching rate model. The diffusion coefficient for OT in the PVC pipe material, the only unknown model parameter, was found to be 9 × 10(-18) m(2)/s. This value falls within with the range of values estimated from the literature (2 × 10(-18) to 2 × 10(-17) m(2)/s) thus increasing confidence in the leaching rate model.

  12. Non-linear finite element-based material constitutive law for zero slump steel fiber reinforced concrete pipe structures

    NASA Astrophysics Data System (ADS)

    Mikhaylova, Alena

    This study presents a comprehensive investigation of performance and behavior of steel-fiber reinforced concrete pipes (SFRCP). The main goal of this study is to develop the material constitutive model for steel fiber reinforced concrete used in dry-cast application. To accomplish this goal a range of pipe sizes varying from 15 in. (400 mm) to 48 in. (1200 mm) in diameter and fiber content of 0.17%, 0.25%, 0.33%, 0.5%, 0.67% and 83% by volume were produced. The pipes were tested in three-edge bearing condition to obtain the load-deformation response and overall performance of the pipe. The pipes were also subjected to hydrostatic joint and joint shear tests to evaluate the performance of the fiber-pipe joints for water tightness and under differential displacements, respectively. In addition, testing on hardened concrete was performed to obtain the basic mechanical material properties. High variation in the test results for material testing was identified as a part of experimental investigation. A three-dimensional non-linear finite element model of the pipe under the three edge bearing condition was developed to identify the constitutive material relations of fiber-concrete composite. A constitutive model of concrete implementing the concrete plasticity and continuum fracture mechanics was considered for defining the complex non-linear behavior of fiber-concrete. Three main concrete damage algorithms were examined: concrete brittle cracking, concrete damaged plasticity with adaptive meshing technique and concrete damaged plasticity with visco-plastic regularization. The latter was identified as the most robust and efficient to model the post-cracking behavior of fiber reinforced concrete and was used in the subsequent studies. The tension stiffening material constitutive law for composite concrete was determined by converging the FEM solution of load-deformation response with the results of experimental testing. This was achieved by iteratively modifying the non

  13. Heat pipes to reduce engine exhaust emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  14. Influence of water flow on pipe inspection

    NASA Astrophysics Data System (ADS)

    Ahmad, Rais; Banerjee, Sourav; Kundu, Tribikram

    2005-05-01

    From various studies by different investigators it has been now well established that a number of cylindrical guided wave modes are sensitive to the pipe wall defects. Several investigations by these authors and other researchers showed that the strengths of the guided waves propagating through a pipe that is placed in air are reduced when the pipe wall defects are encountered. This reduction is expected because the pipe wall defects (gouge, dent, removed metal due to corrosion etc.) alter the pipe geometry, hampering the free propagation of guided wave modes. When water flows through the pipes, the guided wave technique becomes more challenging because the flowing water absorbs part of the propagating acoustic energy. Flowing water may also induce some standing modes. The propagating cylindrical guided wave modes become leaky modes in presence of the flowing water, in other words energy leaks into water. Therefore, the energy detected by a receiver, placed at a large distance from the transmitter, is reduced even for a defect free pipe. Further reduction in the signal strength occurs in presence of defects.

  15. Heat pipe fatigue test specimen: Metallurgical evaluation

    NASA Technical Reports Server (NTRS)

    Walak, Steven E.; Cronin, Michael J.; Grobstein, Toni

    1992-01-01

    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test.

  16. Axially grooved heat pipe study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.

  17. Determination of geomagnetic archaeomagnitudes from clay pipes

    NASA Astrophysics Data System (ADS)

    Games, K. P.; Baker, M. E.

    1981-02-01

    Archaeomagnitude determinations of a selection of clay pipes dateable to AD 1645+/-10 as well as studies of pottery samples from the same site and of the same age have been made. Values of the magnitude of the ancient magnetic field (Banc), were obtained from two pottery sherds, two pipe bowls and three pipe stems. The values from the sherds and bowls agree within 2% and compare well with the average value of the magnitude of the magnetic field for the seventeenth century as determined by other archaeomagnetic studies. However, the pipe stems give values of Banc which are significantly less than those from the bowls and pottery. We have not yet been able to explain this and thus we suggest that reliable archaeomagnitude determinations can be made from the bowls of clay pipes but not from the stems. Nevertheless, this result provides a new source of material for investigating variations in the geomagnetic field strength over the past 400 yr. Clay pipes have been manufactured in England since the end of the sixteenth century. In the firing process some pipes were broken and disposed of without ever having been smoked. One such collection, discovered at Rainford, Lancashire, in 1978, consisted of a series of discrete dumps including pipes, kiln debris and a small collection of contemporary used earthenware sherds. The internal consideration of the dumps suggested a very short period of activity and archaeologists (P. Davey, personal communication) ascribe all the material to the period 1645+/-10 yr. With such well-dated material, we set out to check whether or not reliable archaeomagnitudes could be obtained from the pipes.

  18. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal...

  19. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal...

  20. Spatial distribution of pipe collapses in Goodwin Creek Watershed, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can induce pipe collapses that affect soil erosion process and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe co...

  1. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  2. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Disconnect” Device (d) Gas pipe sizing. Gas piping systems shall be sized so that the pressure drop to any... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. (a) General. The requirements of this section shall govern...

  3. 24 CFR 3280.705 - Gas piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Do Not Use Tools To Separate the “Quick-Disconnect” Device (d) Gas pipe sizing. Gas piping systems... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Gas piping systems. 3280.705... Systems § 3280.705 Gas piping systems. Link to an amendment published at 78 FR 73987, Dec. 9, 2013....

  4. 46 CFR 61.15-15 - Other piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Other piping. 61.15-15 Section 61.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-15 Other piping. (a) All other piping systems shall be...

  5. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes....

  6. 46 CFR 42.15-50 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 42.15-50 Section 42.15-50 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-50 Air pipes. (a) Where air pipes to ballast and other tanks.... Satisfactory means permanently attached, shall be provided for closing the openings of the air pipes....

  7. Studies reveal effects of pipe bends on fluid flow cavitation

    NASA Technical Reports Server (NTRS)

    Stonemetz, R. E.

    1966-01-01

    Incipient cavitation in liquids flowing in pipes curved in one plane are affected by the pipe bend radii and pipe diameters, but little by pipe bend angles ranging from 60 to 120 degrees. Critical cavitation indices decrease with higher Reynolds number and pressure ratio. Bulk liquid temperature increase lowers the mean critical velocity at which cavitation occurs.

  8. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Electric-Fusion-Welded Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure..., “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High Pressure Service...

  9. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Electric-Fusion-Welded Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure..., “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High Pressure Service...

  10. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Electric-Fusion-Welded Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure..., “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High Pressure Service...

  11. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Electric-Fusion-Welded Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure..., “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High Pressure Service...

  12. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Electric-Fusion-Welded Pipe for Atmospheric and Lower Temperatures” (incorporated by reference, see § 192.7). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure..., “Standard Specification for Carbon and Alloy Steel Pipe, Electric-Fusion-Welded for High Pressure Service...

  13. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal...

  14. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal...

  15. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... side. (c) An electrical bond must be made by at least one of the following methods: (1) A metal bonding... 46 Shipping 5 2014-10-01 2014-10-01 false Piping: Electrical bonding. 154.514 Section 154.514... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that...

  16. Experimental Evaluation of Design Methods for Hardened Piping Systems.

    DTIC Science & Technology

    prediction capabilities of present day computer methods. The basic pipe elements tested included straight pipes, area changes, elbows , valves, a pump, and...surge tanks. The piping system tested was a closed loop system which contained the following elements: elbows , straight pipes, valves, a pump, and an

  17. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  18. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  19. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  20. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  1. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  2. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  3. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  4. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  5. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  6. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  7. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  8. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  9. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  10. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  11. 46 CFR 154.548 - Cargo piping: Flow capacity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo piping: Flow capacity. 154.548 Section 154.548... and Process Piping Systems § 154.548 Cargo piping: Flow capacity. Piping with an excess flow valve must have a vapor or liquid flow capacity that is greater than the rated closing flow under § 154.546....

  12. 46 CFR 154.548 - Cargo piping: Flow capacity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo piping: Flow capacity. 154.548 Section 154.548... and Process Piping Systems § 154.548 Cargo piping: Flow capacity. Piping with an excess flow valve must have a vapor or liquid flow capacity that is greater than the rated closing flow under § 154.546....

  13. 46 CFR 154.548 - Cargo piping: Flow capacity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo piping: Flow capacity. 154.548 Section 154.548... and Process Piping Systems § 154.548 Cargo piping: Flow capacity. Piping with an excess flow valve must have a vapor or liquid flow capacity that is greater than the rated closing flow under § 154.546....

  14. 46 CFR 154.548 - Cargo piping: Flow capacity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo piping: Flow capacity. 154.548 Section 154.548... and Process Piping Systems § 154.548 Cargo piping: Flow capacity. Piping with an excess flow valve must have a vapor or liquid flow capacity that is greater than the rated closing flow under § 154.546....

  15. 46 CFR 154.526 - Piping joints: Flange connection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping joints: Flange connection. 154.526 Section 154... Equipment Cargo and Process Piping Systems § 154.526 Piping joints: Flange connection. Flange connections for pipe joints must meet § 56.30-10 and § 56.50-105 (a)(4) and (b)(4) of this chapter....

  16. 46 CFR 154.526 - Piping joints: Flange connection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping joints: Flange connection. 154.526 Section 154... Equipment Cargo and Process Piping Systems § 154.526 Piping joints: Flange connection. Flange connections for pipe joints must meet § 56.30-10 and § 56.50-105 (a)(4) and (b)(4) of this chapter....

  17. 46 CFR 154.526 - Piping joints: Flange connection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping joints: Flange connection. 154.526 Section 154... Equipment Cargo and Process Piping Systems § 154.526 Piping joints: Flange connection. Flange connections for pipe joints must meet § 56.30-10 and § 56.50-105 (a)(4) and (b)(4) of this chapter....

  18. 49 CFR 192.277 - Ductile iron pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  19. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a...

  20. 49 CFR 192.125 - Design of copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that...