Science.gov

Sample records for plastic shrinkage cracking

  1. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    NASA Astrophysics Data System (ADS)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  2. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete

    SciTech Connect

    Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako

    2011-06-15

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.

  3. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    SciTech Connect

    Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  4. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  5. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    NASA Astrophysics Data System (ADS)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  6. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part IV: Effects of freezing protocol.

    PubMed

    Ullrich, Sabine; Seyferth, Stefan; Lee, Geoffrey

    2015-11-10

    The shrinkage and cracking of pure trehalose cakes during lyophilization has been determined quantitatively using different protocols for the freezing step. The influences of shelf cooling rate and of a two-step freezing protocol with holding and annealing phases were investigated. A small change in the shelf cooling rate from 0.4°C to 0.2°C per minute produced surprisingly large increases in shrinkage and reductions in cracking over all trehalose concentrations up to 30% w/v. The two-step freezing protocol also increased shrinkage and reduced cracking in the final-product cakes, especially at trehalose concentrations ≥ 15% and with large vial fill height. A combination of two-step freezing with use of TopLyo vials produced less than 1.5% cracking even at high trehalose concentrations and large fill height. The results give further confirmation of the causal linkage of shrinkage and cracking during lyophilization, and also illustrate how cracking can be greatly reduced by manipulating the freezing protocol.

  7. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    SciTech Connect

    Beushausen, Hans Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  8. Elasto-plastic fracture mechanics of crack growth in soil

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.; Newson, T. A.

    2003-04-01

    A predominant variable in soil structure formation and degradation is crack propagation. Empirical models exist to predict fracture but these do not describe the underlying physical processes. Theoretical fracture mechanics models have been applied to soil, but most are not applicable when soil is in a wet, plastic state. Since the onset of crack formation in soil tends to occur in this condition, physically sound elasto-plastic fracture mechanics approaches are long overdue. We address this weakness by applying a new elasto-plastic fracture mechanics approach to describe crack formation in plastic soil. Samples are fractured using a deep-notch (modified 4-point) bend test, with data on load transmission, sample bending, crack growth, and crack mouth opening collected to assess the crack opening angle (COA), the crack tip opening angle (CTOA) and the plastic energy dissipation rate (Dpl). These are all material properties that can be used directly to predict and describe crack propagation. CTOA will be used to discuss the results here, although a full description of the other parameters will be provided in the conference presentation. It provides a powerful parameter for describing soil cracking since CTOA is induced by soil shrinkage (an easily measured parameter) and can be used to describe elasto-plastic fracture in finite element modelling packages. The test variables we have studied to date are clay platelet orientation, soil texture, clay mineralogy, and pore water salinity. All samples were formed by consolidating a soil slurry with a 120 kPa vertical stress. Tests on pure kaolinite showed that platelet orientation did not affect CTOA which was 0.23 ± 0.02 for both conditions. Soil texture did have a marked influence, however, with silica sand:kaolinite mixes of 20:80 and 40:60 reducing CTOA to 0.14 ± 0.02 and 0.12 ± 0.01 respectively. These lower values of CTOA indicate that less strain is required to induce fracture when the amount of clay is lowered

  9. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks: Free shrinkage tests, restrained ring tests, construction experience, and crack survey results

    NASA Astrophysics Data System (ADS)

    Yuan, Jiqiu

    2011-12-01

    The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained during the construction of 13 LC-HPC bridge decks in Kansas, along with another deck bid under the LC-HPC specifications but for which the owner did not enforce the specification. This study is divided into four parts covering (1) an evaluation of the free shrinkage properties of LC-HPC candidate mixtures, (2) an investigation of the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete, (3) a study of the restrained shrinkage performance of concrete using restrained ring tests, and (4) a description of the construction and preliminary evaluation of LC-HPC and control bridge decks constructed in Kansas. The first portion of the study involves evaluating the effects of the duration of curing, fly ash, and a shrinkage reducing admixture (SRA) on the free-shrinkage characteristics of concrete mixtures. The results indicate that an increase of curing period reduces free shrinkage. With 7 days of curing, concretes containing fly ash as a partial replacement for cement exhibit higher free shrinkage than concretes with 100% portland cement. When the curing period is increased to 14, 28, and 56 days, the adverse effect of adding fly ash on free shrinkage is minimized and finally reversed. The addition of an SRA significantly reduces free shrinkage for both the 100% portland cement mixture and the mixture containing fly ash. The second portion of the study investigates the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete. A linear relationship between free shrinkage and evaporable water content in the cement paste is observed. For a given mixture, specimens cured for a longer period contain less evaporable water and exhibit lower free shrinkage and less weight loss in the free shrinkage

  10. Field Method for Measuring the Shrinkage/Swelling Dynamics of Cracks Using a Low-Cost ``Crack-o-meter''

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Abou Najm, M. R.; Rupp, D. E.; Selker, J. S.

    2010-12-01

    Shrinking/swelling soils are characterized by transient crack networks which function as dominant controls on the partitioning of surface and subsurface flow, the rate and depth of percolation, and evaporation rates. For such soils, understanding the dynamics of cracks is critical to accurately quantify their influence on groundwater recharge, stream-flow generation, and solute transport, among other component of a site’s hydrology. We propose a low-cost method for measuring transient crack-volume using a sealed plastic bag connected by a hose to a PVC standpipe. The empty bag is placed into the crack, and then water is added via the standpipe, until the bag has expanded to the boundaries of the crack and some water remains in the standpipe. As the crack shrinks or swells, its volume changes, causing water displacement within the bag, which is measured as a corresponding change in water level in the standpipe. An automated level logger within the standpipe is used to record changes in water level, which are converted to volumetric changes from the known internal cross-sectional area of the standpipe. The volume of water filling the bag is accurately measured at the start and completion of the experiment (to check for leakage). Adding the startup volume to the cumulative temporal volumetric change in the standpipe provides a simple and accurate method for monitoring transient crack volume. Currently, the design is undergoing preliminary testing in a field site in Ninhue, Chile, and field and laboratory testing in Corvallis, Oregon. Initial results from the Chilean field site suggest that the crack-o-meters are responding to the closing of cracks, but further effort is needed to calibrate and validate the results. We hope that these low-cost “crack-o-meters” will become useful and simple tools for researchers to quantify temporal changes in crack volume with the objective of incorporating these results into hydrological modeling efforts.

  11. Measurement of shrinkage and cracking in lyophilized amorphous cakes, part 3: hydrophobic vials and the question of adhesion.

    PubMed

    Ullrich, Sabine; Seyferth, Stefan; Lee, Geoffrey

    2015-06-01

    The importance of cake adhesion to the inside vial wall during lyophilization of amorphous trehalose cakes was determined by using hydrophobized vials. The degrees of cake shrinkage and cracking were determined independently by photographic imaging of the cake top surface in a dark cell. Additionally, measurements with microcomputed tomography were performed. Adhesion is found to be a determining factor in both cake shrinkage and cracking. The correlation between cake detachment from the vial inner wall and trehalose concentration indicates that adhesion of the frozen solute phase is a determining factor in shrinkage. The hydrophobized vials give reduced cracking at trehalose concentrations of up to 15%. The reduced wetting of the hydrophobized inside vial wall gives a planar cake topography with a uniform distribution of cracks within the cake.

  12. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  13. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  14. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  15. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  16. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  17. Plastic Stress Intensity Factors in Steady Crack Growth,

    DTIC Science & Technology

    1986-06-01

    in the limit as a approaches zero, since it can be shown (Rice, 1982) that the stress field of the perfectly- plastic problem in plane stress is...from the solution of the perfectly- plastic problem with a centered-fan sector centered about the crack line (see Rice, 1982 and Dean, 1983) ic - 2/43

  18. Elastic-plastic analysis of crack in ductile adhesive joint

    SciTech Connect

    Ikeda, Toru; Miyazaki, Noriyuki; Yamashita, Akira; Munakata, Tsuyoshi

    1995-11-01

    The fracture of a crack in adhesive is important to the structural integrity of adhesive structures and composite materials. Though the fracture toughness of a material should be constant according to fracture mechanics, it is said that the fracture toughness of a crack in an adhesive joint depends on the bond thickness. In the present study, the elastic-plastic stress analyses of a crack in a thin adhesive layer are performed by the combination of the boundary element method and the finite element method. The effect of adhesive thickness on the J-integral, the Q`-factor which is a modified version of the Q-factor, and the crack tip opening displacement (CTOD) are investigated. It is found from the analyses that the CTOD begins to decrease at very thin bond thickness, the Q`-factor being almost constant. The decrease of the fracture toughness at very thin adhesive layer is expected by the present analysis.

  19. Relative shrinkage of adipocytes by paraffin in proportion to plastic embedding in human adipose tissue before and after weight loss.

    PubMed

    Verhoef, Sanne P M; van Dijk, Paul; Westerterp, Klaas R

    2013-01-01

    Adipocyte size is a major modulator of endocrine functioning of adipose tissue and methods allowing accurate determination of adipocyte size are important to study energy metabolism. The aim of this study was to assess the relative shrinkage of adipocytes before and after weight loss by comparing adipose tissue from the same subjects embedded in paraffin and plastic. 18 healthy subjects (5 males and 13 females) aged 20-50 y with a BMI of 28-38 kg/m² followed a very low energy diet for 8 weeks. Adipose tissue biopsies were taken prior to and after weight loss and were processed for paraffin and plastic sections. Parameters of adipocyte size were determined with computer image analysis. Mean adipocyte size was smaller in paraffin compared to plastic embedded tissue both before (66 ± 4 vs. 103 ± 5 μm, P < 0.001) as after weight loss (62 ± 4 vs. 91 ± 5 μm, P < 0.001). Relative shrinkage of adipocytes in paraffin embedded tissue in proportion to plastic embedded tissue was not significantly different before and after weight loss (73 and 69%, respectively). Shrinkage due to the type of embedding of the adipose tissue can be ignored when comparing before and after weight loss. Plastic embedding of adipose tissue provides more accurate and sensitive results.

  20. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  1. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  2. Elastic, Plastic, Cracking Aspects of the Hardness of Materials

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Elban, W. L.; Walley, S. M.

    2013-03-01

    The hardness properties of materials are tracked from early history until the present time. Emphasis is placed on the hardness test being a useful probe for determining the local elastic, plastic and cracking properties of single crystal, polycrystalline, polyphase or amorphous materials. Beginning from connection made between individual hardness pressure measurements and the conventional stress-strain properties of polycrystalline materials, the newer consideration is described of directly specifying a hardness-type stress-strain relationship based on a continuous loading curve, particularly, as obtained with a spherical indenter. Such effort has received impetus from order-of-magnitude improvements in load and displacement measuring capabilities that are demonstrated for nanoindentation testing. Details of metrology assessments involved in various types of hardness tests are reviewed. A compilation of measurements is presented for the separate aspects of Hertzian elastic, dislocation-mechanics-based plasticity and indentation-fracture-mechanics-based cracking behaviors of materials, including elastic and plastic deformation rate effects. A number of test applications are reviewed, most notably involving the hardness of thin film materials and coatings.

  3. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  4. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  5. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  6. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  7. Energy dissipation associated with crack extension in an elastic-plastic material

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Crews, J. H., Jr.

    1987-01-01

    Crack extension in elastic-plastic material involves energy dissipation through the creation of new crack surfaces and additional yielding around the crack front. An analytical procedure, using a two-dimensional elastic-plastic finite element method, was developed to calculate the energy dissipation components during a quasi-static crack extension. The fracture of an isotropic compact specimen was numerically simulated using the critical crack-tip-opening-displacement (CTOD) growth criterion. Two specimen sizes were analyzed for three values of critical CTOD. Results from the analyses showed that the total energy dissipation rate consisted of three components: the crack separation energy rate, the plastic energy dissipation rate, and the residual strain energy rate. All three energy dissipation components and the total energy dissipation rate initially increased with crack extension and finally reached constant values.

  8. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  9. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three-dimensional, elastic-plastic, finite-element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  10. Computational Contour of Mixed Mode Crack-Tip Plastic Zone for Aluminum Alloy 2024T351

    NASA Astrophysics Data System (ADS)

    Do, Tien Dung; Leroy, Rene; Joly, Damien

    2013-07-01

    The studies on mixed mode crack-tip plastic zones are one of the fundamental importance in describing the process of failure and in evaluation of the material life. The approach is also applied to predict crack initiation under mixed mode loading. The objective of this work is to study the contour of mixed mode crack-tip plastic zones, the minimum plastic zone radius (MPZR) and the direction of initial crack for aluminum alloy 2024T351 in Compact tension specimen by using Matlab software. This paper computed the shape, size of plastic zone at crack-tip and the minimum plastic zone radius with reference to the loading angle and stress intensity factor in linear elastic fracture mechanics regime for plane strain condition according to Von Mises yield criteria, the study is conducted for various loading angle. We found that the mixed mode loading (β = 60°) can lead to material fracture earlier than any mode loading.

  11. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2016-11-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  12. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2017-02-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  13. Elastic-plastic analysis of a propagating crack under cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Armen, H., Jr.

    1974-01-01

    Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.

  14. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  15. Elasto-plastic bending of cracked plates, including the effects of crack closure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jones, D. P.

    1972-01-01

    A capability for solving elasto-plastic plate bending problems is developed using assumptions consistent with Kirchhoff plate theory. Both bending and extensional modes of deformation are admitted with the two modes becoming coupled as yielding proceeds. Equilibrium solutions are obtained numerically by determination of the stationary point of a functional which is analogous to the potential strain energy. The stationary value of the functional for each load increment is efficiently obtained through use of the conjugate gradient. This technique is applied to the problem of a large centrally through cracked plate subject to remote circular bending. Comparison is drawn between two cases of the bending problem. The first neglects the possibility of crack face interference with bending, and the second includes a kinematic prohibition against the crack face from passing through the symmetry plane. Results are reported which isolate the effects of elastoplastic flow and crack closure.

  16. The use of COD and plastic instability in crack propagation and arrest in shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  17. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  18. A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, B.; Balint, D. S.; Dini, D.; Sutton, A. P.

    2017-01-01

    Employing Dynamic Discrete Dislocation Plasticity (D3P), an elastodynamic analysis of the shielding of a stationary crack tip by dislocations is studied. Dislocations are generated via Frank-Read sources, and make a negligible contribution to the shielding of the crack tip, whereas dislocations generated at the crack tip via homogeneous nucleation dominate the shielding. Their effect is found to be highly localised around the crack, leading to a magnification of the shielding when compared to time-independent, elastostatic predictions. The resulting attenuation of KI(t) is computed, and is found to be directly proportional to the applied load and to √{ t }.

  19. Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack

    NASA Astrophysics Data System (ADS)

    Chaiyat, Sumitra; Jin, Xiaoqing; Keer, Leon M.; Kiattikomol, Kraiwood

    2008-01-01

    Analytical and numerical approaches are used to solve an axisymmetric crack problem with a refined Barenblatt-Dugdale approach. The analytical method utilizes potential theory in classical linear elasticity, where a suitable potential is selected for the treatment of the mixed boundary problem. The closed-form solution for the problem with constant pressure applied near the tip of a penny-shaped crack is studied to illustrate the methodology of the analysis and also to provide a fundamental solution for the numerical approach. Taking advantage of the superposition principle, an exact solution is derived to predict the extent of the plastic zone where a Tresca yield condition is imposed, which also provides a useful benchmark for the numerical study presented in the second part. For an axisymmetric crack, the numerical discretization is required only in the radial direction, which renders the programming work efficient. Through an iterative scheme, the numerical method is able to determine the size of the crack tip plasticity, which is governed by the nonlinear von Mises criterion. The relationships between the applied load and the length of the plastic zone are compared for three different yielding conditions. To cite this article: S. Chaiyat et al., C. R. Mecanique 336 (2008).

  20. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  1. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Tang, Haiyan; Zhang, Jiaquan

    2016-06-01

    A 3D cellular automaton finite element model with full coupling of heat, flow, and solute transfer incorporating solidification grain nucleation and growth was developed for a multicomponent system. The predicted solidification process, shrinkage porosity, macrosegregation, grain orientation, and microstructure evolution of Fe-22Mn-0.7C twinning-induced plasticity (TWIP) steel match well with the experimental observation and measurement. Based on a new solute microsegregation model using the finite difference method, the thermophysical parameters including solid fraction, thermal conductivity, density, and enthalpy were predicted and compared with the results from thermodynamics and experiment. The effects of flow and solute transfer in the liquid phase on the solidification microstructure of Fe-22Mn-0.7C TWIP steel were compared numerically. Thermal convection decreases the temperature gradient in the liquid steel, leading to the enlargement of the equiaxed zone. Solute enrichment in front of the solid/liquid interface weakens the thermal convection, resulting in a little postponement of columnar-to-equiaxed transition (CET). The CET behavior of Fe-Mn-C TWIP steel during solidification was fully described and mathematically quantized by grain morphology statistics for the first time. A new methodology to figure out the CET location by linear regression of grain mean size with least-squares arithmetic was established, by which a composition design strategy for Fe-Mn-C TWIP steel according to solidification microstructure, matrix compactness, and homogeneity was developed.

  2. Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure

    NASA Astrophysics Data System (ADS)

    Hartmaier, Alexander; Gumbsch, Peter

    2005-01-01

    Metals with a body centered cubic crystal structure, like tungsten, exhibit a pronounced semibrittle regime at intermediate temperatures. In this regime their fracture toughness strongly depends on loading rate and temperature. Crack-tip plasticity has been studied with two-dimensional numerical simulations on different length scales. The method of discrete dislocation dynamics has been employed to test various assumptions made on the deformation mechanisms and the origin of the strong loading rate and temperature dependence of fracture toughness in this regime. A continuum elasticity-viscoplasticity model capable of describing larger plastic deformations yields complementary information with respect to the discrete dislocation method. Despite of their fundamental differences, both simulations consistently show that crack-tip plasticity can be described as a time-dependent microplastic deformation with well-defined activation energy and that the blunting of the crack tip plays an important role for the transition from semibrittle to ductile behavior. Based on general findings of the numerical simulations an Arrheniuslike relation between loading rate and temperature at points of constant fracture toughness is derived. This scaling relation shows the dominance of dislocation mobility as the rate limiting factor for fracture toughness and for the brittle-to-ductile transition itself. The results of our simulations are also consistent with experimental data gathered on tungsten single crystals. Thus, the proposed scaling relation can be used to predict fracture toughnesses in a wide range of temperatures and loading rates, based on only a small number of experiments.

  3. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  4. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  5. Elasto-plastic analysis of a mode I edge crack with application to a surface notch.

    NASA Technical Reports Server (NTRS)

    Francis, P. H.

    1971-01-01

    A finite element analysis has been undertaken of the mechanical state of a plate containing a crack subjected to mode I loading. Specifically, a localized, well-defined surface depression (dimple) previously observed on the back surface of plate specimens immediately behind the plane of the crack was examined. The approach taken is concerned with defining more precisely the dimpling behavior as a function of relative flaw depth and applied stress level, as well as the development of the plastic zone at the crack tip.

  6. Analyses of elastic-plastic problems based on the principle of superposition. II - Elastic-plastic analysis of an infinite plate with an elliptic hole or a crack

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Heng; Nisitani, Hironobu

    This article is concerned with the elastic-plastic analysis of an infinite plate with an elliptic hole or a crack. The method of analysis is the body force method extended to the elastic-plastic problems. In this method, the solutions are obtained by superposing the elastic fields due to the force doublets acting in an infinite plate with an elliptic hole or a crack, so as to satisfy the constitutive equation of plasticity. The elastic-plastic behaviors near a notch root or a crack tip are discussed from the viewpoint of the linear notch mechanics.

  7. Crack Tip Plasticity Associated with Corrosion Assisted Fatigue.

    DTIC Science & Technology

    1981-09-18

    usually turns out to be approximately 4.11Y Irving and McCartney, in reviewing[l] the many theo- retical models which have been proposed to explain the...January 1977. 9. H. L. Ewalds, Eng. Frac. Mech., 13, 1980, 1001. 10. J. Schijve and W. J. Arkema , "Crack Closure and the Environmental Effect on

  8. Development of a plasticity band near the tip of a crack of arbitrary orientation in a semiinfinite thin plate

    NASA Astrophysics Data System (ADS)

    Savruk, Mikhailo P.; Danilovich, A. M.

    1992-06-01

    The elastic-plastic equilibrium of a thin semiinfinite plate with a rectilinear crack of arbitrary orientation is analyzed assuming that local strains are localized along a narrow band originating at the crack tip. The elastic-plastic problem is reduced to that of solving a plane elasticity problem with a broken-line edge crack with loaded faces. The problem is solved by the singular integral equation method. Numerical results are obtained for the cases where the crack faces are loaded by a tensile force at infinity or by constant pressure. The effect of the free edge of the plate on the magnitude and orientation of the plasticity band is estimated.

  9. Numerical evaluation of crack growth in polymer electrolyte fuel cell membranes based on plastically dissipated energy

    NASA Astrophysics Data System (ADS)

    Ding, Guoliang; Santare, Michael H.; Karlsson, Anette M.; Kusoglu, Ahmet

    2016-06-01

    Understanding the mechanisms of growth of defects in polymer electrolyte membrane (PEM) fuel cells is essential for improving cell longevity. Characterizing the crack growth in PEM fuel cell membrane under relative humidity (RH) cycling is an important step towards establishing strategies essential for developing more durable membrane electrode assemblies (MEA). In this study, a crack propagation criterion based on plastically dissipated energy is investigated numerically. The accumulation of plastically dissipated energy under cyclical RH loading ahead of the crack tip is calculated and compared to a critical value, presumed to be a material parameter. Once the accumulation reaches the critical value, the crack propagates via a node release algorithm. From the literature, it is well established experimentally that membranes reinforced with expanded polytetrafluoroethylene (ePTFE) reinforced perfluorosulfonic acid (PFSA) have better durability than unreinforced membranes, and through-thickness cracks are generally found under the flow channel regions but not land regions in unreinforced PFSA membranes. We show that the proposed plastically dissipated energy criterion captures these experimental observations and provides a framework for investigating failure mechanisms in ionomer membranes subjected to similar environmental loads.

  10. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  11. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  12. Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)

    2001-01-01

    The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.

  13. Gradient plasticity crack tip characterization by means of the extended finite element method

    NASA Astrophysics Data System (ADS)

    Martínez-Pañeda, E.; Natarajan, S.; Bordas, S.

    2017-01-01

    Strain gradient plasticity theories are being widely used for fracture assessment, as they provide a richer description of crack tip fields by incorporating the influence of geometrically necessary dislocations. Characterizing the behavior at the small scales involved in crack tip deformation requires, however, the use of a very refined mesh within microns to the crack. In this work a novel and efficient gradient-enhanced numerical framework is developed by means of the extended finite element method (X-FEM). A mechanism-based gradient plasticity model is employed and the approximation of the displacement field is enriched with the stress singularity of the gradient-dominated solution. Results reveal that the proposed numerical methodology largely outperforms the standard finite element approach. The present work could have important implications on the use of microstructurally-motivated models in large scale applications. The non-linear X-FEM code developed in MATLAB can be downloaded from http://www.empaneda.com/codes.

  14. In situ investigation of the effect of hydrogen on the plastic deformation ahead of the crack tip and the crack propagation of 0.15C-1.5Mn-0.17V-0.012N steel

    SciTech Connect

    Liao, B.; Nan, Y.; Hu, Y.; Kang, D.T.

    1998-02-01

    The influence of hydrogen on the deformation ahead of the crack tip and the crack propagation were observed and studied in situ under transmission electron microscopy with dynamic tensile deformation for steel. The results show that hydrogen can promote local plastic deformation ahead of the crack tip and change the mode of crack propagation so that the crack will propagate in a zigzag path.

  15. Limitations to the small scale yielding approximation for crack tip plasticity

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1974-01-01

    Recent finite-element results by S. G. Larsson and A. J. Carlsson suggest a limited range of validity to the 'small scale yielding approximation,' whereby small crack tip plastic zones are correlated in terms of the elastic stress intensity factor. It is shown with the help of a model for plane strain yielding that their results may be explained by considering the non-singular stress, acting parallel to the crack at its tip, which accompanies the inverse square-root elastic singularity. Further implications of the non-singular stress term for crack tip deformations and fracturing are examined. It is suggested that its effect on crack tip parameters, such as the opening displacement and J-integral, is less pronounced than its effect on the yield zone size.

  16. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  17. A case of elasto-plastic flow using a new special element. [crack tip analysis

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.; Karabin, M. E., Jr.

    1978-01-01

    Using a new special element for elasto-plastic flow, a nearly square, center-cracked plate of simulated A533 steel is analyzed. Selected results are examined locally to the crack's tip. It is found that a sharp transition in the distribution of deformation and stress occurs after the initial elastic response, and that this state is followed by fairly stable behavior over a considerable portion of the load range. Distribution of strain energy density is noted, and implications for use of the parameter J and for additional work are discussed briefly.

  18. The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation

    NASA Astrophysics Data System (ADS)

    Xiao, Si; Wang, He-Ling; Liu, Bin; Hwang, Keh-Chih

    2015-11-01

    The J-integral based criterion is widely used in elastic-plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic-plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.

  19. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  20. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  1. Application of critical COD and plastic instability concepts to fracture of shells. [Crack Opening Displacement

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The paper deals with the initiation, growth, and possible arrest of fracture in shell structures containing initial defects which may be approximated by an isolated part-through crack. The main study is restricted to the structures in which the net section of the shell wall around the defect zone is fully yielded. The problem is solved by using an 8th order shallow shell theory with a conventional plastic strip model to account for the plastic deformations. Using the critical COD or the plastic instability as fracture criterion, the results are applied to the fracture propagation and arrest in shells. The calculated results are then compared with those obtained from the experiments on zircaloy, aluminum, and steel pipes.

  2. Quasi-static extension of a tensile crack contained in a viscoelastic-plastic solid

    NASA Technical Reports Server (NTRS)

    Wnuk, M. P.

    1973-01-01

    Final stretch criterion of failure is applied to the problem of quasi-static extension of a crack embedded in an elastic-plastic or viscoelastic-plastic matrix. The slow growth under subcritical conditions in a rate-sensitive Tresca solid is shown to be a superposition of creep rupture and McClintock's ductile growth. This type of growth occurs at subcritical magnitude of the imposed K-factor and can be accounted for only through a recognition of inelastic properties of solids. In the subcritical range there is no unique value for K sub c independent of geometrical configuration and flaw size. Not only the produced states of stress and strain are dependent on the loading path, but also the material resistance to fracture turns out to be a function of the history of loading that precedes catastrophic failure. A nonlinear integro-differential equation of motion is derived for a crack progressing through a viscoelastic medium with some limited ability to plastic flow. Examples of numerical integration are given incorporating both monotonic and cyclic loading programs.

  3. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  4. Crack

    MedlinePlus

    ... is cocaine that has been processed into rock crystal form. Like cocaine, crack is a powerful and ... with things that cause powdered cocaine to form crystals. Many of these are harmless, but sometimes producers ...

  5. Crack

    MedlinePlus

    ... are harmless, but sometimes producers add ingredients like amphetamines to make crack cheaper. These added ingredients raise ... For Kids For Parents MORE ON THIS TOPIC Amphetamines Drugs: What to Know Dealing With Addiction Cocaine ...

  6. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  7. Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.

    1977-01-01

    Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.

  8. Environment-Assisted Cracking of Twinning Induced Plasticity (TWIP) Steel: Role of pH and Twinning

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Khalissi, Muhammed; Khoddam, Shahin

    2014-04-01

    This article presents the study of the environment-assisted cracking (EAC) of twinning induced plasticity (TWIP) steels that possess remarkable combination of strength and ductility. EAC of a high-manganese TWIP steel was investigated, using aqueous solutions of different pH, which provided a mechanistic insight into the combined role of the localized deformation due to twinning and the electrochemical characteristic of the steel. Slow strain rate testing in inert environment as well as in acidic, neutral and alkaline solutions, and the fractography of the failed specimens have suggested a profound role of twinning in EAC crack propagation.

  9. Threshold and Plastic Work of Fatigue Crack Propagation in HY80 and HY130 Steels.

    DTIC Science & Technology

    1982-10-01

    crack propagation rate near threshold versus LK of the standard heat treatment in HY80 steel . 43 HY 80 STEEL DUAL PHASE 1AA STEEL tO...650oC I HR .8- x S.T. Kmox .4 x .2 x x xj °xx x .2 I I I Ito 0 2 4 6 8 t0 12 AK (MPoa/m) Figure 29. The crack closure behavior of HY80 steel . (a) Crack ...4Figure 30. The crack closure behavior of HY80 steel . (a) Crack closure stress intensity Kcl versus A Ke ff (b) Kcl/Kmax versus

  10. Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload

    NASA Astrophysics Data System (ADS)

    Salvati, Enrico; Zhang, Hongjia; Fong, Kai Soon; Song, Xu; Korsunsky, Alexander M.

    2017-01-01

    The introduction of an overload or underload within a constant amplitude loading fatigue test leads to a retardation or acceleration of the Fatigue Crack Growth Rate (FCGR). The understanding of the causes of these effects is essential in the context of variable amplitude fatigue loading, since in principle any loading history can be represented as a sequence of overloads and underloads. In the case of overload, along with some other minor causes, the residual stress changes at the crack tip and crack closure behind the tip can be thought of as the main factors that affect the fatigue crack growth rate. Whilst this has been recognised and accepted for many decades, controversy persists regarding the relative significance and presence of these two effects, and consensus is yet to emerge. The effect of crack closure, when the baseline loading ratio is high enough, can be inhibited so that the main cause of retardation becomes doubtless the residual stress present ahead the crack tip. In the present paper we report our attempt to deconvolve the contributions of crack closure and residual stress on crack retardation following an overload. To accomplish this task we analyse the results of fatigue tests run at two baseline load ratios, namely R=0.1 and R=0.7. At the load ratio of R=0.7 the crack closure effect is not operative, as confirmed by Digital Image Correlation analysis of the crack flanks close to the tip, and post mortem fractographic analysis of crack surfaces. Therefore, for R=0.7 the compressive residual stress region created by the overload ahead of the crack tip is the sole mechanism causing crack retardation. Therefore, for R=0.7 the focus must be placed entirely on the strain field around the crack tip. To this end, line profiles along the crack bisector of elastic strain in the crack opening direction were collected at several stages of crack propagation past the overload using in situ Synchrotron X-ray Powder Diffraction (SXRPD) technique. By

  11. Comparative Analysis of Zones of Plastic Strain, Dynamic Crack Resistance, Structure and Micromechanisms of Crack Propagation in Structural Steels 09G2S, 25 and 40 in High-Toughness Condition

    NASA Astrophysics Data System (ADS)

    Simonov, M. Yu.; Georgiev, M. N.; Shaimanov, G. S.; Simonov, Yu. N.; Zaporozhan, R. S.

    2016-05-01

    Comparative analysis of zones of plastic strain, dynamic crack resistance, structure, and micromechanisms of crack propagation in structural steels 09G2S, 25 and 40 in high-toughness condition is performed. The structure, the micromechanisms of crack growth, and the dynamic crack resistance of steels 09G2S, 25 and 40 are studied. Complete zones of plastic stain (CPSZ) under fracture surfaces are plotted after quenching and high tempering at 650°C. The levels of microhardness in the CPSZ are mapped for specially-designed specimens with additional 1-mm-deep side notches and relative crack length of 0.4 - 0.5. The sizes of the zones of plastic strain in the starting region are determined. Special features of the distribution of microhardness in local volumes of the CPSZ are determined. The structure under fracture surfaces of steels 09G2S, 25 and 40 is studied over the whole of the path of propagation of a dynamic crack.

  12. An analytical model which combines roughness- and plasticity- induced fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Chen, Nong

    In this study an analytical PICC-RICC Model was developed to describe better the near-threshold fatigue behavior. The PICC-RICC Model was built upon a strip-yield type PICC model originally proposed by Newman and later modified by Hou and Lawrence. A zigzag crack growth path was introduced to simulate surface roughness. The two opposing crack surfaces were considered to be translated and thus mismatched by the mixed-mode displacements occurring near the deflected crack tip. The model is powerful and unique in that it combines the effects of RICC and PICC. Thus, the gradual transition from RICC to PICC dominated crack closure is handled naturally by this model. The influences of the geometrical features of the surface roughness, R-ratio and the cyclic load range on RICC were examined using the PICC-RICC Model. Near-threshold fatigue behavior of various materials was predicted. The effect of microstructure on the RICC level was studied. The predicted results compared favorably with experimental data. The fatigue notch size effect was investigated using the PICC-RICC model. The initial crack length (asb{i}) for propagation was estimated. The predicted notch fatigue strength compared favorably with the Initiation-Propagation (I-P) Model prediction and test data. The existence of a "worst case notch" previously postulated using the I-P Model was confirmed.

  13. Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materials

    NASA Astrophysics Data System (ADS)

    Pereira, G.; Mikkelsen, L. P.; McGugan, M.

    2015-07-01

    This article presents a novel method to simulate the sensor output response of a Fibre Bragg Grating (FBG) sensor when embedded in a host material (Composite material or adhesive), during a crack growing/damage event. A finite element model of the crack growth mechanisms was developed, and different fracture modes were addressed. Then an output algorithm was developed to predict the sensor spectrum change during the different stages of the crack growing. Thus, it is possible to identify specific phenomenon that will only happen within the proximity of a crack, as compression field ahead the crack or non-uniform strain, and then identify the presence of such damage in the structure. Experimental tests were conducted in order to validate this concept and support the model. The FBG sensor response model was applied in a delamination of a Wind Turbine trailing edge, to demonstrate the applicability of this technique to more complicated structures, and to be used as a structural health monitoring design tool.

  14. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  15. Catalytic thermal cracking of post-consumer waste plastics to fuels. 2. Pilot study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative gasoline and diesel fuels were prepared via catalytic and non-catalytic pyrolysis and distillation of waste polyethylene and polypropylene plastics. Reaction conditions were optimized using a bench-scale (2 L) batch reactor and then applied to pilot-scale production of crude plastic oil....

  16. A finite element formulation for evaluation of crack blunting effects in elasto-plastic solids

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1975-01-01

    The sharp crack model allows the use of continuum analysis, linear elasticity, as a basic for predicting a micromechanical process, fracture, by providing a characterization of loading conditions affecting a very small volume of material. The model is described in detail.

  17. On the Relationship Between J-Integral and Crack Tip Opening Displacement in Elastic-Plastic Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Pereira, Marcos Venicius; Darwish, Fathi Aref; Campelo, Eduardo

    2013-08-01

    The relationship between J-integral ( J) and crack tip opening displacement (δ), considered fundamental for elastic-plastic fracture mechanics, can be established based on prior knowledge of the constraint factor m, which depends on the work hardening exponent and the material's yield strain. Both J and δ were simultaneously determined at fracture initiation and at different points along the resistance curves for a number of structural steels. The corresponding m values were calculated and then compared with the predictions made by different models. The results indicate that the experimentally determined m values are in fair agreement with the predictions made by ASTM over the whole range of flow parameters considered in this study. The Hutchinson-Rice-Rosengren singularity-based predictions result in overestimating m for steels considered to be of low strength and high strain hardening exponent. Predictions made by other models are predominantly higher in comparison with their experimental counterparts.

  18. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  19. Elastic-Plastic Deformation in Cracked Solids and Ductile Fracture Criterion.

    DTIC Science & Technology

    1982-01-01

    AT CRACK EXTENSION 8, MATERIAL - HY80 U1) YIELD STRESS- 560 MNm 2 (80KSI) SPEC"(.N TYPE OIMENSO 6 S, sm WJ 7 i b 101 WI0b 50 mm 90 DEC f-3PB W: 2a25mm...development of the non-linear fracture mechanics. The surthors also wish to acknowledge the financial supports by American Iron and Steel Institute...1966, pp. 393-399. [6] Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," Journal of Mech. and Phys. of Solids, Vol. 8, 1960, pp. 100-104

  20. Chemical contamination of soft drinks in sealed plastic bottles by environmental stress cracking.

    PubMed

    Muller, Dan; Israelsohn-Azulay, Osnat

    2009-01-01

    A contamination of soft drinks in sealed bottles by organic solvents is reported: closed bottles full of soft drinks were accidentally placed on a cardboard soaked with thinner and the organic fluid subsequently fissured the bottom of the bottles and penetrated into the soft drinks without any apparent leakage of the soft drinks. Experiments were carried out to simulate the process: the penetration of different organic solvents into soft drinks through the bottom of closed bottles was tested. The penetration occurred only when the closed bottles contained carbonated soft drinks (CSD), indicating that inner pressure is a necessary condition for the fissuring of the bottles. This paper discusses environmental stress cracking of polyethylene terephthalate (PET) bottles by organic solvents and migration of chemicals to CSD. Experiments were conducted to determine the conditions in which PET can be permeable to poisoning organic products.

  1. Comparison of shrinkage related properties of various patch repair materials

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  2. Kinetics of corneal thermal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Lee, William E.; Parel, Jean-Marie

    2004-07-01

    Purpose: The purpose of this study was to determine the effects of temperature and heating duration on the kinetics of thermal shrinkage in corneal strips using a custom-made shrinkage device. Methods: Thermal shrinkage was induced and measured in corneal strips under a constant load placed while bathed in 25% Dextran irrigation solution. A study was performed on 57 Florida Lions Eye Bank donated human cadaver eyes to determine the effect of temperature on the amount and rate of thermal shrinkage. Further experiments were performed on 20 human cadaver eyes to determine the effects of heating duration on permanent shrinkage. Data analysis was performed to determine the effects of temperature, heating duration, and age on the amount and kinetics of shrinkage. Results: Shrinkage consisted of two phases: a shrinkage phase during heating and a regression phase after heating. Permanent shrinkage increased with temperature and duration. The shrinkage and regression time constants followed Arrhenius type temperature dependence. The shrinkage time constants where calculated to be 67, 84, 121, 560 and 1112 (s) at 80, 75, 70, 65, and 60°C respectively. At 65°C the permanent shrinkage time constant was calculated to be 945s. Conclusion: These results show that shrinkage treatments need to raise the temperature of the tissue above 75°C for several seconds in order to prevent regression of the shrinkage effect immediately after treatment and to induce the maximum amount of permanent irreversible shrinkage.

  3. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  4. Cure shrinkage in casting resins

    SciTech Connect

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  5. Development of spraying agent for reducing drying shrinkage of mortar

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiromi; Maruoka, Masanori; Liu, Lingling

    2017-02-01

    Mortar used to repair is sometimes exposed to drying state in early ages after construction and a few days later water is sprayed frequently on the surface of the mortar in order to prevent cracks. This research studied on shrinkage characteristic of mortar subjected to drying conditions like this. The result showed that the water spraying on the mortar after initial drying did not have any effect to prevent shrinkage, but increased. And it also showed when various chemical agents are mixed and used in watersprayingit had the prevention effect on shrinkage. This report was to understand this kind of phenomenon and clarify the mechanism. In addition, based on the results, the new spraying agent was developed to reduce drying shrinkage.

  6. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  7. Influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate, and low-cycle fatigue of solder joints

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Guo, Z.; Fahmy, Y.; Yang, Di

    1999-09-01

    The influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate and low-cycle fatigue of eutectic Sn-Pb solder joints is reviewed. The principal microstructure feature considered is the average eutectic phase size d=(dPb+dSn)/2. The effect of an increase in reflow cooling rate (which gave a decrease in d) on the flow stress and on fatigue life was irregular at 300K, depending on the stress or strain level and cooling rate. In contrast, a consistent increase in fatigue life with decrease in d occurred for thermomechanical cycling between -30° and 130°C. Constitutive equations for plastic deformation and fatigue crack growth rate are presented which include the microstructure size. It appears that the rate-controlling deformation mechanism is the intersection of forest dislocations in the Sn phase. The mechanism for both static and dynamic phase coarsening appears to be grain boundary diffusion with a t1/4 time law. Some success has been achieved in predicting the cyclic stress-strain hysteresis loops and fatigue life, including the influence of the as-reflowed microstructure size and its coarsening. Additional definitive studies are however needed before we can accurately predict the fatigue life of solder joints over the wide temperature range and conditions experienced by electronic packages.

  8. Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pan, Jinlong

    External bonding of FRP plates to the tension substrate of RC beams has been accepted as an efficient and effective technique for flexural strengthening. In this thesis, different problems related to crack-induced debonding of the FRP plate in the flexural strengthened concrete beams have been investigated. FRP strengthened RC beam may fail by FRP debonding from the bottom of a major flexural crack in the span. This kind of failure is studied with the direct shear test in the present research work. Our experimental investigation focuses on the effect of concrete composition on the bond behavior between FRP and concrete. Based on the test results, the bond capacity of the specimen is found to be governed by the concrete surface tensile strength, aggregate size and aggregate content. Then, the neural network is employed to derive an empirical expression for the interfacial fracture energy in terms of concrete surface tensile strength and aggregate content. Using the empirical equation, simulated bond capacity is in good agreement with experimental results. In the FRP strengthened RC beams, debonding of the FRP plate often occurs under the presence of multiple cracks along the span. In the present thesis, experimental and theoretical investigations are performed to study the effect of multiple secondary cracks on the debonding behavior and ultimate load capacity. A new analytical model for FRP debonding under multiple cracks has been developed. The effect of the multiple secondary cracks on the shear softening in the debonded zone is explicitly considered in the model. Using the new model, the simulated values of ultimate load when debonding occurs are in good agreement with measured values. In the FRP strengthened RC beams, concrete cover separation or plate end debonding can be avoided by applying tapers at the FRP plate end. In this situation, it is easier for FRP debonding to be induced by a major flexural crack close to the support. To study the effect of the

  9. Improvement of fatigue life and prevention of internal crack initiation of chopped carbon fiber reinforced plastics modified with micro glass fibers

    NASA Astrophysics Data System (ADS)

    Fujitani, Ryohei; Okubo, Kazuya; Fujii, Toru

    2016-04-01

    The purpose of this study is to improve fatigue properties of chopped carbon fiber reinforced plastics fabricated by SMC (Sheet Molding Compound) method and to clarify the mechanism for improvement. To enhance the properties, micro glass fibers with 500nm in diameter were added directly into vinyl ester resin with 0.3wt% contents. The chopped carbon fiber reinforced plastics were fabricated and cured at room temperature for 1hour under 1MPa and then at 60degree-C for 3hours. After curing, the fabricated plate was cut into the dimension of specimen. Tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were investigated by tensile and three point bending test and cyclic tension-tension test, respectively. The behavior of strain concentration around the tips of carbon fiber were discussed with model specimen on the observations with DIC (Digital Image Correlation) method and polarizing microscope under tensile loading, in which one chopped carbon fiber was embedded into the matrix. In conclusion, when toughened vinyl ester resin modified with micro glass fibers was used as matrix, tensile and bending strength and fatigue life of chopped carbon fiber reinforced plastics were increased 56.6%, 49.8% and 14 to 23 times compared with those of unmodified specimens. It should be explained that static and dynamic properties of chopped carbon fiber reinforced plastics were improved by that crack initiation and propagation were prevented according to the prevention of the locally increasing of strain around the tip of carbon fiber, when vinyl ester resin modified with micro glass fibers was used as matrix.

  10. Store Security: Internal Shrinkage Control.

    ERIC Educational Resources Information Center

    Everhardt, Richard M.

    The document presents a 10-week training program designed to provide helpful and proven methods for controlling internal shrinkage in retail stores. Shrinkage includes the three problems of shoplifting, employee theft, and errors, each of which is addressed by the course. Ohio's laws are also discussed. The format for the course content section is…

  11. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  12. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation

    PubMed Central

    Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653

  13. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation.

    PubMed

    Pereira, G F; Mikkelsen, L P; McGugan, M

    2015-01-01

    In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material's mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.

  14. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  15. Effects of drying conditions, admixtures and specimen size on shrinkage strains

    SciTech Connect

    Al-Saleh, Saleh A. . E-mail: alsaleh@dr.com; Al-Zaid, Rajeh Z.

    2006-10-15

    The paper presents the results of an experimental investigation on the effects of drying conditions, specimen size and presence of plasticizing admixture on the development of shrinkage strains. The measurements are taken in a harsh (50 deg. C and 5% R.H.) and a moderate environment (28 deg. C and 50% R.H.). The results include strain development at various levels of cross sections of concrete prisms. The drying conditions are found to be the dominant parameter affecting the shrinkage strain development particularly in specimens of smaller sizes. The effect of plasticizing admixture on shrinkage strains is negligible.

  16. Modelling of elastoplastic damage in concrete due to desiccation shrinkage

    NASA Astrophysics Data System (ADS)

    Bourgeois, F.; Burlion, N.; Shao, J. F.

    2002-07-01

    We present a numerical modelling of elastoplastic damage due to drying shrinkage of concrete in the framework of mechanics of partially saturated porous media. An elastoplastic model coupled with isotropic damage is first formulated. Two plastic flow mechanisms are involved, controlled by applied stress and suction, respectively. A general concept of net effective stress is used in take into account effects of capillary pressure and material damage on stress-controlled plastic deformation. Damage evolution depends both on elastic and plastic strains. The model's parameters are determined or chosen from relevant experimental data. Comparisons between numerical simulations and experimental data are presented to show the capacity of model to reproduce mains features of concrete behaviour under mechanical loading and during drying shrinkage of concrete. An example of application concerning drying of a concrete wall is finally presented. The results obtained allow to show potential capacity of proposed model for numerical modelling of complex coupling processes in concrete structures.

  17. Early age stresses and creep-shrinkage interaction of restrained concrete

    NASA Astrophysics Data System (ADS)

    Altoubat, Salah Ahmed

    2000-10-01

    Experimental and numerical analyses were performed to characterize the early age tensile creep and shrinkage behavior of concrete. A uniaxial restrained shrinkage test was developed. The experiment tested two identical specimens: restrained and unrestrained. The test was controlled by computer, and the shrinkage deformation was checked continuously and compared to a threshold value of 5 mum, which when exceeded, triggered an increase in tensile load to recover the shrinkage strain in the restrained specimen. Thus, a restrained condition is achieved and the stress generated by shrinkage mechanisms was measurable. The experiment revealed how shrinkage stresses developed and how creep mechanisms reduced shrinkage strain. The tests revealed that shrinkage stresses in the first days after casting are significant and caused fracture of the concrete. The rate of stress evolution influenced the time and stress of first cracking. The tensile creep of concrete formed a substantial part of the time dependent deformation and reduced the shrinkage stresses by 50%. A method separating drying creep mechanisms of concrete into stress-induced shrinkage and microcracking was developed. The method required measurement of creep and shrinkage of concrete under drying, sealed, and moist curing conditions. The moist-curing test produce the basic creep; the sealed test provided data on basic creep and stress-induced shrinkage, and the drying test provided data on basic creep, stress-induced shrinkage and microcracking. The basic creep results of young concrete indicated a high creep rate in the initial 10--20 hours after loading. Then, the rate decreased and the creep function approached a stable value. The initial rate of creep was sensitive to age at loading in the first two days, and became age-independent after a few days. The analysis revealed stress-induced shrinkage as a major mechanism of drying creep for plain and fiber reinforced concrete (FRC). Microcracking forms a significant

  18. Deep micro-machining of poly-ethylene terephthalate for plastic MEMS applications

    NASA Astrophysics Data System (ADS)

    Pajouhi, H.; Mohajerzadeh, S.; Nayeri, F.; Sanaee, Z.

    2010-12-01

    Etching of poly-ethylene terephathalate (PET) is achieved using a chemical solution in di-methyl-formamide assisted by ultra-violet illumination. Deep vertical features suitable for plastic micro-machining, are obtained with features of the order of 2 μm and aspect ratios of the order of 10. By using tin (Sn) as the masking layer, the problem of crack formation on the PET surface during this photochemical etching technique is totally resolved. High etch-rates as 20 μm/h are obtained at a low etching temperature of 60 °C. To improve the thermal dissipation during the etching and to minimize the plastic shrinkage, a layer of silicone-rubber is applied on the backside of the PET. We have successfully fabricated and assembled an all-plastic one directional micro-valve. Preliminary plastic-based micro-structures are demonstrated.

  19. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  20. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  1. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  2. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  3. Development of early age shrinkage stresses in reinforced concrete bridge decks

    NASA Astrophysics Data System (ADS)

    William, Gergis W.; Shoukry, Samir N.; Riad, Mourad Y.

    2008-12-01

    This paper describes the instrumentation and data analysis of a reinforced concrete bridge deck constructed on 3-span continuous steel girders in Evansville, West Virginia. An instrumentation system consisting of 232 sensors is developed and implemented specifically to measure strains and temperature in concrete deck, strains in longitudinal and transverse rebars, the overall contraction and expansion of concrete deck, and crack openings. Data from all sensors are automatically collected every 30 minutes starting at the time of placing the concrete deck. Measured strain and temperature time-histories were used to calculate the stresses, which were processed to attenuate the thermal effects due to daily temperature changes and isolate the drying shrinkage component. The results indicated that most of concrete shrinkage occurs during the first three days. Under the constraining effects from stay-in-place forms and reinforcement, early age shrinkage leads to elevated longitudinal stress, which is the main factor responsible for crack initiation.

  4. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  5. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1989-01-01

    Alloy 718 crack growth experiments were conducted to assess the ability of the selected path-independent (P-I) integrals to describe the elevated temperature crack growth behavior. These tests were performed on single edge notch (SEN) specimens under displacement control with multiple extensometers to monitor the specimen and crack mouth opening displacement (CMOD). The displacements in these tests were sufficiently high to induce bulk cyclic inelastic deformation of the specimen. Under these conditions, the linear elastic fracture mechanics (LEFM) parameter K does not correlate the crack growth data. The experimentally measured displacement gradients at the end of specimen gage length were used as the boundary conditions in elastic-plastic finite element method (FEM) analyses. These analyses were performed with a node release approach using CYANIDE, a GEAE FEM code, which included a gap element which is capable of efficiently simulating crack closure. Excellent correlation was obtained between the experimentally measured and predicted variation of stress and CMOD with crack length and the stress-CMOD loops for Alloy 718 tests conducted at 538 C. This confirmed the accuracy of the FEM crack growth simulation approach. The experimentally measured crack growth rate data correlated well the selected P-I integrals. These investigations have produced significant progress in developing P-I integrals as non-linear fracture mechanics parameters. The results suggest that this methodology has the potential of accurately describing elevated temperature crack growth behavior under the combined influence of thermal cycling and bulk elastic-inelastic deformation states.

  6. A Review of Crack Closure

    DTIC Science & Technology

    1984-04-01

    OVERLOAD EFFECTS [27,32,36,55,65,80-94] 104 4.3 SHORT CRACK BEHAVIOUR 113 4.4 SURFACE CRACK BEHAVIOUR 116 4.5 EFFECT OF RESIDUAL STRESS 117 4.6...Compressive Stresses Developed 16 on a Growing Fatigue Crack During a Constant Amplitude Cyclic Load Control Test. 4 Plastic Zone and Residual Compressive... Stresses Developed 18 on a Saw Cut Sharp Crack During a Constant Amplitude Cyclic Load Control Test. Residual Stresses Developed in the Plane of Crack

  7. Cure shrinkage of thermoset composites

    SciTech Connect

    Russell, J.D. )

    1993-01-01

    The shrinkage of thermoset composites during cure was studied using a volumetric dilatometer. The material systems studied were AS4 carbon fiber/Hercules' 3501-6 epoxy, IM7 carbon fiber/Hercules 8551-7A toughened epoxy and IM7 carbon fiber/BASF's 5250-4 bismaleimide. Shrinkage of the samples due to both polymerization and thermal expansion effects was seen. The volume changes of the materials during cure were then compared to results from dynamic mechanical analysis (DMA) and dielectric cure monitoring. Maximums in volume corresponded to minimums in storage and loss modulus from DMA and maximums in the dielectric loss factor. Resin shrinkage during the 177 deg C (350 F) hold corresponded to the onset of polymerization seen by the rapid increase in the storage modulus and the decrease in the dielectric loss factor response due to reduced ion mobility. These results show that volumetric dilatometry can be an effective tool in the development of materials processing strategies and can be useful in studying residual stresses in composites. 9 refs.

  8. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    NASA Astrophysics Data System (ADS)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  9. Towards a better understanding of the cracking behavior in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling shrinkage-induced cracks helps bridge the gap between flow problem in the laboratory and at the field. Modeling flow at the field scale with Darcian fluxes developed at the laboratory scales is challenged with preferential flows attributed to the cracking behavior of soils...

  10. Shrinkage approach for EEG covariance matrix estimation.

    PubMed

    Beltrachini, Leandro; von Ellenrieder, Nicolas; Muravchik, Carlos H

    2010-01-01

    We present a shrinkage estimator for the EEG spatial covariance matrix of the background activity. We show that such an estimator has some advantages over the maximum likelihood and sample covariance estimators when the number of available data to carry out the estimation is low. We find sufficient conditions for the consistency of the shrinkage estimators and results concerning their numerical stability. We compare several shrinkage schemes and show how to improve the estimator by incorporating known structure of the covariance matrix.

  11. Devitrification and shrinkage behavior of silica fibers

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1972-01-01

    Devitrification and shrinkage of three batches of silica fibers were investigated in the temperature range of 1200 to 1350 C. Fibers with high water and impurity content devitrified rapidly to cristobalite and quartz and exhibited rapid, but the least amount of, shrinkage. A batch with low water and impurity content devitrified more slowly to cristobalite only and underwent severe shrinkage by the mechanism of viscous flow. A third batch of intermediate purity level and low water content devitrified at a moderate rate mainly to cristobalite but shrunk very rapidly. Completely devitrified silica fibers did not exhibit any further shrinkage.

  12. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  13. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  14. Compressed sensing recovery via nonconvex shrinkage penalties

    NASA Astrophysics Data System (ADS)

    Woodworth, Joseph; Chartrand, Rick

    2016-07-01

    The {{\\ell }}0 minimization of compressed sensing is often relaxed to {{\\ell }}1, which yields easy computation using the shrinkage mapping known as soft thresholding, and can be shown to recover the original solution under certain hypotheses. Recent work has derived a general class of shrinkages and associated nonconvex penalties that better approximate the original {{\\ell }}0 penalty and empirically can recover the original solution from fewer measurements. We specifically examine p-shrinkage and firm thresholding. In this work, we prove that given data and a measurement matrix from a broad class of matrices, one can choose parameters for these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.

  15. Accounting for PDMS shrinkage when replicating structures

    NASA Astrophysics Data System (ADS)

    Hannibal Madsen, Morten; Feidenhans'l, Nikolaj A.; Hansen, Poul-Erik; Garnæs, Jørgen; Dirscherl, Kai

    2014-12-01

    Polydimethylsiloxane (PDMS) is a widely used material for fabrication of microfluidic devices and for replication of micro- and nanotextured surfaces. Shrinkage of PDMS in the fabrication process can lead to leaking devices and poor alignment of layers. However, corrections to the mold master are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base).

  16. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    SciTech Connect

    Chambers, R.S.; Lagasse, R.R.; Guess, T.R.; Plazek, D.J.; Bero, C.

    1992-12-31

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e. g., permit dielectric breakdown), degrade a component`s protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies. 3 refs., 11 figs.

  17. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    NASA Astrophysics Data System (ADS)

    Chambers, R. S.; Lagasse, R. R.; Guess, T. R.; Plazek, D. J.; Bero, C.

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e.g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies.

  18. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    SciTech Connect

    Chambers, R.S.; Lagasse, R.R.; Guess, T.R. ); Plazek, D.J.; Bero, C. . Dept. of Materials Science and Engineering)

    1992-01-01

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e. g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies. 3 refs., 11 figs.

  19. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    SciTech Connect

    Maruyama, I.; Teramoto, A.

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  20. Fracture Mechanics of Crack Growth During Sonic-IR Inspection

    NASA Astrophysics Data System (ADS)

    Chen, J. C.; Riddell, W. T.; Lick, Kyle; Wong, Chang-Hwa

    2007-03-01

    In past studies, we showed that cracks synthesized under carefully controlled conditions will propagate when subjected to sonic IR testing. The extent or severity of the propagation observed depended on several parameters including the stress intensity factor (which corresponds to crack growth rate) under which the crack was synthesized, the tightness of the crack closure, and the initial crack length. Furthermore, we showed that crack propagation during sonic IR testing occurs for 2024 aluminum, titanium and 304 stainless steel specimens. In this study, we extend the range of experimental conditions for synthesizing cracks to further elucidate their effect on the crack propagation, and we focus more specifically on the stress intensity factor. The stress intensity factor not only determines the rate of crack growth, but it has two profound effects on crack characteristics: the establishment of plastic zones around the crack tip and the variation of the topography of the mating crack surfaces. These two factors strongly affect crack propagation.

  1. Study of multiple cracks in airplane fuselage by micromechanics and complex variables

    NASA Technical Reports Server (NTRS)

    Denda, Mitsunori; Dong, Y. F.

    1994-01-01

    Innovative numerical techniques for two dimensional elastic and elastic-plastic multiple crack problems are presented using micromechanics concepts and complex variables. The simplicity and the accuracy of the proposed method will enable us to carry out the multiple-site fatigue crack propagation analyses for airplane fuselage by incorporating such features as the curvilinear crack path, plastic deformation, coalescence of cracks, etc.

  2. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  3. Effect of size on cracking of materials

    NASA Technical Reports Server (NTRS)

    Glucklick, J.

    1971-01-01

    Brittle behavior of large mild steel elements, glass plasticity, and fatigue specimen size sensitivity are manifestations of strain-energy size effect. Specimens physical size effect on material cracking initiation occurs according to flaw distribution statistics. Fracture size effect depends on stability or instability of crack propagation.

  4. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  5. Atomic simulation of cracks under mixed mode loading

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1984-01-01

    A discrete atomic model of a crack tip in iron under mixed mode loads is examined. The results indicate that the behavior of the crack at the atomic scale as a function of the ratio of mode I to mode II component of load is quite complex. In general, crack tip plasticity appears to increase as the mode II component of load increases.

  6. Creep and shrinkage effects on integral abutment bridges

    NASA Astrophysics Data System (ADS)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  7. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  8. Compensating for Shrinkage in Machined Ceramics

    NASA Technical Reports Server (NTRS)

    Aguilar, L.; Fitchett, B. T.

    1986-01-01

    Technique insures machined ceramics shrink to correct dimensions after baked in kiln. New method automatically compensates during machining for shrinkage later, when part baked. Applicable to numerically controlled machines that include provision to adjust for variations in cuttingtool size, but do not provide for automatic verification of dimensions of machined parts.

  9. A Bayesian Shrinkage Approach for AMMI Models

    PubMed Central

    de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  10. A Bayesian Shrinkage Approach for AMMI Models.

    PubMed

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  11. Cyclic plasticity models and application in fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  12. Shrinkage of dental composite in simulated cavity measured with digital image correlation.

    PubMed

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S L

    2014-07-21

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the "tooth-restoration" interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material.

  13. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    PubMed Central

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  14. Cracking catalyst

    SciTech Connect

    Otterstedt, J. E. A.; Jaras, S. G.; Pudas, R.; Upson, L. L.

    1985-05-07

    A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina--silica and may contain for example, an SO /SUB x/ eliminating additive such as Al/sub 2/O/sub 3/, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 ..mu..m and the finer particle size fractions a mean particle size of from 30 to 75 ..mu..m. The coarser particle size fractions have a zeolite content of at least 20 weight % and may have a zeolite content of up to 100 weight %, the remainder consisting essentially of material which has relatively lower or no or insignificant cracking-catalyzing activity and which consists of kaolin and amorphous alumina-silica. The catalyst mass as a whole may have a zeolite content of up to 50 weight %.

  15. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  16. Discrete multiscale wavelet shrinkage and integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Didas, S.; Steidl, G.; Weickert, J.

    2008-04-01

    We investigate the relation between discrete wavelet shrinkage and integrodifferential equations in the context of simplification and denoising of one-dimensional signals. In the continuous setting, strong connections between these two approaches were discovered in 6 (see references). The key observation is that the wavelet transform can be understood as derivative operator after the convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete setting with both orthogonal and biorthogonal wavelets. In the discrete case, the behaviour of the smoothing kernels for different scales requires additional investigation. The results of discrete multiscale wavelet shrinkage and related discrete versions of integrodifferential equations are compared with respect to their denoising quality by numerical experiments.

  17. Matrix cracking in brittle-matrix composites with tailored interfaces

    SciTech Connect

    Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.

    1995-10-01

    Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.

  18. Compensating For Shrinkage In A Cryogenic Seal

    NASA Technical Reports Server (NTRS)

    Hill, Arnold E.

    1993-01-01

    Proposed design for seals in liquid-hydrogen plumbing eliminates leaks caused by contraction of seals at low operating temperature. Each seal consists of rubber, polytetrafluorethylene, or lead O-ring including hollow core filled with water. At temperature of liquid hydrogen, anomalous expansion of water keeps seal gland filled and leaktight despite shrinkage of surrounding O-ring material. Design also used in systems using cryogenic fluids other than liquid hydrogen.

  19. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  20. Nearest shrunken centroids via alternative genewise shrinkages

    PubMed Central

    Choi, Byeong Yeob; Bair, Eric; Lee, Jae Won

    2017-01-01

    Nearest shrunken centroids (NSC) is a popular classification method for microarray data. NSC calculates centroids for each class and “shrinks” the centroids toward 0 using soft thresholding. Future observations are then assigned to the class with the minimum distance between the observation and the (shrunken) centroid. Under certain conditions the soft shrinkage used by NSC is equivalent to a LASSO penalty. However, this penalty can produce biased estimates when the true coefficients are large. In addition, NSC ignores the fact that multiple measures of the same gene are likely to be related to one another. We consider several alternative genewise shrinkage methods to address the aforementioned shortcomings of NSC. Three alternative penalties were considered: the smoothly clipped absolute deviation (SCAD), the adaptive LASSO (ADA), and the minimax concave penalty (MCP). We also showed that NSC can be performed in a genewise manner. Classification methods were derived for each alternative shrinkage method or alternative genewise penalty, and the performance of each new classification method was compared with that of conventional NSC on several simulated and real microarray data sets. Moreover, we applied the geometric mean approach for the alternative penalty functions. In general the alternative (genewise) penalties required fewer genes than NSC. The geometric mean of the class-specific prediction accuracies was improved, as well as the overall predictive accuracy in some cases. These results indicate that these alternative penalties should be considered when using NSC. PMID:28199352

  1. Desiccation cracks in siliciclastic deposits: Microbial mat-related compared to abiotic sedimentary origin

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Olga; Owttrim, George W.; Konhauser, Kurt O.; Gingras, Murray K.

    2017-01-01

    Siliciclastic sediment colonized by microbial mats yield a set of distinct sedimentary fabrics that are collectively called "mat-related structures (MRS)". In the rock record, versatile cracks are observed in biostabilized strata, but the mechanisms responsible for their formation remain debated. Microbially stabilized sediments produce desiccation cracks that serve as modern analogs for fossil microbial cracks. However, since both microbial mat shrinkage and clay shrinkage may contribute to the formation of these desiccation cracks, it is difficult to isolate the influence of the microbial mat on the resulting crack formation, distribution and morphology. To address this issue, we conducted a series of desiccation experiments that determine differences between microbially influenced desiccation cracks (i.e. biotic) and those formed in identical, but sterilized (i.e. abiotic) siliciclastic sediment. Three sediment mixtures were used: (1) very fine-sized sand, (2) mixed (ungraded) silt/clay, and (3) normally graded silt/clay. In all of the experiments, the water-rich microbial mat contracted substantially while drying, producing isolated pockets of shallow, but wide cracks, the distribution of which was controlled by heterogeneities in the mat structure and thickness variations of the mat. In the clay-poor substratum, the microbial mat was the only crack-forming mechanism, while in the clay-rich substrata (experiments 2 and 3) desiccation cracks were more strongly influenced by clay shrinkage. The abiotic clay-rich sediment produced a polygonal network of deep cracks intersecting at 90-120o junctions. In the biotic clay-rich experiments, the microbial mat modified these desiccation features by withstanding crack propagation or by producing curled-up crack polygon margins. Even though a microbial mat shrinks substantially with desiccation, its cohesive nature and heterogeneous distribution prevents the formation of a regular crack network, but its shallow penetration

  2. Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Jamil, N.; Rasmani, KA.

    2016-08-01

    A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.

  3. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  4. Failure Diagram for Chemically Assisted Crack Growth

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    A failure diagram that combines the thresholds for failure of a smooth specimen to that of a fracture mechanics specimen, similar to the modified Kitagawa diagram in fatigue, is presented. For a given material/environment system, the diagram defines conditions under which a crack initiated at the threshold stress in a smooth specimen becomes a propagating crack, by satisfying the threshold stress intensity of a long crack. In analogy with fatigue, it is shown that internal stresses or local stress concentrations are required to provide the necessary mechanical crack tip driving forces, on one hand, and reaction/transportation kinetics to provide the chemical potential gradients, on the other. Together, they help in the initiation and propagation of the cracks. The chemical driving forces can be expressed as equivalent mechanical stresses using the failure diagram. Both internal stresses and their gradients, in conjunction with the chemical driving forces, have to meet the minimum magnitude and the minimum gradients to sustain the growth of a microcrack formed. Otherwise, nonpropagating conditions will prevail or a crack formed will remain dormant. It is shown that the processes underlying the crack nucleation in a smooth specimen and the crack growth of a fracture mechanics specimen are essentially the same. Both require building up of internal stresses by local plasticity. The process involves intermittent crack tip blunting and microcrack nucleation until the crack becomes unstable under the applied stress.

  5. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  6. J-integral estimates for cracks in infinite bodies

    NASA Technical Reports Server (NTRS)

    Dowling, N. E.

    1987-01-01

    An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elasto-plastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the strain normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant.

  7. Do low-shrink composites reduce polymerization shrinkage effects?

    PubMed

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.

  8. Entropic shrinkage of an oxide glass

    NASA Astrophysics Data System (ADS)

    Inaba, Seiji; Hosono, Hideo; Ito, Setsuro

    2015-03-01

    Entropic elasticity, a property typical of rubbers and well known in organic polymers with appropriate network structures, is not known to occur in oxide glasses. Here, we report the occurrence of entropic elasticity in phosphate-glass fibres with highly anisotropic structures, drawn by mechanical elongation from supercooled liquids. We observed a large lengthwise shrinkage of ~35% for phosphate glasses with an enhanced one-dimensional structure, as well as a distinct endotherm on reheating them up to temperatures between that of the glass transition temperature and the softening temperature. Our results strongly suggest the possibility of designing oxide glasses with a rubbery nature at high temperatures.

  9. Entropic shrinkage of an oxide glass.

    PubMed

    Inaba, Seiji; Hosono, Hideo; Ito, Setsuro

    2015-03-01

    Entropic elasticity, a property typical of rubbers and well known in organic polymers with appropriate network structures, is not known to occur in oxide glasses. Here, we report the occurrence of entropic elasticity in phosphate-glass fibres with highly anisotropic structures, drawn by mechanical elongation from supercooled liquids. We observed a large lengthwise shrinkage of ~35% for phosphate glasses with an enhanced one-dimensional structure, as well as a distinct endotherm on reheating them up to temperatures between that of the glass transition temperature and the softening temperature. Our results strongly suggest the possibility of designing oxide glasses with a rubbery nature at high temperatures.

  10. Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Davidson, D. L.; Chan, K. S.

    1983-01-01

    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases.

  11. Simulation of Ductile Crack Propagation for Pipe Structures Using X-FEM

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Nagashima, Toshio

    Conventional finite element method is continually used for the flaw evaluation of pipe structures to investigate the fitness-for-service for power plant components, however, it is generally time consuming to make a model of specific crack configuration. The consideration of a propagating surface crack is further accentuated since the crack propagation behavior along the crack front is implicitly affected by the distribution of the crack driving force along the crack front. The authors developed a system to conduct crack propagation analysis by use of the three-dimensional elastic-plastic extended finite element method. It was applied to simulate ductile crack propagation of circumferentially surface cracks in pipe structures and could realize the simultaneous calculation of the J-integral and the consequent ductile crack propagation. Both the crack extension and the possible change of crack shape were evaluated by the developed system.

  12. Theoretical Model of the Effect of Crack Tip Blunting on the Ultimate Tensile Strength of Welds in 2219-T87 Aluminum

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.

  13. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  14. Determining resistance to environmental stress cracking in luer fittings.

    PubMed

    Schlarb, Alois K

    2002-11-01

    Environmental stress cracking (ESC) is a phenomenon associated with disposable plastic products. This article describes new methods to determine ESC in luer fittings. The findings of two experimental studies are reported.

  15. Plane strain crack growth models for fatigue crack growth life predictions

    SciTech Connect

    Bloom, J.M.; Daniewicz, S.R.; Hechmer, J.L.

    1996-02-01

    Experimental data and analytical models have shown that a growing fatigue crack produces a plastic wake. This, in turn, leads to residual compressive stresses acting over the crack faces during the unloading portion of the fatigue cycle. This crack closure effect results in an applied stress intensity factor during unloading which is greater than that associated with the K{sub min}, thus producing a crack-driving force which is less than {Delta}K = K{sub max} {minus} K{sub min}. Life predictions which do not account for this crack closure effect give inaccurate life estimates, especially for fully reversed loadings. This paper discusses the development of a crack closure expression for the 4-point bend specimen using numerical results obtained from a modified strip-yield model. Data from tests of eight 4-point bend specimens were used to estimate the specimen constraint factor (stress triaxiality effect). The constraint factor was then used in the estimation of the crack opening stresses for each of the bend tests. The numerically estimated crack opening stresses were used to develop an effective stress intensity factor range, {Delta}K{sub eff}. The resulting crack growth rate data when plotted versus {Delta}K{sub eff} resulted in a material fatigue crack growth rate property curve independent of test specimen type, stress level, and R-ratio. Fatigue crack growth rate data from center-cracked panels using Newman`s crack closure model, from compact specimens using Eason`s R-ratio expression, and from bend specimens using the model discussed in this paper are all shown to fall along the same straight line (on log-log paper) when plotted versus {Delta}K{sub eff}, even though crack closure differs for each specimen type.

  16. Cracking resistance in steam pipe fittings having various microdamage levels

    SciTech Connect

    Mints, I.I.; Googe, S.Yu.; Shul`gina, N.G.

    1995-05-01

    Cracking resistance and metal damage are considered in relation to structural state for steam-pipe fittings during use. An approximate scheme is given for estimating the maximum permissible operating time in the plastic state in relation to the depth of an observed crack-type defect.

  17. Factors affecting the shrinkage of fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Ridtirud, Charoenchai; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2011-02-01

    The shrinkage of fly ash geopolymers was studied in the present study. Fly ash was used as the source material for making the geopolymers. The effects of the concentration of NaOH, sodium silicate-to-NaOH ratio, liquid-to-ash ratio, curing temperature, and curing time on shrinkage were investigated. The geopolymers were cured at 25, 40, and 60°C, respectively. The results indicate that the shrinkage of geopolymers is strongly dependent on curing temperature and liquid-to-ash ratio. The increase in shrinkage is associated with the low strength development of geopolymers. It is also found that NaOH concentration and sodium silicate-to-NaOH ratio also affect the shrinkage of geopolymers but to a lesser extent.

  18. Crack tip mechanics in periodically layered composites

    NASA Astrophysics Data System (ADS)

    Jha, Mahendra

    failure mechanisms of microvoid nucleation, growth and coalescence is employed within the framework of small deformation plasticity theory. Evolution of plastic zone and damage in the ductile layer is monitored with increasing load. High plastic strain localization is found to occur along the interface. Fracture initiation in the ductile phase and crack renucleation in the brittle layer ahead of the crack are predicted for the system under consideration.

  19. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  20. [Light-induced control of polymerization shrinkage of dental composites by generating temporary hardness gradients].

    PubMed

    Sommer, A P; Gente, M

    1999-10-01

    Irradiation of light-curing dental filling materials in a single direction results in a temporary hardness gradient in the direction of the irradiation. The photoactivated polymerisation process begins at the site of the highest light intensity. In the simplest possible model, the polymerizing composites irradiated in a single direction shows three adjacent co-existing phases: an almost hardened, a gelled and a still plastic phase. As long as all three phases are present, any shrinking of the contracting phases can be compensated by the plastic phase. A knowledge of the distribution of these phases and their spatial and temporal modulation by the selection of suitable curing light parameters provides simple techniques for reducing shrinkage gaps around voluminous fillings in large dental cavities.

  1. Evolution of residual-strain distribution through an overload-induced retardation period during fatigue-crack growth

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Sun, Y.; An, K.; Choo, H.; Hubbard, C. R.; Liaw, P. K.

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.

  2. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  3. A Review Of Modelling Small-Crack Behavior And Fatigue-Life Predictions For Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1994-01-01

    The small-crack effect, where small fatigue cracks grow faster and at lower stress-intensity factors than large cracks, has been found to be significant for many materials and loading conditions. In this paper, plasticity effects and crack-closure modelling of small fatigue cracks are reviewed. A crack-closure model with a cyclic-plastic zone-corrected effective stress-intensity factor range (related to the cyclic J-integral) and microstructural data on crack-initiation sites were used to calculate small-crack growth rates and fatigue lives for unnotched and notched specimens made of two aluminum alloys. The crack-closure transient from the plastic wake was shown to be the dominant cause of the small-crack effect and plasticity effects on the cyclic-plastic zone-corrected stress-intensity factor range were negligible except at extremely high stress levels. Small-crack growth rates and fatigue lives under both constant-amplitude and spectrum loading from tests and analyses agreed well.

  4. Review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1994-01-01

    The small-crack effect, where small fatigue cracks grow faster and at lower stress-intensity factors than large cracks, has been found to be significant for many materials and loading conditions. In this paper, plasticity effects and crack-closure modelling of small fatigue cracks are reviewed. A crack-closure model with a cyclic-plastic-zone-corrected effective stress-intensity factor range (related to the cyclic J-integral) and microstructural data on crack-initiation sites were used to calculate small-crack growth rates and fatigue lives for unnotched and notched specimens made of two aluminum alloys. The crack-closure transient from the plastic wake was shown to be the dominant cause of the small-crack effect and plasticity effects on the cyclic-plastic-zone-corrected stress-intensity factor range were negligible except at extremely high stress levels. Small-crack growth rates and fatigue lives under both constant-amplitude and spectrum loading from tests and analyses agreed well.

  5. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  6. Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys.

    PubMed

    Cheng, Sheng; Lee, Soo Yeol; Li, Li; Lei, Changhui; Almer, Jon; Wang, Xun-Li; Ungar, Tamas; Wang, Yinmin; Liaw, Peter K

    2013-03-29

    The irreversible damage at cracks during the fatigue of crystalline solids is well known. Here we report on in situ high-energy x-ray evidence of reversible fatigue behavior in a nanocrystalline NiFe alloy both in the plastic zone and around the crack tip. In the plastic zone, the deformation is fully recoverable as the crack propagates, and the plastic deformation invokes reversible interactions of dislocation and twinning in the nanograins. But around the crack tip lies a regime with reversible grain lattice reorientation promoted by a change of local stress state. These observations suggest unprecedented fatigue deformation mechanisms in nanostructured systems that are not addressed theoretically.

  7. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive.

  8. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  9. CELL SHRINKAGE AND MONOVALENT CATION FLUXES

    PubMed Central

    Bortner, Carl D.; Cidlowski, John A.

    2007-01-01

    The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis. PMID:17321483

  10. Model Shrinkage for Discriminative Language Models

    NASA Astrophysics Data System (ADS)

    Oba, Takanobu; Hori, Takaaki; Nakamura, Atsushi; Ito, Akinori

    This paper describes a technique for overcoming the model shrinkage problem in automatic speech recognition (ASR), which allows application developers and users to control the model size with less degradation of accuracy. Recently, models for ASR systems tend to be large and this can constitute a bottleneck for developers and users without special knowledge of ASR with respect to introducing the ASR function. Specifically, discriminative language models (DLMs) are usually designed in a high-dimensional parameter space, although DLMs have gained increasing attention as an approach for improving recognition accuracy. Our proposed method can be applied to linear models including DLMs, in which the score of an input sample is given by the inner product of its features and the model parameters, but our proposed method can shrink models in an easy computation by obtaining simple statistics, which are square sums of feature values appearing in a data set. Our experimental results show that our proposed method can shrink a DLM with little degradation in accuracy and perform properly whether or not the data for obtaining the statistics are the same as the data for training the model.

  11. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  12. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  13. A new system for crack closure of cementitious materials using shrinkable polymers

    SciTech Connect

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-05-15

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  14. J-integral estimates for cracks in infinite bodies

    NASA Technical Reports Server (NTRS)

    Dowling, N. E.

    1986-01-01

    An analysis and discussion is presented of existing estimates of the J-integral for cracks in infinite bodies. Equations are presented which provide convenient estimates for Ramberg-Osgood type elastoplastic materials containing cracks and subjected to multiaxial loading. The relationship between J and the strain normal to the crack is noted to be only weakly dependent on state of stress. But the relationship between J and the stress normal to the crack is strongly dependent on state of stress. A plastic zone correction term often employed is found to be arbitrary, and its magnitude is seldom significant.

  15. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    SciTech Connect

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of ethanol in the unaltered sediment

  16. Variation of crack-opening stresses in three-dimensions - Finite thickness plate

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, A. F.

    1991-01-01

    A 3D elastic-plastic finite-element analysis is conducted to study crack-growth behavior of thin and thick center-cracked specimens under constant-amplitude loading conditions. The numerical analysis and the specimen configuration and loading are described for both the thin and thick conditions. Stabilized crack-opening stresses of interior and exterior regions are given as are the closure and opening profiles of the crack-surface plane after the tenth cycle. The effect of thickness is discussed with respect to the crack-opening stress levels and the plastic zones of the interior and exterior regions. A load-reduced-displacement technique allows the calculation of the crack-opening stresses at three locations on the crack surface plane. The constraint effect related to thickness gives a lower stabilized crack-opening stress level for the thick specimens.

  17. Color Image Denoising via Discriminatively Learned Iterative Shrinkage.

    PubMed

    Sun, Jian; Sun, Jian; Xu, Zingben

    2015-11-01

    In this paper, we propose a novel model, a discriminatively learned iterative shrinkage (DLIS) model, for color image denoising. The DLIS is a generalization of wavelet shrinkage by iteratively performing shrinkage over patch groups and whole image aggregation. We discriminatively learn the shrinkage functions and basis from the training pairs of noisy/noise-free images, which can adaptively handle different noise characteristics in luminance/chrominance channels, and the unknown structured noise in real-captured color images. Furthermore, to remove the splotchy real color noises, we design a Laplacian pyramid-based denoising framework to progressively recover the clean image from the coarsest scale to the finest scale by the DLIS model learned from the real color noises. Experiments show that our proposed approach can achieve the state-of-the-art denoising results on both synthetic denoising benchmark and real-captured color images.

  18. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  19. Nuclear shrinkage in live mouse hippocampal slices.

    PubMed

    Kasischke, K; Büchner, M; Ludolph, A C; Riepe, M W

    2001-05-01

    Brain slices are used extensively for biochemical, electrophysiological and molecular investigations. However, only the time frame for electrophysiological and biochemical investigations has as yet been defined. The goal of the present study was to investigate the time course of nuclear structure in live brain slices. Hippocampal slices (300 microm) were prepared from male CD1 mice (25-30 g), stained with Hoechst 33342 (10 microM), calcein-AM (2 microM) and ethidium homodimer (4 microM), and imaged with single- and dual-photon microscopy. The volume of CA1 pyramidal cell nuclei decreased from 759+/-229 microm3 in 40-50 microm depth 25 min after preparation to 453+/-169 microm3 (P<0.001) after 60 min, 315+/-112 microm3 (P<0.001) after 120 min and 128+/-71 microm3 (P<0.001) after 8 h. Similar results were obtained on a prolonged time scale in 70-80 microm depth and with an accelerated time scale in 20-30 microm depth. Live-dead staining showed that cell damage is progressing from the surface to deeper layers of the slices in a time-dependent fashion. We conclude that nuclei of CA1 hippocampal pyramidal cells show a time- and depth-dependent shrinkage converging 8 h after slice preparation to a volume of 90-130 microm; in any depth between 20 and 80 microm. The nucleus in the superficial 80 microm of each side appears dysfunctional even at times suitable for electrophysiological and biochemical experimentation in hippocampal slices. Molecular analysis of cell regulation in brain slices may, therefore, be time-dependently distorted by progressing cell death in at least half of the tissue under investigation.

  20. Method to determine factors contributing to thermoplastic sheet shrinkage

    NASA Astrophysics Data System (ADS)

    Rensch, Greg J.; Frye, Brad A.

    A test method is presented for the determination of shrinkage behavior in vacuum-formed thermoplastic resin sheeting, as presently simulated for various resin lots, sheet-gage thicknesses, sheet orientations, and mold profiles. The thermoforming machine and vacuum-forming mold characteristics are discussed. It is established that the four variable factors exert statistically significant effects on the shrinkage response of three Declar resin lots, but that these are of no real practical significance for either engineering or manufacturing operations.

  1. Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Metals

    SciTech Connect

    Zheng, Lili; Gao, Yanfei; Lee, Sooyeol; Barabash, Rozaliya; Lee, Jinhaeng; Liaw, Peter K

    2011-01-01

    The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.

  2. Intergranular strain evolution near fatigue crack tips in polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Zheng, L. L.; Gao, Y. F.; Lee, S. Y.; Barabash, R. I.; Lee, J. H.; Liaw, P. K.

    2011-11-01

    The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.

  3. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  4. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1983-05-01

    characterization of crack tip stress and deformation fields of short cracks due to extensive local plasticity, ii) notch tip stress and deformation field...long and short flaws at the same nominal driving force (e.g., same nominal stress intensity range based on applied stress , geometry and crack length...the short flaw is likely to experience a larger effective, near-tip stress intensity range, and will therefore show a larger crack growth increment

  5. Micromechanisms of Fracture and Crack Arrest in Two High Strength Steels.

    DTIC Science & Technology

    1987-02-01

    stress corrosion cracking susceptibility were conducted on materials after plastic strain levels of 1, 3, and 5% were achieved in tensile blanks...impact toughness, fracture toughness, fatigue, stress corrosion cracking and weldability of ASTM A710 Grade A Class 3 steel plate in thicknesses...Caustics Measurements 6. Crack Velocity as a Function of the Instantaneous Stress Intensity Factor for HOMALITE-100 7. Crack Arrest Toughness Plotted as

  6. Catalogue of maximum crack opening stress for CC(T) specimen assuming large strain condition

    NASA Astrophysics Data System (ADS)

    Graba, Marcin

    2013-06-01

    In this paper, values for the maximum opening crack stress and its distance from crack tip are determined for various elastic-plastic materials for centre cracked plate in tension (CC(T) specimen) are presented. Influences of yield strength, the work-hardening exponent and the crack length on the maximum opening stress were tested. The author has provided some comments and suggestions about modelling FEM assuming large strain formulation.

  7. Plastic Surgery

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  8. Effect of crack meandering on dynamic, ductile fracture

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    DYNAMIC crack growth is analyzed numerically for a plane strain edge cracked specimen subject to impulsive tensile loading at one end. An elastic—viscoplastic constitutive relation for a porous plastic solid is used to model ductile fracture by the nucleation and subsequent growth of voids to coalescence. Two populations of second-phase particles are represented: large inclusions with low strength, which result in large voids near the crack tip at an early stage, and small second-phase particles, which require large strains before cavities nucleate. Adiabatic heating due to plastic dissipation and the resulting thermal softening are accounted for in the analyses. Various two-dimensional distributions of the larger inclusions in front of the crack tip are considered, while the small second-phase particles are taken to be uniformly distributed. It is found that in most cases cracks grow in a zig-zag manner, dependent on the distribution of larger inclusions. Predictions for the dynamic crack growth behavior and for the time variation of crack tip characterizing parameters are obtained for each case analyzed. The computed crack growth paths and speeds are entirely based on the ductile failure predictions of the material model, so that the present study is free from ad hoc assumptions regarding appropriate dynamic crack growth criteria.

  9. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  10. A model for predicting crack growth rate for mixed mode fracture under biaxial loads

    NASA Astrophysics Data System (ADS)

    Shliannikov, V. N.; Braude, N. Z.

    1992-09-01

    A model for predicting the crack growth rate of an initially angled crack under biaxial loads of arbitrary direction is suggested. The model is based on a combination of both the Manson-Coffin equation for low cycle fatigue and the Paris equation for fatigue crack propagation. The model takes into consideration the change in material plastic properties in the region around the crack tip due to the stress state, together with the initial orientation of the crack and also its trajectory of growth. Predictions of crack growth rate for any mixed mode fracture is based on the results of uniaxial tension experiments.

  11. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  12. Recent finite element studies in plasticity and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Rice, J. R.; Mcmeeking, R. M.; Parks, D. M.; Sorensen, E. P.

    1979-01-01

    The paper reviews recent work on fundamentals of elastic-plastic finite-element analysis and its applications to the mechanics of crack opening and growth in ductile solids. The presentation begins with a precise formulation of incremental equilibrium equations and their finite-element forms in a manner valid for deformations of arbitrary magnitude. Special features of computational procedures are outlined for accuracy in view of the near-incompressibility of elastic-plastic response. Applications to crack mechanics include the analysis of large plastic deformations at a progressively opening crack tip, the determination of J integral values and of limitations to J characterizations of the intensity of the crack tip field, and the determination of crack tip fields in stable crack growth.

  13. Location, location & size: defects close to surfaces dominate fatigue crack initiation

    PubMed Central

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-01-01

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599

  14. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  15. Slow crack propagation in composite restorative materials.

    PubMed

    Montes-G, G M; Draughn, R A

    1987-05-01

    The double-torsion test technique was used to study slow crack propagation in a set of dental composite resins including two glass-filled and two microfilled materials. The microstructure within each pair was the same but one of the resins was selfcured and the other photocured. The fracture behavior was dependent on the filler concentration and the presence of absorbed water. Wet materials fractured by slow crack growth in the range of crack velocity studied (10(-7) to 10(-3) m/s), and the microfilled composites, which contain a lower concentration of inorganic filler, had lower stress intensity factors (K1c) than the glass-filled composites tested. Dry specimens of the microfilled materials and the selfcured, glass-filled composite also showed unstable, stick-slip fracture behavior indicative of a crack blunting mechanism which leads to an elevation of the stress intensity factor for crack initiation over K1c for stable crack growth. The plasticizing effect of water increased the viscoelastic response of the materials measured by the slope of curves of slow crack growth. Analysis of fracture surfaces showed that cracks propagated at low velocities (10(-7) to 10(-5) m/s) by the apparent failure of the filler/matrix interfacial bond, and absorbed water affected the strength or fracture resistance of the interface. At high crack velocities the properties of the composite depend on the properties of the polymeric matrix, the filler, and the filler volume fraction, but at low velocities the interface is the controlling factor in the durability of these composites exposed to an aqueous environment.

  16. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  17. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  18. Steady-state crack growth in single crystals under Mode I loading

    NASA Astrophysics Data System (ADS)

    Juul, K. J.; Nielsen, K. L.; Niordson, C. F.

    The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities at the crack tip predicted by Rice [Rice J.R., 1987. Tensile crack tip fields in elastic-ideally plastic crystals. Mech. Mater. 6, pp. 317-335] for quasi-static crack growth are confirmed through the numerical simulations and highly refined details are revealed. Through a detailed study, it is demonstrated that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities monotonically increases the crack tip shielding, whereas the opposite behaviour is observed at high velocities. This observation leads to the existence of a characteristic velocity at which the crack tip shielding becomes independent of the rate-sensitivity.

  19. Crack initiation processes in acrylic bone cement.

    PubMed

    Sinnett-Jones, P E; Browne, M; Moffat, A J; Jeffers, J R T; Saffari, N; Buffière, J-Y; Sinclair, I

    2009-06-15

    A major constraint in improving the understanding of the micromechanics of the fatigue failure process and, hence, in optimizing bone cement performance is found in the uncertainties associated with monitoring the evolution of the internal defects that are believed to dominate in vivo failure. The present study aimed to synthesize high resolution imaging with complementary damage monitoring/detection techniques. As a result, evidence of the chronology of failure has been obtained. The earliest stages of crack initiation have been captured and it is proposed that, in the presence of a pore, crack initiation may occur away from the pore due to the combined influence of pore morphology and the presence of defects within regions of stress concentration. Furthermore, experimental evidence shows that large agglomerations of BaSO(4) are subject to microcracking during fatigue, although in the majority of cases, these are not the primary cause of failure. It is proposed that cracks may then remain contained within the agglomerations because of the clamping effect of the matrix during volumetric shrinkage upon curing.

  20. Propagation and interactions of cracks in Si induced by H supply into He-filled cracks

    NASA Astrophysics Data System (ADS)

    Reboh, S.; Barbot, J. F.; Beaufort, M. F.; Fitchner, P. F. P.

    2011-02-01

    The phenomena of interaction and propagation of cracks under the contribution of hydrogen were studied in (001) silicon substrate in which an array of scattered over-pressurized He-plates was previously introduced at a given depth. Their propagation under subcritical regime was activated through diffusional supply of H atoms introduced by implantation/annealing. Interactions between the tips of non coplanar cracks take place in a nanometric scale; they can be of plastic-type leading to the formation of extended defects or of elastic-type resulting in deviations of crack-tip propagation. While the planar interactions facilitate the propagation of cracks, those of non coplanar-type stop them. The observations were carried out by transmission electron microscopy and the results were discussed and modelled by using concepts of elasticity and fracture mechanics.

  1. Mediated patterning of sol-gel thin layers: Shrinkage, decohesion, and lift-off

    NASA Astrophysics Data System (ADS)

    Mikalsen, Erik Arthur

    This thesis explores the unique de-cohesion and lift-off processes that occur during mediated patterning of integrated sol-gel thin films of functional materials. Mediated deposition, an additive patterning approach, was introduced by Jeon et al. (J. Mater. Res., 10[12]: 2996--9 (1995)), where microcontact printing (mu-CP) facilitated the selective transfer of a molecular 'ink' (e.g., octadecyltrichlorosilane, ODTS) to the substrate, and de-cohesion of sol-gel films occurred exclusively above the printed ink regions after heat treatment (<150°C). Patterned sol-gel films of uniform thickness were revealed after facile lift-off of cracked fragments, without the use of etchants. In this thesis, the origin and mechanics of de-cohesion and lift-off were determined through direct observations and measurements. The disparate mechanical behaviors of sol-gel films on functionalized and unmodified surfaces were determined, with emphasis on interfacial strength, in-plane biaxial stress, thin film mechanics, and crack propagation for sol-gel layers on silicon, glass and fused silica substrates. In addition, direct patterning of sol-gel layers was demonstrated for the first time on curved glassy surfaces using mu-CP and mediated patterning methods. The shrinkage and densification of sol-gel layers were determined by in-situ and ex-situ measurements, where a ˜30% decrease in thickness (t) was typical during drying of sol-gel layers (T < 300°C). Constrained shrinkage, resulting from adhesion to the supporting silicon substrate, led to a coherent (crack-free) film with biaxial stresses of ˜200 MPa (t ˜ 50 nm). For ODTS-mediated sol-gel films, however, precise in-situ wafer curvature measurements determined that film stresses never exceeded 75 MPa. Additionally, interfacial adhesive strength between the substrate and the sol-gel film were evaluated for the first time using a unique pulsed-laser stress-wave technique. An adhesive strength threshold of 15 MPa was determined for

  2. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  3. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  4. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plastic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple stable crack growth history, and residual strength between measured and predicted results were made to assess the validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed. A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were essential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results agreed reasonable well.

  5. J-integral of circumferential crack in large diameter pipes

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chao, Yuh J.; Sutton, M. A.; Lam, P. S.; Mertz, G. E.

    Large diameter thin-walled pipes are encountered in a low pressure nuclear power piping system. Fracture parameters such as K and J, associated with postulated cracks, are needed to assess the safety of the structure, for example, prediction of the onset of tile crack growth and the stability of the crack. The Electric Power Research Institute (EPRI) has completed a comprehensive study of cracks in pipes and handbook-type data is available. However, for some large diameter, thin-walled pipes the needed information is not included in the handbook. This paper reports our study of circumferential cracks in large diameter, thin-walled pipes (R/t=30 to 40) under remote bending or tension loads. Elastic-Plastic analyses using the finite element method were performed to determine the elastic and fully plastic J values for various pipe/crack geometries. A non-linear Ramberg-Osgood material model is used with strain hardening exponents (n) that range from 3 to 10. A number of circumferential, through thickness cracks were studied with half crack angles ranging from 0.063(pi) to 0.5(pi). Results are tabulated for use with the EPRI estimation scheme.

  6. Brain shrinkage and subdural effusion associated with ACTH administration.

    PubMed

    Satoh, J; Takeshige, H; Hara, H; Fukuyama, Y

    1982-01-01

    Sequential computed tomographic (CT) studies of 11 patients (aged five months to seven years) with intractable epilepsy treated with synthetic ACTH-Z showed brain shrinkage in all cases. Brain shrinkage started to appear on daily ACTH injections for seven days, reached the maximum within four weeks of administration (14 injections every day and then 7 injections every other day), and almost returned to the original status in seven out of nine cases which were followed up for one to three months after the therapy. The subjects aged less than two years showed more remarkable brain shrinkage than did those aged more than five years. Furthermore, two other cases were complicated by subdural effusion after ACTH therapy. It is the authors' assumption that both of these phenomena are caused by the high concentration of corticosteroid through a change of the water and electrolyte contents in the brain.

  7. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  8. Shrinkage Stresses Generated during Resin-Composite Applications: A Review

    PubMed Central

    Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573

  9. Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations.

    PubMed

    Berger, James; Jefferys, William; Müller, Peter

    2012-01-01

    Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves in model space for the MCMC computation. The methodology is illustrated on the problem of modeling the oscillations of Cepheid variable stars; these are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as "standard candles" for estimating distances in the universe.

  10. The engineering significance of shrinkage and swelling soils in blast damage investigations

    SciTech Connect

    Vitton, S.J.; Harris, W.W.

    1996-12-01

    In the US each year it has been estimated that expansive soils cause approximately $9.0 billion in damage to buildings, roads, airports, and other facilities. This figure alone exceeds the damage estimate for earthquakes, floods, tornadoes, and hurricanes combined. Unfortunately, some cases of expansive soil damage (swelling) are blamed on rock blasting operations if the blasting operations are located within the immediate area. While simple tests, such as the Atterberg limits test, can characterize a soil as expansive, it does not necessarily answer the question whether the foundation soils are causing distresses to a structure. In particular, it appears that once a soil has been labeled as nonexpansive it is no longer considered as a problem soil, in which case blast vibrations become the prime suspect. It should be emphasized, however, that even non-plastic soils, those soils with low to nonexistent plastic indexes, can exhibit significant shrinkage characteristics that can result in significant damage to structures. While expansive soil is a function of the mineralogy of the soil particles, i.e., swelling clay minerals, shrinkage is caused by the loss of moisture from soil as capillary pressures exceed the cohesion or tensile strength and is therefore a function of the soils particle size and its pore size distribution. This is a significant problem for all fine grained soils regardless of the soil`s mineralogy. It`s particularly important for regions of the US that typically have a positive water balance but experience significant drought periods when soil moisture is lost.

  11. Dynamic crack propagation through nanoporous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  12. Influence of crack history on the stable tearing behavior of a thin-sheet material with multiple cracks

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.

    1994-01-01

    Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.

  13. Model-based adhesive shrinkage compensation for increased bonding repeatability

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Schlette, Christian; Lakshmanan, Shunmuganathan; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian; Roβmann, Jürgen

    2016-03-01

    The assembly process of optical components consists of two phases - the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today's micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature - obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.

  14. Crack mitigation in concrete bridge decks through experimental analysis and computer modeling

    NASA Astrophysics Data System (ADS)

    Richardson, Douglas M.

    Bridge deck cracking can cause deterioration of bridge decks, leading to a shorter life span and poor performance. Throughout the US, cracking has been identified as a problem, with transverse cracking along the deck at regular spacings being the most prominent type. This problem is usually caused by drying shrinkage within the concrete. The material properties, restraint, and distances without expansion joints all affect the crack pattern within the deck. This study will delve into the reasons that bridge decks crack, the strains that are associated with drying shrinkage, and possible methods for abating its effects. The research is divided into two parts, the first being laboratory experimentation, which was conducted through the use of two 7 ft. x 10 ft. experimental concrete bridge bays. Each bay was instrumented with strain and temperature gages throughout the deck and girders, which collected data for six months. The first deck was poured with a control concrete mix used currently in Illinois. The second deck was poured with a type K expansive concrete, which could battle the effects of shrinkage. For both decks, the results suggest a compressive strain throughout the rebar and along the top surface of the concrete, except for the locations where cracks are found (at these locations the strain slopes upward into tension). The strain in the type K deck, though, was notably less than that in the control deck and the onset of cracking was delayed by three weeks, giving the indication of an improvement over the current mix design. The second portion of the research was focused on using a finite element model to replicate the bridge bay and study the results. Equivalent temperature loading was used to apply the shrinkage loads recorded during the experimental portion of the research. The model was then expanded to encompass a full-scale bridge and in order to provide some insight into shrinkage strain in the real world. The end goal is to help alleviate cracking

  15. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  16. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  17. Crack Instability Predictions Using a Multi-Term Approach

    NASA Technical Reports Server (NTRS)

    Zanganeh, Mohammad; Forman, Royce G.

    2015-01-01

    Present crack instability analysis for fracture critical flight hardware is normally performed using a single parameter, K(sub C), fracture toughness value obtained from standard ASTM 2D geometry test specimens made from the appropriate material. These specimens do not sufficiently match the boundary conditions and the elastic-plastic constraint characteristics of the hardware component, and also, the crack instability of most commonly used aircraft and aerospace structural materials have some amount of stable crack growth before fracture which makes the normal use of a K(sub C) single parameter toughness value highly approximate. In the past, extensive studies have been conducted to improve the single parameter (K or J controlled) approaches by introducing parameters accounting for the geometry or in-plane constraint effects. Using 'J-integral' and 'A' parameter as a measure of constraint is one of the most accurate elastic-plastic crack solutions currently available. In this work the feasibility of the J-A approach for prediction of the crack instability was investigated first by ignoring the effects of stable crack growth i.e. using a critical J and A and second by considering the effects of stable crack growth using the corrected J-delta a using the 'A' parameter. A broad range of initial crack lengths and a wide range of specimen geometries including C(T), M(T), ESE(T), SE(T), Double Edge Crack (DEC), Three-Hole-Tension (THT) and NC (crack from a notch) manufactured from Al7075 were studied. Improvements in crack instability predictions were observed compared to the other methods available in the literature.

  18. Measuring polymerization shrinkage of photo-activated restorative materials by a water-filled dilatometer.

    PubMed

    Lai, J H; Johnson, A E

    1993-03-01

    A water-filled dilatometer specifically designed for determining the polymerization shrinkage of photo-activated composite restorative materials was used to measure the polymerization shrinkage of three visible light-activated composites. Polymerization shrinkage values ranged from 1.82% for P-50 to 2.15% and 2.19% for Herculite XRV and Prisma APH, respectively. Shrinkage data obtained in this investigation were compared with the published data, and the factors which affect shrinkage measurements were reviewed. It was concluded that maintaining a constant temperature environment (+ or - 0.02 degrees C) for the dilatometer during the shrinkage test was the most critical factor for successful application of the dilatometer.

  19. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  20. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  1. Cyclic plasticity and failure of structural components

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    An analytical approach for low-cycle fatigue prediction is presented. The approach combines a cyclic plasticity model with the finite element method and a damage accumulation criterion for ductile metals. The cyclic plasticity model is based on the concept of the combination of several yield surfaces. The surfaces are related to the material uniaxial stress-strain curve idealized by piecewise linear segments. The damage criterion is based on the Coffin-Manson formulae modified for the mean stress variation effect. It is extended to the multiaxial varying stress-strain field and applied for both the crack initiation and the crack growth processes. The stable slow crack growth rate is approximated by the damage accumulation gradient computed from the cracked finite element models. This procedure requires fatigue testing data of only smooth specimens under constant strain amplitudes. The present approach is illustrated by numerical examples of an aircraft wing stiffened panel subjected to compression, which causes material yielding and residual tension.

  2. New methods to quantify the cracking performance of cementitious systems made with internal curing

    NASA Astrophysics Data System (ADS)

    Schlitter, John L.

    The use of high performance concretes that utilize low water-cement ratios have been promoted for use in infrastructure based on their potential to increase durability and service life because they are stronger and less porous. Unfortunately, these benefits are not always realized due to the susceptibility of high performance concrete to undergo early age cracking caused by shrinkage. This problem is widespread and effects federal, state, and local budgets that must maintain or replace deterioration caused by cracking. As a result, methods to reduce or eliminate early age shrinkage cracking have been investigated. Internal curing is one such method in which a prewetted lightweight sand is incorporated into the concrete mixture to provide internal water as the concrete cures. This action can significantly reduce or eliminate shrinkage and in some cases causes a beneficial early age expansion. Standard laboratory tests have been developed to quantify the shrinkage cracking potential of concrete. Unfortunately, many of these tests may not be appropriate for use with internally cured mixtures and only provide limited amounts of information. Most standard tests are not designed to capture the expansive behavior of internally cured mixtures. This thesis describes the design and implementation of two new testing devices that overcome the limitations of current standards. The first device discussed in this thesis is called the dual ring. The dual ring is a testing device that quantifies the early age restrained shrinkage performance of cementitious mixtures. The design of the dual ring is based on the current ASTM C 1581-04 standard test which utilizes one steel ring to restrain a cementitious specimen. The dual ring overcomes two important limitations of the standard test. First, the standard single ring test cannot restrain the expansion that takes place at early ages which is not representative of field conditions. The dual ring incorporates a second restraining ring

  3. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  4. Flowable composite resins: do they decrease microleakage and shrinkage stress?

    PubMed

    Conte, Nicholas R; Goodchild, Jason H

    2013-06-01

    All flowable composites shrink and undergo polymerization stress; however, new technologic developments have sought to minimize this, while streamlining dental techniques and producing better results. The new category of bulk-fill flowable composites promotes the effective use of 4-mm increments while decreasing shrinkage stresses generated during polymerization.

  5. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  6. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  7. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  8. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  9. Crack Growth Behavior in the Threshold Region for High Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.

  10. The analysis of crack tip fields in ferroelastic materials

    NASA Astrophysics Data System (ADS)

    Carka, Dorinamaria; Landis, Chad M.

    2011-09-01

    The stress and strain fields near a stationary crack in a ferroelastic material are analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that can arise near a crack tip. Detailed finite element calculations are carried out to determine the stress and strain fields in the vicinity of the crack tip, and to compute values for the J-integral on various integration paths around the tip. The results of the calculations are discussed in relation to results for growing cracks and for stationary cracks in standard elastic-plastic materials.

  11. The cracked tooth.

    PubMed

    Zuckerman, G R

    1998-01-01

    Fractured molars and premolars are very common. Fractures usually result from cracks that develop and slowly extend until the tooth separates into buccal and lingual fragments. Sometimes, as these cracks expand, the patient exhibits symptoms of what is commonly referred to as "cracked tooth syndrome" (CTS). When CTS occurs, an opportunity exists to diagnose and treat these patients, to relieve their discomfort and prevent sequelae that would require more extensive treatment.

  12. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  13. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  14. Cure shrinkage effects in epoxy and polycyanate matrix composites

    SciTech Connect

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  15. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  16. Three-dimensional crack growth assessment by microtopographic examination

    SciTech Connect

    Lloyd, W.R.; Piascik, R.S.

    1995-12-31

    The initial stage of the stable tearing process in two 2.3 mm sheet 2024-T3 aluminum alloy M(T) specimens are analyzed using fracture surface microtopography reconstruction techniques. The local crack tip opening angles (CTOA) in the interior of the specimens are determined relative to both crack extension and through-thickness position. The microtopographic analysis of cracks grown in the L-T and T-L orientations reveal that interior CTOA is comparable to those measured on the surface using standard optical analysis methods. Similar to surface CTOA results, interior (mid-thickness) CTOA exhibit a transient behavior; CTOA transitions from high angles, at near crack initiation, to a lower steady-state value of 5 deg. and 4.2 deg. for L-T and T-L, respectively, at crack lengths greater than 1.5mm. Fracture surface topographic projection maps are used to study the evolution of crack front tunneling during the initial stage of the fracture process. Stable tearing initiates at mid-thickness followed by a crack front tunneling process to a depth of approximately 2mm. A brief discussion of the basis of the fracture process reconstruction method is provided and comments on the general utility of microtopographic fracture surface examination for general assessment of elastic-plastic and fully-plastic fracture processes are made.

  17. The Effect of Water on Crack Interaction

    NASA Astrophysics Data System (ADS)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  18. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  19. Surface Enhancement Improves Crack Resistance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The low plasticity burnishing (LPB) process produces a deep layer of surface compression in a quick and affordable manner to produce metal surfaces free of scratches, nicks, and gouges. The process, designed for easy inclusion in the manufacturing environment, can be performed with conventional Computer Numerical Control machine tools. This allows parts to be processed during manufacturing, rather than as a post process in a separate facility. A smooth, free-rolling spherical ball suspended in a fluid allows for single-point contact. The ball comes into mechanical contact only with the surface to be burnished, and can be moved in any direction. LPB can be applied to all types of carbon and alloy steel, stainless steel, cast iron, aluminum, titanium, and nickel- based super alloys. In addition to improving a surface's resistance to fatigue and damage, treatment stops the growth of shallow cracks. The LPB process is used on the leading edges of turbine blades to improve resistance to foreign object damage and crack growth. This means significant savings for aircraft owners, since maintenance requirements to inspect for fatigue damage, replace parts, and remove corrosion damage increase the cost of operation.

  20. Pyrolytic carbon indentation crack morphology.

    PubMed

    Ely, J L; Stupka, J; Haubold, A D

    1996-06-01

    In studying fatigue and fracture behavior of brittle materials, Vickers diamond indentation cracks are often used. Many of the studies of indentation cracks use crack system models such as the radial-median crack or Palmqvist crack. These systems are also used to study small crack growth in brittle materials, and have been studied for pyrolytic carbon. However, the true morphology of these cracks in pyrolytic carbon coatings on graphite substrates have not been described. This study examined Vickers diamond and spherical ball indentation cracks in pyrolytic carbon coatings using several techniques, including serial metallographic cross sections, indentation fracture in bending, acoustic emission, and residual surface indentation scanning. The crack systems developed using these techniques were not typical of either radial median or Palmqvist systems. The morphology is unique to this material, possibly because of the coating thickness limitations. Given the difference in crack system, the application of standard indentation crack equations in studying fracture mechanics, especially for small cracks, must be questioned.

  1. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  2. A Study of the Fatigue Behavior of Small Cracks in Nickel-Base Superalloys

    DTIC Science & Technology

    1988-02-24

    later successfully used in a study of stress corrosion crack initiation in a nickel-base superalloy tested under monotonic loading in a PWR environment...growth ratcs were measured over crack lengths ranging from AI lOom to lmni. Mos’ of the testing was performed in load control. with stress ranges...elevated temperatures in the elastic-plastic regime where the maximum cyclic stress reaches the macroscopki yield stress , the fatigue crack growth rates

  3. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  4. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  5. Reversible cerebral shrinkage in kwashiorkor: an MRI study.

    PubMed

    Gunston, G D; Burkimsher, D; Malan, H; Sive, A A

    1992-08-01

    Protein energy malnutrition is associated with cerebral atrophy which may be detrimental to intellectual development. The aim of this study was to document the anatomical abnormalities which lead to the appearance of cerebral atrophy using magnetic resonance imaging (MRI) in the acute stage of kwashiorkor and to monitor changes during nutritional rehabilitation. Twelve children aged 6 to 37 months requiring admission to hospital for the treatment of kwashiorkor were studied. The children were evaluated clinically, biochemically, and by MRI of their brains on admission and 30 and 90 days later. Brain shrinkage was present in every child on admission. White and grey matter appeared equally affected and the myelination was normal for age. At 90 days, the cerebral changes had resolved in nine and improved substantially in the remainder, by which time serum proteins and weight for age were within the normal range. The findings of this study suggest that brain shrinkage associated with kwashiorkor reverses rapidly with nutritional rehabilitation.

  6. New System of Shrinkage Measurement through Cement Mortars Drying

    PubMed Central

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  7. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  8. The mode I crack growth resistance of metallic foams

    NASA Astrophysics Data System (ADS)

    Chen, C.; Fleck, N. A.; Lu, T. J.

    2001-02-01

    A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance ( R-curve) of metallic foams, with the fracture process characterised by an idealised traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

  9. COMPARATIVE ANALYSIS OF THE SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Pereira, Rosana Aparecida; de Araujo, Paulo Amarante; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (α=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 μm; Filtek Supreme = 10.66 ± 1.211μm; Admira = 11.16 ± 2.041 μm and Grandio = 10.50 ± 1.224 μm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation. PMID:19089286

  10. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  11. An experimental investigation of transient fatigue crack growth phenomena under elevated temperature conditions in superalloy 718 and titanium Ti-1100. Ph.D. Thesis

    SciTech Connect

    Rosenberger, A.H.

    1993-01-01

    Two transient crack growth phenomena are investigated in high temperature structural alloys. The first phenomenon examined is the growth behavior of small cracks under elastic-plastic conditions in Alloy 718 at 650 C. The second phenomenon to be investigated is the mechanism of the creep-fatigue crack growth in a new near-alpha titanium alloy, Ti-1100. Understanding these phenomena is essential for accurate fracture mechanics based residual life component management techniques. The first part of the dissertation is an experimental study of the elastic-plastic fatigue behavior of small surface cracks in Alloy 718 at 650 C conducted under conditions of total strain control. During cycling, the crack growth was continuously monitored using a direct current potential drop technique while the influence of crack closure was monitored using a laser interferometry technique measuring the crack mouth opening displacement. The crack tip plastic zone size was also measured using a post-test delta phase decoration technique. Results show that the growth rates of the small cracks correlate well with long crack data when using an appropriate elastic-plastic driving force parameter. The anomalous crack growth rates observed in some experiments were found to be experimental transients dominated by the crack initiation fracture and do not represent an intrinsic behavior of Alloy 718. The second part of this document deals with a series of crack growth experiments performed on the near-alpha titanium alloy, Ti-1100, to determine the mechanism of the creep-fatigue interaction. Based on pure creep crack growth results, the increase in the creep-fatigue crack growth rate is not amenable to separate contributions of creep crack growth and fatigue crack growth. A mechanism has been proposed to account for the increase in creep-fatigue crack growth rate based on the planar slip of titanium alloys which results in the formation of dislocation pileups at the prior beta grain boundaries.

  12. Visualization study on distortion of a metal frame by polymerization shrinkage and thermal contraction of resin.

    PubMed

    Kakino, Ken; Endo, Kazuhiko; Hashimoto, Masanori; Furuta, Kunihiko; Ohno, Hiroki

    2014-01-01

    Three types of metal specimens (ring-shaped, plate-shaped, and a simulated anterior arch) for distortion observations were made from Au-Ag-Pd-Cu alloy. Distortion due to polymerization shrinkage and thermal contraction of a heat-curing acrylic resin containing 4-META (4-methacryloyloxyethyl trimellitate anhydride, 4-META resin) could be visualized for the ring-shaped specimen, which showed increasing distortion of the metal frame upon adhesion of the resin to the outer metal surface. Distortion of the plateshaped specimen adhering to 4-META resin decreased with increasing thickness of the cured resin. The distortion of the metal frame simulating an anterior arch of a six-unit bridge with a facing composite resin showed that the curvature of the metal frame was larger after curing of the facing composite resin. However, it recovered most of its original curvature with an associated increase in the number of cracks between the crowns after trimming the resin to a tooth profile.

  13. Prediction of Crack Growth under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1997-01-01

    The present paper is concerned with the application of a "plasticity-induced" crack closure model to study fatigue crack growth under various load histories. The model was based on the Dugdale model but modified to leave plastically deformed material in the wake of the advancing crack. The model was used to correlate crack growth rates under constant-amplitude loading and then used to predict crack growth under variable-amplitude and spectrum loading on thin-sheet 2024- T3 aluminum alloys. Predicted crack-opening stresses agreed well with test data from the literature. The crack-growth lives agreed within a factor of two for single and repeated spike overloads/underloads and within 20 percent for spectrum loading. Differences were attributed to fretting-product-debris-induced closure and three-dimensional affects not included in the model.

  14. Assessment of crack opening area for leak rates

    SciTech Connect

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  15. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation

    PubMed Central

    ROSNER, SABINE; KARLSSON, BO; KONNERTH, JOHANNES; HANSMANN, CHRISTIAN

    2011-01-01

    Summary The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids. PMID:19797244

  16. Prediction of fatigue-crack growth under variableamplitude and spectrum loading using a closure model

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1981-01-01

    An existing analytical crack closure model was used to study crack growth under various load histories. The model was based on a concept like the Dugdale model, but modified to leave plastically deformed material in the wake of the advancing crack tip. The model was used to correlate crack growth rates under constant amplitude loading, and to predict crack growth under variable amplitude and aircraft spectrum loading on 2219-T851 aluminum alloy sheet material. The predicted crack growth lives agreed well with experimental data. For 80 crack growth tests subjected to various load histories, the ratio of predicted-to-experimental lives (N(P)/n(T)) ranged from 0.5 to 1.8. The mean value of N(P)/N(T) was 0.97 and the standard deviation was 0.27.

  17. Residual strength of cracked 7075 T6 Al-alloy sheets under high loading rates

    NASA Astrophysics Data System (ADS)

    Vasek, A.; Schijve, J.

    1995-04-01

    Dynamic tests were carried out on long sheet specimens with two collinear cracks. First the ligament between the two cracks fails, which implies that the cracks are linked up to a single crack. Linking up did increase the loading rate (dK/dt) of the outer crack tips up to 2 x 10(exp 4) MPa (sq root) m/s. COD measurements during the fast running crack were made. The residual strength was decreased by about 10 percent as compared to the quasi-static result. Fractographic evidence indicates that a high dK/dt has some effect on the shear lips. It promotes some plane-strain influence, associated with an increased yield stress, due to the high plastic strain rate in the crack tip zone. The results were evaluated in terms of fracture mechanics. The results are bearing on the damage tolerance of aircraft structures built up from 7075-T6 sheet material.

  18. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  19. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    PubMed

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  20. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  1. Elevated temperature crack propagation

    SciTech Connect

    Orange, T.W.

    1994-02-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  2. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  3. Three-dimensional numerical simulation of weld solidification cracking

    NASA Astrophysics Data System (ADS)

    Wei, Y. H.; Dong, Z. B.; Liu, R. P.; Dong, Z. J.

    2005-04-01

    It is difficult to measure mechanical strain in the vicinity of a moving weld pool owing to the complex solidification process. Computational modelling of the welding process provides an effective method to study the stress/strain distributions of the weldment. In this paper, the driving force to weld solidification cracking, i.e. mechanical strain versus temperature at the trail of a weld molten pool, was modelled with the three-dimensional finite element analysis procedure. The dynamic stress/strain evolutions that contribute to the formation of solidification cracking have been calculated in the cracking susceptible temperature range. In the mechanical model, solidification effects, namely deformation in the weld pool, change of initial temperature for thermal stress/strain calculation, were treated by means of a dynamic element rebirth scheme. Solidification shrinkage was also taken into consideration in simulation. The results of comparison between the calculated driving force and the experimental measurements of the material resistance predict the susceptibility of solidification cracking.

  4. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  5. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  6. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  7. Damage, crack growth and fracture characteristics of nuclear grade graphite using the Double Torsion technique

    NASA Astrophysics Data System (ADS)

    Becker, T. H.; Marrow, T. J.; Tait, R. B.

    2011-07-01

    The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.

  8. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  9. Effect of Microstructure on the Fatigue Crack Propagation Behavior of Ni-Base Superalloys.

    DTIC Science & Technology

    1987-12-01

    N= cycles to initiate crack in process zone A Coffin - Manson exponent Sp = plastic strain range ef = fatigue ductility CO = constant From this the...initiation at an average plastic strain range Aep in the process zone. ANi can be calculated from the Coffln- Manson equation: where (-NI)PAP = C 0 f .(8

  10. Energy dissipation and contour integral characterizing fracture behavior of incremental plasticity

    NASA Astrophysics Data System (ADS)

    He, Qi-Lin; Wu, Lin-Zhi; Li, Ming; Chen, Hong-Bo

    2011-04-01

    J ep-integral is derived for characterizing the fracture behavior of elastic-plastic materials. The J ep-integral differs from Rice's J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep-integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J ep-integral possesses clearly clear physical meaning: (1) the value J {tip/ep} evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J {far-ss/ep} calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.

  11. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    PubMed

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage.

  12. A Model for Prediction of Shrinkage Defects in Long and Short Freezing Range Materials

    SciTech Connect

    Reis, A.; Duarte, J. F.; Santos, A. D.; Magalhaes, A. B.; Houbaert, Y.

    2007-05-17

    The aim of the model presented in this paper is to capture the difference in solidification behaviour of long and short freezing materials. The shrinkage defects in short freezing materials tends to be internal, as porosity, while in long freezing materials these defects tend to be external in the form of surface depressions. To achieve this, a pressure drop based 3-D feeding flow model has been developed to evaluate shrinkage defects for casting alloys. A continuum formulation is used to describe the transport of mass, energy and momentum. It is assumed that during solidification the driving force for flow is shrinkage. A Darcy type source term has been included in the momentum equation to account for flow resistance in the mushy zone. A VOF free surface model has been used to describe shrinkage defects, i.e., external surface depressions and internal shrinkage porosities, while ensuring mass conservation. The model is used to calculate the shrinkage in a simple casting. The results shows internal and outside shrinkage defects depending on the freezing range of the metal. Short freezing range results mainly in internal shrinkage whereas the long freezing range results in external shrinkage. The expected shrinkage features are well described by the present model.

  13. A Model for Prediction of Shrinkage Defects in Long and Short Freezing Range Materials

    NASA Astrophysics Data System (ADS)

    Reis, A.; Xu, Zhi an; Duarte, J. F.; Santos, A. D.; Houbaert, Y.; Magalhães, A. B.

    2007-05-01

    The aim of the model presented in this paper is to capture the difference in solidification behaviour of long and short freezing materials. The shrinkage defects in short freezing materials tends to be internal, as porosity, while in long freezing materials these defects tend to be external in the form of surface depressions. To achieve this, a pressure drop based 3-D feeding flow model has been developed to evaluate shrinkage defects for casting alloys. A continuum formulation is used to describe the transport of mass, energy and momentum. It is assumed that during solidification the driving force for flow is shrinkage. A Darcy type source term has been included in the momentum equation to account for flow resistance in the mushy zone. A VOF free surface model has been used to describe shrinkage defects, i.e., external surface depressions and internal shrinkage porosities, while ensuring mass conservation. The model is used to calculate the shrinkage in a simple casting. The results shows internal and outside shrinkage defects depending on the freezing range of the metal. Short freezing range results mainly in internal shrinkage whereas the long freezing range results in external shrinkage. The expected shrinkage features are well described by the present model.

  14. Grain-by-grain study of the mechanisms of crack propagation during iodine stress corrosion cracking of Zircaloy-4

    SciTech Connect

    Haddad, R.E.; Dorado, A.O.

    1994-12-31

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, during the iodine stress corrosion cracking (SCC) of zirconium alloys, focusing on the crystallographic orientation of crack paths, the critical stress conditions, and the significance of the fractographic features encountered. In order to perform crystalline orientation of fracture surfaces, a specially heat-treated Zircaloy-4 having very large grains, grown up to the wall thickness, was used. Careful orientation work has proved that intracrystalline pseudo-cleavage occurs only along basal planes. the effects of anisotropy, plasticity, triaxiality, and residual stresses originated in thermal contraction have to be considered to account for the influence of the stress state. A grain-by-grain calculation led to the conclusion that transgranular cracking always takes place on those bearing the maximum resolved tensile stress perpendicular to basal planes. Propagation along twin boundaries has been identified among the different fracture modes encountered.

  15. Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Lü, Xu-ming; Li, Shi-lei; Zhang, Hai-long; Wang, Yan-li; Wang, Xi-tao

    2015-11-01

    The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20?09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.

  16. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  17. Analysis of Alloy 600 and X-750 stress corrosion cracks

    SciTech Connect

    Thompson, C.D.; Lewis, N.; Krasodomski, H.

    1993-06-01

    A few months ago, KAPL evidence supported the view that Primary or Pure Water Stress Corrosion Cracking (PWSCC) of Alloy 600 results from a hydrogen mechanism. Figure 1 shows an Analytical Electron Microscope (AEM) analysis of a stress corrosion crack (SCC) crack in an A600 split tube U-bend specimen exposed to primary water at 338{degree}C (640{degrees}F) for 462 days. The features which appear to confirm a hydrogen mechanism are: (1) A very narrow (< 200 {angstrom}) crack with a sharp tip, nearly free of deposits. (2) No evidence of severe plastic deformation in the region immediately ahead of the crack tip. (3) A line of small voids preceding the main crack tip, of which the largest is about 5 x 10{sup {minus}6} cm in length. Shen and Shewmon proposed that PWSCC of Alloy 600 occurs due to small microvoids ahead of a main crack tip. The hypothesis is that such voids result from pockets of methane gas formed by the reaction of atomic hydrogen with carbon in the base metal. The voids are about 10 x 10{sup {minus}6} cm diameter, approximately a factor of 2 larger than the largest voids.

  18. Evaluation of the effect of crack closure on fatigue crack growth of simulated short cracks

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1984-01-01

    A test program was performed to determine the influence of crack closure on fatigue crack growth (FCG) rates of short cracks. By use of the standard compact tension specimen, test procedures were devised to evaluate closure loads in the wake of the crack behind its tip. The first procedure determined the magnitude of crack closure as a function of the fatigued crack wave by incrementally removing the contacting wake surfaces and measuring closure load at each increment. The second procedure used a low-high loading sequence to simulate short crack behavior. Based on the results, it was concluded that crack closure is not the major reason for the more rapid growth of short cracks as compared to long crack growth.

  19. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2014-06-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.

  20. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  1. Laser guide star spot shrinkage for affordable wavefront sensors

    NASA Astrophysics Data System (ADS)

    Jahn, Wilfried; Hugot, Emmanuel; Fusco, Thierry; Neichel, Benoit; Ferrari, Marc; Correia, Carlos; Pueyo, Laurent; Dohlen, Kjetil; Pascal, Sandrine; Vola, Pascal; Sauvage, Jean-François; El Hadi, Kacem; Gach, Jean Luc

    2016-07-01

    Innovative optical designs allow tackling the spot elongation issues in Shack-Hartman based laser guide star wavefront sensors. We propose two solutions using either a combination of two arrays of freeform microlenses, or a combination of freeform optics, to perform a shrinkage of the laser spots as well as a magnification of the SH focal plane. These approaches will drastically reduce the number of needed pixels, thus making possible the use of existing detectors. We present the recent advances on this activity as well as the estimation of performance, linearity and sensitivity of the compressed system in presence of aberrations.

  2. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  3. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    NASA Astrophysics Data System (ADS)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  4. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  5. A fast-firing shrinkage rate controlled dilatometer using an infrared image furnace

    NASA Astrophysics Data System (ADS)

    Hackenberger, W. S.; Speyer, R. F.

    1994-03-01

    A novel dilatometer design is described for performing rate controlled sintering experiments on powder compacts. Previous rate controlled sintering systems, which control the shrinkage of a sintering compact, possessed only limited shrinkage rate control and shrinkage profile complexity due to the high thermal mass of conventional furnaces and dilatometers. The instrument described in this work features an infrared imaging furnace and a low thermal mass dilatometer assembly which together provide a very rapid temperature response. The system is capable of heating and cooling ceramic samples at up to 500 °C/min. Shrinkage control is accomplished using a modified, computer interfaced proportional-integral-derivative algorithm, and tests on glass-alumina composite samples demonstrated excellent shrinkage control with differences routinely less than 0.2% between the set point and actual shrinkage.

  6. Plastic Surgery Statistics

    MedlinePlus

    ... PRS GO PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the ... Plastic Surgery Statistics 2005 Plastic Surgery Statistics 2016 Plastic Surgery Statistics Stats Report 2016 National Clearinghouse of ...

  7. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  8. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  9. Three-dimensional chemo-thermomechanically coupled simulation of curing adhesives including viscoplasticity and chemical shrinkage

    NASA Astrophysics Data System (ADS)

    Liebl, Christoph; Johlitz, Michael; Yagimli, Bülent; Lion, Alexander

    2012-05-01

    Based on the one-dimensional material model developed by Liebl et al. (Arch Appl Mech, 2011) a three-dimensional viscoelastic-viscoplastic material model for small deformations of curing adhesives on the basis of continuum mechanics is proposed in this contribution. The model describes the most relevant phenomena which occur during curing processes in the automotive industry and includes the effects of temperature and degree of cure on the mechanical properties of the material. Thermal expansion as well as chemical shrinkage are also contained. The yield stress for the viscoplastic part of the model goes back to the work of Schlimmer and Mahnken (Int J Numer Meth Eng 63:1461-1477, 2005), but is formulated in reference to the degree of cure and the temperature. Therefore this model considers chemo-thermomechanical coupling and extends the plasticity approach of Schlimmer and Mahnken, which is devised for cured adhesives, to the whole curing range, from the uncured to the fully cured adhesive. A peculiar focus is hereby laid on epoxy resins used in the automotive industry as structural adhesives.

  10. Postsynaptic PDLIM5 / Enigma Homolog binds SPAR and causes dendritic spine shrinkage

    PubMed Central

    Herrick, Scott; Evers, Danielle M.; Lee, Ji-Yun; Udagawa, Noriko; Pak, Daniel T.S.

    2009-01-01

    Dendritic spine morphology is thought to play important roles in synaptic development and plasticity, and morphological derangements in spines are correlated with several neurological disorders. Here, we identified an interaction between Spine-Associated RapGAP (SPAR), a postsynaptic protein that reorganizes actin cytoskeleton and drives dendritic spine head growth, and PDLIM5 / Enigma Homolog (ENH), a PDZ-LIM (postsynaptic density-95/Discs large/zona occludens 1-Lin11/Isl-1/Mec3) family member. PDLIM5 has been implicated in susceptibility to bipolar disorder, major depression and schizophrenia but its function in neurological disease is poorly understood. We show that PDLIM5 is present in the postsynaptic density, where it promotes decreased dendritic spine head size and longer, filopodia-like morphology. Conversely, RNA interference against PDLIM5 or loss of PDLIM5 interaction with SPAR caused increased spine head diameter. Furthermore, PKC activation promoted delivery of PDLIM5 into dendritic spines and increased its spine colocalization with SPAR. These data reveal new postsynaptic functions for PDLIM5 in shrinkage of dendritic spines that may be relevant to its association with psychiatric illness. PMID:19900557

  11. Impaired decision-making and brain shrinkage in alcoholism.

    PubMed

    Le Berre, A-P; Rauchs, G; La Joie, R; Mézenge, F; Boudehent, C; Vabret, F; Segobin, S; Viader, F; Allain, P; Eustache, F; Pitel, A-L; Beaunieux, H

    2014-03-01

    Alcohol-dependent individuals usually favor instant gratification of alcohol use and ignore its long-term negative consequences, reflecting impaired decision-making. According to the somatic marker hypothesis, decision-making abilities are subtended by an extended brain network. As chronic alcohol consumption is known to be associated with brain shrinkage in this network, the present study investigated relationships between brain shrinkage and decision-making impairments in alcohol-dependent individuals early in abstinence using voxel-based morphometry. Thirty patients performed the Iowa Gambling Task and underwent a magnetic resonance imaging investigation (1.5T). Decision-making performances and brain data were compared with those of age-matched healthy controls. In the alcoholic group, a multiple regression analysis was conducted with two predictors (gray matter [GM] volume and decision-making measure) and two covariates (number of withdrawals and duration of alcoholism). Compared with controls, alcoholics had impaired decision-making and widespread reduced gray matter volume, especially in regions involved in decision-making. The regression analysis revealed links between high GM volume in the ventromedial prefrontal cortex, dorsal anterior cingulate cortex and right hippocampal formation, and high decision-making scores (P<0.001, uncorrected). Decision-making deficits in alcoholism may result from impairment of both emotional and cognitive networks.

  12. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  13. Mixed-mode static and fatigue crack growth in central notched and compact tension shear specimens

    SciTech Connect

    Shlyannikov, V.N.

    1999-07-01

    Elastic-plastic crack growth under mixed Mode I and 2 in six types of aluminum alloys and three types of steel were investigated. The experimental study of fatigue crack growth in six types of the aluminum alloys and one type of the steel is performed on biaxially loaded eight-petal specimens (EPS). All specimens for biaxial loading contained inclined through thickness central cracks. Mixed Mode I/2 static and fatigue crack growth experiments on the three types of steels and one type of the aluminum alloy used compact tension shear (CTS) specimens. Two approaches are developed for geometrical modeling of crack growth trajectories for the central notched and compact tension shear specimens respectively. The principal feature of such modeling is the determination of crack growth direction and the definition of crack length increment in this direction. On the basis of the analysis of the experimental data for the aluminum alloys and the steels an empirical crack reorientation criterion is suggested for both brittle and ductile materials. The damage process zone size concept is used for calculations and mixed-mode crack path. The influence of specimen geometry, biaxial loading and properties of the aluminum alloys and the steels on both crack growth direction and crack path at the macroscopic scale is discussed.

  14. The use of electrical anisotropy measurements to monitor soil crack dynamics - laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Sahraei, Amirhossein; Huisman, Johan Alexander; Zimmermann, Egon; Vereecken, Harry

    2016-04-01

    Swelling and shrinking of soil cracks is a key factor determining water fluxes in many irrigated soils. Most previous studies have used time-intensive and destructive methods for crack characterization, such as depth and volume determination from simplified geometrical measurements or liquid latex filling. Because of their destructive and time-consuming nature, these methods have only provided instantaneous estimates of the geometry and/or volume of cracks. The aim of this study is to evaluate the use of anisotropy in electrical resistivity measured with a square electrode array to determine crack depth dynamics. In a first step, the performance of the method was analyzed using a laboratory experiment where an artificial soil crack was emulated using a plastic plate in a water bath. Since cracking depth was precisely known, this experiment allowed to develop a method to estimate soil crack depth from measurements of the electrical anisotropy. In a second step, electrical anisotropy was measured during soil crack development within a soil monolith consisting of a mix of sand and bentonite. The cracking depth estimated from electrical measurement compared well with reference ruler measurements. These laboratory measurements inspired confidence in the use of electrical anisotropy for soil crack investigations, and consequently the developed methods will be applied to investigate soil crack dynamics in the field in a next step.

  15. Crack propagation in Hastelloy X

    SciTech Connect

    Weerasooriya, T.; Strizak, J.P.

    1980-05-01

    The fatigue and creep crack growth rates of Hastelloy X were examined both in air and impure helium. Creep crack growth rate is higher in air and impure helium at 650/sup 0/C. Initial creep crack growth from the original sharp fatigue crack is by an intergranular mode of fracture. As the cracking accelerates at higher stress intensities, growth is by a mixed mode of both intergranular and transgranular fracture. Fatigue crack growth rate increases with increasing temperature and decreasing frequency for the range of stress intensities reported in the literature and is lower in impure helium than in air.

  16. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  17. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  18. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  19. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  20. Multiscale modeling of crack initiation and propagation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Shiari, Behrouz; Miller, Ronald E.

    2016-03-01

    Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly "converting" the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region. The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.

  1. Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment.

    PubMed

    Liu, Wenying; Lipner, Justin; Moran, Christine H; Feng, Liangzhu; Li, Xiyu; Thomopoulos, Stavros; Xia, Younan

    2015-04-24

    Electrospun nanofibers with controllable degrees of crimping are fabricated by simply exposing the samples to a plasticizer at preset shrinkage ratios. Compared with their straight counterparts, the crimped nanofibers are able to mechanically mimic native tendon tissue and better protect tendon fibroblasts under uniaxial strains.

  2. Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload

    SciTech Connect

    Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok; Liaw, Peter K; Choo, Hahn; Sun, Yinan; Fan, C; Li, Li; Brown, Donald; Ice, Gene E

    2008-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistent with the high dislocation densities near the crack tip measured by neutron peak broadening.

  3. Vacuum Levels Needed to Simulate Internal Fatigue Crack Growth in Titanium Alloys and Nickel-Base Superalloys Thermaodynamic Conditioners (Preprint)

    DTIC Science & Technology

    2012-08-01

    pressure reduction from 10 Pa to 1 Pa, which was attributed to the enhanced plasticity leading to crack tip blunting at air pressures ≤ 1 Pa...feasible. From these considerations, it is expected that there is a lower level of reverse slip at the crack - tip during unloading portion of a fatigue...sustained-load tests at elevated temperatures of Ni-base superalloys is reported to occur by stress-assisted diffusion of oxygen ahead of crack - tip , and

  4. Small fatigue crack propagation in Y2O3 strengthened steels

    NASA Astrophysics Data System (ADS)

    Hutař, P.; Kuběna, I.; Ševčík, M.; Šmíd, M.; Kruml, T.; Náhlík, L.

    2014-09-01

    This paper is focused on two type of Y2O3 strengthened steels (Fe-14Cr ODS and ODS-EUROFER). Small fatigue crack propagation was experimentally measured using special small cylindrical specimens (diameter 2 and 2.6 mm) with shallow notch grinded in the gauge length. In the middle of this notch, a pre-crack of length of 50 μm was fabricated using a focused ion beam technique. Fatigue crack growth rate was measured for different applied total strain amplitudes and described using plastic part of the J-integral. Obtained results were compared with published data of EUROFER 97. The effect of the oxide dispersion on small fatigue crack propagation was found rather insignificant. Ferritic Fe-14Cr ODS steel shows more brittle behaviour, i.e. for the same cyclic plasticity, characterised by the plastic part of the J-integral, the small cracks grow faster. A new methodology for residual lifetime prediction of structures containing physically small cracks, based on plastic part of the J-integral, is presented.

  5. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit…

  6. Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Yun-Xia; Liu, Le

    2017-03-01

    The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.

  7. Plastic Bronchitis.

    PubMed

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments.

  8. Thermal cracking of retort oil

    SciTech Connect

    Dearth, J.D.; Smith, R.H.

    1980-10-14

    The thermal cracking of retort oil vapors in an elongated reactor is improved by passing the effluent oil vapors and gases from a retort to a thermal cracking unit before the temperature of the retort effluent falls below 680* F. This encourages the more desirable cracking reactions, increases the thermal efficiency of the process, and avoids preheater coking.

  9. Cross-validated detection of crack initiation in aerospace materials

    NASA Astrophysics Data System (ADS)

    Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios

    2014-03-01

    A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.

  10. Fatigue crack propagation in self-assembling nanocomposites

    NASA Astrophysics Data System (ADS)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  11. Crosslink-induced shrinkage of grafted Gaussian chains

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis

    2014-04-01

    The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single crosslink on two ideal (Gaussian) chains grafted onto a rigid planar surface. Both the crosslink and the surface reduce the number of allowed configurations. In the absence of the hard substrate, the sole effect of the crosslink is a reduction in the effective Kuhn length of a tethered chain. The crosslink-induced shrinkage (collapse) of the grafted chains (mushrooms) turns out to be a reduction in the variance of the distribution of the height of the chain rather than a reduction of the height itself.

  12. Analysis of gene set using shrinkage covariance matrix approach

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  13. Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport.

    PubMed

    Koltsova, Svetlana V; Akimova, Olga A; Kotelevtsev, Sergei V; Grygorczyk, Ryszard; Orlov, Sergei N

    2012-02-01

    In the present work, we compared the outcome of hyperosmotic and isosmotic shrinkage on ion transport and protein phosphorylation in C11-MDCK cells resembling intercalated cells from collecting ducts and in vascular smooth muscle cells (VSMC) from the rat aorta. Hyperosmotic shrinkage was triggered by cell exposure to hypertonic medium, whereas isosmotic shrinkage was evoked by cell transfer from an hypoosmotic to an isosmotic environment. Despite a similar cell volume decrease of 40%-50%, the consequences of hyperosmotic and isosmotic shrinkage on cellular functions were sharply different. In C11-MDCK and VSMC, hyperosmotic shrinkage completely inhibited Na(+),K(+)-ATPase and Na(+),P(i) cotransport. In contrast, in both types of cells isosmotic shrinkage slightly increased rather than suppressed Na(+),K(+)-ATPase and did not change Na(+),P(i) cotransport. In C11-MDCK cells, phosphorylation of JNK1/2 and Erk1/2 mitogen-activated protein kinases was augmented in hyperosmotically shrunken cells by ∼7- and 2-fold, respectively, but was not affected in cells subjected to isosmotic shrinkage. These results demonstrate that the data obtained in cells subjected to hyperosmotic shrinkage cannot be considered as sufficient proof implicating cell volume perturbations in the regulation of cellular functions under isosmotic conditions.

  14. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  15. Interpretation of Coal-Seam Sequestration Data Using a New Swelling and Shrinkage Model

    SciTech Connect

    Siriwardane, H.J.; Smith, D.H.

    2006-10-01

    This paper deals with the influence of swelling and shrinkage of coal on the production of methane from, and sequestration of carbon dioxide in, a coalbed reservoir. A three-dimensional swelling and shrinkage model was developed. It is based on constitutive equations that account for coupled fluid pressure-deformation behavior of a porous medium that undergoes swelling and shrinkage. The swelling and shrinkage strains are computed on the basis of the amounts of different gases (e.g., CO2, CH4) sorbed or desorbed. The amounts of sorption and desorption are computed from measured isotherms with the aid of the Ideal Adsorbed Solution model for mixed gases. The permeability of the reservoir is modified according to the swelling-shrinkage model. The paper presents numerical results for the influence of swelling and shrinkage on reservoir performance during injection of carbon dioxide. The paper includes results from a number of examples, and analysis of a field injection into a coal seam at a site in the San Juan basin. Results show that with the incorporation of swelling and shrinkage into the analysis, it is possible to get a better history-match of production data. Results also show that coal swelling can reduce the injection volumes of carbon dioxide significantly. The interpretation of field data with the new swelling-shrinkage model shows that the coal swelling during carbon dioxide sequestration in coal-seams is an important factor that can influence field performance.

  16. Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion

    NASA Astrophysics Data System (ADS)

    Carlson, Kent D.; Beckermann, Christoph

    2009-01-01

    A method is presented to use a dimensionless form of the well-known Niyama criterion to directly predict the amount of shrinkage porosity that forms during solidification of metal alloy castings. The main advancement offered by this method is that it avoids the need to know the threshold Niyama value below which shrinkage porosity forms; such threshold values are generally unknown and alloy dependent. The dimensionless criterion accounts for both the local thermal conditions (as in the original Niyama criterion) and the properties and solidification characteristics of the alloy. Once a dimensionless Niyama criterion value is obtained from casting simulation results, the corresponding shrinkage pore volume fraction can be determined knowing only the solid fraction-temperature curve and the total solidification shrinkage of the alloy. Curves providing the shrinkage pore volume percentage as a function of the dimensionless Niyama criterion are given for WCB steel, aluminum alloy A356, and magnesium alloy AZ91D. The present method is used in a general-purpose casting simulation software package to predict shrinkage porosity in three-dimensional (3-D) castings. Comparisons between simulated and experimental shrinkage porosity results for a WCB steel plate casting demonstrate that this method can reasonably predict shrinkage. Additional simulations for magnesium alloy AZ91D illustrate that this method is applicable to a wide variety of alloys and casting conditions.

  17. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  18. Effect of multi-functional inhibitors on the electrochemistry within a corrosion crack

    SciTech Connect

    Omura, H.

    1984-01-01

    The electrochemical and mass transport mechanisms in stress corrosion cracking, which depend on the rate of metal dissolution and production of hydrogen, have been used to establish analytically the electrode potential distribution within the crack. When crack growth occurs by enhanced anodic dissolution of the plastically strained tip, the electrode potential at the crack tip always is more active than at the crack mouth because of the electric potential gradient that exists in the electrolyte within the crack. This also gives rise to additional or alternative electrochemical reactions such as hydrogen evolution and anodic dissolution at the crack tip. Furthermore, because of the potential difference from the crack mouth, the electrochemical driving force becomes more favorable for the development of corrosion inside the crack. The analysis predicts the distribution of electrode potential within a crack, and theoretical results have been compared with experimental measurements recorded from a model electrode system. Under free corrosion, a small potential difference may cause a concentration change of Cl/sup -/ ion and increase the chloride attack. In order to reduce the chloride and hydrogen attack, multifunctional inhibitors, such as borax-nitrite with small amounts of surfactant such as MBT or amino-methyl-propanol, are excellent inhibitors. The surfactant interferes in the dissolution reaction and blocks active chloride ion and hydrogen ion by interacting synergistically with the passive film produced by the borax-nitrite, which results in development of a stronger and thicker protective film.

  19. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.

    PubMed

    Gołebiowski, B; Swiatnicki, W A; Gaspérini, M

    2010-03-01

    Microstructural changes occurring during fatigue tests of austenitic-ferritic duplex stainless steel (DSS) in air and in hydrogen-generating environment have been investigated. Hydrogen charging of steel samples during fatigue crack growth (FCG) tests was performed by cathodic polarization of specimens in 0.1M H(2)SO(4) aqueous solution. Microstructural investigations of specimens after FCG tests were carried out using transmission electron microscopy to reveal the density and arrangement of dislocations formed near crack tip. To determine the way of crack propagation in the microstructure, electron backscatter diffraction investigations were performed on fatigue-tested samples in both kinds of environment. To reveal hydrogen-induced phase transformations the atomic force microscopy was used. The above investigations allowed us to define the character of fatigue crack propagation and microstructural changes near the crack tip. It was found that crack propagation after fatigue tests in air is accompanied with plastic deformation; a high density of dislocations is observed at large distance from the crack. After fatigue tests performed during hydrogen charging the deformed zone containing high density of dislocations is narrow compared to that after fatigue tests in air. It means that hydrogenation leads to brittle character of fatigue crack propagation. In air, fatigue cracks propagate mostly transgranularly, whereas in hydrogen-generating environment the cracks have mixed transgranular/interfacial character.

  20. Nanomechanical modeling of a (100)[001] crack in a single crystal bcc iron cantilever beam

    NASA Astrophysics Data System (ADS)

    Skogsrud, Jørn; Jørum, Marie; Thaulow, Christian

    2017-02-01

    An atomistic model of a fully 3D, nano-sized, pre-cracked cantilever beam has been made and MD simulations have been performed to deflect the beam and initiate crack growth. The crucial process zone in front of the crack has been investigated with respect to linear elastic and elastic-plastic fracture mechanics and plastic deformation mechanisms such as dislocations and twinning. The effect of crack geometry and loading rate has been studied. Two crack geometries were compared, one atomically sharp and one blunted. The sharper crack was shown to lead to a cleaner crack extension on (110)-planes, while the rounded crack showed extension along the initial (100)-plane in accordance with experiments on micro-sized 3 wt% Si α-Fe cantilevers. The effect of strain rate was also investigated, and it was found that lower strain rate correlated better with experimental observations. However, the strain rate used is still several magnitudes higher than for experiments, limiting the usefulness of strain rate observations for predicting behavior in experiments. A brief post-deformation comparison between simulations and SEM-images of focused ion beam-fabricated micro-cantilevers was also done, showing possible signs of similar deformation mechanisms and dislocation systems between them.

  1. Thermoelectrically controlled device for studies of temperature-induced corneal shrinkage

    NASA Astrophysics Data System (ADS)

    Borja, David; Manns, Fabrice; Fernandez, Viviana; Lamar, Peggy; Soederberg, Per G.; Parel, Jean-Marie A.

    2002-06-01

    The purpose of this study was to design and calibrate a device to measure the dynamics of thermal shrinkage in corneal and scleral strips. The apparatus consists of a thermoelectric cell controlled by a temperature controller designed to generate temperatures up to 90 degree(s)C in rectangular corneal strips; a copper cuvette filled with Dextran solution that holds the corneal strip and a displacement sensor that measures the change in length of the tissue during heat-induced shrinkage. The device was tested on corneal tissue from Florida Eye-Bank eyes that were cut into 2x4mm rectangular strips. Preliminary results indicate that our system can reproducibly create and accurately measure thermally induced corneal shrinkage. Shrinkage experiments will be used to optimize laser parameters for corneal shrinkage during laser thermokeratoplasty and laser scleral buckling.

  2. Monitoring of collagen shrinkage by use of second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Sung-Jan; Chen, Jau-Shiuh; Lo, Wen; Sun, Yen; Chen, Wei-Liang; Chan, Jung-Yi; Tan, Hsin-Yuan; Lin, Wei-Chou; Hsu, Chih-Jung; Young, Tai-Horng; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2006-02-01

    Thermal treatment induced collagen shrinkage has a great number of applications in medical practice. Clinically, the there is lack of reliable non-invasive methods to quantify the shrinkage. Overt treatment by heat application can lead to devastating results. We investigate the serial changes of collagen shrinkage by thermal treatment of rat tail tendons. The change in length is correlated with the finding in second harmonic generation microscopy and histology. Rat tail tendon shortens progressively during initial thermal treatment. After a certain point in time, the length then remains almost constant despite further thermal treatment. The intensity of second harmonic generation signals also progressively decreases initially and then remains merely detectable upon further thermal treatment. It prompts us to develop a mathematic model to quantify the dependence of collagen shrinkage on changes of SHG intensity. Our results show that SHG intensity can be used to predict the degree of collagen shrinkage during thermal treatment for biomedical applications.

  3. Steady crack growth through ductile metals: Computational studies

    NASA Astrophysics Data System (ADS)

    Sobotka, James C.

    This thesis examines the crack-front response during sustained ductile tearing in structural metals at quasistatic rates using high resolution finite element computations. At load levels approaching the steady-growth regime, well-established computational methods that model material damage break down numerically as vanishingly small load increments produce increasingly large amounts of crack extension. The computational model adopted here determines the deformation history of a steadily advancing crack directly without the need for a priori (transient) analysis that considers blunting of the pre-existing stationary crack and subsequent growth through the associated initial plastic zone. Crack extension occurs at the remotely applied, fixed loading without the need for a local growth criteria. This numerical scheme utilizes a streamline integration technique to determine the elastic-plastic fields, generalized from a two-dimensional to a fully three-dimensional setting and implemented within mixed Matlab/C++/F-90 based software. Modifications of the conventional finite element formulation lead to an efficient procedure -- readily parallelized -- and determine the invariant near-front fields, representative of steady-state growth, on a fixed mesh in a boundary-layer framework. In the small-scale yielding regime, the crack front does not sense the existence of remote boundaries, and computational results retain a strong transferability among various geometric configurations where near-front, plastic deformation remains entirely enclosed by the surrounding linear-elastic material. The global stress intensity factor (KI ) and imposed T-stress fully specify displacement constraints along the far-field boundary, and in a three-dimensional setting, the panel thickness reflects the only natural length scale. The initial studies in this work consider steady crack advance within the small-scale yielding context under plane-strain conditions and mode I loading. These analyses

  4. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  5. Fracture mechanics applied to elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Meyers, G. J.

    1989-01-01

    Twenty-six isothermal crack growth tests were performed on Hastelloy-X tubular specimens at a variety of temperatures and strain ranges. Conditions were selected to include nominally elastic and nominally plastic conditions. A number of parameters including the stress intensity factor, strain intensity factor, J-integral, Crack Opening Displacement, and Tompkins model were examined for their ability to correlate the data. Test conditions were selected such that growth rates at a single value of the parameter were obtained at radially different crack lengths, thus exploring the geometry independence of the correlating parameter. None of the parameters were fully satisfactory. However, COD calculated from J-integral appeared to be the most successful.

  6. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  7. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  8. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  9. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  10. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  11. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  12. Utopia Cracks and Polygons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  13. Distributed Password Cracking

    DTIC Science & Technology

    2009-12-01

    conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that...processed without changing significant portions of the structure. John the Ripper is a password cracking program that takes a password file and...strength of their password security policy. This thesis goes into detail on the inner workings of BOINC, John the Ripper , and the merger of the two

  14. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  15. Layer model for long-term deflection analysis of cracked reinforced concrete bending members

    NASA Astrophysics Data System (ADS)

    Bacinskas, Darius; Kaklauskas, Gintaris; Gribniak, Viktor; Sung, Wen-Pei; Shih, Ming-Hsiang

    2012-05-01

    A numerical technique has been proposed for the long-term deformation analysis of reinforced concrete members subjected to a bending moment. The technique based on the layer approach in a simple and rational way deals with such complex issues as concrete cracking and tension-stiffening as well as creep and shrinkage. The approach uses the material stress-strain relationships for compressive concrete, cracked tensile concrete and steel. Such effects as linear and nonlinear creep, cracking, tension-stiffening as well as the reduction in concrete tension strength due to sustained loading have been taken into account. The shrinkage effect has been modeled by means of adequate actions of axial force and bending moment. A statistical deflection calculation analysis has been carried out for 322 experimental reinforced concrete beams reported in the literature. The comparative analysis of the experimental and the modeling results has shown that the proposed technique has well captured the time-deflection behavior of reinforced concrete flexural members. The results of the predictions by ACI 318 and Eurocode 2 design codes have been also discussed.

  16. Thresholds for Fatigue Initiation and Propagation and Plastic Work in HY80 and HY130 Steels.

    DTIC Science & Technology

    1981-10-30

    steels would be expected to increase their applicability. In previous research in this laboratory, it has been shown that the fatigue crack ...recorded as the crack approaches. The previous reports1 and papers 3 reported experimental veri- fication of this equation for IYMO and MY130 steels . Pbr...Engineering Materials and Structures 2, 367 (1980). 3. P. K. Liaw, S. I. Kwun and M. E. Fine, "Plastic Work of Fatigue Crack Propagation in Steels and

  17. Crack propagation through adhesive interface in glass driven by dynamic loading

    NASA Astrophysics Data System (ADS)

    Park, Hwun

    Dynamic crack behaviors at glass interfaces were investigated to understand dynamic failure mechanisms of glass. To produce highly intensive and rapidly increasing loading, glass specimens jointed with epoxy adhesive in edge-to-edge configurations were impacted on their notched edges with plastic projectiles. Cracks developed from the notch and propagated into the interfaces between glass plates at the maximum speed. The patterns of crack propagation through the interfaces were observed to depend on the interface's conditions. Crack propagation stops at the interface where no adhesive was applied. The crack penetrates through the interface where two glass plates were bonded directly without any space. If the interface has finite thickness of an adhesive layer, a crack passing through the interface branches into multiple cracks immediately when it extends to the second glass plate. Both of the slow crack speed in the epoxy adhesive and resistance for crack initiation in the second glass account for the delay in crack propagation at the interface. The surface conditions of glass at the interface affect the resistance for crack initiation. Mirror-like polished surfaces have better resistance than rough surfaces trimmed by a water jet. If the polished surface is etched with hydrofluoric acid to remove surface flaws, the glass surfaces have higher strength and resistance for damage. This etched glass even ceases crack propagation completely with a sufficiently thick adhesive layer. Crack branching has been an open topic. Exact explanation has not been given yet. As the consistent shape of crack branching are created with the proposed method, diagnostics experiments were conducted to reveal the nature of crack branching. To investigate interaction between stress propagation and crack branching, stress histories synchronizing with high speed images were measured. Two types of specimen were used to vary stress distribution during crack propagation. The apex angle of

  18. Plastic bronchitis

    PubMed Central

    Singhi, Anil Kumar; Vinoth, Bharathi; Kuruvilla, Sarah; Sivakumar, Kothandam

    2015-01-01

    Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding. PMID:26556975

  19. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  20. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  1. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  2. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  3. Long-term social isolation in the adulthood results in CA1 shrinkage and cognitive impairment.

    PubMed

    Pereda-Pérez, Inmaculada; Popović, Natalija; Otalora, Beatriz Baño; Popović, Miroljub; Madrid, Juan Antonio; Rol, Maria Angeles; Venero, César

    2013-11-01

    Social isolation in adulthood is a psychosocial stressor that can result in endocrinological and behavioral alterations in different species. In rodents, controversial results have been obtained in fear conditioning after social isolation at adulthood, while neural substrates underlying these differences are largely unknown. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) are prominent modulators of synaptic plasticity underlying memory processes in many tasks, including fear conditioning. In this study, we used adult female Octodon degus to investigate the effects of long-term social isolation on contextual and cued fear conditioning, and the possible modulation of the synaptic levels of NCAM and PSA-NCAM in the hippocampus. After 6½ months of social isolation, adult female degus showed a normal auditory-cued fear memory, but a deficit in contextual fear memory, a hippocampal dependent task. Subsequently, we observed reduced hippocampal synaptic levels of PSA-NCAM in isolated compared to grouped-housed female degus. No significant differences were found between experimental groups in hippocampal levels of the three main isoforms of NCAM (NCAM180, NCAM140 and NCAM120). Interestingly, social isolation reduced the volume of the hippocampal CA1 subfield, without affecting the volume of the CA3 subregion or the total hippocampus. Moreover, attenuated body weight gain and reduced number of granulocytes were detected in isolated animals. Our findings indicate for the first time, that long-term social isolation of adult female animals induces a specific shrinkage of CA1 and a decrease in synaptic levels of PSA-NCAM in the hippocampus. These effects may be related to the deficit in contextual fear memory observed in isolated female degus.

  4. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions.

    PubMed

    Savic, Radojka M; Karlsson, Mats O

    2009-09-01

    Empirical Bayes ("post hoc") estimates (EBEs) of etas provide modelers with diagnostics: the EBEs themselves, individual prediction (IPRED), and residual errors (individual weighted residual (IWRES)). When data are uninformative at the individual level, the EBE distribution will shrink towards zero (eta-shrinkage, quantified as 1-SD(eta (EBE))/omega), IPREDs towards the corresponding observations, and IWRES towards zero (epsilon-shrinkage, quantified as 1-SD(IWRES)). These diagnostics are widely used in pharmacokinetic (PK) pharmacodynamic (PD) modeling; we investigate here their usefulness in the presence of shrinkage. Datasets were simulated from a range of PK PD models, EBEs estimated in non-linear mixed effects modeling based on the true or a misspecified model, and desired diagnostics evaluated both qualitatively and quantitatively. Identified consequences of eta-shrinkage on EBE-based model diagnostics include non-normal and/or asymmetric distribution of EBEs with their mean values ("ETABAR") significantly different from zero, even for a correctly specified model; EBE-EBE correlations and covariate relationships may be masked, falsely induced, or the shape of the true relationship distorted. Consequences of epsilon-shrinkage included low power of IPRED and IWRES to diagnose structural and residual error model misspecification, respectively. EBE-based diagnostics should be interpreted with caution whenever substantial eta- or epsilon-shrinkage exists (usually greater than 20% to 30%). Reporting the magnitude of eta- and epsilon-shrinkage will facilitate the informed use and interpretation of EBE-based diagnostics.

  5. Experimental and theoretical modeling of shrinkage damage formation in fiber composites

    NASA Astrophysics Data System (ADS)

    Korotkov, V. N.; Rozenberg, B. A.

    1998-03-01

    The cure of a thermoset matrix in the formation of composites is always accompanied by chemical shrinkage that generates internal stresses. In composites with high fiber content, the matrix is cured under three-dimensionally constrained conditions. The results of the previous experimental and theoretical modeling of formation of shrinkage damage under these conditions in epoxy-amine systems are briefly discussed. The effect of the model geometry (tube and plate models), scale factor, cure schedule, and chemical structure of composites is analyzed. A theoretical model for predicting the possibility of formation of shrinkage damage in fiber composites is proposed. A regular square structure was considered. Analysis showed that the maximum level of shrinkage stress in the matrix at the ultimate fiber fraction ϕ+ was close to the stress level σ+ in an experimental long tube model, where the formation of shrinkage damage took place. The experimental results for the short tube model showed that the shrinkage damage in epoxy-amine systems occurred up to approximately σ+/3. The damage development took place within the whole range of fiber content from ϕ+ to ϕ* (where the shrinkage stress level was about σ+/3). In the long tube model, cohesive defects always nucleated inside the matrix. The damage grew, reached the inner surface of the tube, and then extended as adhesive debondings. A similar situation is expected in composites with a high fiber content. The damage considered is local, and the total monolithic character of a composite product is conserved.

  6. Effect of plasma arc curing on polymerization shrinkage of orthodontic adhesive resins.

    PubMed

    Bang, H-C; Lim, B-S; Yoon, T-H; Lee, Y-K; Kim, C-W

    2004-08-01

    The purpose of this study was to evaluate the polymerization shrinkage of three orthodontic adhesive resins when polymerized with a high-energy plasma arc light (1340 mW cm(-2)) and a conventional halogen light (500 mW cm(-2)), and to correlate the polymerization shrinkage with the degree of conversion. To equalize the total light energy delivered to the adhesive resin, irradiation time was varied between 3 or 6 s for a plasma arc-curing unit, and 8 or 16 s for a halogen light-curing unit. The polymerization shrinkage of adhesive resins during the light-curing process was measured using a computer-controlled mercury dilatometer and the degree of conversion was measured using Fourier transform infrared spectroscopy. A plasma arccuring unit produced significantly lower polymerization shrinkage than a halogen light-curing unit when the equivalent total light energy was irradiated to the orthodontic adhesive resins (P < 0.05). The magnitude of polymerization shrinkage was significantly different depending on the kind of adhesive resins (P < 0.05), but there was no significant correlation between the filler fraction and the polymerization shrinkage (r2 = 0.039). There was strong correlation (r2 = 0.787) between the polymerization shrinkage and the degree of conversion with a halogen light-curing unit, but poor correlation (r2 = 0.377) was observed with a plasma arc-curing unit.

  7. Combination of thermal cracking with vacuum distillation of cracked tar

    SciTech Connect

    Telyashev, G.G.; Gimaev, R.N.; Makhov, A.F.; Usmanov, R.M.; Baimbetov, A.M.; Vafin, I.A.

    1987-11-01

    A method of obtaining greater amounts of distillate feedstocks from the heavy gasoil recovered by vacuum distillation of the products of thermal cracking of petroleum resids was examined. At the Novo-Ufa Petroleum Refinery, a two-furnace thermal cracking unit was reconstructed, adding a vacuum section for distillation of the cracked tar. A simplified flow plan of this unit is shown. Vacuum resid from atmospheric-vacuum tubestill units is heated in double-pipe heat exchangers, using heat from the gasoil and cracked tar. The new method makes it possible to curtail production of boiler fuel, expand the resources of feed, and improve the quality of petroleum coke.

  8. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  9. Effective Spring Stiffness for a Planar Periodic Array of Collinear Cracks at an Interface between Two Dissimilar Isotropic Materials

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2011-01-01

    Explicit analytical expressions are obtained for the longitudinal and transverse effective spring stiffnesses of a planar periodic array of collinear cracks at the interface between two dissimilar isotropic materials; they are shown to be identical in a general case of elastic dissimilarity (the well-known open interface crack model is employed for the solution). Since the interfacial spring stiffness can be experimentally determined from ultrasound reflection and transmission analysis, the proposed expressions can be useful in estimating the percentage of disbond area between two dissimilar materials, which is directly related to the residual strength of the interface. The effects of elastic dissimilarity, crack density and crack interaction on the effective spring stiffness are clearly represented in the solution. It is shown that in general the crack interaction weakly depends on material dissimilarity and, for most practical cases, the crack interaction is nearly the same as that for crack arrays between identical solids. This allows approximate factorization of the effective spring stiffness for an array of cracks between dissimilar materials in terms of an elastic dissimilarity factor and two factors obtained for cracks in a homogeneous material: the effective spring stiffness for non-interacting (independent) cracks and the crack interaction factor. In order to avoid the effect of the crack surface interpenetration zones on the effective spring stiffness, the range of the tensile to transverse load ratios is obtained under the assumption of small-scale contact conditions. Since real cracks are often slightly open (due to prior loading history and plastic deformation), it is demonstrated that for ultrasound applications the results obtained are valid for most practical cases of small interfacial cracks as long as the mid-crack opening normalized by the crack length is at least in the order of 10−5. PMID:23710104

  10. Anodic Dissolution Behavior of the Crack Tip of X70 Pipeline Steel in Near-Neutral pH Environment

    NASA Astrophysics Data System (ADS)

    Cui, Zhongyu; Wang, Liwei; Liu, Zhiyong; Du, Cuiwei; Li, Xiaogang; Wang, Xin

    2016-12-01

    In this work, the anodic dissolution behavior of the fresh metal surface at crack tip of X70 steel in near-neutral pH environment was investigated using galvanic corrosion simulation method. The solution environment, strain, strain rate, hydrogen enrichment, and fresh metal surface at the crack tip were considered. Corrosion current of the specimen during fast stretching increased linearly with plastic strain. The increment and increase rate of the corrosion current during plastic deformation stage were dependent on the strain rate. Combining Faraday's law and crack tip strain rate equation, the crack growth rate (CGR) induced by the anodic dissolution of the fresh metal surface was calculated. Results show that CGR caused by anodic dissolution was roughly one order lower than that measured on the compact tensile specimen under cyclic load. This finding indicated that hydrogen embrittlement may play a dominate role in stress corrosion crack propagation of pipeline steels in near-neutral pH environment.

  11. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  12. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  13. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  14. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  15. Laser-induced scleral shrinkage for refractive surgery

    NASA Astrophysics Data System (ADS)

    Ren, Qiushi; Simon, Gabriel; Parel, Jean-Marie A.; Shen, Jin-Hui

    1994-06-01

    We investigate the laser refractive scleroplasty (LRS) as a potential minimal-invasive method for correcting post-operative astigmatism. The scleral shrinkage near limbus was induced on 6 cadaver eyes using a 200 micrometers fiber optic probe coupled to a pulsed Ho:YAG laser. The diameter of the treatment spot was 0.8 mm. The output energy measured at tip was 60.2+/- 0.6 mJ. The treatments consisted of multiple sector patterns placed along the major axis of astigmatism parallel to the limbus, and round patterns placed along the limbus. Three treatment spots were applied on each side of the sector. The separation among sectors and limbus is 1 mm. Keratometry and topography of the cornea were measured after each sector or round pattern treatment. Effect of 5 and 10 pulses at each treatment spot were compared. Histology was performed to evaluate laser tissue damage. The major axis of astigmatism was shifted 90 degrees after the sector pattern treatment and amount of dioptric change increased when adding a new treatment or using more treatment pulses. However, the spherical equivalent of the eyes was essentially unchanged. The keratometry of the corneas remained the same after the round pattern treatment. Laser refractive scleroplasty may be applied for the correction of post-operative astigmatism.

  16. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  17. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  18. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE.

    PubMed

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-12-31

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness.

  19. Gene Network Reconstruction using Global-Local Shrinkage Priors*

    PubMed Central

    Leday, Gwenaël G.R.; de Gunst, Mathisca C.M.; Kpogbezan, Gino B.; van der Vaart, Aad W.; van Wieringen, Wessel N.; van de Wiel, Mark A.

    2016-01-01

    Reconstructing a gene network from high-throughput molecular data is an important but challenging task, as the number of parameters to estimate easily is much larger than the sample size. A conventional remedy is to regularize or penalize the model likelihood. In network models, this is often done locally in the neighbourhood of each node or gene. However, estimation of the many regularization parameters is often difficult and can result in large statistical uncertainties. In this paper we propose to combine local regularization with global shrinkage of the regularization parameters to borrow strength between genes and improve inference. We employ a simple Bayesian model with non-sparse, conjugate priors to facilitate the use of fast variational approximations to posteriors. We discuss empirical Bayes estimation of hyper-parameters of the priors, and propose a novel approach to rank-based posterior thresholding. Using extensive model- and data-based simulations, we demonstrate that the proposed inference strategy outperforms popular (sparse) methods, yields more stable edges, and is more reproducible. The proposed method, termed ShrinkNet, is then applied to Glioblastoma to investigate the interactions between genes associated with patient survival.

  20. Analytical and Experimental Study of Near-Threshold Interactions Between Crack Closure Mechanisms

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    The results of an analytical closure model that considers contributions and interactions between plasticity-, roughness-, and oxide-induced crack closure mechanisms are presented and compared with experimental data. The analytical model is shown to provide a good description of the combined influences of crack roughness, oxide debris, and plasticity in the near-threshold regime. Furthermore, analytical results indicate that closure mechanisms interact in a non-linear manner such that the total amount of closure is not the sum of closure contributions for each mechanism.

  1. Application of a substructuring technique to the problem of crack extension and closure

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.

    1974-01-01

    A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.

  2. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  3. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  4. Crack propagation criteria in the framework of X-FEM-based structural analyses

    NASA Astrophysics Data System (ADS)

    Dumstorff, Peter; Meschke, Günther

    2007-02-01

    The extended finite element method (X-FEM) has proven to be capable of simulating cracking and crack propagation in quasi-brittle materials, such as cement paste or concrete, without the need for re-meshing. In the framework of the X-FEM cracks are represented as surfaces of discontinuous displacements continuously propagating through finite elements. Since crack path continuity is required in X-FEM-based analyses, the reliability of numerical analyses of cracked structures crucially depends on the correct prediction of the crack path and, consequently, on the criterion used for the determination of the crack propagation direction. In this paper four different crack propagation criteria proposed in the literature are investigated including two local and two global criteria. The two local criteria include an averaged stress criterion and the maximum circumferential stress criterion based on the linear elastic fracture mechanics. The two global criteria include a global tracking criterion proposed by Oliver and Huespe (Online Proceedings of the Fifth World Congress on Computational Mechanics, 2002) and an energy based X-FEM formulation recently proposed in (Computational Plasticity 2005. CIMNE: Barcelona, 2005; 565-568; Comput. Methods Appl. Mech. Eng. 2006, in press). Representative numerical benchmark examples, characterized by mode-I dominant fracture as well as by mixed-mode fracture, are used to study the performance and the robustness of the different crack propagation criteria. Copyright

  5. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  6. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  7. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  8. Fatigue Crack Topography.

    DTIC Science & Technology

    1984-01-01

    continents, rihst-i- " the battlement line Nile - Lake Albert - Lake Tanganyika - Lake Malawi in Attica. Iscr~l example are all ocean ridges, for...marker band application. MARKER MARKER MARKER BANDS BANDS BANDS 6". Ist5 4..% 2M.d - W.S. 0,0 CRACK K*MAX SPECI CORD 64 8 5 q. 14 969 kg9133 0cu LR) G...AFTER HIGHEST 1-7 LOW LEVEL PEAK MARKER BLOCK BEFORE ADDED TO SEQUENCE SEVERE 1-8 FLIGHT SNO BIRD 1-9 2-40 2-5KB 2-111 2-120 LOW LEVEL 427 CYCLES

  9. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  10. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  11. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  12. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 μm into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 μm without assistance from creep or grain erosion phenomena.

  13. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  14. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    SciTech Connect

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  15. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  16. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  17. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  18. Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work

    NASA Astrophysics Data System (ADS)

    Lynch, S. P.

    2013-03-01

    Mechanisms and kinetics of metal-induced embrittlement, hydrogen-embrittlement, and stress-corrosion cracking are discussed, and long-standing controversies are addressed by reviewing critical observations. Recommendations are also made regarding further work (including repetition of previous work using more advanced measurement and characterisation techniques) that should be carried out in order to resolve some of the contentious issues. The evidence to date suggests that adsorption-based mechanisms, involving weakening of substrate interatomic bonds so that dislocation emission or decohesion is facilitated, accounts for embrittlement in many systems. Embrittling adsorbed species include some metal atoms, hydrogen, and complex ions produced by de-alloying. Other viable mechanisms of embrittlement include those based on (1) dissolution of anodic grain-boundary regions, and (2) decohesion at grain boundaries owing to segregated hydrogen and impurities. The hydrogen-enhanced localised-plasticity mechanism, based on solute hydrogen facilitating dislocation activity in the plastic zone ahead of cracks, makes a contribution in some cases, but is relatively unimportant compared with these other mechanisms for most fracture modes. The film-induced cleavage mechanism, proposed especially for stress-corrosion cracking in systems involving de-alloying at crack tips, is questionable on numerous grounds, and is probably not viable. Rate-controlling processes for environmentally assisted cracking are not well established, except for solid-metal induced embrittlement where surface self-diffusion of embrittling atoms to crack tips controls cracking kinetics. In some systems, adsorption kinetics are probably rate-controlling for liquid-metal embrittlement, hydrogen-environment embrittlement, and stress-corrosion cracking. In other cases, rate-controlling processes could include the rate of anodic or cathodic reactions at and behind crack tips (responsible for producing embrittling

  19. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  20. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    SciTech Connect

    Ulaganathan, Jaganathan Newman, Roger C.

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.

  1. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  2. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in

  3. Formation of a chronic pain syndrome due to mesh shrinkage after laparoscopic intraperitoneal onlay mesh (IPOM).

    PubMed

    Klein, Fritz; Ospina, Carlos; Rudolph, Birgit; Wüstefeld, Joost; Denecke, Timm; Neuhaus, Peter; Schmidt, Sven-Christian

    2012-10-01

    The case of a 58-year-old male patient who developed a chronic pain syndrome after laparoscopic intraperitoneal onlay mesh for treatment of a large symptomatic umbilical hernia combined with rectus diastasis is reported. Twelve months after an uncomplicated initial surgery, the patient presented with progressive signs of a foreign body sensation and pain in the anterior abdominal wall. Computed tomography examination revealed no pathologic findings but a marked shrinkage of the mesh implant. Because of further progressive symptoms, explorative laparotomy was performed. Mesh shrinkage and adhesions with a surrounding chronic tissue reaction were found as the cause of the pain syndrome. This case demonstrates a case of a chronic pain syndrome due to mesh shrinkage 12 months after initial ventral hernia repair. Mesh shrinkage should therefore be taken into consideration in patients with progressive pain chronic syndromes after laparoscopic ventral hernia repair.

  4. Measurement of composite shrinkage using a fibre optic Bragg grating sensor.

    PubMed

    Milczewski, M S; Silva, J C C; Paterno, A S; Kuller, F; Kalinowski, H J

    2007-01-01

    Fibre Bragg grating is used to determine resin-based composite shrinkage. Two composite resins (Freedom from SDI and Z100 from 3M) were tested to determine the polymerization contraction behaviour. Each sample of resin was prepared with an embedded fibre Bragg grating. A LED activation unit with wavelength from 430 nm to 470 nm (Dabi Atlante) was used for resin polymerization. The wavelength position of the peak in the optical reflection spectra of the sensor was measured. The wavelength shift was related to the shrinkage deformation of the samples. Temperature and strain evolution during the curing phase of the material was monitored. The shrinkage in the longitudinal direction was 0.15 +/- 0.02% for resin Z100 (3M) and 0.06+/-0.01% for Freedom (SDI); two-thirds of shrinkage occurred after the first 50 s of illumination.

  5. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    PubMed Central

    Liu, Jianjun

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength. PMID:24198726

  6. Residual Strength Predictions with Crack Buckling

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.

    1999-01-01

    Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.

  7. A Multi-Parameter Approach for Calculating Crack Instability

    NASA Technical Reports Server (NTRS)

    Zanganeh, M.; Forman, R. G.

    2014-01-01

    An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical

  8. The effects of epoxy shrinkage on the Advanced X-ray Astrophysics Facility Technology Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Cohen, L. M.

    1984-01-01

    A method is shown analytically which reduces the effects of epoxy shrinkage for an ultra-high precision X-ray telescope to within the system error budget. The three-dimensional shrinkage effects are discussed with reference to this telescope. The results of the analysis point to the use of an interrupted rather than continuous bond line as the best solution. Discussion of the finite element modelling techniques is included.

  9. Effect of Shrinkage on Primary Dendrite Arm Spacing during Binary Al-Si Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Hamed, Mohamed S.; Shankar, Sumanth

    2011-08-01

    Upward and downward directional solidification of hypoeutectic Al-Si alloys were numerically simulated inside a cylindrical container. Undercooling of the liquidus temperature prior to the solidification event was introduced in the numerical model. The finite-volume method was used to solve the energy, concentration, momentum, and continuity equations. Temperature and liquid concentrations inside the mushy zone were coupled with local equilibrium assumptions. An energy equation was applied to determine the liquid fraction inside the mushy zone while considering the temperature undercooling at the solidifying dendrite/liquid interface. Momentum and continuity equations were coupled by the SIMPLE algorithm. Flow velocity distribution at various times, G, R, λ 1, and solidification time at mushy zone/liquid interface during solidification were predicted. The effect of shrinkage during solidification on these solidification parameters was quantified. Transient temperature distribution, solidification time for the mushy zone/liquid interface, and λ 1 were validated by laboratory experiments. It was found that better agreement could be achieved when the fluid flow due to solidification shrinkage was considered. Considering shrinkage in upward solidification was found to only have a marginal effect on solidification parameters, such as G, R, and λ 1; whereas, in the downward solidification, fluid flow due to shrinkage had a significant effect on these solidification parameters. Considering shrinkage during downward solidification resulted in a smaller R, stronger fluid flow, and increased solidification time at the mushy zone/liquid interface. Further, the flow pattern was significantly altered when solidification shrinkage was considered in the simulation. The effect of shrinkage on G and λ 1 strongly depended on the instantaneous location of the mushy zone/liquid interface in the computational domain. The numerical results could be validated by experimental data

  10. The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.

    PubMed

    Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G

    2015-10-01

    Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit.

  11. Transient brain shrinkage in infantile spasms after ACTH treatment. Report of two cases.

    PubMed

    Maekawa, K; Ohta, H; Tamai, I

    1980-02-01

    This is the report of two cases of infantile spasms, manifesting transient brain shrinkage in computerized tomography (CT) after ACTH treatment. ACTH was given for 8 weeks to a 8-months-old Japanese girl with infantile spasms. First CT performed at 2 weeks after the final ACTH injection, displayed moderate brain shrinkage. Second CT at 4 months showed marked diminution of the shrinkage. ACTH was also given for 8 weeks to a 14 months old Japanese boy with infantile spasms. First CT, just before ACTH treatment, showed mild cortical atrophy, the second at 7 days after the final ACTH injection revealed marked brain shrinkage and moderate ventricular dilatation, and the third at 2 months, disclosed mild improvement of the shrinkage. ACTH or corticoateroid has widespread effects on the developing nervous system. In animal experiments, ACTH or steroids interfere with brain growth of young rats. CT findings of transient brain shrinkage in a child with infantile spasms might suggest that intensive treatment with ACTH or steroids in infancy interferes with brain growth as seen in the results of animal experiments.

  12. Microcomputed Tomography Evaluation of Polymerization Shrinkage of Class I Flowable Resin Composite Restorations.

    PubMed

    Sampaio, C S; Chiu, K-J; Farrokhmanesh, E; Janal, M; Puppin-Rontani, R M; Giannini, M; Bonfante, E A; Coelho, P G; Hirata, R

    The present study aimed to characterize the pattern and volume of polymerization shrinkage of flowable resin composites, including one conventional, two bulk fill, and one self-adhesive. Standardized class I preparations (2.5 mm depth × 4 mm length × 4 mm wide) were performed in 24 caries-free human third molars that were randomly divided in four groups, according to the resin composite and adhesive system used: group 1 = Permaflo + Peak Universal Bond (PP); group 2 = Filtek Bulk Fill + Scotchbond Universal (FS); group 3 = Surefil SDR + XP Bond (SX); and group 4 = Vertise flow self-adhering (VE) (n=6). Each tooth was scanned three times using a microcomputed tomography (μCT) apparatus. The first scan was done after the cavity preparation, the second after cavity filling with the flowable resin composite before curing, and the third after it was cured. The μCT images were imported into three-dimensional rendering software, and volumetric polymerization shrinkage percentage was calculated for each sample. Data were submitted to one-way analysis of variance and post hoc comparisons. No significant difference was observed among PP, FS, and VE. SX bulk fill resin composite presented the lowest values of volumetric shrinkage. Shrinkage was mostly observed along the occlusal surface and part of the pulpal floor. In conclusion, polymerization shrinkage outcomes in a 2.5-mm deep class I cavity were material dependent, although most materials did not differ. The location of shrinkage was mainly at the occlusal surface.

  13. Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash

    SciTech Connect

    Kayali, O.; Haque, M.N.; Zhu, B.

    1999-11-01

    Lightweight aggregate concretes containing fly ash with a compressive strength between 61 to 67 NPa were produced. The lightweight aggregate used was sintered fly ash. The concretes were reinforced with either polypropylene or steel fibres. The fibres did not affect the compressive strength, but did increase the tensile strength of these concretes. The modulus of elasticity of all the lightweight concretes tested was about 21 GPa, compared to 35 GPa for the normal-weight concrete. Fibre reinforcement did not affect the value of the elastic modulus. This type of lightweight concrete, containing fly ash as 23% of the total cementitious content, resulted in long-term shrinkage that is nearly twice as large as normal-weight concrete of somewhat similar strength. Polypropylene fibre reinforcement did not reduce drying shrinkage, while steel fibres did. Early shrinkage behavior of this type of lightweight concrete was similar to normal-weight concrete. However, the rate of shrinkage of the lightweight concrete remained constant until nearly 100 days of drying. This is different from normal-weight concrete that showed appreciably after 56 days. Shrinkage of normal-weight concrete stabilized after 400 days, which shrinkage of lightweight concrete did not appear to stabilize after a similar period of continuous drying.

  14. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  15. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  16. Fatigue growth of multiple-cracks near a row of fastener-holes in a fuselage lap-joint

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Atluri, S. N.

    1993-12-01

    The fatigue growth of multiple cracks, of arbitrary lengths, emanating from a row of fastener holes in a bonded, riveted, lap joint in a pressurized aircraft fuselage is studied. The effects of residual stresses due to a rivet misfit, and of plastic deformation near the hole, are included. A Schwartz-Neumann alternating method which uses the analytical solution for a row of multiple colinear cracks in an infinite sheet (the crack-faces being subject to arbitrary tractions), is developed to analyze this MSD problem on a personal computer. It is found that for a range of crack lengths, a phenomena wherein the shorter cracks may grow faster than longer cracks may exist.

  17. A flammability study of thin plastic film materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1990-01-01

    The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.

  18. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  19. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  20. Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Young, M. L.

    2011-07-01

    NiTi-based shape memory alloys (SMAs) exhibit an unusual stress distribution at the crack tip as compared to common engineering materials, due to a stress-induced martensitic transformation resulting from highly localized stresses. Understanding the fracture mechanics of NiTi-based SMAs is critical to many of their applications. Here, we develop an analytical model, which predicts the boundaries of the transformation region in the crack tip vicinity of NiTi-based SMAs. The proposed model is based on a recent analytical approach which uses modified linear elastic fracture mechanics concepts to predict the crack tip stress distribution and transformation region in SMAs but, unfortunately, it applies only to the plane stress condition. To overcome this limitation, the proposed model accounts for stress triaxiality, which plays an important role in restricting crack tip plastic deformations in common ductile metals as well as the stress-induced martensite in NiTi SMAs. The effects of triaxial stress at the crack tip are taken into account by including a new parameter, the transformation constraint factor, which is based on the plastic constraint factor of elasto-plastic materials. The predictions of the model are compared with synchrotron x-ray micro-diffraction observations and satisfactory agreement is observed between the two results. Finally, the evolution of crack tip transformation boundaries during fracture tests of miniature compact tension specimens is predicted and the effects of applied load and crack length are discussed.

  1. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges.

  2. Study of the plastic zone around the ligament of thin sheet D.E.N.T specimen subjected to tensile

    NASA Astrophysics Data System (ADS)

    Djebali, S.; Larbi, S.; Bilek, A.

    2015-03-01

    One of the assumptions of Cotterell and Reddel's method of the essential work of fracture determination is the existence of a fracture process zone surrounded by an outer plastic zone extending to the whole ligament before crack initiation. To verify this hypothesis we developed a method based on micro hardness. The hardness values measured in the domain surrounding the tensile fracture area of ST-37-2 steel sheet D.E.N.T specimens confirm the existence of the two plastic zones. The extension of the plastic deformations to the whole ligament before the crack initiation and the circular shape of the outer plastic zone are revealed by the brittle coating method.

  3. Crack instability analysis methods for leak-before-break program in piping systems

    SciTech Connect

    Mattar Neto, M.; Nobrega, P.G.B. da

    1995-11-01

    The instability evaluation of cracks in piping systems is a step that is considered when a high-energy line is investigated in a leak-before-break (LBB) program. Different approaches have been used to assess stability of cracks: (a) local flow stress (LFS); (b) limit load (LL); (c) elastic-plastic fracture mechanics (EPFM) as J-integral versus tearing modulus (J-T) analysis. The first two methods are used for high ductile materials, when it is assumed that remaining ligament of the cracked pipe section becomes fully plastic prior to crack extension. EPFM is considered for low ductile piping when the material reaches unstable ductile tearing prior to plastic collapse in the net section. In this paper the LFS, LL and EPFM J-T methodologies were applied to calculate failure loads in circumferential through-wall cracked pipes with different materials, geometries and loads. It presents a comparison among the results obtained from the above three formulations and also compares them with experimental data available in the literature.

  4. A three-dimensional multiscale model of intergranular hydrogen-assisted cracking

    NASA Astrophysics Data System (ADS)

    Rimoli, J. J.; Ortiz, M.

    2010-07-01

    We present a three-dimensional model of intergranular hydrogen-embrittlement (HE) that accounts for: (i) the degradation of grain-boundary strength that arises from hydrogen coverage; (ii) grain-boundary diffusion of hydrogen; and (iii) a continuum model of plastic deformation that explicitly resolves the three-dimensional polycrystalline structure of the material. The polycrystalline structure of the specimen along the crack propagation path is resolved explicitly by the computational mesh. The texture of the polycrystal is assumed to be random and the grains are elastically anisotropic and deform plastically by crystallographic slip. We use the impurity-dependent cohesive model in order to account for the embrittling of grain boundaries due to hydrogen coverage. We have carried out three-dimensional finite-element calculations of crack-growth initiation and propagation in AISI 4340 steel double-cantilever specimens in contact with an aggressive environment and compared the predicted initiation times and crack-growth curves with the experimental data. The calculated crack-growth curves exhibit a number of qualitative features that are in keeping with observation, including: an incubation time followed by a well-defined crack-growth initiation transition for sufficiently large loading; the existence of a threshold intensity factor K Iscc below which there is no crack propagation; a subsequent steeply rising part of the curve known as stage I; a plateau, or stage II, characterized by a load-insensitive crack-growth rate; and a limiting stress-intensity factor K Ic , or toughness, at which pure mechanical failure occurs. The calculated dependence of the crack-growth initiation time on applied stress-intensity factor exhibits power-law behavior and the corresponding characteristic exponents are in the ball-park of experimental observation. The stage-II calculated crack-growth rates are in good overall agreement with experimental measurements.

  5. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  6. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  7. Spacing of crack patterns driven by steady-state cooling or drying and influenced by a solidification boundary

    NASA Astrophysics Data System (ADS)

    Hofmann, Martin; Bahr, Hans-Achim; Weiss, Hans-Jürgen; Bahr, Ute; Balke, Herbert

    2011-03-01

    Regular columnar joints that originate from networklike crack patterns can be observed in basalt and, on a much smaller scale, in dried starch slurry. Here, the basalt columns are idealized by a periodic array of parallel cracks driven by steady-state cooling. By means of a bifurcation analysis, the minimal possible crack spacing for sustained propagation of the crack array is calculated. It can be shown qualitatively that the minimal possible crack spacing for sustained propagation increases with decreasing velocity. This is confirmed by numerical calculations. The latent heat released at the solidification front is taken into account in the thermomechanical linear-elastic model of propagating shrinkage. Our calculations show that the solidification front is positioned not far ahead of the crack tips, which influences the result considerably. The results agree reasonably well with new measured data of basalt columns. By use of the analogy between contraction due to cooling and that due to drying the model is applied for columns in dried cornstarch, too, showing good agreement with recent experimental data.

  8. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  9. Formation of shrinkage porosity during solidification of steel: Numerical simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Riedler, M.; Michelic, S.; Bernhard, C.

    2016-07-01

    The phase transformations in solidification of steel are accompanied by shrinkage and sudden changes in the solubility of alloying elements, resulting in negative side effects as micro- and macrosegregation and the formation of gas and shrinkage porosities. This paper deals with the numerical and experimental simulation of the formation of shrinkage porosity during the solidification of steel. First the physical basics for the mechanism of shrinkage pore formation will be discussed. The main reason for this type of porosity is the restraint of fluid flow in the mushy zone which leads to a pressure drop. The pressure decreases from the dendrite tip to the root. When the pressure falls below a critical value, a pore can form. The second part of the paper deals with different approaches for the prediction of the formation of shrinkage porosity. The most common one according to these models is the usage of a simple criterion function, like the Niyama criterion. For the computation of the porosity criterion the thermal gradient, cooling rate and solidification rate must be known, easily to determine from numerical simulation. More complex simulation tools like ProCAST include higher sophisticated models, which allow further calculations of the shrinkage cavity. Finally, the different approaches will be applied to a benchmark laboratory experiment. The presented results deal with an ingot casting experiment under variation of taper. The dominant influence of mould taper on the formation of shrinkage porosities can both be demonstrated by the lab experiment as well as numerical simulations. These results serve for the optimization of all ingot layouts for lab castings at the Chair of Ferrous Metallurgy.

  10. Temperature-dependent biphasic shrinkage of lipid-coated bubbles in ultrasound.

    PubMed

    Cox, Debra J; Thomas, James L

    2013-04-09

    Lipid-coated microbubbles and emulsions are of interest as possible ultrasound-mediated drug delivery vehicles and for their interesting behaviors and fundamental properties. We and others have noted that bubbles coated with the long chain saturated phospholipid distearoylphosphatidylcholine (DSPC) rapidly shrink to a quasistable size when repeatedly insonated with short ultrasound pulses; such stability may adversely affect the bubble's subsequent ability to deliver its pharmacological cargo. Bubbles coated with the unsaturated lipid dioleoylphosphatidylcholine (DOPC) did not show stability but did undergo an abrupt change from rapid initial shrinkage to a slow persistent shrinkage, leading ultimately to dissolution or dispersion. As DOPC and DSPC differ not only in chain saturation but also phase behavior, we performed additional studies using dimyristoyl PC (DMPC) as a coat lipid and controlled the solution temperature to study bubble behavior on exposure to repeated ultrasound pulses for the same coat, in both fluid and gel phases. We find, first, that essentially all bubbles show an initially rapid shrinkage, in which gas loss exceeds the limit imposed by gas diffusion into the surrounding medium; this rapid shrinkage may be evidence of nanoscopic bubble fragmentation. Second, upon reaching a fraction of their initial size, bubbles begin a slower shrinkage with a shrinkage rate that depends on the resting phase state of the coat lipid: fluid DMPC monolayers give a more rapid shrinkage than gel phase. DOPC-coated bubbles showed no temperature-dependent responses in the same temperature range. The results are especially interesting in that bubble compression during the pulse is likely to adiabatically heat the bubble and fluidize the coat, regardless of its initial phase state; thus, some structural feature of the resting coat, such as defect lines in the gel phase, may be important in the subsequent response to the ~3 μs ultrasound pulse.

  11. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  12. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    SciTech Connect

    Park, H. B.; Chopra, O. K.

    2000-04-10

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.

  13. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  14. A numerical model for predicting crack path and modes of damage in unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G.; Tan, T. M.; Lau, A. C. W.; Awerbuch, J.

    1993-01-01

    A finite element-based numerical technique has been developed to simulate damage growth in unidirectional composites. This technique incorporates elastic-plastic analysis, micromechanics analysis, failure criteria, and a node splitting and node force relaxation algorithm to create crack surfaces. Any combination of fiber and matrix properties can be used. One of the salient features of this technique is that damage growth can be simulated without pre-specifying a crack path. In addition, multiple damage mechanisms in the forms of matrix cracking, fiber breakage, fiber-matrix debonding and plastic deformation are capable of occurring simultaneously. The prevailing failure mechanism and the damage (crack) growth direction are dictated by the instantaneous near-tip stress and strain fields. Once the failure mechanism and crack direction are determined, the crack is advanced via the node splitting and node force relaxation algorithm. Simulations of the damage growth process in center-slit boron/aluminum and silicon carbide/titanium unidirectional specimens were performed. The simulation results agreed quite well with the experimental observations.

  15. Analysis of Crack Arrest Toughness.

    DTIC Science & Technology

    1988-01-15

    vload(m) vp tn(m) Vertical Source Load (kN) on wedge HY80 Finite Element 0.0122 0.0099 3.81x10 -4 144 Steel Calculations Experiment 0.0122 --- 3.74x10-4...curve, are bona fide measures of the fracture arrest capability of tough ductile steels . The second is that the J-values represent the crack driving...fibrous mode of crack extension. (b) A new test method for studying fast fracture and arrest in tough steels . (c) Measurements of fast fracture and crack

  16. Elastoplastic crack analysis of thermally shocked functionally graded material with neural network application

    SciTech Connect

    Nakagaki, Michihiko; Shibata; Yasunari; Kuranari, Reiji; Hagihara, Seiya

    1995-11-01

    An analytical methodology is developed for studying a cracked in a functionally graded material subjected to an intense thermal shock load. An elastoplastic material modeling of the functionally graded material is performed with the use of a micromechanics analysis and a hierarchical neural network algorithm. The material is compose of ZrO{sub 2} and Ti-6Al-4V, where the plastic flow is considered to occur in the titanium alloy phase. The elastic-plastic constitutive law for the functionally graded material is described by a micromechanics analysis on a periodic grain model subsequently processed by the use of a hierarchical neural network for arbitrary temperature and volume fraction. To detect the crack-tip fracture severity in the highly inhomogeneous media, T* integral parameter is employed for the thermal shock problem of the cracked material.

  17. J-integral evaluation for an interface crack under thermal load using digital image correlation

    NASA Astrophysics Data System (ADS)

    Yamane, Hiroto; Arikawa, Shuichi; Yoneyama, Satoru; Watanabe, Yasuaki; Asai, Tatsuhiko; Shiokawa, Kunio

    2015-03-01

    In this study, a method for evaluating a fracture parameter, J-integral, for an interface crack from the displacement fields under thermal deformation is developed for studying the fracture behavior of an interface crack in an actual electronic component. First, the displacement fields around an interface crack tip are measured using digital image correlation (DIC). Second, the displacement gradient and strain are determined from the displacement fields using a finite element smoothing technique on the domain of integration. Then, the stress components are determined from the strains using the elastic-plastic relations with the incremental strain theory and the each material property. Finally, the J-integral value is determined by the numerical integration on the domain of integration. The effectiveness of this evaluation method is demonstrated by applying this method to the displacement fields obtained from the elastic-plastic finite element analysis.

  18. Application of path-independent integrals to elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Van Stone, R. H.

    1990-01-01

    The applicability of the J-integral in elasto-plastic fracture mechanics is limited to isothermal, monotonic loading conditions from the theoretical viewpoint, while in many applications, for instance gas turbine engines, crack growth occurs in the presence of cyclic inelastic loading, thermomechanical loading and temperature gradients. A number of path-independent (P-I) integrals have been proposed which do not have the restrictions of the J-integral. A review indicates that four of these integrals, although they are not the classical conservation integrals, are path-independent under these complex loading conditions. This paper describes a combined analytical and experimental effort to evaluate the ability of these four P-I integrals to correlate the crack growth data of Alloy 718 at elevated temperatures. Results for uniform temperature, 538 C, cases indicate that all these integrals are capable of correlating the crack growth data over a wide range of cyclic plasticity.

  19. The effect of non-singular stresses on crack-tip constraint

    NASA Astrophysics Data System (ADS)

    Du, Z.-Z.; Hancock, J. W.

    T HE EFFECT of the T-stress on the small-scale yielding field of a crack in plane strain conditions has been examined using modified boundary layer formulations. The numerically calculated stresses at the crack tip are represented by slip line fields for small-strain theory. Positive T-stresses cause plasticity to envelop the crack tip and exhibit a Prandtl field, corresponding to the limiting solution of the HRR field for a nonhardening material. Moderate compressive T-stresses reduce the direct stresses within the plastic zone by decreasing the hydrostatic stress by T. This causes a loss of J-dominance, and a stress distribution represented by an incomplete Prandtl field.

  20. A computational algorithm for crack determination: The multiple crack case

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  1. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  2. Stress corrosion cracking of welded Alloy 600 penetration mockups

    SciTech Connect

    Sarver, J.M.; Pathania, R.S.; Stuckey, K.; Fyfitch, S.; Gelpi, A.; Foucault, M.; Hunt, E.S.

    1995-12-31

    The primary water stress corrosion cracking (PWSCC) of Alloy 600 in components other than steam generators is a problem of increasing concern for nuclear power plants. Of greatest concern at the present time is the PWSCC of Alloy 600 vessel head penetrations. The common elements of these components are threefold: (1) the Alloy 600 material has a susceptible microstructure, (2) the Alloy 600 material is either a thick-walled tube or a bar which has been machined into a thick-walled tube, and (3) the Alloy 600 material has been welded into a structure such that high residual welding stresses exist in the postwelded Alloy 600 material. The objectives of the present program were to evaluate the PWSCC behavior of various configurations of welded Alloy 600 penetrations, and possible remedial measures which would prevent or retard PWSCC in these components. Mockups were instrumented to permit instantaneous remote sensing of through-wall cracking and were autoclave tested along with control C-rings in a doped steam environment. Following the test exposures, the mockups were split and examined to characterize the cracking morphology and the material microstructure. A Weibull distribution was used to analyze the time-to-failure results, and the observed cracking locations were compared to residual stress levels predicted by an elastic-plastic finite element analysis of the mockups.

  3. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  4. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  5. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-04-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  6. A novel two-dimensional method to measure surface shrinkage in cementitious materials

    SciTech Connect

    Chen, T.C.; Ferraro, C.C.; Yin, W.Q.; Ishee, C.A.; Ifju, P.G.

    2010-05-15

    A novel experimental technique, Cure Reference Method (CRM), was developed for the measurement of surface shrinkage in cementitious materials. The technique combines the replication of diffraction grating on a specimen during the curing process and the use of high-sensitivity moire interferometry. Once demolded, the specimen was stored in an environmental chamber in order to establish specific curing conditions. Measurements were conducted on a daily basis for the duration of 7 days by recording a set of the consecutive phase shifted fringe patterns using the Portable Engineering Moire interferometer II (PEMI II). An automated fringe analysis system was developed and used to obtain displacement and strain information in two dimenzsions. Surface shrinkage behavior in both cement paste and mortar specimens was investigated by the use of the technique under controlled temperature and humidity conditions. Furthermore, an experimental control was developed in an effort to remove the effects of drying shrinkage on cementitious specimens at early ages. This was done in an effort to explore the relative contribution of autogenous shrinkage to the overall shrinkage in cementitious materials.

  7. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-01-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  8. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials

    PubMed Central

    Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.

    2011-01-01

    Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669

  9. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    USGS Publications Warehouse

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  10. Concentration-dependent specimen shrinkage in iodine-enhanced microCT

    PubMed Central

    Vickerton, Paula; Jarvis, Jonathan; Jeffery, Nathan

    2013-01-01

    Iodine potassium iodide (I2KI) solution can be employed as a contrast agent for the visualisation of soft tissue structures in micro-computed tomography studies. This technique provides high resolution images of soft tissue non-destructively but initial studies suggest that the stain can cause substantial specimen shrinkage. The degree of specimen shrinkage, and potential deformation, is an important consideration when using the data for morphological studies. Here we quantify the macroscopic volume changes in mouse skeletal muscle, cardiac muscle and cerebellum as a result of immersion in the common fixatives 10% phosphate-buffered formal saline, 70% ethanol and 3% glutaraldehyde, compared with I2KI staining solution at concentrations of 2, 6, 10 and 20%. Immersion in the I2KI solution resulted in dramatic changes of tissue volume, which were far larger than the shrinkage from formalin fixation alone. The degree of macroscopic change was most dependent upon the I2KI concentration, with severe shrinkage of 70% seen in solutions of 20% I2KI after 14 days' incubation. When using this technique care needs to be taken to use the lowest concentration that will give adequate contrast to minimise artefacts due to shrinkage. PMID:23721431

  11. Peridynamic model for fatigue cracking.

    SciTech Connect

    Silling, Stewart Andrew; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  12. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  13. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Cracks. 59.10-5 Section 59.10-5 Shipping COAST GUARD... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... cracks are veed out so that complete penetration of the weld metal is secured. (b) Circumferential...

  14. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  15. Shaft vibrations in turbomachinery excited by cracks

    NASA Technical Reports Server (NTRS)

    Grabowski, B.

    1982-01-01

    During the past years the dynamic behavior of rotors with cracks has been investigated mainly theoretically. This paper deals with the comparison of analytical and experimental results of the dynamics of a rotor with an artificial crack. The experimental results verify the crack model used in the analysis. They show the general possibility to determine a crack by extended vibration control.

  16. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding...

  17. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  18. Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Baxevanis, T.; Chemisky, Y.; Lagoudas, D. C.

    2012-09-01

    The plane strain mechanical fields near a stationary crack tip in a pseudoelastic shape memory alloy (SMA) are analyzed via the finite element method. The small scale transformation assumption is employed for the calculations using displacement boundary conditions on a circular region that encloses the stress-induced phase transformation zone. The constitutive law used adopts the classical rate-independent small strain flow theory for the evolution equations of both the transformation and plastic strains. Results on the size and shape of the stress-induced transformation and plastic zone formed near the stationary crack are obtained and a fracture toughness criterion based on the J-integral is discussed in view of the observed path-dependence of J. Moreover, the obtained results are discussed in relation to results for stationary cracks in conventional elastic-plastic materials.

  19. Microscopic origins of stochastic crack growth

    NASA Astrophysics Data System (ADS)

    Pardee, W. J.; Morris, W. L.; Cox, B. N.

    Physical arguments are made to obtain a mathematical model of the stochastic growth of surface fatigue cracks in a ductile metal alloy. The model is a set of coupled partial differential equations for the expected statistical density of cracks per unit area. The differential equations describe the smooth, deterministic local evolution of crack states, with the stochastic effects of abrupt local changes of material in the crack path appearing as transitions between distinct subspaces of single crack state space. Results are related to observables such as statistical distributions of crack growth rate and of time for at least one crack to reach macroscopic length.

  20. The kinetics of hydrocarbon cracking

    SciTech Connect

    Groten, W.A.; Wojciechowski, B.W. )

    1993-03-01

    A general kinetic model which describes the catalytic cracking of pure hydrocarbons is presented. The model includes a monomolecular cracking path based on the Langmuir adsorption isotherm as well as a bimolecular path, following Rideal kinetics, which accounts for the possibility of a chain cracking mechanism being involved. Catalyst decay is accounted for using the time-on-stream-decay function. Fitting of experimental data from n-nonane cracking on USHY at 673 K, combined with Monte Carlo simulations indicates that, in that case, the total catalytic activity could include between 0 and 90% of activity due to chain processes. This large margin of error stems from the combined effects of a large decay rate, forcing the experimenter to use average conversion data, and of experimental error. Fitting of the model to previously published cracking data for 2-methylpentane on USHY showed that the model lacks a suitable parameter to account for thermal reactions which were not accounted for in the original data set. This observation supports the impression that the model is sensitive to departures from the postulated mechanism. The above kinetic model has also been fitted to the results of n-nonane cracking at three temperatures as well as to previously published data for various other linear paraffins. 32 refs., 17 figs., 6 tabs.

  1. Low-shrink composite resins: a review of their history, strategies for managing shrinkage, and clinical significance.

    PubMed

    Pitel, Mark L

    2013-09-01

    Despite numerous advances in composite resin technology over the course of many decades, shrinkage behavior and the resultant stresses inherent to direct placed composite restorations continue to challenge clinicians. This overview of composite resins includes a review of their history and development along with a discussion of strategies for reducing polymerization shrinkage. An assessment of the clinical significance of these materials is also provided, including a discussion of the differences between polymerization shrinkage and stress, incremental layering versus bulk placement, and the emergence of lower shrinkage stress monomer chemistry.

  2. Path dependence of J in three numerical examples. [J integral in three crack propagation problems

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.; Swedlow, J. L.

    1979-01-01

    Three cracked geometries are studied with the aid of a new finite element model. The procedure employs a variable singularity at the crack tip that tracks changes in the material response during the loading process. Two of the problems are tension-loaded center-crack panels and the other is a three-point bend specimen. Results usually agree with other numerical and analytical analyses, except the finding that J is path dependent as a substantial plastic zone develops. Credible J values are obtained near the crack tip and J shows a significant increase as the radius of J path increases over two orders of magnitude. Incremental and deformation theories are identical provided the stresses exhibit proportionality found in the far field stresses but not near the tip.

  3. New-type steel plate with ultra high crack-arrestability

    SciTech Connect

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.; Yoshikawa, H.; Oshita, S.; Mabuchi, H.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class for shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.

  4. Fatigue Crack Growth Behavior of Metastable Austenitic Stainless Steel in Cryogenic High Magnetic Field Environments

    NASA Astrophysics Data System (ADS)

    Shindo, Yasuhide; Takeda, Tomo; Suzuki, Masato; Narita, Fumio

    2009-08-01

    This article studies the fatigue crack growth in a metastable austenitic stainless steel in cryogenic high magnetic field environments. Fatigue crack growth tests were performed with the compact tension (CT) specimens at liquid helium temperature (4 K) in magnetic fields of 0 and 6 T, and the crack growth rate data were expressed in terms of the J-integral range during fatigue loading. The J-integral range values were evaluated using an elastic-plastic finite element analysis. The measurement of martensite phase in the test specimens and the fractographic examination were also carried out. The high magnetic field effect on the fatigue crack growth rate properties at 4 K is discussed in detail.

  5. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  6. Effects of friction and high torque on fatigue crack propagation in mode III. [AISI 4140 and 4340

    SciTech Connect

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m/sup 2/ tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ..delta..K /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10/sup -6/ to 10/sup -2/ mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ..delta..K /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (..delta..GAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10/sup -6/ to 10/sup -2/ mm per cycle.

  7. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  8. An ESPI experimental study on the phenomenon of fracture in glass. Is it brittle or plastic?

    NASA Astrophysics Data System (ADS)

    Ferretti, Daniele; Rossi, Marco; Royer-Carfagni, Gianni

    2011-07-01

    The crack opening displacement (COD) in annealed soda-lime (float) glass has been measured with an electronic speckle pattern interferometry (ESPI) apparatus using coherent laser light. Specimens, naturally pre-cracked with a particular technique, were loaded under strain-driven bending until crack propagated; at regular intervals loading was paused to let the crack reach subcritical equilibrium and the COD measured. By using a post-processing algorithm comparing four images lighted with phase-shifted laser beams, surface displacements could be measured at a resolution of 0.01 μm. Glass transparency has allowed to see through that the propagating crack front is not sharp but curved, jagged and merged in an opaque neighborhood. Numerical simulations show that the measured CODs cannot be reproduced if cohesive surface forces à la Barenblatt-Dugdale bridge the crack lips; instead a plastic-like region must form in a bulk neighborhood of the tip, where inelastic strains are associated with volume increase rather than deviatoric distortion. For this, a Gurson-Tvergaard model of porous plasticity, accounting for the formation of microvoids/microcracks, has been found more efficient than classical von Mises plasticity. This study confirms the formation at the crack tip of a process zone, whose occurrence in brittle materials like glass is still a subject of controversy.

  9. The Growth of Naturally-Generated Small Fatigue Cracks in a Nickel-Base Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Yandt, Scott A.

    An experimental and analytical study on the formation and growth small fatigue cracks embedded in a notch in single-crystal superalloy has been investigated. The experimental program consisted of 12 constant amplitude fatigue tests performed on single-edge notch (SEN) fatigue specimens oriented with the loading axis along [010] and with a notch factor of 2.7. The fatigue tests concentrated on one temperature (650°C) and loading condition with the secondary crystallographic orientation---the notch orientation---being the primary variable. Two secondary crystallographic orientations were considered in the present study, [101] and [100]. In the analytical study, the distribution of stresses and strains in the notch region and the stress-intensity factors and the elastic-plastic J-integral for Mode-I semi-elliptical surface cracks embedded at the notch root were investigated using the finite element method (FEM). The anisotropic material properties were shown to have a significant effect on both the stress and strain distribution in the notch region and the crack-tip parameters. The results of the experimental study have shown that fatigue cracks formation occurs via expansion of elliptical subsurface interdendritic pores located at high stress regions in the notch. Once the subsurface crack intersected the notch surface, subsequent crack growth occurred as semi-elliptical surface cracks. The secondary crystallographic orientation had a marked effect on crack-initiation life (the number of cycles to form a crack with a surface length of 760 mum) but no effect on small crack propagation behaviour. Crack initiation life predictions were made using a holistic lifing approach that considers the size, distribution and local stresses acting at the subsurface pores and utilizes the small fatigue crack growth data obtained from the experimental study. The predictions were found to agree reasonably well with the experimental test results and to account for the crack initiation

  10. Brittle-tough transitions during crack growth in toughened adhesives

    NASA Astrophysics Data System (ADS)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  11. Fatigue Growth and Closure of Short Cracks

    DTIC Science & Technology

    1989-06-03

    stLdy has been carried out to investigate the growth and closure behavior of shortýýcracks in 2024-T351 aluminum alloy and four different conditions of...that short cracks show lessclosure behavior than longcracks. The estimates of initlal.crack lengths based on linearelastic data were made. tThese...anomalous behavior of short cracks. Advances in small crack growth have enabled increasingly quantitative studies that affect initi- ation and growth at

  12. Hormone replacement therapy and age-related brain shrinkage: regional effects.

    PubMed

    Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Acker, James D

    2004-11-15

    Neuroprotective properties of estrogen have been established in animal models, but clinical trials of hormone replacement therapy (HRT) produced contradictory results. We examined the impact of HRT on age-related regional changes in human brain volume. Six brain regions were measured twice, five years apart, in 12 healthy women who took HRT and in matched controls who did not. The controls showed a typical pattern of differential brain shrinkage in the association cortices and the hippocampus with no change in the primary visual cortex. In contrast, women who took HRT showed comparable shrinkage of the hippocampus but no significant shrinkage of the neocortex. Future large scale studies may benefit from applying regional rather than global measures in assessment of brain integrity.

  13. Fast approach to infrared image restoration based on shrinkage functions calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin

    2016-05-01

    High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.

  14. Hormone-dependent shrinkage of a sphenoid wing meningioma after pregnancy: case report.

    PubMed

    Kerschbaumer, Johannes; Freyschlag, Christian F; Stockhammer, Günter; Taucher, Susanne; Maier, Hans; Thomé, Claudius; Seiz-Rosenhagen, Marcel

    2016-01-01

    Meningiomas are known to be associated with female sex hormones. Worsening neurological symptoms or newly diagnosed meningiomas have been described in the context of elevated levels of sex hormones, for example, in pregnancy. To the authors' knowledge, tumor shrinkage after the normalization of hormones has not been described, even if it is known that neurological deficits due to meningioma compression may improve after giving birth. A 32-year-old female patient presented with severe headache and vision disturbances at the end of her second pregnancy. Magnetic resonance imaging revealed an extended mass at the lateral left-sided sphenoid wing that was suspected to be a meningioma. After delivery, the patient's symptoms improved, and MRI obtained 2 months postpartum showed significant shrinkage of the lesion. Significant tumor shrinkage can occur after pregnancy. Thus, repeat imaging is indicated in these patients.

  15. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach.

    PubMed

    Opgen-Rhein, Rainer; Strimmer, Korbinian

    2007-01-01

    High-dimensional case-control analysis is encountered in many different settings in genomics. In order to rank genes accordingly, many different scores have been proposed, ranging from ad hoc modifications of the ordinary t statistic to complicated hierarchical Bayesian models. Here, we introduce the "shrinkage t" statistic that is based on a novel and model-free shrinkage estimate of the variance vector across genes. This is derived in a quasi-empirical Bayes setting. The new rank score is fully automatic and requires no specification of parameters or distributions. It is computationally inexpensive and can be written analytically in closed form. Using a series of synthetic and three real expression data we studied the quality of gene rankings produced by the "shrinkage t" statistic. The new score consistently leads to highly accurate rankings for the complete range of investigated data sets and all considered scenarios for across-gene variance structures.

  16. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  17. Shrinkage of polyurethane molecular stamp fixed on epoxy resin modified glass substrate

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; Tang, Jianxin; He, Nongyue; Lu, Zuhong

    2003-01-01

    The shrinkage of polyurethane stamps used for the in situ synthesis of DNA microarrays via molecular stamping method was studied with Micron XYZ Scope. It was found that the polyurethane stamp fixed on the epoxy resin modified glass strongly and showed minimum linear shrinkage. The linear shrinkage of the whole polyurethane stamp and that of each feature of polyurethane stamp were controlled within 0.0341% and 0.309%, respectively, which were due to the strong van der Waals forces and hydrogen bonds between polyurethane and epoxy resin. It was also confirmed by scanning electron microscope that the polyurethane stamp fixed on the epoxy resin modified glass replicated the patterns of motherboard with a high fidelity. All these underlay the synthesis of DNA microarray through molecular stamping method.

  18. Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording.

    PubMed

    Ramos, Gonzalo; Alvarez-Herrero, Alberto; Belenguer, Tomas; del Monte, Francisco; Levy, David

    2004-07-10

    We report the correction of the shrinkage observed during UV postrecording curing in a holographic solgel material that was recently achieved by the use of various chemical formulations for the composition of the hybrid supporting matrix. We found that a chemical modification of the matrix noticeably attenuates the shrinkage (from 1.3% to 0.4% of the material's initial thickness with the inclusion of just 20% tetramethylorthosilicate), providing a material with improved stability for permanent data storage applications. The holographic properties of samples with different binders are also reported. In addition, a theoretical study has revealed the way by which to compensate for angular deviation in the Bragg condition during UV postrecording by tailoring the binder shrinkage (s), the maximum refractive-index modulation capability of the photosensitive mixture (deltan), or both.

  19. Cracks in Utopia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.

    The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  20. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  1. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    PubMed

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.

  2. Studies of spinal shrinkage to evaluate low-back loading in the workplace.

    PubMed

    McGill, S M; van Wijk, M J; Axler, C T; Gletsu, M

    1996-01-01

    Measurement of spinal shrinkage (stadiometry) has been suggested to be a convenient measure of low-back load in workplace settings. This report documents three separate experiments that collectively form a central theme: Is the measurement of spinal shrinkage a suitable assessment technique to quantify the cumulative effect of loading on the low back given the many sources for variability in the signal? A stadiometer was fabricated to measure both sitting and standing height. The first experiment was to compare sitting with standing stature changes over time in an attempt to locate the major site of shrinkage. There were no statistically significant differences in stature change found between either the sitting or standing posture for any condition suggesting that nearly all height changes occur in the spine. The second experiment compared the cumulative effects from static load holding to dynamic load lifting. Some subjects experienced more shrinkage in the static task while others experienced more in the dynamic task. In the third experiment, subjects performed work-rest cycles consisting of periods of sitting and lifting, and repeated over two days, to examine the recovery phenomenon. No specific pattern emerged owing to unpredictable subject variability. The first general observation obtained from the results of all three experiments is that the response of subjects to a wide array of activities appears to be variable both within each subject and over repeated exposures to identical conditions on different days. While subject variability (and perhaps biological variability) is a liability, it may be feasible to develop load time integrals for load exposure in the future, since the asset of the spinal shrinkage approach appears to be that it is one of the few available techniques to assess cumulative loading for both isometric postures, prolonged sitting, repeated tasks and responds to the positive adaptive changes that occur from periods of rest. However, it

  3. Shrinkage Study of Polypropylene Films Laminated on Steel-Influence of the Conformation Processes

    NASA Astrophysics Data System (ADS)

    Ponçot, Marc; Martin, Julien; Dahoun, Abdesselam; Hiver, Jean-Marie; Bourson, Patrice; Verchère, Didier

    2011-05-01

    Nowadays, thermoplastic polymers do not cease to attract the interest of the industrialists as steel / polymer composites for various applications in several domains, such as the automotive and the packaging. The ratio between their wide range of thermo-mechanical properties and their low weight density make these materials a real alternative for the current solutions for the lightening and the reinforcement of structural pieces. Likewise, their working facility is a major asset for performing parts of complex geometry. In this paper, we highlight the narrow relationship between the microstructure of a small impact isotactic polypropylene film, either filled or not by mineral particles (calcite), and its behaviour towards shrinkage which can occur during thermal treatments above its melting temperature. This phenomenon of shrinkage is characterized by dimensional instabilities which can in particular, affect the life cycle of the material. Indeed, they may induce the partial delamination of the steel sheet which is consequently exposed to various environmental aggressions. Corrosive behaviour can occur and cause early breakdown of the material. Influences of the extrusion and stamping processes on the microstructure and the shrinkage are presented. The macromolecular chains orientation of the crystalline phase, the volume damage and the heating parameters are studied, and show a real impact on the phenomenon magnitude. An experimental setup was developed at the laboratory to measure in real-time and with good precision, the displacements induced by shrinkage and the microstructural evolution of the polymer film during different thermal cycles. Finally, an empirical law allowing the shrinkage prediction is presented, taking into account the deformation value and the initial degree of chains orientation. These studies and their results have led to the determination of the optimal parameters settings for the different conformation processes with the aim of reducing

  4. Formation and interpretation of dilatant echelon cracks.

    USGS Publications Warehouse

    Pollard, D.D.; Segall, P.; Delaney, P.T.

    1982-01-01

    The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors

  5. Prediction of stable tearing of 2024-T3 aluminum alloy using the crack-tip opening angle approach

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Newman, J. C., Jr.

    1993-01-01

    In this study, the crack-tip opening angle (CTOA) approach was incorporated into a damage growth finite element program, MADGIC (Micromechanics Analysis and Damage Growth in Composites), and was used to predict stable tearing in a middle-crack tension 2024-T3 aluminum alloy specimen. The MADGIC code is a displacement based finite element program implemented with an incremental elastic-plastic algorithm used to model elastic-plastic behavior and a nodal splitting and nodal force relaxation algorithm used to generate crack surfaces. Predictions of the applied stress as a function of crack extension and applied stress as a function of load-line displacement were in good agreement with experiments and with similar predictions made using an existing finite element program, ZIP2D. In addition, path integrals, namely, the J-integral and T*-integral, were also evaluated and compared with the CTOA approach. There appears to be a weak relationship between the CTOA and the T*-integral evaluated on a specific integration path during crack extension beyond maximum applied stress. This study further verifies that the CTOA can be used as an effective elastic-plastic fracture mechanics parameter to predict crack growth.

  6. High temperature fatigue crack propagation in a nickel base superalloy and investigation of the intergranular fracture process

    SciTech Connect

    Kirkwood, B.L.

    1982-01-01

    The high temperature fatigue behavior of a nickel base superalloy was studied to determine the effect of grain boundary cavitation on the crack propagation rate. It was found that the introduction of cavities into a specimen prior to the fatigue test increases the crack propagation rate significantly over specimens which did not have cavities introduced into them. Companion fatigue specimens were cycled under similar conditions until they attained different levels of cyclic stress intensity in order to observe the changes that occur in the cavity spacing within the plastic zone as the stress intensity increases. The cavity spacing was observed with shadowed two stage TEM replicas taken from the plastic zone near the crack tip. It was found that the cavities nucleate continuously throughout the test, with the cavity spacing becoming progressively smaller as the cyclic stress intensity increases. It also was found that the cavity spacing decreases as one goes through the plastic zone toward the crack tip. A computer analysis of the diffusional growth rate of a void in the plastic zone was done to determine a theoretical value of the minimum cavity spacing which would give the observed crack propagation.

  7. Measurement and Modeling of Hydrogen Environment-Assisted Cracking in Monel K-500

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Ha, Hung M.; Burns, James T.; Scully, John R.

    2014-08-01

    Hydrogen environment-assisted cracking (HEAC) of Monel K-500 is quantified using slow-rising stress intensity loading with electrical potential monitoring of small crack propagation and elastoplastic J-integral analysis. For this loading, with concurrent crack tip plastic strain and H accumulation, aged Monel K-500 is susceptible to intergranular HEAC in NaCl solution when cathodically polarized at -800 mVSCE ( E A, vs saturated calomel) and lower. Intergranular cracking is eliminated by reduced cathodic polarization more positive than -750 mVSCE. Crack tip diffusible H concentration rises, from near 0 wppm at E A of -765 mVSCE, with increasing cathodic polarization. This behavior is quantified by thermal desorption spectroscopy and barnacle cell measurements of hydrogen solubility vs overpotential for planar electrodes, plus measured-local crevice potential, and pH scaled to the crack tip. Using crack tip H concentration, excellent agreement is demonstrated between measurements and decohesion-based model predictions of the E A dependencies of threshold stress intensity and Stage II growth rate. A critical level of cathodic polarization must be exceeded for HEAC to occur in aged Monel K-500. The damaging-cathodic potential regime likely shifts more negative for quasi-static loading or increasing metallurgical resistance to HEAC.

  8. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    NASA Astrophysics Data System (ADS)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  9. The Nonlinear Response of Cracked Aluminum Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    2001-01-01

    The results of a numerical study of the nonlinear response of thin unstiffened aluminum cylindrical shells with a longitudinal crack are presented. The shells are analyzed with a nonlinear shelf analysis code that accurately accounts for global and structural response phenomena. The effects of initial crack length on the prebuckling, buckling and postbuckling responses of a typical shell subjected to axial compression loads, and subjected to combined internal pressure and axial compression loads are described. Both elastic and elastic-plastic analyses are conducted. Numerical results for a fixed initial crack length indicate that the buckling load decreases as the crack length increases for a given pressure load, and that the buckling load increases as the internal pressure load increases for a given crack length. Furthermore, results indicate that predictions from an elastic analysis for the initial buckling load of a cracked shell subjected to combined axial compression and internal pressure loads can be unconservative. In addition, the effect of crack extension on the initial buckling load is presented.

  10. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  11. The influence of creep properties on crack propagation in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Bäker, Martin

    2010-07-01

    Thermal barrier coatings are used to protect turbine blades from the high temperature of the process gas inside a turbine. They consist of a metallic bond coat and of a ceramic top coat with low thermal conductivity. During service, an additional oxide layer forms between bond coat and top coat that eventually causes failure. Finite element simulations show that the roughness of the interface between top and bond coat is crucial for determining the stress state. Lifetime models have been inferred that assume that cracks form in the peak positions at small oxide thickness and propagate when the oxide layer grows and the stress field shifts. A two-dimensional finite element model of crack propagation in the TBC layer is presented. Since the cracks propagate near a material interface and since plasticity may occur in the bond coat, standard tools of fracture mechanics for predicting the crack propagation direction are difficult to apply. This problem is circumvented in a very simple way by propagating short "test cracks" in different directions and optimising to find the crack direction with the maximum energy release rate. It is shown that the energy release rate and the crack propagation direction are sensitive to the details of the stress state and especially to the creep properties of the materials. Implications for failure models are discussed.

  12. Buckling and Stable Tearing Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable tearing and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geo- metrically nonlinear elastic-plastic finite element analyses. The results of these analyses and of the experiments indicate that the pressure required to initiate stable tearing and unstable tearing in a shell subjected to internal pressure loads decreases as the crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression are also described. For this loading condition, the crack length is held constant. The results of the analyses illustrate the influence of crack length on shell buckling instabilities. The experimental and analytical results correlate well.

  13. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    NASA Astrophysics Data System (ADS)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  14. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  15. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.

    PubMed

    An, Lihua; Fung, Karen Y; Krewski, Daniel

    2010-09-01

    Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.

  16. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  17. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE

    PubMed Central

    Xie, Xianchao; Kou, S. C.; Brown, Lawrence

    2015-01-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results. PMID:27041778

  18. A field theory of distortion incompatibility for coupled fracture and plasticity

    NASA Astrophysics Data System (ADS)

    Fressengeas, Claude; Taupin, Vincent

    2014-08-01

    The displacement discontinuity arising between the crack surfaces is assigned to smooth areal/tensorial densities of crystal defects referred to as disconnections, through the incompatibility of the continuous distortion tensor. In a dual way, the disconnections are defined as line defects terminating surfaces where the displacement encounters a discontinuity. A conservation argument for their strength (the crack opening displacement) provides a natural framework for their dynamics in the form of a transport law for the disconnection densities. Similar methodology is applied to the discontinuity of the plastic displacement arising from the presence of dislocations in the body, which results in the concurrent involvement of the dislocation density tensor in the analysis. The present model can therefore be viewed as an extension of the mechanics of dislocation fields to the case where continuity of the body is disrupted by cracks. From the continuity of the elastic distortion tensor, it is expected that the stress field remains bounded everywhere in the body, including at the crack tip. Thermodynamic arguments provide the driving forces for disconnection and dislocation motion, and guidance for the formulation of constitutive relationships insuring non-negative dissipation. The conventional Peach-Koehler force on dislocations is retrieved in the analysis, and a Peach-Koehler-type force on disconnections is defined. A threshold in the disconnection driving force vs. disconnection velocity constitutive relationship provides for a Griffith-type fracture criterion. Application of the theory to the slit-crack (Griffith-Inglis crack) in elastic and elasto-plastic solids through finite element modeling shows that it allows recovering earlier results on the stress field around cracks, and that crack propagation can be consistently described by the transport scheme. Shielding/anti-shielding of cracks by dislocations is considered to illustrate the static/dynamic interactions

  19. Fiber Bragg grating sensors as a tool to evaluate the influence of filler on shrinkage of geopolymer matrices

    NASA Astrophysics Data System (ADS)

    Campopiano, Stefania; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Cioffi, Raffaele

    2015-05-01

    Geopolymer matrices represent one of the main sustainable alternatives to ordinary Portland cement (OPC) and other clinker-based blended cements. Real scale applications are limited and a relevant amount of data is still needed to assess the early age and long-term behavior of these systems. Particularly, the early-age monitoring of geopolymers represent a key parameter for mix design optimization. Most of the available methods for the measurement of temperature evolution due to polycondensation kinetics and early age deformations are related to laboratory activities. The upscaling to in situ techniques represents a crucial step toward technological assessment. To this aim, authors propose to use Fiber Bragg Gratings (FBGs) embedded in the geopolymer matrices. Starting from a case study by authors related to the design of externally bonded fiber reinforced geopolymers for strengthening of existing structures, the matrix was optimized in terms of quartz filler content. The measurements carried out by means of FBG sensors allowed to reduce filler content respect to the abovementioned work. Particularly, quartz content can be reduced by 50%. The temperature associated to polycondensation was slightly below 65°C for the three studied systems, limiting the use of designed metakaolin geopolymer to non-massive structures, since thermal cracking could occur, unless further research will be able to assess the viability of retardants. The experimental results confirm that FBG represent an accurate method for simultaneous shrinkage and temperature measurements for geopolymers and the application in real scale structures for remote sensing could help to create database on inner temperatures and early age deformations.

  20. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry

    PubMed Central

    Reis, Rodrigo S.; Moro, André F.V.; Perez, Cesar R.; Pessôa, Bárbara M.; Dias, Katia R.H.C.

    2015-01-01

    Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable) resin-based composite (RBC) do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness. Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after curing with 36 J/cm2 light energy density. Depth of cure was determined, using a penetrometer and the Knoop microhardness was tested from the top surface to a depth of 5 mm. Results. Considering polymerization shrinkage, the authors found significant differences (p < 0.05) between different materials: non-flowable RBCs showed lower values compared to flowable RBCs, with the silorane-based resin presenting the smallest shrinkage. The low shrinkage flowable composite performed similarly to non-flowable with significant statistical differences compared to the two other flowable RBCs. Regarding to depth of cure, low-shrinkage flowable RBC, were most effective compared to other groups. Microhardness was generally higher for the non-flowable vs. flowable RBCs (p < 0.05). However, the values for low-shrinkage flowable did not differ significantly from those of non-flowable, but were significantly higher than those of the other flowable RBCs. Clinical Significance. RBCs have undergone many modifications as they have evolved and represent the most relevant restorative materials in today’s dental practice. This study of low-shrinkage RBCs, conventional RBCs (non-flowable and flowable) and silorane-based composite—by in vitro evaluation of volumetric shrinkage, depth of cure and microhardness—reveals that although filler content is an important determinant of polymerization shrinkage, it is not the only variable that affects properties of materials that were tested in this study

  1. A theoretical and experimental analysis of polymerization shrinkage of bone cement: A potential major source of porosity.

    PubMed

    Gilbert, J L; Hasenwinkel, J M; Wixson, R L; Lautenschlager, E P

    2000-10-01

    A theoretical basis for understanding polymerization shrinkage of bone cement is presented based on density changes in converting monomer to polymer. Also, an experimental method, based on dilatometry and the Archimedes' principle is presented for highly precise and accurate measurement of unconstrained volumetric shrinkage of bone cement. Furthermore, a theoretical and experimental analysis of polymerization shrinkage in a constrained deformational state is presented to demonstrate that porosity can develop due to shrinkage. Six bone-cement conditions (Simplex-Ptrade mark vacuum and hand mixed, Endurancetrade mark vacuum mixed, and three two-solution experimental bone cements with higher initial monomer levels) were tested for volumetric shrinkage. It was found that shrinkage varied statistically (p< or = 0.05) from 5.1% (hand-mixed Simplex-Ptrade mark) to 6.7% (vacuum-mixed Simplex-Ptrade mark) to 10.5% for a 0.6:1 (polymer g/monomer mL) two-solution bone cement. Shrinkage was highly correlated with initial monomer content (R(2) = 0.912) but with a lower than theoretically expected rate. This discrepancy was due to the presence of residual monomer after polymerization. Using previously determined residual monomer levels, the theoretic shrinkage analysis was shown to be predictive of the shrinkage results with some residual monomer left after polymerization. Polymerization of a two-solution bone cement in a constrained state resulted in pores developing with volumes predicted by the theory that they are the result of shrinkage. The results of this study show that shrinkage of bone cement under certain constrained conditions may result in the development of porosity at the implant-bone cement interface and elsewhere in the polymerizing cement mantle.

  2. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry.

    PubMed

    Maia, Rodrigo R; Reis, Rodrigo S; Moro, André F V; Perez, Cesar R; Pessôa, Bárbara M; Dias, Katia R H C

    2015-01-01

    Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable) resin-based composite (RBC) do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness. Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after curing with 36 J/cm(2) light energy density. Depth of cure was determined, using a penetrometer and the Knoop microhardness was tested from the top surface to a depth of 5 mm. Results. Considering polymerization shrinkage, the authors found significant differences (p < 0.05) between different materials: non-flowable RBCs showed lower values compared to flowable RBCs, with the silorane-based resin presenting the smallest shrinkage. The low shrinkage flowable composite performed similarly to non-flowable with significant statistical differences compared to the two other flowable RBCs. Regarding to depth of cure, low-shrinkage flowable RBC, were most effective compared to other groups. Microhardness was generally higher for the non-flowable vs. flowable RBCs (p < 0.05). However, the values for low-shrinkage flowable did not differ significantly from those of non-flowable, but were significantly higher than those of the other flowable RBCs. Clinical Significance. RBCs have undergone many modifications as they have evolved and represent the most relevant restorative materials in today's dental practice. This study of low-shrinkage RBCs, conventional RBCs (non-flowable and flowable) and silorane-based composite-by in vitro evaluation of volumetric shrinkage, depth of cure and microhardness-reveals that although filler content is an important determinant of polymerization shrinkage, it is not the only variable that affects properties of materials that were tested in this study.

  3. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    NASA Astrophysics Data System (ADS)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  4. Mixed-mode hydrogen-assisted cracking of high-strength steel: The role of cyclic load history

    SciTech Connect

    Toribio, J.; Ovejero, E.; Kharin, V.

    1999-07-01

    Prestressing steel wires are manufactured from a hot-rolled bar, which is heavily cold drawn to produce a highly resistant material. This manufacturing process generates very intense plastic deformations in the material and causes severe changes in its pearlitic microstructure, thus leading to anisotropic stress corrosion behavior in the form of environmentally assisted longitudinal splitting and, thus, mixed-mode stress corrosion cracking. This work describes experimental evidence of mixed-mode hydrogen-assisted cracking of high-strength steel and discusses the role of cyclic load history, because fatigue precracking is a fundamental technique of crack generation for posterior stress corrosion testing, and it has been reported that fatigue preloading may substantially alter the results from stress corrosion cracking tests, especially in the case of hydrogen-assisted cracking.

  5. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  6. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  7. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  8. An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies.

    PubMed

    Lechaudel, Mathieu; Vercambre, Gilles; Lescourret, Françoise; Normand, Frederic; Génard, Michel

    2007-02-01

    Changes in elastic and plastic components of mango (Mangifera indica L. cv 'Cogshall') fruit growth were analyzed with a model of fruit growth over time and in response to various assimilate supplies. The model is based on water relations (water potential and osmotic and turgor pressures) at the fruit level. Variation in elastic fruit growth was modeled as a function of the elastic modulus and variation in turgor pressure. Variation in plastic fruit growth was modeled using the Lockhart (1965) equation. In this model, plastic growth parameters (yield threshold pressure and cell wall extensibility) varied during fruit growth. Outputs of the model were diurnal and seasonal fruit growth, and fruit turgor pressure. These variables were simulated with good accuracy by the model, particularly the observed increase in fruit size with increasing availability of assimilate supply. Shrinkage was sensitive to the surface conductance of fruit peel, the elasticity modulus and the hydraulic conductivity of fruit, whereas fruit growth rate was highly sensitive to parameters linked to changes in wall extensibility and yield threshold pressure, regardless of the assimilate supply. According to the model, plastic growth was generally zero during the day and shrinkage and swelling were linked to the elastic behavior of the fruit. During the night, plastic and elastic growths were positive, resulting in fruit expansion.

  9. Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel

    SciTech Connect

    Marrow, T.J.; Prangnell, P.; Aindow, M.; Strangwood, M.; Knott, J.F.

    1996-08-01

    Observations of internal hydrogen cleavage in Fe-3Si are reported. Hydrogen-assisted stable crack growth (H-SCG) is associated with cleavage striations of a 300 nm spacing, observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). High resolution SEM revealed finer striations, previously undetected, with a spacing of approximately 30 nm. These were parallel to the coarser striations. Scanning tunneling microscopy (STM) also showed the fine striation spacing, and gave a striation height of approximately 15 nm. The crack front was not parallel to the striations. Transmission electron microscopy (TEM) of crack tip plastic zones showed {l_brace}112{r_brace} and {l_brace}110{r_brace} slip, with a high dislocation density (around 10{sup 14}m{sup {minus}2}). The slip plane spacing was approximately 15--30 nm. Parallel arrays of high dislocation density were observed in the wake of the hydrogen cleavage crack. It is concluded that H-ScG in Fe-3Si occurs by periodic brittle cleavage on the {l_brace}001{r_brace} planes. This is preceded by dislocation emission. The coarse striations are produced by crack tip blunting and the fine striations by dislocations attracted by image forces to the fracture surface after cleavage. The effects of temperature, pressure and yield strength on the kinetics of H-SCG can be predicted using a model for diffusion of hydrogen through the plastic zone.

  10. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  11. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  12. Significant reversibility of alcoholic brain shrinkage within 3 weeks of abstinence.

    PubMed

    Trabert, W; Betz, T; Niewald, M; Huber, G

    1995-08-01

    Chronic alcoholism is often associated with brain shrinkage or atrophy. During recent years, it has been demonstrated that this shrinkage is, at least in part, reversible when abstinence is maintained. There are different hypotheses concerning the mechanisms for this reversibility, but many questions are still open. Especially the time conditions for these reversible changes are subject of discussion. Twenty-eight male patients with severe alcohol dependence were investigated in a computed tomographic study at the beginning of abstinence and 3 weeks later. Planimetric evaluation of 5 selected slices revealed a significant decrease in liquor areas and an increase of brain volume. The densitometric analysis showed an increase in brain tissue density. In a multiple regression approach it was shown that the reversibility was mostly influenced by the age of the patients. Our results support neither the hypothesis of an increase in brain water as the most important principle for reversibility in alcoholic brain shrinkage nor the hypothesis of augmented dendritic growth. Other mechanisms like reduced (during chronic intoxication) and normalized (during abstinence) cerebral hemoperfusion have to be considered as possible mechanisms for the reversibility of alcoholic brain shrinkage.

  13. Differential brain shrinkage over 6 months shows limited association with cognitive practice.

    PubMed

    Raz, Naftali; Schmiedek, Florian; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman; Lövdén, Martin

    2013-07-01

    The brain shrinks with age, but the timing of this process and the extent of its malleability are unclear. We measured changes in regional brain volumes in younger (age 20-31) and older (age 65-80) adults twice over a 6 month period, and examined the association between changes in volume, history of hypertension, and cognitive training. Between two MRI scans, 49 participants underwent intensive practice in three cognitive domains for 100 consecutive days, whereas 23 control group members performed no laboratory cognitive tasks. Regional volumes of seven brain structures were measured manually and adjusted for intracranial volume. We observed significant mean shrinkage in the lateral prefrontal cortex, the hippocampus, the caudate nucleus, and the cerebellum, but no reliable mean change of the prefrontal white matter, orbital-frontal cortex, and the primary visual cortex. Individual differences in change were reliable in all regions. History of hypertension was associated with greater cerebellar shrinkage. The cerebellum was the only region in which significantly reduced shrinkage was apparent in the experimental group after completion of cognitive training. Thus, in healthy adults, differential brain shrinkage can be observed in a narrow time window, vascular risk may aggravate it, and intensive cognitive activity may have a limited effect on it.

  14. Brain shrinkage in alcoholics is not caused by changes in hydration: a pathological study.

    PubMed

    Harper, C G; Kril, J J; Daly, J M

    1988-01-01

    Measurement of the water content of the cerebral white matter in 26 control and 24 alcoholic cases supports in vivo MRI studies and previous necropsy studies which appeared to show an increase in the water content in the alcoholic group. This negates the hypothesis that reversible brain shrinkage in alcoholics is caused by changes in the state of hydration.

  15. Urban shrinkage in Germany and the USA: a comparison of transformation patterns and local strategies.

    PubMed

    Wiechmann, Thorsten; Pallagst, Karina M

    2012-01-01

    Many American and European cities have to deal with demographic and economic trajectories leading to urban shrinkage. According to official data, 13% of urban regions in the US and 54% of those in the EU have lost population in recent years. However, the extent and spatial distribution of declining populations differ significantly between Europe and the US. In Germany, the situation is driven by falling birth rates and the effects of German reunification. In the US, shrinkage is basically related to long-term industrial transformation. But the challenges of shrinking cities seldom appeared on the agendas of politicians and urban planners until recently. This article provides a critical overview of the development paths and local strategies of four shrinking cities: Schwedt and Dresden in eastern Germany; Youngstown and Pittsburgh in the US. A typology of urban growth and shrinkage, from economic and demographic perspectives, enables four types of city to be differentiated and the differences between the US and eastern Germany to be discussed. The article suggests that a new transatlantic debate on policy and planning strategies for restructuring shrinking cities is needed to overcome the dominant growth orientation that in most cases intensifies the negative consequences of shrinkage.

  16. [Shrinkage In the Squared Multiple Correlation Coefficient and Unbiased Estimates of Treatment Effects Using Omega Squared.

    ERIC Educational Resources Information Center

    Dalton, Starrett

    The amount of variance accounted for by treatment can be estimated with omega squared or with the squared multiple correlation coefficient. Monte Carlo methods were employed to compare omega squared, the squared multiple correlation coefficient, and the squared multiple correlation coefficient to which a shrinkage formula had been applied, in…

  17. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Lee, Taehun; Guo, Zhaoli; Rumschitzki, David

    2014-03-01

    One characteristic of multiphase lattice Boltzmann equation (LBE) methods is that the interfacial region has a finite (i.e., noninfinitesimal) thickness known as a diffuse interface. In simulations of, e.g., bubble or drop dynamics, for problems involving nonideal gases, one frequently observes that the diffuse interface method produces a spontaneous, nonphysical shrinkage of the bubble or drop radius. In this paper, we analyze in detail a single-fluid two-phase model and use a LBE model for nonideal gases in order to explain this fundamental problem. For simplicity, we only investigate the static bubble or droplet problem. We find that the method indeed produces a density shift, bubble or droplet shrinkage, as well as a critical radius below which the bubble or droplet eventually vanishes. Assuming that the ratio between the interface thickness D and the initial bubble or droplet radius r0 is small, we analytically show the existence of this density shift, bubble or droplet radius shrinkage, and critical bubble or droplet survival radius. Numerical results confirm our analysis. We also consider droplets on a solid surface with different curvatures, contact angles, and initial droplet volumes. Numerical results show that the curvature, contact angle, and the initial droplet volume have an effect on this spontaneous shrinkage process, consistent with the survival criterion.

  18. Strain energy density and thermodynamic entropy as prognostic measures of crack initiation in aluminum

    NASA Astrophysics Data System (ADS)

    Ontiveros, Victor Luis

    A critical challenge to the continued use of engineering structures as they are asked to perform longer than their design life is the prediction of an initiating crack and the prevention of damage, estimation of remaining useful life, schedule maintenance and to reduce costly downtimes and inspections. The research presented in this dissertation explores the cumulative plastic strain energy density and thermodynamic entropy generation up to crack initiation. Plastic strain energy density and thermodynamic entropy generation are evaluated to investigate whether they would be capable of providing a physical basis for fatigue life and structural risk and reliability assessments. Navy aircraft, specifically, the Orion P-3C, which represent an engineered structure currently being asked to perform past is design life, which are difficult and time consuming to inspect from carrier based operations and are currently evaluated using an empirically based damage index the, fatigue life expended, is used as an example in this investigation. A set of experimental results for aluminum alloy 7075-T651, used in airframe structures, are presented to determine the correlation between plastic strain energy dissipation and the thermodynamic entropy generation versus fatigue crack initiation over a wide range of fatigue loadings. Cumulative plastic strain energy and thermodynamic entropy generation measured from hysteresis energy and temperature rise proved to be valid physical indices for estimation of the probability of crack initiation. Crack initiation is considered as a major evidence of fatigue damage and structural integrity risk. A Bayesian estimation and validation approach is used to determine systematic errors in the developed models as well as other model uncertainties. Comparisons of the energy-based and entropy-based models are presented and benefits of using one over the other are discussed.

  19. Review of Environmentally Assisted Cracking

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or

  20. Taguchi design and flower pollination algorithm application to optimize the shrinkage of triaxial porcelain containing palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Zainudin, A.; Sia, C. K.; Ong, P.; Narong, O. L. C.; Nor, N. H. M.

    2017-01-01

    In the preparation of triaxial porcelain from Palm Oil Fuel Ash (POFA), a new parameter variable must be determined. The parameters involved are the particle size of POFA, percentage of POFA in triaxial porcelain composition, moulding pressure, sintering temperature and soaking time. Meanwhile, the shrinkage is the dependent variable. The optimization process was investigated using a hybrid Taguchi design and flower pollination algorithm (FPA). The interaction model of shrinkage was derived from regression analysis and found that the shrinkage is highly dependent on the sintering temperature followed by POFA composition, moulding pressure, POFA particle size and soaking time. The interaction between sintering temperature and soaking time highly affects the shrinkage. From the FPA process, targeted shrinkage approaching zero values were predicted for 142 μm particle sizes of POFA, 22.5 wt% of POFA, 3.4 tonne moulding pressure, 948.5 °C sintering temperature and 264 minutes soaking time.